HUF75344S3S [INTERSIL]

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs; 75A , 55V , 0.008 Ohm的N通道UltraFET功率MOSFET
HUF75344S3S
型号: HUF75344S3S
厂家: Intersil    Intersil
描述:

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
75A , 55V , 0.008 Ohm的N通道UltraFET功率MOSFET

晶体 晶体管 开关
文件: 总9页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HUF75344G3, HUF75344P3, HUF75344S3S  
Data Sheet  
January 2000  
File Number 4402.7  
75A, 55V, 0.008 Ohm, N-Channel UltraFET  
Power MOSFETs  
Features  
• 75A, 55V  
These N-Channel power MOSFETs  
are manufactured using the  
innovative UltraFET™ process.  
• Simulation Models  
®
©
- Temperature Compensated PSPICE and SABER  
Models  
This advanced process technology  
- Thermal Impedance PSPICE and SABER Models  
Available on the WEB at: www.Intersil.com  
achieves the lowest possible on-resistance per silicon area,  
resulting in outstanding performance. This device is capable  
of withstanding high energy in the avalanche mode and the  
diode exhibits very low reverse recovery time and stored  
charge. It was designed for use in applications where power  
efficiency is important, such as switching regulators,  
switching converters, motor drivers, relay drivers, low-  
voltage bus switches, and power management in portable  
and battery-operated products.  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Symbol  
Formerly developmental type TA75344.  
D
Ordering Information  
PART NUMBER  
PACKAGE  
BRAND  
75344G  
G
HUF75344G3  
TO-247  
HUF75344P3  
TO-220AB  
TO-263AB  
75344P  
75344S  
S
HUF75344S3S  
NOTE: When ordering, use the entire part number. Add the suffix T to  
obtain the TO-263AB variant in tape and reel, e.g., HUF75344S3ST.  
Packaging  
JEDEC STYLE TO-247  
JEDEC TO-220AB  
SOURCE  
DRAIN  
GATE  
SOURCE  
DRAIN  
GATE  
DRAIN  
(FLANGE)  
DRAIN  
(TAB)  
JEDEC TO-263AB  
DRAIN  
(FLANGE)  
GATE  
SOURCE  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.  
SABER is a Copyright of Analogy, Inc 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000.  
1
HUF75344G3, HUF75344P3, HUF75344S3S  
o
Absolute Maximum Ratings  
T
= 25 C, Unless Otherwise Specified  
C
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
55  
55  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R  
GS  
= 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
75  
Figure 4  
Figure 6  
285  
A
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
W
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.90  
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 175  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 11)  
55  
-
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 50V, V  
= 45V, V  
= ±20V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
THERMAL SPECIFICATIONS  
I
-
GSS  
V
V
= V , I = 250µA (Figure 10)  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
r
I
= 75A, V  
= 10V (Figure 9)  
0.0065 0.008  
DS(ON)  
D
GS  
o
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
R
(Figure 3)  
TO-247  
-
-
-
-
-
-
0.52  
30  
C/W  
θJC  
o
C/W  
θJA  
o
TO-220, TO-263  
62  
C/W  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
GS  
t
V
R
R
= 30V, I  
= 0.4, V  
= 3.0Ω  
75A,  
= 10V,  
-
-
-
-
-
-
-
16  
112  
37  
28  
-
195  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
D
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
d(ON)  
GS  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
100  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
DD  
= 30V,  
75A,  
-
-
-
-
-
175  
90  
210  
108  
7.0  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
I
D
Gate Charge at 10V  
Q
g(10)  
R
= 0.4Ω  
L
I
= 1.0mA  
g(REF)  
(Figure 13)  
Threshold Gate Charge  
Q
5.9  
14  
g(TH)  
Gate to Source Gate Charge  
Reverse Transfer Capacitance  
Q
Q
gs  
39  
-
gd  
2
HUF75344G3, HUF75344P3, HUF75344S3S  
o
Electrical Specifications  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
C
V
= 25V, V  
DS GS  
= 0V,  
-
-
-
3200  
1170  
310  
-
-
-
pF  
pF  
pF  
ISS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
C
OSS  
RSS  
Reverse Transfer Capacitance  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
105  
UNITS  
V
V
I
I
I
= 75A  
-
-
-
-
-
-
SD  
SD  
SD  
SD  
t
= 75A, dI /dt = 100A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 75A, dI /dt = 100A/µs  
210  
nC  
RR  
SD  
Typical Performance Curves  
1.2  
1.0  
0.8  
80  
60  
40  
20  
0.6  
0.4  
0.2  
0
0
