HUFA75429D3S [FAIRCHILD]

N-Channel UltraFET MOSFETs 60V, 20A, 25mз; N沟道MOSFET的UltraFET 60V , 20A , 25mз
HUFA75429D3S
型号: HUFA75429D3S
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel UltraFET MOSFETs 60V, 20A, 25mз
N沟道MOSFET的UltraFET 60V , 20A , 25mз

文件: 总11页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
March 2002  
HUFA75429D3S  
®
N-Channel UltraFET MOSFETs  
60V, 20A, 25mΩ  
General Description  
Applications  
These N-Channel power MOSFETs are manufactured us-  
ing the innovative UltraFET process. This advanced pro-  
Motor & Load Control  
Powertrain Management  
®
cess technology achieves very low on-resistance per silicon  
area, resulting in outstanding performance. This device is  
capable of withstanding high energy in the avalanche mode  
and the diode exhibits very low reverse recovery time and  
stored charge. It was designed for use in applications where  
power efficiency is important, such as switching regulators,  
switching convertors, motor drivers, relay drivers, low-volt-  
age bus switches.  
Features  
175°C Maximum Junction Temperature  
UIS Capability (Single Pulse and Repetitive Pulse)  
Ultra-Low On-Resistance r  
= 0.025, V = 10V  
GS  
DS(ON)  
DRAIN (FLANGE)  
D
S
GATE  
G
SOURCE  
TO-252  
MOSFET Maximum Ratings T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Ratings  
60  
Units  
V
V
Drain to Source Voltage  
Gate to Source Voltage  
V
V
DSS  
GS  
±20  
Drain Current  
o
20  
4
A
A
Continuous (T = 25 C, V = 10V)  
C
GS  
I
D
o
o
Continuous (T = 125 C, V = 10V, R = 52 C/W)  
θJA  
C
GS  
Pulsed  
Figure 4  
312  
A
E
P
Single Pulse Avalanche Energy (Note 1)  
Power dissipation  
mJ  
AS  
125  
W
D
o
o
Derate above 25 C  
0.83  
W/ C  
o
T , T  
Operating and Storage Temperature  
-55 to 175  
C
J
STG  
Thermal Characteristics  
o
R
R
R
Thermal Resistance Junction to Case TO-252  
Thermal Resistance Junction to Ambient TO-252  
Thermal Resistance Junction to Ambient TO-252, 1in copper pad area  
1.2  
100  
52  
C/W  
θJC  
θJA  
θJA  
o
C/W  
2
o
C/W  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a  
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems  
certification.  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
Package Marking and Ordering Information  
Device Marking  
75429D3  
Device  
Package  
TO-252  
TO-252  
Reel Size  
330mm  
Tube  
Tape Width  
16mm  
Quantity  
2500 units  
75 units  
HUFA75429D3ST  
HUFA75429D3S  
75429D3  
N/A  
Electrical Characteristics T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 250µA, V = 0V  
60  
-
-
-
-
V
VDSS  
D
GS  
V
= 55V, V = 0V  
1
DS  
GS  
I
µA  
V
V
= 45V  
= 0V  
DSS  
GSS  
o
DS  
GS  
T =150 C  
-
-
-
-
250  
±100  
C
I
V
= ±20V  
nA  
GS  
On Characteristics  
V
Gate to Source Threshold Voltage  
V
= V , I = 250µA  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
I
I
= 20A, V = 10V  
0.021 0.025  
D
GS  
r
Drain to Source On Resistance  
= 20A, V = 10V,  
DS(ON)  
D
GS  
-
0.043 0.054  
o
T = 175 C  
J
Dynamic Characteristics  
C
C
C
Input Capacitance  
-
-
-
1090  
376  
102  
65  
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
ISS  
V
= 25V, V = 0V,  
GS  
DS  
Output Capacitance  
OSS  
RSS  
f = 1MHz  
Reverse Transfer Capacitance  
Total Gate Charge at 20V  
Total Gate Charge at 10V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate to Drain MillerCharge  
-
Q
Q
Q
Q
Q
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
85  
47  
2.6  
-
g(TOT)  
g(10)  
g(TH)  
gs  
GS  
V
V
-
-
-
-
36  
GS  
GS  
V
= 30V  
DD  
= 20A  
I
2
D
I = 1.0mA  
g
4
14  
-
gd  
Switching Characteristics (V = 10V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
74  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
10  
39  
52  
33  
-
-
d(ON)  
-
V
V
= 30V, I = 20A  
r
DD  
GS  
D
= 10V, R = 11Ω  
Turn-Off Delay Time  
Fall Time  
-
-
GS  
d(OFF)  
f
Turn-Off Time  
128  
OFF  
Drain-Source Diode Characteristics  
I
I
I
I
= 20A  
= 10A  
-
-
-
-
-
-
-
-
1.25  
1.0  
55  
V
V
SD  
SD  
SD  
SD  
V
Source to Drain Diode Voltage  
SD  
t
Reverse Recovery Time  
= 20A, dI /dt = 100A/µs  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 20A, dI /dt = 100A/µs  
83  
RR  
SD  
Notes:  
1: Starting T = 25°C, L = 1.56mH, I = 20A  
J
AS  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
Typical Characteristics T = 25°C unless otherwise noted  
A
1.2  
25  
1.0  
20  
0.8  
15  
0.6  
10  
0.4  
5
0
0.2  
0
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
100  
125  
o
150  
175  
T
, CASE TEMPERATURE ( C)  
C
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
0.01  
PEAK T = P  
x Z  
x R  
+ T  
θJC C  
J
DM  
θJC  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
600  
100  
o
T
= 25 C  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
V
= 10V  
CURRENT AS FOLLOWS:  
GS  
175 - T  
150  
C
I = I  
25  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
10  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
Typical Characteristics T = 25°C unless otherwise noted  
A
500  
500  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
- V  
DD  
)
AV  
AS  
DSS  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
t
- V ) +1]  
DD  
AV  
AS  
DSS  
100µs  
100  
100  
o
STARTING T = 25 C  
J
1ms  
OPERATION IN THIS  
AREA MAY BE  
10  
10  
LIMITED BY r  
DS(ON)  
10ms  
o
SINGLE PULSE  
STARTING T = 150 C  
J
T
= MAX RATED  
J
o
T
= 25 C  
C
1
0.01  
1
0.1  
1
10  
100  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
V
t , TIME IN AVALANCHE (ms)  
DS  
AV  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515.  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
50  
50  
PULSE DURATION = 80µs  
V
= 10V  
GS  
DUTY CYCLE = 0.5% MAX  
V
= 6V  
= 5V  
GS  
V
= 15V  
DD  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
= 7V  
GS  
V
GS  
o
T
= 175 C  
J
V
= 4.5V  
o
GS  
o
T
= 25 C  
J
T
= 25 C  
C
o
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
T
= -55 C  
J
3
4
5
6
0
0.5  
1.0  
1.5  
2.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
DS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1.2  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250µA  
DS D  
GS  
1.0  
0.8  
0.6  
0.4  
V
= 10V, I = 20A  
D
GS  
-80  
-40  
0
40  
80  
120  
o
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 9. Normalized Drain to Source On  
Resistance vs Junction Temperature  
Figure 10. Normalized Gate Threshold Voltage vs  
Junction Temperature  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
Typical Characteristics T = 25°C unless otherwise noted  
A
1.2  
1.1  
1.0  
0.9  
3000  
I
= 250µA  
D
C
= C + C  
GD  
ISS  
GS  
1000  
C
= C  
GD  
RSS  
C
C
+ C  
OSS  
DS GD  
100  
50  
V
= 0V, f = 1MHz  
1
GS  
-80  
-40  
0
40  
80  
120  
o
160  
200  
0.1  
10  
60  
T , JUNCTION TEMPERATURE ( C)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
J
Figure 11. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
Figure 12. Capacitance vs Drain to Source  
Voltage  
10  
V
= 30V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 20A  
= 4A  
D
D
0
10  
20  
Q , GATE CHARGE (nC)  
30  
40  
g
Figure 13. Gate Charge Waveforms for Constant Gate Currents  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
L
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 14. Unclamped Energy Test Circuit  
Figure 15. Unclamped Energy Waveforms  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
Test Circuits and Waveforms (Continued)  
V
DS  
V
Q
g(TOT)  
DD  
R
L
V
DS  
V
= 20V  
GS  
Q
V
g(10)  
GS  
+
-
V
DD  
V
=10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 16. Gate Charge Test Circuit  
Figure 17. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
L
t
t
f
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
V
10%  
GS  
0
Figure 18. Switching Time Test Circuit  
Figure 19. Switching Time Waveforms  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
thermal resistance of the heat dissipating path determines  
125  
100  
75  
JM  
R
= 33.32 + 23.84/(0.268+Area)  
θJA  
the maximum allowable device power dissipation, P , in an  
DM  
application.  
Therefore the applications ambient  
o
o
temperature, T ( C), and thermal resistance R  
( C/W)  
A
θJA  
must be reviewed to ensure that T  
is never exceeded.  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
A
(EQ. 1)  
P
= -----------------------------  
DM  
50  
RθJA  
In using surface mount devices such as the TO-252  
package, the environment in which it is applied will have a  
significant influence on the parts current and maximum  
25  
0.01  
0.1  
1
2
10  
power dissipation ratings. Precise determination of P  
complex and influenced by many factors:  
is  
AREA, TOP COPPER AREA (in )  
DM  
Figure 20. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designers preliminary application evaluation. Figure 20  
defines the R  
for the device as a function of the top  
θJA  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 20 or by calculation using  
Equation 2. The area, in square inches is the top copper  
area including the gate and source pads.  
23.84  
(0.268 + Area)  
R
= 33.32 + ------------------------------------  
(EQ. 2)  
θJA  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
PSPICE Electrical Model  
.SUBCKT HUFA75429D3S 2 1 3 rev February 2002  
CA 12 8 1.9e-9  
CB 15 14 1.9e-9  
CIN 6 8 9.7e-10  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
51  
ESLC  
11  
EBREAK 11 7 17 18 65  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
-
50  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
EVTHRES  
+
16  
21  
EVTEMP 20 6 18 22 1  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
-
IT 8 17 1  
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
LGATE 1 9 3.54e-9  
LDRAIN 2 5 1e-9  
LSOURCE 3 7 2.21e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLGATE 1 9 35.4  
RLDRAIN 2 5 10  
RLSOURCE 3 7 22.1  
RLSOURCE  
S1A  
S2A  
S2B  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
RVTEMP  
19  
S1B  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 6.5e-3  
RGATE 9 20 2  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
RSOURCE 8 7 RSOURCEMOD 1.1e-2  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*100),5))}  
.MODEL DBODYMOD D (IS = 1.6e-12 N=1.02 RS = 8.1e-3 TRS1 = 3e-3 TRS2 = 2e-6 CJO = 1.43e-9 TT = 3e-8 M = 0.53 XTI=5.5)  
.MODEL DBREAKMOD D (RS = 2e-1 TRS1 = 1e-3 TRS2 = -8.9e-6)  
.MODEL DPLCAPMOD D (CJO = 1.4e-9 IS = 1e-30 N = 10 M = 0.79)  
.MODEL MmedMOD NMOS (VTO=3 KP=4.5 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2)  
.MODEL MstroMOD NMOS (VTO=3.6 KP=40 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=2.66 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2e1 RS=0.1)  
.MODEL RBREAKMOD RES (TC1 =1.2e-3 TC2 = 1e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.2e-2 TC2 = 2.3e-5)  
.MODEL RSLCMOD RES (TC1 = 8e-3 TC2 = 1e-6)  
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 8e-6)  
.MODEL RVTEMPMOD RES (TC1 = -3e-3 TC2 = -2e-6)  
.MODEL RVTHRESMOD RES (TC1 = -2e-3 TC2 = -1e-5)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -8 VOFF= -3.5)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.5 VOFF= -8)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.1 VOFF= 0.5)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.1)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
SABER Electrical Model  
REV February 2002  
template HUFA75429D3S n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=1.6e-12,nl=1.02,rs=8.1e-3,trs1=3e-3,trs2=2e-6,cjo=1.43e-9,tt=3e-8,m=0.53,xti=5.5)  
dp..model dbreakmod = (rs=2e-1,trs1=1e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=1.4e-9,isl=10e-30,nl=10,m=0.79)  
m..model mmedmod = (type=_n,vto=3,kp=4.5,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=3.6,kp=40,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=2.66,kp=0.05,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-8,voff=-3.5)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-8)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.1,voff=0.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1.1)  
c.ca n12 n8 = 1.9e-9  
c.cb n15 n14 = 1.9e-9  
c.cin n6 n8 = 9.7e-10  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
spe.ebreak n11 n7 n17 n18 = 65  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
spe.evtemp n20 n6 n18 n22 = 1  
RGATE  
GATE  
1
+
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
i.it n8 n17 = 1  
MSTRO  
17  
18  
-
RLGATE  
LSOURCE  
l.lgate n1 n9 = 3.54e-9  
l.ldrain n2 n5 = 1e-9  
l.lsource n3 n7 = 2.21e-9  
CIN  
SOURCE  
3
8
7
RSOURCE  
RLSOURCE  
S1A  
12  
S2A  
res.rlgate n1 n9 = 35.4  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 22.1  
RBREAK  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rbreak n17 n18 = 1, tc1=1.2e-3,tc2=1e-7  
res.rdrain n50 n16 = 6.5e-3, tc1=1.2e-2,tc2=2.3e-5  
res.rgate n9 n20 = 2  
RVTHRES  
res.rslc1 n5 n51 = 1e-6, tc1=8e-3,tc2=1e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 1.1e-2, tc1=1e-3,tc2=8e-6  
res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-1e-5  
res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=-2e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/100))** 5))}  
}
©2002 Fairchild Semiconductor Corporation  
Rev. A  
SPICE Thermal Model  
JUNCTION  
th  
REV 23 February 2002  
HUFA75429D3S  
CTHERM1 TH 6 2.49e-3  
CTHERM2 6 5 7.6e-3  
CTHERM3 5 4 7.8e-3  
CTHERM4 4 3 8e-3  
CTHERM5 3 2 1.3e-2  
CTHERM6 2 TL 7.52e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 6e-3  
RTHERM2 6 5 1.4e-2  
RTHERM3 5 4 9e-2  
RTHERM4 4 3 1.8e-1  
RTHERM5 3 2 3.1e-1  
RTHERM6 2 TL 3.35e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model HUFA75429D3S  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =2.49e-3  
ctherm.ctherm2 6 5 =7.6e-3  
ctherm.ctherm3 5 4 =7.8e-3  
ctherm.ctherm4 4 3 =8e-3  
ctherm.ctherm5 3 2 =1.3e-2  
ctherm.ctherm6 2 tl =7.52e-2  
4
3
2
rtherm.rtherm1 th 6 =6e-3  
rtherm.rtherm2 6 5 =1.4e-2  
rtherm.rtherm3 5 4 =9e-2  
rtherm.rtherm4 4 3 =1.8e-1  
rtherm.rtherm5 3 2 =3.1e-1  
rtherm.rtherm6 2 tl =3.35e-1  
}
tl  
CASE  
©2002 Fairchild Semiconductor Corporation  
Rev. A  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarksꢀ  
â
â
SILENT SWITCHER  
SMARTSTART™  
SPM™  
STAR*POWER™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
UHC™  
UltraFET  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DenseTrench™  
DOME™  
MICROWIRE™  
OPTOLOGIC  
OPTOPLANAR™  
PACMAN™  
POP™  
â
â
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
Power247™  
I2C™  
â
EcoSPARK™  
PowerTrench  
E2CMOSTM  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
QFET™  
QS™  
QT Optoelectronics™  
Quiet Series™  
EnSignaTM  
TinyLogic™  
TruTranslation™  
FACT™  
FACT Quiet Series™  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TOANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGNꢀ FAIRCHILD  
DOES NOTASSUMEANY LIABILITYARISING OUT OF THEAPPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERSꢀ  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUTTHE EXPRESS WRITTENAPPROVALOF FAIRCHILD SEMICONDUCTOR CORPORATIONꢀ  
As used herein:  
1ꢀ Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
userꢀ  
2ꢀ A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectivenessꢀ  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product developmentꢀ Specifications may change in  
any manner without noticeꢀ  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later dateꢀ  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
designꢀ  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specificationsꢀ Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve designꢀ  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductorꢀ  
The datasheet is printed for reference information onlyꢀ  
Revꢀ H5  

相关型号:

HUFA75429D3ST

N-Channel UltraFET MOSFETs 60V, 20A, 25mз
FAIRCHILD

HUFA75433S3S

N-Channel UltraFET MOSFETs 60V, 64A, 16mз
FAIRCHILD

HUFA75433S3ST

N-Channel UltraFET MOSFETs 60V, 64A, 16mз
FAIRCHILD

HUFA75531SK8

6A, 80V, 0.030 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUFA75542P3

75A, 80V, 0.014 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75542P3

75A, 80V, 0.014ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
RENESAS

HUFA75542S3S

75A, 80V, 0.014 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD

HUFA75542S3ST

75A, 80V, 0.014ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB
RENESAS

HUFA75545P3

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUFA75545S3S

75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET
FAIRCHILD

HUFA75545S3ST

TRANSISTOR | MOSFET | N-CHANNEL | 80V V(BR)DSS | 75A I(D) | TO-263AB
ETC

HUFA75617D3

16A, 100V, 0.090 Ohm, N-Channel, UltraFET Power MOSFETs
FAIRCHILD