FAN6300ANY [FAIRCHILD]

Highly Integrated Quasi-Resonant Current Mode PWM Controller; 高度集成的准谐振电流模式PWM控制器
FAN6300ANY
型号: FAN6300ANY
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Highly Integrated Quasi-Resonant Current Mode PWM Controller
高度集成的准谐振电流模式PWM控制器

控制器
文件: 总15页 (文件大小:1029K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2009  
FAN6300A / FAN6300H  
Highly Integrated Quasi-Resonant Current Mode  
PWM Controller  
Features  
Description  
The highly integrated FAN6300A/H of PWM controller  
provides several features to enhance the performance  
of flyback converters. FAN6300A is applied on quasi-  
resonant flyback converters where maximum operating  
frequency is below 100kHz. FAN6300H is suitable for  
high-frequency operation (up to 190kHz). A built-in HV  
startup circuit can provide more startup current to  
reduce the startup time of the controller. Once the VDD  
voltage exceeds the turn-on threshold voltage, the HV  
startup function is disabled immediately to reduce  
power consumption. An internal valley voltage detector  
ensures power system operates at quasi-resonant  
operation over a wide-range of line voltage and any  
load conditions, as well as reducing switching loss to  
minimize switching voltage on drain of power MOSFET.  
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
High-Voltage Startup  
Quasi-Resonant Operation  
Cycle-by-Cycle Current Limiting  
Peak-Current-Mode Control  
Leading-Edge Blanking (LEB)  
Internal Minimum tOFF  
Internal 5ms Soft-Start  
Over Power Compensation  
GATE Output Maximum Voltage  
Auto-Recovery Over-Current Protection(FB Pin)  
Auto-Recovery Open-Loop Protection(FB Pin)  
To minimize standby power consumption and light-load  
efficiency, a proprietary green-mode function provides  
off-time modulation to decrease switching frequency  
and perform extended valley voltage switching to keep  
VDD Pin and Output Voltage (DET Pin)  
OVP Latched  
ƒ
ƒ
Low Frequency Operation (below 100kHz) for  
FAN6300A  
to  
a minimum switching voltage. The operating  
frequency is limited by minimum toff time, which is 38µs  
to 8µs in FAN6300A and 13µs to 3µs in FAN6300H, so  
FAN6300H can operate at higher switching frequency  
than FAN6300A.  
High Frequency Operation (up to 190kHz) for  
FAN6300H  
FAN6300A/H controller also provides many protection  
functions. Pulse-by-pulse current limiting ensures the  
fixed-peak current limit level, even when a short circuit  
occurs. Once an open-circuit failure occurs in the  
feedback loop, the internal protection circuit disables  
PWM output immediately. As long as VDD drops below  
the turn-off threshold voltage, the controller also  
disables PWM output. The gate output is clamped at  
18V to protect the power MOS from high gate-source  
voltage conditions. The minimum tOFF time limit  
prevents the system frequency from being too high. If  
the DET pin triggers OVP, internal OTP is triggered and  
the power system enters latch-mode until AC power is  
removed.  
Applications  
ƒ
ƒ
AC/DC NB Adapters  
Open-Frame SMPS  
The FAN6300A/H controller is available in the 8-pin  
Small Outline Package (SOP) and the Dual Inline  
Package (DIP).  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A/H • Rev. 1.0.1  
www.fairchildsemi.com  
Ordering Information  
Operating  
Temperature Range  
Packing  
Method  
Part Number  
Package  
Eco Status  
FAN6300AMY  
FAN6300HMY  
FAN6300ANY  
FAN6300HNY  
Green  
Green  
Green  
Green  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
8-Lead, Small Outline Package (SOP)  
8-Lead, Small Outline Package (SOP)  
8-Lead, Dual In-line Package (DIP)  
8-Lead, Dual In-line Package (DIP)  
Tape & Reel  
Tape & Reel  
Tube  
Tube  
For Fairchild’s definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html  
Application Diagram  
Figure 1. Typical Application  
© 2009 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN6300A(H) Rev. 1.0.1  
2
Internal Block Diagram  
HV  
8
VDD  
6
Internal  
Bias  
OVP  
IH V  
Tw o Steps  
UVLO  
16 V/10 V/8V  
4 .2V  
27 V  
Latched  
2R  
Soft-Start  
2
3
FB  
5m s  
FB OLP  
Tim er  
52m s  
R
2 .1m s  
30 µs  
Starter  
D RV  
Blanking  
Circuit  
S
E T  
S
R
Q
Q
5
GATE  
CS  
PW M  
C urrent Lim it  
18V  
Over-Power  
C om pensation  
C
LR  
ID ET  
Latched  
0.3 V  
V D ET  
Valley  
Detector  
tO FF  
-MIN  
tTIME  
-O U T  
VD ET  
tO FF  
Blanking  
S/H  
Latched  
2.5V  
DET OVP  
1
DET  
Internal  
OTP  
0 .3V  
Latched  
ID ET  
5V  
4
7
GND  
NC  
Figure 2. Functional Block Diagram  
Marking Information  
: Fairchild Logo  
Z: Plant Code  
X: Year Code  
Y: Week Code  
TT: Die Run Code  
T: Package Type (N = DIP, M = SOP)  
P: Y = Green Package  
M: Manufacturing Flow Code  
Figure 3. Marking Diagram  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
3
Pin Configuration  
Figure 4. Pin Configuration  
Pin Definitions  
Pin #  
Name  
Description  
This pin is connected to an auxiliary winding of the transformer via resistors of the divider for  
the following purposes:  
-
Generates a ZCD signal once the secondary-side switching current falls to zero.  
-
Produces an offset voltage to compensate the threshold voltage of the peak current limit to  
provide a constant power limit. The offset is generated in accordance with the input voltage  
when PWM signal is enabled.  
1
DET  
-
Detects the valley voltage of the switching waveform to achieve the valley voltage switching  
and minimize the switching losses.  
A voltage comparator and a 2.5V reference voltage develop a output OVP protection. The ratio  
of the divider decides what output voltage to stop gate, as an optical coupler and secondary  
shunt regulator are used.  
The feedback pin should to be connected to the output of the error amplifier for achieving the  
voltage control loop. The FB should be connected to the output of the optical coupler if the  
error-amplifier is equipped at the secondary-side of the power converter.  
For the primary-side control application, FB is applied to connect a RC network to the ground  
for feedback-loop compensation.  
2
FB  
The input impedance of this pin is a 5kΩ equivalent resistance. A 1/3 attenuator connected  
between the FB and the PWM circuit is used for the loop-gain attenuation. FAN6300A/H  
performs an open-loop protection once the FB voltage is higher than a threshold voltage  
(around 4.2V) more than 55ms.  
Input to the comparator of the over-current protection. A resistor senses the switching current  
and the resulting voltage is applied to this pin for the cycle-by-cycle current limit.  
3
4
5
6
CS  
The power ground and signal ground. A 0.1µF decoupling capacitor placed between VDD and  
GND is recommended.  
GND  
GATE  
VDD  
Totem-pole output generates the PWM signal to drive the external power MOSFET. The  
clamped gate output voltage is 18V.  
Power supply. The threshold voltages for startup and turn-off are 16V and 10V, respectively.  
The startup current is less than 20µA and the operating current is lower than 4.5mA.  
7
8
NC  
HV  
No connect  
High-voltage startup.  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
4
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device  
reliability. The absolute maximum ratings are stress ratings only.  
Symbol  
VDD  
Parameter  
Min.  
Max.  
30  
Unit  
V
DC Supply Voltage  
HV  
VHV  
500  
25.0  
7.0  
V
VH  
GATE  
-0.3  
-0.3  
V
VL  
VFB, VCS, VDET  
V
SOP-8  
DIP-8  
400  
800  
+150  
+150  
+270  
3.0  
PD  
Power Dissipation  
mW  
TJ  
TSTG  
TL  
Operating Junction Temperature  
°C  
°C  
°C  
Storage Temperature Range  
-55  
Lead Temperature (Soldering 10 Seconds)  
Human Body Model, JEDEC:JESD22-A114  
Charged Device Model, JEDEC:JESD22-C101  
ESD  
KV  
1.5  
Notes:  
1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
2. All voltage values, except differential voltages, are given with respect to GND pin.  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
TA  
Operating Ambient Temperature  
-40  
+125  
°C  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
5
Electrical Characteristics  
Unless otherwise specified, VDD=10~25V, TA=-40°C~125°C (TA=TJ).  
Symbol  
Parameter  
Conditions  
Min. Typ. Max. Unit  
VDD Section  
VOP  
Continuously Operating Voltage  
Turn-On Threshold Voltage  
25  
17  
11  
9
V
V
V
V
VDD-ON  
15  
9
16  
10  
8
VDD-PWM-OFF PWM Off Threshold Voltage  
VDD-OFF  
Turn-Off Threshold Voltage  
7
VDD=VDD-ON -0.16V  
GATE Open  
IDD-ST  
Startup Current  
10  
20  
5.5  
3.5  
90  
µA  
mA  
mA  
µA  
VDD=15V, fS=60KHz,  
CL=2nF  
IDD-OP  
Operating Current  
4.5  
Green-Mode Operating Supply Current  
(Average)  
VDD=15V, fS=2KHz,  
CL=2nF  
IDD-GREEN  
VDD=VDD-PWM-OFF  
0.5V  
-
IDD-PWM-OFF Operating Current at PWM-Off Phase  
70  
80  
VDD-OVP  
tVDD-OVP  
IDD-LATCH  
VDD Over-Voltage Protection (Latch-Off)  
VDD OVP Debounce Time  
26  
27  
150  
42  
28  
V
100  
200  
µs  
µA  
VDD OVP Latch-Up Holding Current  
VDD=5V  
HV Startup Current Source Section  
VHV-MIN Minimum Startup Voltage on Pin HV  
50  
V
VAC=90V(VDC=120V)  
DD=0V  
IHV  
Supply Current Drawn from Pin HV  
Leakage Current After Startup  
1.5  
4.0  
mA  
V
HV=500V,  
DD=VDD-OFF +1V  
IHV-LC  
1
20  
µA  
V
Feedback Input Section  
AV =ΔVCS/ΔVFB  
0<VCS<0.9  
AV  
Input-Voltage to Current Sense Attenuation  
1/2.75 1/3.00 1/3.25  
V/V  
ZFB  
IOZ  
Input Impedance  
3
5
7
K  
mA  
V
Bias Current  
FB=VOZ  
1.2  
1.0  
4.2  
2
VOZ  
Zero Duty-Cycle Input Voltage  
Open Loop Protection Threshold Voltage  
0.8  
3.9  
1.2  
4.5  
VFB-OLP  
V
Debounce Time for Open-Loop/Overload  
Protection  
tD-OLP  
tSS  
46  
52  
62  
ms  
Internal Soft-Start Time  
5
ms  
Continued on the following page...  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
6
Electrical Characteristics (Continued)  
Unless otherwise specified, VDD=10~25V, TA=-40°C ~125°C (TA=TJ).  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max.  
Unit  
DET Pin OVP and Valley Detection Section  
VDET-OVP  
Av  
Comparator Reference Voltage  
Open-Loop Gain(3)  
Gain Bandwidth(3)  
2.45  
2.50  
60  
1
2.55  
V
dB  
MHz  
V
Bw  
VV-HIGH  
VV-LOW  
tDET-OVP  
Output High Voltage  
4.5  
Output Low Voltage  
0.5  
200  
1
V
Output OVP (Latched) Debounce Time  
100  
150  
µs  
mA  
V
IDET-SOURCE Maximum Source Current  
VDET=0V  
VDET-HIGH  
VDET-LOW  
Upper Clamp Voltage  
Lower Clamp Voltage  
IDET=-1mA  
IDET=1mA  
5
0.1  
0.3  
V
Delay Time from Valley-Signal Detected to  
Output Turn-On(3)  
tVALLEY-DELAY  
tOFF-BNK  
200  
ns  
µs  
FAN6300A  
FAN6300H  
FAN6300A  
FAN6300H  
4.0  
1.5  
9
Leading-Edge-Blanking Time for DET when  
PWM MOS Turns Off(3)  
tTIME-OUT  
Time-Out after tOFF-MIN  
µs  
5
Oscillator Section  
tON-MAX Maximum On-Time  
38  
45  
8
54  
µs  
µs  
V
FBVN,  
FAN6300A  
V
FBVN  
3
µs  
µs  
FAN6300H  
tOFF-MIN  
Minimum Off-Time  
VFB=VG  
FAN6300A  
38  
VFB=VG  
FAN6300H  
13  
2.10  
1.2  
µs  
V
Beginning of Green-On Mode at FB Voltage  
Level  
VN  
1.95  
1.0  
2.25  
1.4  
Beginning of Green-Off Mode at FB Voltage  
Level  
VG  
V
Green-Off Mode VFB Hysteresis Voltage  
0.05  
1.8  
25  
0.10  
2.1  
30  
0.20  
2.4  
45  
V
ΔVFBG  
VFB<VG  
ms  
µs  
tSTARTER  
Start Timer (Time-Out Timer)  
VFB>VFB-OLP  
Output Section  
VDD=15V,  
IO=150mA  
VOL  
VOH  
Output Voltage Low  
1.5  
V
V
VDD=12V,  
IO=150mA  
Output Voltage High  
7.5  
tR  
tF  
Rising Time  
145  
55  
200  
120  
19.3  
ns  
ns  
V
Falling Time  
VCLAMP  
Gate Output Clamping Voltage  
16.7  
18.0  
Continued on following page…  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
7
Electrical Characteristics(Continued)  
Unless otherwise specified, VDD=10~25V, TA=-40°C ~125°C (TA=TJ).  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
Current Sense Section  
tPD  
Delay to Output  
20  
150  
200  
ns  
V
I
DET < 74.41µA  
0.82  
0.85  
0.88  
Limit Voltage on CS Pin for Over-Power  
Compensation  
VLIMIT  
IDET=550µA  
tON=45µs  
tON=0µs  
0.380 0.415 0.450  
V
0.3  
0.1  
V
VSLOPE  
tBNK  
VCS-H  
tCS-H  
Slope Compensation(3)  
V
Leading-Edge-Blanking Time  
(MOS Turns ON)  
525  
4.5  
625  
725  
5.0  
ns  
VCS Clamped High Voltage once CS Pin  
CS Pin Floating  
CS Pin Floating  
V
Floating  
Delay Time once CS Pin Floating  
150  
µs  
Internal Over-Temperature Protection Section  
TOTP  
Internal Threshold Temperature for OTP(3)  
TOTP-HYST Hysteresis Temperature for Internal OTP(3)  
Note:  
+140  
+15  
°C  
°C  
3. Guaranteed by design.  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
8
Typical Performance Characteristics  
Graphs are normalized at TA=25°C.  
10.00  
9.80  
9.60  
9.40  
9.20  
9.00  
17.0  
16.5  
16.0  
15.5  
15.0  
-40℃ -25℃ -10℃ 5℃ 20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
Temperature(oC)  
-40℃ -25℃ -10℃  
5℃  
20℃  
35℃  
50℃  
65℃  
80℃  
95℃ 110℃ 125℃  
Temperature(°C)  
Figure 5. Turn-On Threshold Voltage  
Figure 6. PWM-Off Threshold Voltage  
8.1  
8.0  
7.9  
7.8  
7.7  
7.6  
7.5  
18  
16  
14  
12  
10  
8
6
-40℃ -25℃ -10℃  
5℃  
20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
Temperature(°C)  
-40℃ -25℃ -10℃ 5℃ 20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
Temperature(oC)  
Figure 7. Turn-Off Threshold Voltage  
Figure 8. Startup Current  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
4.50  
4.20  
3.90  
3.60  
3.30  
3.00  
-40℃ -25℃ -10℃  
5℃  
20℃  
35℃  
50℃  
65℃  
80℃  
95℃ 110℃ 125℃  
-40℃ -25℃ -10℃  
5℃  
20℃  
35℃  
Temperature(°C)  
50℃  
65℃  
80℃  
95℃ 110℃ 125℃  
Temperature(°C)  
Figure 9. Operating Current  
Figure 10. Supply Current Drawn From HV Pin  
0.32  
0.31  
0.30  
0.29  
0.28  
0.27  
0.26  
0.25  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
-40℃ -25℃ -10℃ 5℃ 20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
-40℃ -25℃ -10℃ 5℃ 20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
Temperature(oC)  
Temperature(°C)  
Figure 11. Leakage Current After Startup  
Figure 12. Lower Clamp Voltage  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
9
Typical Performance Characteristics (Continued)  
These characteristic graphs are normalized at TA = 25°C.  
8.70  
2.52  
2.51  
2.50  
2.49  
2.48  
8.40  
8.10  
7.80  
7.50  
-40℃ -25℃ -10℃ 5℃ 20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
Temperature(oC)  
-40℃ -25℃ -10℃ 5℃ 20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
Temperature(°C)  
Figure 13. Comparator Reference Voltage  
Figure 14. Minimum Off Time (VFB>VN)  
42.0  
40.0  
38.0  
36.0  
34.0  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
1.90  
32.0  
-40℃ -25℃ -10℃ 5℃ 20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
-40℃ -25℃ -10℃ 5℃ 20℃ 35℃ 50℃ 65℃ 80℃ 95℃ 110℃ 125℃  
Temperature(°C)  
Temperature(oC)  
Figure 15. Minimum Off Time (VFB=VG)  
Figure 16. Start Timer (VFB<VG)  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
10  
Operation Description  
The FAN6300A/H PWM controller integrates designs to  
enhance the performance of flyback converters. An  
internal valley voltage detector ensures power system  
operates at Quasi-Resonant (QR) operation across a  
wide range of line voltage. The following descriptions  
highlight some of the features of the FAN6300A/H.  
Green-Mode Operation  
The proprietary green-mode function provides off-time  
modulation to linearly decrease the switching frequency  
under light-load conditions. VFB, which is derived from  
the voltage feedback loop, is taken as the reference. In  
Figure 19, once VFB is lower than VN, tOFF-MIN increases  
linearly with lower VFB. The valley voltage detection  
signal does not start until tOFF-MIN finishes. Therefore, the  
valley detect circuit is activated until tOFF-MIN finishes,  
which decreases the switching frequency and provides  
extended valley voltage switching. However, in very light  
load condition, it might fail to detect the valley voltage  
after the tOFF-MIN expires. Under this condition, an internal  
tTIME-OUT signal initiates a new cycle start after a 9μs  
delay (with 5µs delay for H version). Figure 20 and  
Figure 21 show the two different conditions.  
Startup Current  
For startup, the HV pin is connected to the line input or  
bulk capacitor through an external diode and resistor,  
RHV, which are recommended as 1N4007 and 100kΩ.  
Typical startup current drawn from the HV pin is 1.2mA  
and it charges the hold-up capacitor through the diode  
and resistor. When the VDD voltage level reaches VDD-ON  
,
the startup current switches off. At this moment, the VDD  
capacitor only supplies the FAN6300A/H to maintain VDD  
until the auxiliary winding of the main transformer  
provides the operating current.  
tO F F -M IN  
2.1ms  
Valley Detection  
The DET pin is connected to an auxiliary winding of the  
transformer via resistors of the divider to generate a  
valley signal once the secondary-side switching current  
discharges to zero. It detects the valley voltage of the  
switching waveform to achieve the valley voltage  
switching. This ensures QR operation, minimizes  
switching losses, and reduces EMI. Figure 17 shows  
divider resistors RDET and RA. RDET is recommended as  
150kΩ to 220kΩ to achieve valley voltage switching.  
When VAUX (in Figure 17) is negative, the DET pin  
voltage is clamped to 0.3V.  
38/13μs  
8/3μs  
1.2V  
2.1V  
VF B  
Figure 19. VFB vs. tOFF-MIN Curve  
Figure 17. Valley Detect Section  
The internal timer (minimum tOFF time) prevents gate  
retriggering within 8µs (3µs for H version) after the gate  
signal going-low transition. The minimum tOFF limit  
prevents system frequency being too high. Figure 18  
shows a typical drain voltage waveform with first valley  
switching.  
Figure 20. QR Operation in Extended Valley Voltage  
Detection Mode  
Figure 21. Internal tTIME-OUT Initiates New Cycle After  
Failure to Detect Valley Voltage  
(with 5µs Delay for FAN6300H version)  
Figure 18. First Valley Switching  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
11  
Current Sensing and PWM Current Limiting VDD Over-Voltage Protection  
VDD over-voltage protection prevents damage due to  
Peak-current-mode control is utilized to regulate output  
voltage and provide pulse-by-pulse current limiting. The  
switch current is detected by a sense resistor into the  
CS pin. The PWM duty cycle is determined by this  
current-sense signal and VFB. When the voltage on CS  
reaches around VLIMIT = (VFB-1.2)/3, the switch cycle is  
terminated immediately. VLIMIT is internally clamped to a  
variable voltage around 0.85V for output power limit.  
abnormal conditions. Once the VDD voltage is over the  
VDD over-voltage protection voltage (VDD-OVP) and lasts  
for tVDDOVP, the PWM pulse is disabled until the VDD  
voltage drops below the UVLO, then starts again.  
Output Over-Voltage Protection  
The output over-voltage protection works by the  
sampling voltage, as shown in Figure 23, after switch-off  
sequence. A 4μs (1.5μs for H version) blanking time  
Leading-Edge Blanking (LEB)  
Each time the power MOFFET switches on, a turn-on ignores the leakage inductance ringing. A voltage  
spike occurs on the sense resistor. To avoid premature comparator and a 2.5V reference voltage develop an  
termination of the switching pulse, lead-edge blanking output OVP protection. The ratio of the divider  
time is built in. During the blanking period, the current limit determines the sampling voltage of the stop gate, as an  
comparator is disabled; it cannot switch off the gate driver. optical coupler and secondary shunt regulator are used.  
If the DET pin OVP is triggered, the power system enters  
latch-mode until AC power is removed.  
Under-Voltage Lockout (UVLO)  
The turn-on, PWM-off, and turn-off thresholds are fixed  
internally at 16/10/8V. During startup, the startup  
capacitor must be charged to 16V through the startup  
resistor to enable the IC. The hold-up capacitor  
continues to supply VDD until energy can be delivered  
from the auxiliary winding of the main transformer. VDD  
must not drop below 10V during this startup process.  
This UVLO hysteresis window ensures that hold-up  
capacitor is adequate to supply VDD during startup.  
Gate Output  
The BiCMOS output stage is a fast totem-pole gate  
driver. Cross conduction has been avoided to minimize  
heat dissipation, increase efficiency, and enhance  
reliability. The output driver is clamped by an internal  
Figure 23. Voltage Sampled After 4μs  
18V Zener diode to protect power MOSFET transistors  
(1.5μs for FAN6300H version) Blanking Time  
against undesired over-voltage gate signals.  
After Switch-Off Sequence  
Over-Power Compensation  
Short-Circuit and Open-Loop Protection  
To compensate this variation for wide AC input range,  
the DET pin produces an offset voltage to compensate  
the threshold voltage of the peak current limit to provide  
a constant-power limit. The offset is generated in  
accordance with the input voltage when PWM signal is  
enabled. This results in a lower current limit at high-line  
inputs than low-line inputs. At fixed-load condition, the  
CS limit is higher when the value of RDET is higher. RDET  
also affects the H/L line constant power limit.  
The FB voltage increases every time the output of the  
power supply is shorted or overloaded. If the FB voltage  
remains higher than a built-in threshold for longer than  
t
D-OLP, PWM output is turned off. As PWM output is  
turned-off, the supply voltage VDD begins decreasing.  
When VDD goes below the PWM-off threshold of 10V,  
VDD decreases to 8V, then the controller is totally shut  
down. VDD is charged up to the turn-on threshold voltage  
of 16V through the startup resistor until PWM output is  
restarted. This protection feature continues as long as  
the overloading condition persists. This prevents the  
power supply from overheating due to overloading.  
Figure 22. H/L Line Constant Power Limit  
Compensated by DET Pin  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
12  
Physical Dimensions  
5.00  
4.80  
A
0.65  
3.81  
8
5
B
1.75  
6.20  
5.80  
4.00  
3.80  
5.60  
1
4
PIN ONE  
INDICATOR  
1.27  
1.27  
(0.33)  
M
0.25  
C B A  
LAND PATTERN RECOMMENDATION  
SEE DETAIL A  
0.25  
0.10  
0.25  
0.19  
C
1.75 MAX  
0.10  
C
0.51  
0.33  
OPTION A - BEVEL EDGE  
0.50  
0.25  
x 45°  
R0.10  
R0.10  
GAGE PLANE  
OPTION B - NO BEVEL EDGE  
0.36  
NOTES: UNLESS OTHERWISE SPECIFIED  
8°  
0°  
0.90  
A) THIS PACKAGE CONFORMS TO JEDEC  
MS-012, VARIATION AA, ISSUE C,  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE MOLD  
FLASH OR BURRS.  
SEATING PLANE  
(1.04)  
0.406  
D) LANDPATTERN STANDARD: SOIC127P600X175-8M.  
E) DRAWING FILENAME: M08AREV13  
DETAIL A  
SCALE: 2:1  
Figure 24. 8-Pin Small Outline Package (SOP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify  
or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically  
the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H Rev. 1.0.1  
www.fairchildsemi.com  
13  
Physical Dimensions (Continued)  
9.83  
9.00  
6.67  
6.096  
8.255  
7.61  
3.683  
3.20  
7.62  
5.08 MAX  
0.33 MIN  
3.60  
3.00  
(0.56)  
2.54  
0.356  
0.20  
0.56  
0.355  
9.957  
7.87  
1.65  
1.27  
7.62  
NOTES: UNLESS OTHERWISE SPECIFIED  
A) THIS PACKAGE CONFORMS TO  
JEDEC MS-001 VARIATION BA  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,  
MOLD FLASH, AND TIE BAR EXTRUSIONS.  
D) DIMENSIONS AND TOLERANC  
ASME Y14.5M-1994  
ES PER  
E) DRAWING FILENAME AND REVSION: MKT-N08FREV2.  
Figure 25. 8-Pin Dual Inline Package (DIP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify  
or obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically  
the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
14  
© 2009 Fairchild Semiconductor Corporation  
FAN6300A / FAN6300H • Rev. 1.0.1  
www.fairchildsemi.com  
15  

相关型号:

FAN6300DY

SWITCHING CONTROLLER, PDIP8, GREEN, MS-001BA, DIP-8
ROCHESTER

FAN6300DZ

Highly Integrated Quasi-Resonant Current Mode PWM Controller
FAIRCHILD

FAN6300H

Highly Integrated Quasi-Resonant PWM Controller
FAIRCHILD

FAN6300HMY

Highly Integrated Quasi-Resonant Current Mode PWM Controller
FAIRCHILD

FAN6300HMY

用于反激转换器的绿色模式 QR PWM 控制器,频率最高 190KHz
ONSEMI

FAN6300HNY

Highly Integrated Quasi-Resonant Current Mode PWM Controller
FAIRCHILD

FAN6300SY

High-Voltage Startup, Quasi-Resonant Operation
FAIRCHILD

FAN6300SY

SWITCHING CONTROLLER, PDSO8, GREEN, MS-012AA, SOP-8
ROCHESTER

FAN6300SY

用于反激式转换器的绿色模式 QR PWM 控制器,频率低至 100 KHZ 以下
ONSEMI

FAN6300SZ

Highly Integrated Quasi-Resonant Current Mode PWM Controller
FAIRCHILD

FAN6390

Highly Integrated Secondary-Side Adaptive USB Type-C Charging Controller with USB-PD with SR Embedded
ONSEMI

FAN63901JMPX

Highly Integrated Secondary-Side Adaptive USB Type-C Charging Controller with USB-PD
ONSEMI