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
125  
o
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R + T  
J
DM  
θJC  
θJC C  
SINGLE PULSE  
0.01  
-5  
-4  
-3  
-2  
10  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
3
HUF75344G3, HUF75344P3, HUF75344S3S  
Typical Performance Curves (Continued)  
2000  
1000  
o
T
= 25 C  
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
C
o
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 20V  
GS  
V
= 10V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
50  
-5  
10  
-4  
10  
-3  
10  
-2  
10  
-1  
0
1
10  
10  
10  
t, PULSE WIDTH (s)  
FIGURE 4. PEAK CURRENT CAPABILITY  
1000  
1000  
100  
10  
If R = 0  
T
= MAX RATED  
J
t
= (L)(I )/(1.3*RATED BV  
- V  
)
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
DD  
o
T
= 25 C  
C
t
AV  
- V ) +1]  
DD  
AS  
DSS  
100µs  
100  
o
STARTING T = 25 C  
J
1ms  
o
STARTING T = 150 C  
J
OPERATION IN THIS  
AREA MAY BE  
10ms  
LIMITED BY r  
DS(ON)  
= 55V  
V
DSS(MAX)  
10  
0.01  
1
0.1  
1
10  
1
10  
100  
200  
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
150  
120  
90  
60  
30  
0
150  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 20V  
GS  
V
= 10V  
GS  
V
= 15V  
DD  
120  
90  
60  
30  
0
V
= 7V  
GS  
V
= 6V  
GS  
V
= 5V  
GS  
o
25 C  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
-55 C  
o
T
= 25 C  
3
C
0
1
2
4
0
1.5  
3
4.5  
6
7.5  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 8. TRANSFER CHARACTERISTICS  
4
HUF75344G3, HUF75344P3, HUF75344S3S  
Typical Performance Curves (Continued)  
2.5  
2.0  
1.5  
1.0  
0.5  
1.2  
1.0  
0.8  
0.6  
0.4  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250µA  
DS  
GS  
D
V
= 10V, I = 75A  
GS  
D
0
-80  
-40  
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
1.2  
4500  
V
= 0V, f = 1MHz  
GS  
ISS  
I
= 250µA  
D
C
C
C
= C + C  
GS GD  
= C  
RSS  
OSS  
GD  
C  
C
ISS  
+ C  
GD  
DS  
1.1  
1.0  
0.9  
3000  
C
OSS  
1500  
C
RSS  
0
-80  
-40  
0
40  
80  
120  
160  
200  
0
10  
20  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
30  
40  
50  
60  
o
T , JUNCTION TEMPERATURE ( C)  
V
J
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10  
V
= 30V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
I
= 75A  
= 55A  
= 35A  
= 20A  
D
D
D
D
0
25  
50  
Q , GATE CHARGE (nC)  
75  
100  
g
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
5
HUF75344G3, HUF75344P3, HUF75344S3S  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
-
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
G(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORM  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
6
HUF75344G3, HUF75344P3, HUF75344S3S  
PSPICE Electrical Model  
.SUBCKT HUF75337 2 1 3 ;  
rev 3 Feb 1999  
CA 12 8 4.9e-9  
CB 15 14 4.75e-9  
CIN 6 8 2.85e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
EBREAK 11 7 17 18 59.7  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
EVTEMP 20 6 18 22 1  
+
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
ESG  
EVTHRES  
+
16  
21  
+
-
19  
MWEAK  
LGATE  
EVTEMP  
+
8
RGATE  
GATE  
1
6
-
18  
22  
MMED  
IT 8 17 1  
9
20  
MSTRO  
8
RLGATE  
LDRAIN 2 5 1e-9  
LGATE 1 9 2.6e-9  
LSOURCE 3 7 1.1e-9  
KGATE LSOURCE LGATE 0.0085  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 1.94e-3  
RGATE 9 20 0.36  
RLDRAIN 2 5 10  
RLGATE 1 9 26  
RLSOURCE 3 7 11  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RSOURCE 8 7 RSOURCEMOD 3.5e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
RVTEMP  
19  
-
S1B  
S2B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*400),3))}  
.MODEL DBODYMOD D (IS = 2.95e-12 RS = 2.6e-3 TRS1 = 1.05e-3 TRS2 = 5.0e-7 CJO = 5.19e-9 TT = 5.9e-8 M = 0.55)  
.MODEL DBREAKMOD D (RS = 1.65e-1 IKF = 30 TRS1 = 1.15e-4 TRS2 = 2.27e-6)  
.MODEL DPLCAPMOD D (CJO = 5.40e-9 IS = 1e-30 N=1 M = 0.88 )  
.MODEL MMEDMOD NMOS (VTO = 3.29 KP = 5.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36)  
.MODEL MSTROMOD NMOS (VTO = 3.83 KP = 123 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 2.90 KP =0.04 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6)  
.MODEL RBREAKMOD RES (TC1 = 1.15e-3 TC2 = 2.0e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.37e-2 TC2 = 3.85e-5)  
.MODEL RSLCMOD RES (TC1 = 1.45e-4 TC2 = 2.11e-6)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -3.7e-3 TC2 = -1.6e-5)  
.MODEL RVTEMPMOD RES (TC1 = -2.4e-3 TC2 = 7e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.9 VOFF= -3.9)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.9 VOFF= -6.9)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.99 VOFF= 2.39)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.39 VOFF= -2.99)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
7
HUF75344G3, HUF75344P3, HUF75344S3S  
SABER Electrical Model  
REV 3 February 1999  
template huf75344 n2, n1, n3  
electrical n2, n1, n3  
{
var i iscl  
d..model dbodymod = (is = 2.95e-12, cjo = 5.19e-9, tt = 5.90e-8, m = 0.55)  
d..model dbreakmod = ()  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
DRAIN  
2
5
d..model dplcapmod = (cjo = 5.40e-9, is = 1e-30, n = 1, m = 0.88)  
m..model mmedmod = (type=_n, vto = 3.29, kp = 5.5, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.83, kp = 123, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 2.90, kp = 0.04, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.9, voff = -3.9)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3.9, voff = -6.9)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -2.99, voff = 2.39)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.39, voff = -2.99)  
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
RSLC2  
ISCL  
50  
-
c.ca n12 n8 = 4.9e-9  
c.cb n15 n14 = 4.75e-9  
c.cin n6 n8 = 2.85e-9  
71  
RDRAIN  
6
8
ESG  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
i.it n8 n17 = 1  
LSOURCE  
CIN  
SOURCE  
3
7
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 2.6e-9  
l.lsource n3 n7 = 1.1e-9  
RSOURCE  
RLSOURCE  
k.kl i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085  
S1A  
S2A  
14  
13  
RBREAK  
12  
15  
13  
17  
18  
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u  
8
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
res.rbreak n17 n18 = 1, tc1 = 1.15e-3, tc2 = 2e-7  
res.rdbody n71 n5 = 2.6e-3, tc1 = 1.05e-3, tc2 = 5e-7  
res.rdbreak n72 n5 = 1.65e-1, tc1 = 1.15e-4, tc2 = 2.27e-6  
res.rdrain n50 n16 = 1.94e-3, tc1 = 1.37e-2, tc2 = 3.85e-5  
res.rgate n9 n20 = 0.36  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rldrain n2 n5 = 10  
RVTHRES  
res.rlgate n1 n9 = 26  
res.rlsource n3 n7 = 11  
res.rslc1 n5 n51 = 1e-6, tc1 = 1.45e-4, tc2 = 2.11e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.5e-3, tc1 = 0, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 7e-7  
res.rvthres n22 n8 = 1, tc1 = -3.7e-3, tc2 = -1.6e-5  
spe.ebreak n11 n7 n17 n18 = 59.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc = 1  
equations {  
i (n51->n50) + = iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/400))** 3))  
}
}
8
HUF75344G3, HUF75344P3, HUF75344S3S  
SPICE Thermal Model  
JUNCTION  
th  
REV 5 February 1999  
HUF75344  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM1 th 6 5.0e-3  
CTHERM2 6 5 1.0e-2  
CTHERM3 5 4 1.3e-2  
CTHERM4 4 3 1.5e-2  
CTHERM5 3 2 2.2e-2  
CTHERM6 2 tl 8.5e-2  
6
RTHERM1 th 6 6.0e-4  
RTHERM2 6 5 3.5e-3  
RTHERM3 5 4 2.5e-2  
RTHERM4 4 3 4.8e-2  
RTHERM5 3 2 1.6e-1  
RTHERM6 2 tl 1.8e-1  
5
SABER Thermal Model  
SABER thermal model HUF75344  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 5.0e-3  
ctherm.ctherm2 6 5 = 1.0e-2  
ctherm.ctherm3 5 4 = 1.3e-2  
ctherm.ctherm4 4 3 = 1.5e-2  
ctherm.ctherm5 3 2 = 2.2e-2  
ctherm.ctherm6 2 tl = 5.5e-2  
rtherm.rtherm1 th 6 = 6.0e-4  
rtherm.rtherm2 6 5 = 3.5e-3  
rtherm.rtherm3 5 4 = 2.5e-2  
rtherm.rtherm4 4 3 = 4.8e-2  
rtherm.rtherm5 3 2 = 1.6e-1  
rtherm.rtherm6 2 tl = 1.8e-1  
}
tl  
CASE  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
9

相关型号:

HUF75344S3ST

75A, 55V, 0.008ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB, TO-263AB, 3 PIN
ROCHESTER

HUF75345G3

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75345G3

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
INTERSIL

HUF75345G3

N 沟道,UltraFET 功率 MOSFET,55V,75A,7mΩ
ONSEMI

HUF75345P3

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75345P3

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
INTERSIL

HUF75345P3

N 沟道,UltraFET Power MOSFET,55V,75A,7mΩ
ONSEMI

HUF75345P3_NL

Power Field-Effect Transistor, 75A I(D), 55V, 0.007ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

HUF75345S3

TRANSISTOR | MOSFET | N-CHANNEL | 55V V(BR)DSS | 75A I(D) | TO-262AA
ETC

HUF75345S3S

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75345S3S

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
INTERSIL

HUF75345S3ST

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD