HUF75344G3 [FAIRCHILD]

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs; 75A , 55V , 0.008 Ohm的N通道UltraFET功率MOSFET
HUF75344G3
型号: HUF75344G3
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
75A , 55V , 0.008 Ohm的N通道UltraFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 局域网
文件: 总10页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUF75344G3, HUF75344P3, HUF75344S3S  
Data Sheet  
December 2001  
75A, 55V, 0.008 Ohm, N-Channel UltraFET  
Power MOSFETs  
Features  
• 75A, 55V  
These N-Channel power MOSFETs  
are manufactured using the  
innovative UltraFET process. This  
• Simulation Models  
®
- Temperature Compensated PSPICE and SABER™  
Models  
®
advanced process technology  
achieves the lowest possible on-resistance per silicon area,  
resulting in outstanding performance. This device is capable  
of withstanding high energy in the avalanche mode and the  
diode exhibits very low reverse recovery time and stored  
charge. It was designed for use in applications where power  
efficiency is important, such as switching regulators,  
switching converters, motor drivers, relay drivers, low-  
voltage bus switches, and power management in portable  
and battery-operated products.  
- Thermal Impedance PSPICE and SABER Models  
Available on the web at: www.fairchildsemi.com  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Symbol  
Formerly developmental type TA75344.  
D
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
75344G  
G
HUF75344G3  
TO-247  
HUF75344P3  
TO-220AB  
TO-263AB  
75344P  
75344S  
S
HUF75344S3S  
NOTE: When ordering, use the entire part number. Add the suffix T to  
obtain the TO-263AB variant in tape and reel, e.g., HUF75344S3ST.  
Packaging  
JEDEC STYLE TO-247  
JEDEC TO-220AB  
SOURCE  
DRAIN  
GATE  
SOURCE  
DRAIN  
GATE  
DRAIN  
(FLANGE)  
DRAIN  
(TAB)  
JEDEC TO-263AB  
DRAIN  
(FLANGE)  
GATE  
SOURCE  
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html  
For severe environments, see our Automotive HUFA series.  
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
HUF75344G3, HUF75344P3, HUF75344S3S  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . V  
55  
55  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . V  
GS  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
75  
Figure 4  
Figure 6  
285  
A
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
W
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.90  
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . .T , T  
-55 to 175  
C
J
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 11)  
55  
-
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 50V, V  
= 45V, V  
= ±20V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
THERMAL SPECIFICATIONS  
I
-
GSS  
V
V
= V , I = 250µA (Figure 10)  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
r
I
= 75A, V  
= 10V (Figure 9)  
0.0065 0.008  
DS(ON)  
D
GS  
o
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
R
(Figure 3)  
TO-247  
-
-
-
-
-
-
0.52  
30  
C/W  
θJC  
o
C/W  
θJA  
o
TO-220, TO-263  
62  
C/W  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
GS  
t
V
R
R
= 30V, I  
75A,  
= 10V,  
-
-
-
-
-
-
-
16  
112  
37  
28  
-
195  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
D
= 0.4, V  
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
d(ON)  
= 3.0Ω  
GS  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
100  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
DD  
= 30V,  
75A,  
-
-
-
-
-
175  
90  
210  
108  
7.0  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
I
D
Gate Charge at 10V  
Q
g(10)  
g(TH)  
R
= 0.4Ω  
L
Threshold Gate Charge  
Q
5.9  
14  
I
= 1.0mA  
g(REF)  
(Figure 13)  
Gate to Source Gate Charge  
Reverse Transfer Capacitance  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
39  
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
3200  
1170  
310  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
HUF75344G3, HUF75344P3, HUF75344S3S  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
105  
UNITS  
V
V
I
I
I
= 75A  
-
-
-
-
-
-
SD  
SD  
SD  
SD  
t
= 75A, dI /dt = 100A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 75A, dI /dt = 100A/µs  
210  
nC  
RR  
SD  
Typical Performance Curves  
1.2  
80  
60  
40  
20  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
125  
o
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R  
+ T  
θJC C  
J
DM  
θJC  
SINGLE PULSE  
0.01  
-5  
10  
-4  
-3  
10  
-2  
-1  
10  
0
1
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
HUF75344G3, HUF75344P3, HUF75344S3S  
Typical Performance Curves (Continued)  
2000  
1000  
o
T
C
= 25 C  
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
o
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 20V  
GS  
V
= 10V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
50  
-5  
-4  
10  
-3  
10  
-2  
10  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
FIGURE 4. PEAK CURRENT CAPABILITY  
1000  
1000  
100  
10  
If R = 0  
T
= MAX RATED  
J
t
= (L)(I )/(1.3*RATED BV  
- V  
)
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
DD  
o
T
= 25 C  
C
t
AV  
- V ) +1]  
DD  
AS  
DSS  
100µs  
100  
o
STARTING T = 25 C  
J
1ms  
o
STARTING T = 150 C  
J
OPERATION IN THIS  
AREA MAY BE  
10ms  
LIMITED BY r  
DS(ON)  
V
= 55V  
DSS(MAX)  
10  
0.01  
1
0.1  
1
10  
1
10  
100  
200  
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
150  
120  
90  
60  
30  
0
150  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 20V  
GS  
V
= 10V  
GS  
V
= 15V  
DD  
120  
90  
60  
30  
0
V
= 7V  
GS  
V
= 6V  
GS  
V
= 5V  
GS  
o
25 C  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
-55 C  
o
T
= 25 C  
3
C
0
1
2
4
0
1.5  
3
4.5  
6
7.5  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 8. TRANSFER CHARACTERISTICS  
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
HUF75344G3, HUF75344P3, HUF75344S3S  
Typical Performance Curves (Continued)  
2.5  
2.0  
1.5  
1.0  
0.5  
1.2  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250µA  
DS  
GS  
D
V
= 10V, I = 75A  
GS  
D
1.0  
0.8  
0.6  
0.4  
-80  
-80  
-40  
0
40  
80  
120  
160  
200  
200  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
1.2  
4500  
V
= 0V, f = 1MHz  
GS  
I
= 250µA  
D
C
C
C
= C  
+ C  
ISS  
GS  
= C  
GD  
RSS  
OSS  
GD  
C
ISS  
C
+ C  
GD  
DS  
1.1  
1.0  
0.9  
3000  
C
OSS  
1500  
C
RSS  
0
-80  
-40  
0
40  
80  
120  
160  
200  
0
10  
20  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
30  
40  
50  
60  
o
T , JUNCTION TEMPERATURE ( C)  
V
J
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10  
V
= 30V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
I
= 75A  
= 55A  
= 35A  
= 20A  
D
D
D
D
0
25  
50  
Q , GATE CHARGE (nC)  
75  
100  
g
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
HUF75344G3, HUF75344P3, HUF75344S3S  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
-
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
G(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORM  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
HUF75344G3, HUF75344P3, HUF75344S3S  
PSPICE Electrical Model  
.SUBCKT HUF75344P3 2 1 3 ;  
rev 3 Feb 1999  
CA 12 8 4.9e-9  
CB 15 14 4.75e-9  
CIN 6 8 2.85e-9  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RSLC1  
DBREAK  
51  
+
RSLC2  
5
51  
ESLC  
11  
+
-
50  
EBREAK 11 7 17 18 59.7  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
ESG  
-
EVTHRES  
+
16  
21  
+
-
EVTEMP 20 6 18 22 1  
19  
8
MWEAK  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
-
18  
22  
MMED  
IT 8 17 1  
9
20  
MSTRO  
8
RLGATE  
LDRAIN 2 5 1e-9  
LGATE 1 9 2.6e-9  
LSOURCE 3 7 1.1e-9  
LSOURCE  
CIN  
SOURCE  
3
7
KGATE LSOURCE LGATE 0.0085  
RSOURCE  
RLSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
S1A  
S2A  
S2B  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 1.94e-3  
RGATE 9 20 0.36  
RLDRAIN 2 5 10  
RLGATE 1 9 26  
RLSOURCE 3 7 11  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 3.5e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
-
S1B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*400),3))}  
.MODEL DBODYMOD D (IS = 2.95e-12 RS = 2.6e-3 TRS1 = 1.05e-3 TRS2 = 5.0e-7 CJO = 5.19e-9 TT = 5.9e-8 M = 0.55)  
.MODEL DBREAKMOD D (RS = 1.65e-1 IKF = 30 TRS1 = 1.15e-4 TRS2 = 2.27e-6)  
.MODEL DPLCAPMOD D (CJO = 5.40e-9 IS = 1e-30 N=1 M = 0.88 )  
.MODEL MMEDMOD NMOS (VTO = 3.29 KP = 5.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36)  
.MODEL MSTROMOD NMOS (VTO = 3.83 KP = 123 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 2.90 KP =0.04 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6)  
.MODEL RBREAKMOD RES (TC1 = 1.15e-3 TC2 = 2.0e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.37e-2 TC2 = 3.85e-5)  
.MODEL RSLCMOD RES (TC1 = 1.45e-4 TC2 = 2.11e-6)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -3.7e-3 TC2 = -1.6e-5)  
.MODEL RVTEMPMOD RES (TC1 = -2.4e-3 TC2 = 7e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.9 VOFF= -3.9)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.9 VOFF= -6.9)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.99 VOFF= 2.39)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.39 VOFF= -2.99)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
HUF75344G3, HUF75344P3, HUF75344S3S  
SABER Electrical Model  
REV 3 February 1999  
template huf75344p3 n2, n1, n3  
electrical n2, n1, n3  
{
var i iscl  
d..model dbodymod = (is = 2.95e-12, cjo = 5.19e-9, tt = 5.90e-8, m = 0.55)  
d..model dbreakmod = ()  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
5
DRAIN  
2
d..model dplcapmod = (cjo = 5.40e-9, is = 1e-30, n = 1, m = 0.88)  
m..model mmedmod = (type=_n, vto = 3.29, kp = 5.5, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.83, kp = 123, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 2.90, kp = 0.04, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.9, voff = -3.9)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3.9, voff = -6.9)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -2.99, voff = 2.39)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.39, voff = -2.99)  
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
RSLC2  
ISCL  
50  
-
c.ca n12 n8 = 4.9e-9  
c.cb n15 n14 = 4.75e-9  
71  
RDRAIN  
6
8
ESG  
c.cin n6 n8 = 2.85e-9  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
i.it n8 n17 = 1  
LSOURCE  
CIN  
SOURCE  
3
7
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 2.6e-9  
l.lsource n3 n7 = 1.1e-9  
RSOURCE  
RLSOURCE  
k.kl i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085  
S1A  
S2A  
14  
13  
RBREAK  
12  
15  
13  
17  
18  
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u  
8
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
res.rbreak n17 n18 = 1, tc1 = 1.15e-3, tc2 = 2e-7  
res.rdbody n71 n5 = 2.6e-3, tc1 = 1.05e-3, tc2 = 5e-7  
res.rdbreak n72 n5 = 1.65e-1, tc1 = 1.15e-4, tc2 = 2.27e-6  
res.rdrain n50 n16 = 1.94e-3, tc1 = 1.37e-2, tc2 = 3.85e-5  
res.rgate n9 n20 = 0.36  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rldrain n2 n5 = 10  
RVTHRES  
res.rlgate n1 n9 = 26  
res.rlsource n3 n7 = 11  
res.rslc1 n5 n51 = 1e-6, tc1 = 1.45e-4, tc2 = 2.11e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.5e-3, tc1 = 0, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 7e-7  
res.rvthres n22 n8 = 1, tc1 = -3.7e-3, tc2 = -1.6e-5  
spe.ebreak n11 n7 n17 n18 = 59.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc = 1  
equations {  
i (n51->n50) + = iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/400))** 3))  
}
}
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
HUF75344G3, HUF75344P3, HUF75344S3S  
SPICE Thermal Model  
JUNCTION  
th  
REV 5 February 1999  
HUF75344  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM1 th 6 5.0e-3  
CTHERM2 6 5 1.0e-2  
CTHERM3 5 4 1.3e-2  
CTHERM4 4 3 1.5e-2  
CTHERM5 3 2 2.2e-2  
CTHERM6 2 tl 8.5e-2  
6
RTHERM1 th 6 6.0e-4  
RTHERM2 6 5 3.5e-3  
RTHERM3 5 4 2.5e-2  
RTHERM4 4 3 4.8e-2  
RTHERM5 3 2 1.6e-1  
RTHERM6 2 tl 1.8e-1  
5
SABER Thermal Model  
SABER thermal model HUF75344  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 5.0e-3  
ctherm.ctherm2 6 5 = 1.0e-2  
ctherm.ctherm3 5 4 = 1.3e-2  
ctherm.ctherm4 4 3 = 1.5e-2  
ctherm.ctherm5 3 2 = 2.2e-2  
ctherm.ctherm6 2 tl = 8.5e-2  
rtherm.rtherm1 th 6 = 6.0e-4  
rtherm.rtherm2 6 5 = 3.5e-3  
rtherm.rtherm3 5 4 = 2.5e-2  
rtherm.rtherm4 4 3 = 4.8e-2  
rtherm.rtherm5 3 2 = 1.6e-1  
rtherm.rtherm6 2 tl = 1.8e-1  
}
tl  
CASE  
©2001 Fairchild Semiconductor Corporation  
HUF75344G3, HUF75344P3, HUF75344S3S Rev. B1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
OPTOLOGICâ  
OPTOPLANAR™  
PACMAN™  
SMART START™ VCX™  
SPM™  
Stealth™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
FASTr™  
FRFET™  
GlobalOptoisolator™  
GTO™  
ACEx™  
Bottomless™  
CoolFET™  
CROSSVOLT™  
DOME™  
EcoSPARK™  
E2CMOSTM  
EnSignaTM  
FACT™  
FACT Quiet Series™  
FAST â  
POP™  
HiSeC™  
Power247™  
PowerTrench â  
QFET™  
I2C™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
TinyLogic™  
QS™  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
UltraFET â  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H7  

相关型号:

HUF75344G3_04

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75344G3_NL

Power Field-Effect Transistor, 75A I(D), 55V, 0.008ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-247, TO-247, 3 PIN
FAIRCHILD

HUF75344G3_NL

75A, 55V, 0.008ohm, N-CHANNEL, Si, POWER, MOSFET, TO-247, TO-247, 3 PIN
ROCHESTER

HUF75344P3

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75344P3

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
INTERSIL

HUF75344P3

55V、75A、8mΩ、N沟道UltraFET® Power MOSFET
ONSEMI

HUF75344P3_NL

75A, 55V, 0.008ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, TO-220AB, 3 PIN
ROCHESTER

HUF75344S3

Power Field-Effect Transistor, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA
FAIRCHILD

HUF75344S3S

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75344S3S

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
INTERSIL

HUF75344S3ST

75A, 55V, 0.008ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB, TO-263AB, 3 PIN
ROCHESTER

HUF75345G3

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD