MC74VHC1G00DFT [ETL]

2-Input NAND Gate; 2输入与非门
MC74VHC1G00DFT
型号: MC74VHC1G00DFT
厂家: E-TECH ELECTRONICS LTD    E-TECH ELECTRONICS LTD
描述:

2-Input NAND Gate
2输入与非门

文件: 总4页 (文件大小:555K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2–Input NAND Gate  
MC74VHC1G00  
The MC74VHC1G00 is an advanced high speed CMOS 2–input NAND gate fabricated with silicon gate CMOS technology. It achieves  
high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The internal circuit is  
composed of multiple stages, including a buffer output which provides high noise immunity and stable output. The MC74VHC1G00 input  
structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the MC74VHC1G00 to be  
used to interface 5 V circuits to 3 V  
circuits.  
• High Speed: t PD = 3.0 ns (Typ) at V CC = 5 V  
• Low Power Dissipation: I CC = 2 mA (Max) at T A = 25°C  
• Power Down Protection Provided on Inputs  
• Balanced Propagation Delays  
• Pin and Function Compatible with Other Standard Logic Families  
MARKING DIAGRAMS  
5
4
1
2
V1d  
3
SC–70/SC–88A/SOT–353  
DF SUFFIX  
CASE 419A  
Pin 1  
d = Date Code  
5
Figure 1. Pinout (Top View)  
4
V1d  
1
2
3
Figure 2. Logic Symbol  
SOT–23/TSOP–5/SC–59  
DT SUFFIX  
CASE 483  
Pin 1  
d = Date Code  
FUNCTION TABLE  
Inputs  
Output  
PIN ASSIGNMENT  
A
L
B
L
Y
H
H
H
L
1
2
3
4
5
IN B  
IN A  
L
H
L
GND  
OUT Y  
V CC  
H
H
H
ORDERING INFORMATION  
See detailed ordering and shipping information in the  
package dimensions section on page 4 of this data sheet.  
VH0–1/4  
MC74VHC1G00  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
V
V CC  
V IN  
V OUT  
I IK  
DC Supply Voltage  
– 0.5 to + 7.0  
DC Input Voltage  
– 0.5 to V CC + 0.5  
V
DC Output Voltage  
DC Input Diode Current  
– 0.5 to V CC + 0.5  
V
± 20  
± 20  
mA  
mA  
mA  
mA  
°C  
I OK  
I OUT  
I CC  
DC Output Diode Current  
DC Output Sink Current  
± 12.5  
± 25  
DC Supply Current per Supply Pin  
Storage Temperature Range  
T STG  
T L  
– 65 to + 150  
260  
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature Under Bias  
°C  
T J  
+ 150  
°C  
θ JA  
Thermal Resistance  
SC–70/SC–88A (Note 1)  
150  
°C/W  
TSOP–5  
SC–70/SC–88A  
TSOP–5  
200  
P D  
Power Dissipation in Still Air at 85C  
150  
mW  
230  
MSL  
F R  
Moisture Sensitivity  
Flammability Rating  
ESD Withstand Voltage  
Level 1  
UL 94 V–0 (0.125 in)  
>2000  
> 200  
Oxygen Index: 30% – 35%  
Human Body Model (Note 2)  
Machine Model (Note 3)  
V ESD  
V
Charged Device Model (Note 4)  
N/A  
I LATCH–UP  
Latch–Up Performance  
Above V CC and Below GND at 85C (Note 5)  
± 500  
mA  
Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions  
beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not  
implied. Functional operation should be restricted to the Recommended Operating Conditions.  
1. Measured with minimum pad spacing on an FR4 board, using 10 mm–by–1 inch, 2–ounce copper trace with no air flow.  
2. Tested to EIA/JESD22–A114–A.  
3. Tested to EIA/JESD22–A115–A.  
4. Tested to JESD22–C101–A.  
5. Tested to EIA/JESD78.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
V CC  
Parameter  
Min  
2.0  
0.0  
0.0  
– 55  
0
Max  
5.5  
Unit  
V
DC Supply Voltage  
DC Input Voltage  
DC Output Voltage  
V IN  
5.5  
V
V OUT  
T A  
V CC  
+ 125  
100  
20  
V
Operating Temperature Range  
Input Rise and Fall Time  
°C  
ns/V  
t r ,t f  
V CC = 3.3 ± 0.3 V  
V CC = 5.0 ± 0.5 V  
0
DEVICE JUNCTION TEMPERATURE VERSUS  
TIME TO 0.1% BOND FAILURES  
Junction  
Time,  
Hours  
Time,  
Years  
117.8  
47.9  
20.4  
9.4  
Temperature °C  
80  
90  
1,032,200  
419,300  
178,700  
79,600  
37,000  
17,800  
8,900  
100  
110  
120  
130  
140  
1
4.2  
2.0  
1
10  
100  
1000  
1.0  
TIME, YEARS  
Figure 3. Failure Rate vs. Time Junction Temperature  
VH0–2/4  
MC74VHC1G00  
DC ELECTRICAL CHARACTERISTICS  
V CC  
T A = 25°C  
T A <85°C –55°C to 125°C  
Symbol  
Parameter  
Test Conditions  
(V) Min Typ Max Min Max Min Max Unit  
V IH  
Minimum High–Level  
Input Voltage  
2.0 1.5  
3.0 2.1  
4.5 3.15  
5.5 3.85  
2.0  
1.5  
2.1  
1.5  
2.1  
V
V
V
3.15  
3.85  
3.15  
3.85  
V IL  
Maximum Low–Level  
Input Voltage  
0.5  
0.9  
0.5  
0.9  
0.5  
0.9  
3.0  
4.5  
1.35  
1.65  
1.35  
1.65  
1.35  
1.65  
5.5  
V OH  
Minimum High–Level  
Output Voltage  
V IN = V IH or V IL  
2.0 1.9 2.0  
3.0 2.9 3.0  
4.5 4.4 4.0  
1.9  
2.9  
4.4  
1.9  
2.9  
4.4  
I OH = – 50 µA  
V
IN = V IH or V IL  
V IN = V IH or V IL  
I OH = –4 mA  
I OH = –8 mA  
V IN = V IH or V IL  
I OL = 50 µA  
3.0 2.58  
4.5 3.94  
2.48  
3.80  
2.34  
3.66  
V OL  
Maximum Low–Level  
Output Voltage  
2.0  
3.0  
4.5  
0.0  
0.0  
0.0  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
V
V
IN = V IH or V IL  
V IN = V IH or V IL  
I OL = 4 mA  
3.0  
4.5  
0.36  
0.36  
±0.1  
0.44  
0.44  
±1.0  
0.52  
0.52  
±1.0  
I OL = 8 mA  
I IN  
Maximum Input  
Leakage Current  
Maximum Quiescent  
Supply Current  
V IN = 5.5 V or GND  
0 to5.5  
µA  
µA  
I CC  
V IN = V CC or GND  
5.5  
2.0  
20  
40  
AC ELECTRICAL CHARACTERISTICS C load = 50 pF, Input t r = t f = 3.0 ns  
T A = 25°C  
Min Typ Max Min Max Min Max Unit  
T A  
<85°C –55°C<TA <125°C  
Symbol Parameter  
Test Conditions  
t PLH  
t PHL  
,
Maximum  
V CC = 3.3± 0.3 V C L = 15 pF  
C L = 50 pF  
4.5  
5.6  
7.9  
9.5  
11.0 ns  
15.1  
Propagation Delay,  
Input A or B to Y  
11.4  
13.0  
V CC = 5.0± 0.5 V C L = 15 pF  
C L = 50 pF  
3.0  
3.8  
5.5  
5.5  
7.5  
10  
6.5  
8.5  
10  
8.0  
10.0  
C IN  
Maximum Input  
Capacitance  
10  
pF  
Typical @ 2C, V CC = 5.0 V  
C PD  
Power Dissipation Capacitance (Note 6)  
10  
pF  
6. C PD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without  
load. Average operating current can be obtained by the equation: I CC(OPR) = C PD V CC f in + I CC C PD is used to determine the no–  
.
2
load dynamic power consumption; P D = C PD V CC f in + I CC V CC  
.
*Includes all probe and jig capacitance.  
A 1–MHz square input wave is recommended  
for propagation delay tests.  
Figure 4. Switching Waveforms  
Figure 5. Test Circuit  
VH0–3/4  
MC74VHC1G00  
DEVICE ORDERING INFORMATION  
Device Nomenclature  
Device  
Package Type  
Tape and  
Reel Size  
Device Order  
Number  
Logic  
Temp  
(Name/SOT#/  
Package Tape and  
Circuit  
Range  
Technology  
Common Name)  
Function Suffix  
Reel Suffix  
Indicator Identifier  
MC74VHC1G00DFT  
MC  
74  
74  
74  
VHC1G  
VHC1G  
VHC1G  
00  
00  
00  
DF  
DF  
DT  
T1  
SC–70/SC–88A/  
SOT–353  
178 mm (7 in)  
3000 Unit  
MC74VHC1G00DFT2 MC  
MC74VHC1G00DTT1 MC  
T2  
T1  
SC–70/SC–88A/  
SOT–353  
178 mm (7 in)  
3000 Unit  
SOT–23/TSOP–5/  
SC–59  
178 mm (7 in)  
3000 Unit  
VH0–4/4  

相关型号:

MC74VHC1G00DFT1

2-Input NAND Gate
ONSEMI

MC74VHC1G00DFT1G

Single 2-Input NAND Gate
ONSEMI

MC74VHC1G00DFT2

2-Input NAND Gate
LRC

MC74VHC1G00DFT2

2-Input NAND Gate
ETL

MC74VHC1G00DFT2G

Single 2-Input NAND Gate
ONSEMI

MC74VHC1G00DFT2G-L22038

Single 2-Input NAND Gate
ONSEMI

MC74VHC1G00DFT4

AHC/VHC SERIES, 2-INPUT NAND GATE, PDSO5, SC-70, SC-88A, SOT-353, 5 PIN
ONSEMI

MC74VHC1G00DTR2

AHC/VHC SERIES, 2-INPUT NAND GATE, PDSO5, SC-59, SOT-23, TSOP-5
ONSEMI

MC74VHC1G00DTT1

2-Input NAND Gate
LRC

MC74VHC1G00DTT1

2-Input NAND Gate
ETL

MC74VHC1G00DTT1G

Single 2-Input NAND Gate
ONSEMI

MC74VHC1G00DTT2

AHC/VHC SERIES, 2-INPUT NAND GATE, PDSO5, SC-59, SOT-23, TSOP-5
ONSEMI