UPC8126GR-E1 [ETC]

RF Modulator ; RF调制器\n
UPC8126GR-E1
型号: UPC8126GR-E1
厂家: ETC    ETC
描述:

RF Modulator
RF调制器\n

射频 微波
文件: 总40页 (文件大小:430K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
BIPOLAR ANALOG INTEGRATED CIRCUIT  
µPC8126GR  
900 MHz BAND DIRECT QUADRATURE MODULATOR IC  
FOR DIGITAL MOBILE COMMUNICATION  
DESCRIPTION  
The µPC8126GR is a silicon monilithic integrated circuit designed as 900 MHz band direct guadrature modulator  
for digital mobile communication systems. This Si-MMIC consists of pre-mixer for RF and IF local oscillator and 900  
MHz band guadrature modulator which are packaged in 20 pin SSOP. The device has power save function and can  
operate 2.7 V to 3.6 V supply voltage. Therefore, it can contribute to make RF block small, high performance and low  
power consumption.  
FEATURES  
Direct modulation range : 915 MHz to 960 MHz  
Pre-mixer for RF and IF local oscillator is incorporated.  
External local filter can be applied between pre-mixer output and modulator input port.  
Low operation current  
: ICC = 35 mA (typ.) @VCC = 3 V  
Equipped with power save function.  
20 pin SSOP suitable for high density surface mounting.  
APPLICATIONS  
Digital cellular phones (PDC900 MHz etc.)  
ORDERING INFORMATION  
PART NUMBER  
PACKAGE  
20 pin plastic SSOP (225 mil)  
SUPPLYING FORM  
QUANTITY  
µPC8126GR-E1  
Embossed tape, 12 mm wide.  
Pins 1 through 10 are in tape pull-  
out direction.  
2500 pcs/Reel  
To order evaluation samples, please contact your local NEC sales office.  
(Part number for sample order: µPC8126GR, Quantity: 20 pcs/Unit)  
Caution electro-static sensitive devices.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No. P11487EJ2V0DS00 (2nd edition)  
Date Published October 1999 N CP(K)  
Printed in Japan  
The mark  
shows major revised points.  
1997, 1999  
©
µPC8126GR  
INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS (Top View)  
V
CC  
1
1
2
20 RF-Loin  
19 GND  
Lo Pre-mixer  
MIXout  
GND  
Loinb  
Loin  
3
18 IF-Loin  
17 Vps2  
4
90 deg.  
× 2  
Phase Shifter  
5
16 GND  
(÷2)  
V
CC2  
6
15 MODout  
Vps1  
GND  
I
7
14  
13 GND  
12  
11 Qb  
V
CC  
3
8
9
Q
Ib  
10  
QUADRATURE MODULATOR SERIES PRODUCT  
ICC  
fLO1in  
fMODout RF Mixer  
Phase  
Part Number  
Functions  
Package  
Application  
(mA)  
(MHz) (MHz) fRFout (MHz) Shifter  
µPC8101GR  
µPC8104GR  
150 MHz Quad.Mod  
15/@2.7 V 100 to 300 50 to 150  
External  
F/F  
20-pin  
CT-2 etc.  
SSOP (225 mil)  
RF Up-Converter + IF  
Quad.Mod  
28/@3.0 V  
100 to 400  
900 to 1 900 Doubler  
+ F/F  
Digital Comm.  
µPC8105GR  
400 MHz Quad.Mod  
16/@3.0 V  
100 to 400  
External  
16-pin  
SSOP (225 mil)  
µPC8110GR  
µPC8125GR  
1 GHz Direct Quad.Mod 24/@3.0 V  
800 to 1 000  
220 to 270  
External  
20-pin  
PDC800 MHz, etc.  
PHS  
SSOP (225 mil)  
RF Up-Converter + IF  
Quad.Mod + AGC  
36/@3.0 V  
1 800 to 2 000  
µPC8126GR  
µPC8126K  
900 MHz Direct Quad.Mod 35/@3.0 V  
with Offset-Mixer  
915 to 960  
889 to 960  
915 to 960  
889 to 960  
PDC800 MHz  
28-pin QFN  
20-pin  
µPC8129GR  
×2LO IF Quad. Mod+RF 28/@3.0 V 200 to 800 100 to 400 800 to 1 900  
F/F  
CR  
GSM,  
Up-Converter  
SSOP (225 mil) DCS1800, etc.  
µ
PC8139GR-7JH  
Transceiver IC  
TX: 32.5  
220 to 270  
100 to 300  
1 800 to 2 000  
800 to 1 500  
30-pin  
PHS  
(1.9 GHz Indirect Quad. RX: 4.8  
Mod + RX-IF + IF VCO) /@3.0 V  
TSSOP (225 mil)  
µPC8158K  
RF Up-Converter + IF  
Quad.Mod + AGC  
28/@3.0 V  
28-pin QFN  
PDC800 M/1.5 G  
Remark As for detail information of series products, please refer to each data sheet.  
2
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
APPLICATION EXAMPLE  
[PDC800MHz]  
SUB ANT  
LNA  
1st MIX  
2nd MIX  
SW  
TO DEMOD.  
MAIN ANT  
RSSI OUT  
RSSI  
1st LO  
2nd LO  
SW  
PLL1 PLL2  
SW  
I
0°  
φ
(÷2)  
× 2  
Filter  
PA  
AGC  
90° deg.  
Q
µPC8126GR  
3
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply voltage  
SYMBOL  
RATING  
4.0  
UNIT  
V
TEST CONDITIONS  
VCC  
Vps  
PD  
TA = +25 °C, 1, 6, 14 pin  
TA = +25 °C, 7, 17 pin  
TA = +85 °C  
Power Save Control Voltage  
Power Dissipation  
4.0  
V
430Note 1  
40 to +85  
55 to +150  
mW  
°C  
Operating Ambient Temperature  
Storage Temperature  
TA  
Tstg  
°C  
Note 1. Mounted on a 50 × 50 × 1.6 mm double copper clad epoxy glass PWB.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
Supply Voltage  
SYMBOL  
VCC  
MIN.  
2.7  
TYP.  
3.0  
MAX.  
3.6  
UNIT  
V
TEST CONDITIONS  
Operating Ambient Temperature  
Pre-Mix. RF Input Frequency  
Pre-Mix. RF Input Power  
TA  
25  
700  
13  
120  
+25  
+75  
1200  
9  
C
fRFin  
MHz  
dBm  
MHz  
PRFin = 11 dBm  
PRFin  
fIFin  
11  
Pre-Mix. IF Input Frequency  
135  
270  
P (fIFin × 7) ≤ −65 dBc  
PIFin = 12 dBm  
Pre-Mix. IF Input Power  
Pre-Mix. Output Frequency  
Modulator Output Frequency  
Modulator Lo Input Frequency  
Modulator Lo Input Power  
I/Q Input Frequency  
PIFin  
fMIXout  
fMODout  
fLoin  
14  
915  
915  
12  
10  
960  
960  
dBm  
MHz  
MHz  
PLoin  
fI/Qin  
22.5  
18.5  
14.5  
10  
dBm  
MHz  
mVp-p  
DC  
I/Q Input Amplitude  
VI/Qin  
500  
250  
Single ended Input  
Differential Input  
4
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
ELECTRICAL CHARACTERISTICS  
(TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1, Vps2 2.2 V Unless Otherwise Specified)  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
TEST CONDITIONS  
MODULATOR + PRE-MIXER TOTAL (TEST CIRCUIT 1)  
Total Circuit Current  
ICC (TOTAL)  
24  
35  
0
44  
15  
mA  
No Input signals  
Total Circuit Current at Sleep  
Mode  
ICC (ps) TOTAL  
µA  
Vps 0.5 V (Low),  
No Input Signals  
Modulator Output Power  
Local Oscillator Leakage  
Image Rejection  
PMODout  
LoL Note 2  
ImR  
12  
9  
6  
dBm  
dBc  
dBc  
dBc  
dBc  
fIFin = 135 MHz, PIFin = 12 dBm  
fRFin = 813 MHz, PRFin = 11 dBm  
fMODout = 948 MHz + fI/Q  
fI/Qin = 2.625 kHz  
35  
40  
45  
30  
30  
30  
65  
VI/Qin = 500 mVp-p  
(Single ended)  
I/Q (DC) = Ib/Qb (DC) = VCC/2  
Data Rate: 42 kbps,  
RNYQ: α = 0.5  
I/Q 3rd Order Intermodulation  
fIF-Lo × 7 Harmonics  
IM3 (I/Q)  
MOD Pattern: All Zero  
7fIF-Lo  
Rise Time  
Fall Time  
Tps (RISE)  
Tps (FALL)  
EVM  
3
3
5
5
µs  
µs  
Vps: Low to High  
Vps: High to Low  
Power Save  
Response Time  
Error Vector Magnitude  
1.6  
3.5  
%rms  
fIFin = 135 MHz, PIFin = 12 dBm  
fRFin = 813 MHz, PRFin = 11 dBm  
fMODout = 948 MHz + fI/Q  
fI/Qin = 2.625 kHz  
VI/Qin = 500 mVp-p  
(Single ended)  
Adjacent Channel Power  
ACP  
65  
60  
dBc  
I/Q (DC) = Ib/Qb (DC) = VCC/2  
Data Rate: 42 kbps,  
RNYQ: α = 0.5  
(f = ±50 kHz)  
MOD Pattern: PN9  
Port Current-7pin  
Port Current-17pin  
Ips (7 pin)  
620  
400  
µA  
µA  
No Input Signals  
No Input Signals  
Ips (17 pin)  
Note 2. fLoL = fIFin + fRFin  
5
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
STANDARD CHARACTERISTICS FOR REFERENCE  
(TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1, Vps2 2.2 V Unless Otherwise Specified)  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNIT  
TEST CONDITIONS  
MODULATOR (TEST CIRCUIT 1)  
Modulator Circuit Current  
ICC (MOD)  
27.5  
0
34  
10  
mA  
No Input Signals  
Modulator Circuit Current at  
Sleep Mode  
ICC (ps) (MOD)  
µA  
Vps 0.5 V (Low),  
No Input Signals  
Input Impedance I and Q Port  
Modulator Output Port VSWR  
PRE-MIXER (TEST CIRUCIT 2)  
Pre-Mixer Circuit Current  
ZI/Qin  
90  
180  
kΩ  
fI/Q = DC to 10 MHz  
fMODout = 948 MHz  
VSWR (MOD)  
1.5 : 1  
ICC (MIX)  
7.5  
0
10  
5
mA  
No Input Signals  
Pre-Mixer Circuit Current at  
Sleep Mode  
ICC (ps) (MIX)  
µA  
Vps 0.5 V (Low),  
No Input Signals  
Pre-Mixer Conversion Gain  
CG (MIX)  
Pout (MIX)  
5  
3  
1  
dB  
fRFin = 813 MHz, PRFin = 11 dBm  
fIFin = 135 MHz, PIFin = 12 dBm  
fMIXout = 948 MHz  
Pre-Mixer Output Power  
17  
15  
13  
dBm  
6
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PIN EXPLANATIONS  
Pin  
Pin  
Supply  
Vol. (V)  
Symbol  
No.  
Description  
Equivalent Circuit  
Vol. (V)  
@3 V  
1
VCC1  
2.7 to 3.6  
Supply voltage pin for the premixer.  
An internal regulator helps keep the  
device stable against temperature or  
VCC variation.  
(Pre-Mixer)  
2
2
Pre-Mixout  
2.7 to 3.6  
Output from the pre-Mixer. This pin  
is designed as pen collector. Due to  
the high impedance output, this pin  
should be externally equipped with  
LC matching circuit to next stage.  
3
GND  
0
Ground pin for the modulator.  
Connect to the ground with minimum  
inductance.  
(Modulator)  
Track length should be kept as short  
as possible.  
4
5
LOinb  
LOin  
2.6  
2.6  
Bypass of Lo input for modulator.  
This pin is grounded through around  
33 pF capacitor.  
5
4
Lo input for the phase shifter.  
Connect around 300 between pin  
4 and 5 to match to 50 by LC.  
6
7
VCC2  
2.7 to 3.6  
Supply voltage pin for the phase  
shifter and IQ Mixer. An internal  
regulator helps keep the device  
stable against temperature or VCC  
variation.  
VPS1  
VPS  
Power save control pin for the  
modulator can control On/Sleep  
state with bias as follows.  
(Modulator)  
7
VPS (V)  
2.2 to 3.6  
0 to 0.5  
STATE  
ON (Active Mode)  
OFF (Sleep Mode)  
8
GND  
0
Ground pin for the modulator.  
Connect to the ground with minimum  
inductance.  
(Modulator)  
Track length should be kept as short  
as possible.  
7
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PIN EXPLANATIONS  
Pin  
Pin  
Supply  
Vol. (V)  
Symbol  
No.  
Description  
Equivalent Circuit  
Vol. (V)  
@3 V  
9
I
VCC/2  
Input for I signal.  
This input impedance is 180 k.  
In case of that I/Q input signals are  
single ended, amplitude of the signal  
is 500 mVp-p max.  
Note 3  
10  
Ib  
VCC/2  
Input for I signal.  
This input impedance is 180 k.  
In case of that I/Q input signals are  
single ended, VCC/2 biased DC  
signal should be input.  
9
10  
In case of that I/Q input signals are  
differential, amplitude of the signal is  
250m Vp-p; max.  
Note 3  
11  
Qb  
VCC/2  
Input for Q signal.  
This input impedance is 180 k.  
In case of that I/Q input signals are  
single ended, VCC/2 biased DC  
signal should be input.  
In case of that I/Q input signals are  
differential, amplitude of the signal is  
250 mVp-p max.  
Note 3  
11  
12  
12  
13  
14  
15  
Q
VCC/2  
Input for Q signal.  
This input impedance is 180 k.  
In case of that I/Q input signals are  
single ended, amplitude of the signal  
is 500 mVp-p max.  
Note 3  
GND  
0
2.7 to 3.6  
Ground pin for the modulator.  
(Modulator)  
Connect to the ground with minimum  
inductance.  
Track length should be kept as short  
as possible.  
VCC3  
Supply voltage pin for the output  
buffer amplifier of modulator.  
An internal regulator helps keep the  
device stable against temperature or  
VCC variation.  
MODout  
1.6  
Output pin from the modulator.  
This is emitter follower output.  
So this output impedance is low.  
15  
16  
GND  
0
Ground pin for the modulator.  
Connect to the ground with minimum  
inductance.  
(Modulator)  
Track length should be kept as short  
as possible.  
8
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PIN EXPLANATIONS  
Pin  
Pin  
Supply  
Vol. (V)  
Symbol  
No.  
Description  
Equivalent Circuit  
Vol. (V)  
@3 V  
17  
VPS2  
VPS  
Power save control pin can control  
the On/Sleep state with bias as  
follows.  
(Pre-Mix.)  
17  
VPS (V)  
2.2 to 3.6  
0 to 0.5  
STATE  
ON (Active Mode)  
OFF (Sleep Mode)  
18  
IF-Loin  
1.3  
IF input pin for the pre-Mixer.  
This pin is biased internally.  
Capacitor should be connected in  
series, and grounded through 51 .  
18  
19  
20  
GND  
0
Ground pin for modulator.  
Connect to the ground with minimum  
inductance.  
(Pre-Mix.)  
Track length should be kept as short  
as possible.  
RF-Loin  
2.3  
RF input pin for the pre-Mixer.  
This pin is biased internally.  
Capacitor should be connected in  
series, and grounded through 51 .  
20  
Note 3  
Relations between amplitude and VCC/2 bias of input signal are following.  
I/Q input signal (mVp-p)  
I/Q DC Voltage (V)  
Supply Voltage (V)  
Single ended iinput  
Differential input  
I = Ib = Q = Qb  
VCC/2 = I = Ib = Q = Qb  
VCC  
I = Q  
2.7 to 3.6  
1.35 to 1.8  
500  
250  
9
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
EXPLANATION OF INTERNAL FUNCTION  
BLOCK  
90 °  
FUNCTION/OPERATION  
BLOCK DIAGRAM  
from LOin  
Input signal from LO is send to digital circuit of  
T-type flip-flop through frequency doubler.  
Output signal from T-type F/F is changed to  
same frequency as LO input and that have  
quadrature phase shift, 0 °, 90 °, 180 °, 270 °.  
These circuits have function of self phase  
correction to make correctly quadrature signals.  
PHASE  
SHIFTER  
× 2  
÷ 2 F/F  
BUFFER  
AMP.  
Buffer amplifiers for each phase signals to send  
to each mixers.  
MIXER  
Each signals from buffer amp. are quadrature  
modulated with two double-balanced mixers.  
High accurate phase and amplitude inputs are  
realized to good performance for image  
rejection.  
I
Ib  
Qb  
Q
ADDER  
Output signals from each mixers are added with  
adder and send to final amplifier.  
to MODout  
10  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
STANDARD TYPICAL CHARACTERISTICS Modulator+Pre-Mixer Total  
Test Circuit 2, TA = +25 °C, VCC1 = VCC2 = VCC3 = 3.0 V, Vps1 = Vps2 = 3.0 V,  
I/Q (DC) = Ib/Qb (DC) = VCC/2, VI/Qin = 420 mVp-p (Differential Input), fI/Qin = 2.625 kHz,  
fIFin = 135 MHz, PIFin = 12 dBm, fRFin = 813 MHz, PRFin = 11 dBm, fMODout = 948 MHz + fI/Qin,  
Data Rate = 42 kbps, RNYQ : α = 0.5,  
MOD Pattern : All Zero, Unless Otherwise Specified  
I
CC (TOTAL) vs VCC  
50  
40  
30  
20  
10  
No input signal  
T
T
T
A
A
A
= +80 °C  
= +25 °C  
= –30 °C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VCC - Supply Voltage - V  
I
CC (TOTAL) vs Vps  
50  
40  
30  
20  
10  
No input signal  
T
T
T
A
A
A
= +80 °C  
= +25 °C  
= –30 °C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Vps - Power Save Control Voltage - V  
11  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PMODout vs VI/Qin  
PMODout vs VI/Qin  
(at T  
A
= –30 °C)  
(at T = +25 °C)  
A
VCC = 3.6 V  
VCC = 3.0 V  
VCC = 2.7 V  
VCC = 3.6 V  
VCC = 3.0 V  
VCC = 2.7 V  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
10 20  
50 100 200 5001000  
10 20  
50 100 200 5001000  
VI/Qin - I/Q Input Amplitude - mVP-P  
VI/Qin - I/Q Input Amplitude - mVP-P  
PMODout vs VI/Qin  
(at T = +80 °C)  
A
V
V
V
CC = 3.6 V  
CC = 3.0 V  
CC = 2.7 V  
0
–5  
–10  
–15  
–20  
–25  
10 20  
50 100 200 5001000  
VI/Qin - I/Q Input Amplitude - mVP-P  
12  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
LoL, ImR, IM3I/Q vs VI/Qin  
LoL, ImR, IM3I/Q vs VI/Qin  
(at T = +25 °C)  
(at T  
A
= –30 °C)  
A
–25  
–30  
–35  
–40  
–45  
–50  
–25  
–30  
–35  
–40  
–45  
–50  
IM  
3
(I/Q)  
LoL  
LoL  
IM  
2
(I/Q)  
IM3 (I/Q)  
ImR  
ImR  
10 20  
50 100 200 5001000  
10 20  
50 100 200 5001000  
VI/Qin - I/Q Input Amplitude - mVP-P  
VI/Qin - I/Q Input Amplitude - mVP-P  
LoL, ImR, IM3I/Q vs VI/Qin  
(at T = +80 °C)  
A
–25  
–30  
–35  
–40  
–45  
–50  
LoL  
IM  
3
(I/Q)  
ImR  
10 20  
50 100 200 5001000  
VI/Qin - I/Q Input Amplitude - mVP-P  
13  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PMODout, LoL, ImR, IM3I/Q vs fLoin  
PMODout, LoL, ImR, IM3I/Q vs fLoin  
PMODout, LoL, ImR, IM3I/Q vs fLoin  
(at VCC = 2.7 V, T  
A
= –30 °C)  
(at VCC = 3.0 V, T  
A
= –30 °C)  
(at VCC = 3.6 V, T  
A
= –30 °C)  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
P
MODout  
P
MODout  
P
MODout  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
LoL  
LoL  
LoL  
IM  
3
(I/Q)  
IM  
3
(I/Q)j  
IM  
3
(I/Q)  
ImR  
IM  
2
(I/Q)  
ImR  
ImR  
IM2(I/Q)  
IM2 (iI/Q)  
900  
950  
1000  
900  
950  
1000  
900  
950  
1000  
f
Loin - Lo Input Frequency - MHz  
f
Loin - Lo Input Frequency - MHz  
fLoin - Lo Input Frequency - MHz  
P
MODout, LoL, ImR, IM3I/Q vs fLoin  
PMODout, LoL, ImR, IM3I/Q vs fLoin  
PMODout, LoL, ImR, IM3I/Q vs fLoin  
(at VCC = 2.7 V, T  
A
= +25 °C)  
(at VCC = 3.0 V, T  
A
= +25 °C)  
(at VCC =3.6 V, T  
A
= +25 °C)  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
P
MODout  
P
MODout  
P
MODout  
–10  
–15  
–10  
–15  
–10  
LoL  
LoL  
IM  
2
iI/Q  
j
–15  
–20  
–25  
–30  
LoL  
–20  
ImR  
–20  
–25  
–30  
IM  
3
j
ImR  
iI/Q  
IM  
3
j
iI/Q  
IM  
3 iI/Q j  
ImR  
–25  
IM  
2
iI/Q  
j
IM  
2 iI/Q j  
–30  
900  
950  
1000  
900  
950  
1000  
900  
950  
1000  
f
Loin - Lo Input Frequency - MHz  
f
Loin - Lo Input Frequency - MHz  
fLoin - Lo Input Frequency - MHz  
14  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PMODout, LoL, ImR, IM3I/Q vs fLoin  
PMODout, LoL, ImR, IM3I/Q vs fLoin  
PMODout, LoL, ImR, IM3I/Q vs fLoin  
(at VCC = 2.7 V, T  
A
= +80 °C)  
(at VCC = 3.0 V, T  
A
= +80 °C)  
(at VCC = 3.6 V, T  
A
= +80 °C)  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–5  
P
MODout  
P
MODout  
P
MODout  
–10  
–15  
–10  
–15  
–20  
–25  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
LoL  
LoL  
LoL  
ImR  
IM  
2 (I/Q)  
ImR  
ImR  
–20  
IM  
2
(I/Q)  
IM  
IM  
2
(I/Q)  
–25  
–25  
3
(I/Q)  
IM  
3
(I/Q)  
IM  
3
(I/Q)  
–30  
–30  
–30  
900  
950  
1000  
900  
950  
1000  
900  
950  
1000  
f
Loin - Lo Input Frequency - MHz  
f
Loin - Lo Input Frequency - MHz  
f
Loin - Lo Input Frequency - MHz  
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin  
P
MODout, LoL, ImR, IM3I/Q vs PIF-Loin  
P
MODout, LoL, ImR, IM3I/Q vs PIF-Loin  
(at VCC = 2.7 V, T  
A
= –30 °C)  
–5  
(at VCC = 3.0 V, T  
A
= –30 °C)  
–5  
(at VCC = 3.6 V, T  
A
= –30 °C)  
–5  
–30  
–30  
–30  
PMODout  
PMODout  
PMODout  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–35  
–40  
–45  
–50  
–55  
–10  
LoL  
LoL  
LoL  
IM  
–15  
IM  
2 (I/Q)  
2
(I/Q)  
IM  
3 (I/Q)  
IM  
3
(I/Q)  
IM  
3
(I/Q)  
–20  
–20  
–20  
ImR  
ImR  
ImR  
–25  
–30  
–25  
–25  
–30  
IM  
2 (I/Q)  
–30  
7
–17  
–12  
7
–17  
–12  
–17  
–12  
7
PIF-Loin Pre-Mix. IF Input Power - dBm  
PIF-Loin Pre-Mix. IF Input Power - dBm  
PIF-Loin Pre-Mix. IF Input Power - dBm  
15  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
P
MODout, LoL, ImR, IM3I/Q vs PIF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin  
(at VCC = 2.7 V, T  
A
= +25 °C)  
(at VCC =3.0 V, T  
A
= +25 °C)  
(at VCC =3.6 V, T = +25 °C)  
A
–30  
–5  
–30  
–5  
–30  
–5  
PMODout  
PMODout  
PMODout  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–30  
LoL  
LoL  
LoL  
IM3(I/Q)  
ImR  
ImR  
IM3(I/Q)  
ImR  
IM3(I/Q)  
IM2(I/Q)  
IM2(I/Q)  
IM2 (I/Q)  
–30  
–30  
–7  
–17  
–12  
–7  
–17  
–12  
–17  
–12  
–7  
P
IF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
P
MODout, LoL, ImR, IM3I/Q vs PIF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PIF-Loin  
(at VCC = 2.7 V, T  
A
= +80 °C)  
(at VCC =3.0 V, T  
A
= +80 °C)  
(at VCC =3.6 V, T  
A
= +80 °C)  
–30  
–5  
–30  
–5  
–30  
–5  
PMODout  
PMODout  
P
MODout  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
LoL  
LoL  
LoL  
ImR  
IM2 (I/Q)  
ImR  
ImR  
IM2 (I/Q)  
IM2 (I/Q)  
IM3 (I/Q)  
–25  
IM3 (I/Q)  
IM3 (I/Q)  
–30  
–17  
–12  
–7  
–17  
–12  
–7  
–17  
–12  
–7  
P
IF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
16  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
(at VCC = 2.7 V, T  
A
= –30 °C)  
(at VCC = 3.0 V, T  
A
= –30 °C)  
(at VCC = 3.6 V, T  
A
= –30 °C)  
–30  
–5  
–30  
–5  
–30  
–5  
PMODout  
PMODout  
PMODout  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
LoL  
LoL  
LoL  
IM2 (I/Q)  
IM3 (I/Q)  
IM2 (I/Q)  
IM3 (I/Q)  
IM3 (I/Q)  
ImR  
–20  
–25  
–30  
–20  
–25  
–30  
–20  
–25  
–30  
ImR  
ImR  
IM2 (I/Q)  
–15  
–11  
–7  
–15  
–11  
–7  
–15  
–11  
–7  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
(at VCC = 2.7 V, T  
A
= +25 °C)  
(at VCC = 3.0 V, T  
A
= +25 °C)  
(at VCC = 3.6 V, T  
A
= +25 °C)  
–30  
–5  
–30  
–5  
–30  
–5  
PMODout  
PMODout  
PMODout  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–30  
LoL  
LoL  
LoL  
ImR  
IM3 (I/Q)  
IM3 (I/Q)  
IM3 (I/Q)  
ImR  
ImR  
IM2 (I/Q)  
–25  
IM2 (I/Q)  
IM2 (I/Q)  
–30  
–30  
–7  
–15  
–11  
–7  
–15  
–11  
–15  
–11  
–7  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
17  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
PMODout, LoL, ImR, IM3I/Q vs PRF-Loin  
(at VCC = 2.7 V, T  
A
= +80 °C)  
(at VCC = 3.0 V, T  
A
= +80 °C)  
(at VCC = 3.6 V, T  
A
= +80 °C)  
–30  
–5  
–30  
–5  
–30  
–5  
PMODout  
PMODout  
P
MODout  
–35  
–40  
–45  
–50  
–55  
–10  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–30  
LoL  
LoL  
LoL  
ImR  
–15  
–20  
–25  
–30  
IM2 (I/Q)  
ImR  
ImR  
IM2 (I/Q)  
IM3 (I/Q)  
IM3 (I/Q)  
IM2 (I/Q)  
IM3 (I/Q)  
–15  
–11  
–7  
–15  
–11  
–7  
–15  
–11  
–7  
P
RF-Loin - Pre-Mix. RF Input Power - dBm  
P
RF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
18  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
(at VCC = 2.7 V, TA = –30 °C)  
(at VCC = 3.0 V, TA = –30 °C)  
(at VCC = 3.6 V, TA = –30 °C)  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
P
MODout  
P
MODout  
P
MODout  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
LoL  
LoL  
LoL  
IM2 (I/Q)  
IM3 (I/Q)  
ImR  
IM3 (I/Q)  
IM3 (I/Q)  
IM2 (I/Q)  
ImR  
IM2 (I/Q)  
ImR  
1.25  
1.35  
1.45  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
I/Q(DC) - I/Q Supply Voltage - V  
I/Q(DC) - I/Q Supply Voltage - V  
I/Q(DC) - I/Q Supply Voltage - V  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
(at VCC = 2.7 V, TA = +25 °C)  
(at VCC = 3.0 V, TA = +25 °C)  
(at VCC = 3.6 V, TA = +25 °C)  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
–30  
–35  
–40  
–45  
–50  
–55  
–5  
P
MODout  
P
MODout  
P
MODout  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
LoL  
LoL  
LoL  
ImR  
IM3 (I/Q)  
IM3 (I/Q)  
IM3 (I/Q)  
ImR  
ImR  
IM2 (I/Q)  
IM2 (I/Q)  
IM2 (I/Q)  
1.25  
1.35  
1.45  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
I/Q(DC) - I/Q Supply Voltage - V  
I/Q(DC) - I/Q Supply Voltage - V  
I/Q(DC) - I/Q Supply Voltage - V  
19  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
PMODout, LoL, ImR, IM3I/Q vs I/Q(DC)  
(at VCC = 2.7 V, T  
A
= +80 °C)  
(at VCC = 3.0 V, T  
A
= +80 °C)  
(at VCC = 3.6 V, T  
A
= +80 °C)  
–30  
–5  
–30  
–5  
–30  
–5  
PMODout  
PMODout  
PMODout  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
–35  
–40  
–45  
–50  
–55  
–10  
–15  
–20  
–25  
LoL  
LoL  
ImR  
LoL  
ImR  
ImR  
IM2 (I/Q)  
IM3 (I/Q)  
IM2 (I/Q)  
IM3 (I/Q)  
IM2 (I/Q)  
IM3 (I/Q)  
–30  
–30  
1.6  
–30  
1.9  
1.25  
1.35  
1.45  
1.4  
1.5  
1.7  
1.8  
I/Q(DC) - I/Q Supply Voltage - V  
I/Q(DC) - I/Q Supply Voltage - V  
I/Q(DC) - I/Q Supply Voltage - V  
20  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
P(fIF  
×
7) vs PIF-Loin  
P(fIF  
×
7) vs PIF-Loin  
P(fIF  
×
7) vs PIF-Loin  
(at VCC = 2.7 V, T  
A
= –30 °C)  
(at VCC = 3.0 V, T  
A
= –30 °C)  
(at VCC = 3.6 V, T = –30 °C)  
A
0
0
0
–20  
–20  
–20  
–40  
–60  
–40  
–60  
–40  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
Recommended operating range  
Recommended operating range  
Recommended operating range  
–17  
–12  
–7  
–17  
–12  
–7  
–17  
–12  
–7  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
P(fIF  
×
7) vs PIF-Loin  
P(fIF  
×
7) vs PIF-Loin  
P(fIF  
× 7) vs PIF-Loin  
(at VCC = 2.7 V, T  
A
= +25 °C)  
(at VCC = 3.0 V, T  
A
= +25 °C)  
(at VCC = 3.6 V, T = +25 °C)  
A
0
0
–20  
–20  
–20  
–40  
–60  
–80  
–40  
–60  
–80  
–40  
–60  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
Recommended operating range  
Recommended operating range  
Recommended operating range  
–17  
–12  
–7  
–17  
–12  
–7  
–17  
–12  
–7  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
21  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
P(fIF  
×
7) vs PIF-Loin  
P(fIF  
×
7) vs PIF-Loin  
P(fIF  
× 7) vs PIF-Loin  
(at VCC = 2.7 V, T  
A
= +80 °C)  
(at VCC = 3.0 V, T  
A
= +80 °C)  
(at VCC = 3.6 V, T = +80 °C)  
A
0
0
0
–20  
–20  
–20  
–40  
–60  
–40  
–60  
–40  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
Recommended operating range  
Recommended operating range  
Recommended operating range  
–17  
–12  
–7  
–17  
–12  
–7  
–17  
–12  
–7  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
P
IF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
22  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
EVM, ∆φ  
,
A vs VI/Qin  
EVM, ∆φ  
,
A vs VI/Qin  
EVM, ∆φ, A vs VI/Qin  
(at VCC = 2.7 V)  
(at VCC = 3.0 V)  
(at VCC = 3.6 V)  
Single ended Input  
MDO Pattern: PN9  
Single ended Input  
MDO Pattern: PN9  
Single ended Input  
MDO Pattern: PN9  
5
4
3
2
1
5
4
3
2
1
5
4
3
2
1
EVM  
EVM  
EVM  
A
A
A  
∆φ  
∆φ  
∆φ  
φ
φ
∆φ  
10 100 200 500 1000  
10 100 200 500 1000  
10 100 200 500 1000  
VI/Qin - I/Q Input Amplitude - mVP-P  
VI/Qin - I/Q Input Amplitude - mVP-P  
VI/Qin - I/Q Input Amplitude - mVP-P  
ACP vs VI/Qin  
ACP vs VI/Qin  
ACP vs VI/Qin  
(at VCC = 2.7 V)  
(at VCC = 3.0 V)  
(at VCC = 3.6 V)  
Single ended Input  
Single ended Input  
Single ended Input  
MDO Pattern: PN9  
MDO Pattern: PN9  
MDO Pattern: PN9  
–40  
–40  
–40  
–50  
–50  
–50  
f = ±50 kHz  
f = ±50 kHz  
f = ±50 kHz  
–60  
–70  
–80  
–60  
–70  
–80  
–60  
–70  
–80  
f = ±100 kHz  
f = ±100 kHz  
f = ±100 kHz  
10 100200 500 1000  
10 100200 500 1000  
10 100200 500 1000  
VI/Qin - I/Q Input Amplitude - mVP-P  
VI/Qin - I/Q Input Amplitude - mVP-P  
VI/Qin - I/Q Input Amplitude - mVP-P  
23  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM  
TYPICAL π/4DQPSK MODULATION OUTPUT SPECTRUM  
[
]
[
]
α
α
<PDC> 42kbps, RNYQ  
= 0.5, MOD Pattern 000  
<PDC> 42kbps, RNYQ = 0.5, MOD Pattern PN9  
1
TRACE A: Ch1 Spectrum  
REF –10. 0 dB  
10 dB/  
ATT 0 dB  
A Marker  
948 002 625. 0 Hz  
–9. 277 dBm  
0
VI/Qin = 500 mVP-P (Single ended Input)  
dBm  
ImR  
LoL  
LogMag  
2
3
4
IM3 (I/Q)  
5
RBW 3 kHz  
VBW 3 kHz  
SWP 5. 0 s  
10  
dB  
/div  
CENTER 948. 00000 MHz  
SPAN 500 kHz  
* * * Multi Marker List * * *  
0 Hz  
No. 1:  
0. 00 dB  
No. 2:  
No. 3:  
No. 4:  
No. 5:  
–50. 0 kHz  
–100. 0 kHz  
50. 0 kHz  
–64. 50 dB  
–77. 00 dB  
–64. 75 dB  
–77. 00 dB  
–100  
dBm  
100. 0 kHz  
Center: 948 MHz  
Span: 50 kHz  
24  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
MOD OUTPUT (15 pin) IMPEDANCE  
V
CC = VPS = 2.7 V  
VCC = VPS = 3.0 V  
1 : 49.039  
–21.127  
7.9465pF  
1 : 49. 121  
–22.845  
7.3486 pF  
948. 000 000 MHz  
948. 000 000 pF  
MAEKER 1  
948 MHz  
MAEKER 1  
948 MHz  
VSWR  
2 : 1  
VSWR  
2 : 1  
1
1
START 500. 000 000 MHz  
STOP 1 500. 000 000 MHz  
START 500. 000 000 MHz  
STOP 1 500. 000 000 MHz  
V
CC = VPS = 3.6 V  
1 : 49. 783  
–22.645  
7.1004 pF  
948. 000 000 MHz  
MAEKER 1  
948 MHz  
VSWR  
2 : 1  
1
START 500. 000 000 MHz  
STOP 1 500. 000 000 MHz  
25  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
STANDARD TYPICAL CHARACTERISTICS <Pre-Mixer>  
Test Circuit 3, TA = +25 °C, VCC1 = 3.0 V, Vps2 = 3.0 V, fIFin = 135 MHz, PIFin = 12 dBm, fRFin = 813 MHz,  
PRFin = 11 dBm, fMIXout = 948 MHz  
I
CC (MIX) vs VCC1  
No input signal  
T
T
T
A
A
A
= +80 °C  
= +25 °C  
= –30 °C  
10  
7.5  
5
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
CC1 - Pre-Mix. Supply Voltage - V  
I
CC (MIX) vs Vps2  
No input signal  
T
T
T
A
A
A
= +80 °C  
= +25 °C  
= –30 °C  
10  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
Vps2 - Pre-Mix. Supply Voltage - V  
26  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
(at VCC = 2.7 V, T  
A
= –30 °C)  
(at VCC = 3.0 V, T  
A
= –30 °C)  
(at VCC = 3.6 V, T  
A
= –30 °C)  
0
0
0
0
0
0
Pout(MIX)  
Pout(MIX)  
Pout(MIX)  
–20  
–40  
20  
40  
60  
–20  
–40  
20  
40  
60  
–20  
–40  
20  
40  
60  
RFL  
RFL  
RFL  
ImL  
ImL  
ImL  
–60  
–60  
–60  
P ( f I F  
×
7 )  
P ( f I F  
×
7 )  
P ( f I F × 7 )  
–80  
80  
–80  
80  
–80  
80  
–100  
–120  
100  
120  
–100  
–120  
100  
120  
–100  
–120  
100  
120  
–50 –40 –30 –20 –10  
0
–50 –40 –30 –20 –10  
0
–50 –40 –30 –20 –10  
0
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
(at VCC = 2.7 V, T  
A
= +25 °C)  
(at VCC = 3.0 V, T  
A
= +25 °C)  
(at VCC = 3.6 V, T  
A
= +25 °C)  
0
0
0
0
0
0
Pout(MIX)  
Pout(MIX)  
Pout(MIX)  
–20  
–40  
20  
–20  
–40  
20  
40  
60  
–20  
–40  
20  
40  
60  
RFL  
RFL  
RFL  
40  
ImL  
ImL  
ImL  
–60  
60  
–60  
–60  
P ( f I F  
×
7 )  
P ( f I F × 7 )  
P ( f I F × 7 )  
–80  
80  
–80  
80  
–80  
80  
–100  
–120  
100  
120  
–100  
–120  
100  
120  
–100  
–120  
100  
120  
–50 –40 –30 –20 –10  
0
–50 –40 –30 –20 –10  
0
–50 –40 –30 –20 –10  
0
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
27  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
Pout (MIX), RFL, ImL, P(fIF  
vs PIF-Loin  
×
7)  
(at VCC = 2.7 V, T  
A
= +80 °C)  
(at VCC = 3.0 V, T  
A
= +80 °C)  
(at VCC = 3.6 V, T  
A
= +80 °C)  
0
0
0
0
0
0
Pout(MIX)  
Pout(MIX)  
Pout(MIX)  
–20  
–40  
20  
40  
60  
–20  
–40  
20  
40  
60  
–20  
–40  
20  
40  
60  
RFL  
RFL  
RFL  
ImL  
ImL  
ImL  
–60  
–60  
–60  
P ( f I F  
×
7 )  
P ( f I F  
×
7 )  
P ( f I F × 7 )  
–80  
80  
–80  
80  
–80  
80  
–100  
–120  
100  
120  
–100  
–120  
100  
120  
–100  
–120  
100  
120  
–50 –40 –30 –20 –10  
0
–50 –40 –30 –20 –10  
0
–50 –40 –30 –20 –10  
0
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
PIF-Loin - Pre-Mix. IF Input Power - dBm  
Pout (MIX), RFL, ImL vs PRF-Loin  
Pout (MIX), RFL, ImL vs PRF-Loin  
Pout (MIX), RFL, ImL vs PRF-Loin  
(at VCC = 2.7 V, T  
A
= –30 °C)  
(at VCC = 3.0 V, T  
A
= –30 °C)  
(at VCC = 3.6 V, T = –30 °C)  
A
0
–20  
0
0
Pout(MIX)  
P
out(MIX)  
P
out(MIX)  
–20  
–40  
–20  
–40  
ImL  
ImL  
ImL  
RFL  
RFL  
RFL  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
–20  
–12  
–4  
–20  
–12  
–4  
–20  
–12  
–4  
PIF-Loin - Pre-Mix. RF Input Power - dBm  
PIF-Loin - Pre-Mix. RF Input Power - dBm  
PIF-Loin - Pre-Mix. RF Input Power - dBm  
28  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
Pout (MIX), RFL, ImL  
vs PRF-Loin  
Pout (MIX), RFL, ImL  
vs PRF-Loin  
Pout (MIX), RFL, ImL  
vs PRF-Loin  
(at VCC = 2.7 V, TA = +25 °C)  
(at VCC = 3.0 V, TA = +25 °C)  
(at VCC = 3.6 V, TA = +25 °C)  
0
0
0
Pout (MIX)  
Pout (MIX)  
Pout (MIX)  
–20  
–40  
–20  
–40  
–20  
–40  
ImL  
ImL  
ImL  
RFL  
RFL  
RFL  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
–20  
–12  
–4  
–20  
–12  
–4  
–20  
–12  
–4  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
Pout (MIX), RFL, ImL  
vs PRF-Loin  
(at VCC = 2.7 V, TA = +80 °C)  
Pout (MIX), RFL, ImL  
vs PRF-Loin  
(at VCC = 3.0 V, TA = +80 °C)  
Pout (MIX), RFL, ImL  
vs PRF-Loin  
(at VCC = 3.6 V, TA = +80 °C)  
0
0
0
Pout (MIX)  
Pout (MIX)  
Pout (MIX)  
–20  
–40  
–20  
–40  
–20  
–40  
ImL  
ImL  
ImL  
RFL  
RFL  
RFL  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
–20  
–12  
–4  
–20  
–12  
–4  
–20  
–12  
–4  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
PRF-Loin - Pre-Mix. RF Input Power - dBm  
29  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
P
out(MIX) vs fMIXout  
P
out(MIX) vs fMIXout  
Pout(MIX) vs fMIXout  
(at VCC = 2.7 V, T  
A
= –30 °C)  
(at VCC = 3.0 V, T  
A
= –30 °C)  
(at VCC = 3.6 V, T = –30 °C)  
A
0
0
0
Pout (MIX)  
Pout (MIX)  
Pout (MIX)  
–20  
–40  
–20  
–40  
–20  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
Recommended operating range  
Recommended operating range  
Recommended operating range  
900  
950  
1000  
900  
950  
1000  
900  
950  
1000  
f
MIXout - Pre-Mix. Output Frequency - MHz  
f
MIXout - Pre-Mix. Output Frequency - MHz  
fMIXout - Pre-Mix. Output Frequency - MHz  
P
out(MIX) vs fMIXout  
P
out(MIX) vs fMIXout  
Pout(MIX) vs fMIXout  
(at VCC = 2.7 V, T  
A
= +25 °C)  
(at VCC = 3.0 V, T  
A
= +25 °C)  
(at VCC = 3.6 V, T = +25 °C)  
A
0
0
0
Pout (MIX)  
Pout (MIX)  
Pout (MIX)  
–20  
–40  
–20  
–40  
–20  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
Recommended operating range  
Recommended operating range  
Recommended operating range  
900  
950  
1000  
900  
950  
1000  
900  
950  
1000  
f
MIXout - Pre-Mix. Output Frequency - MHz  
f
MIXout - Pre-Mix. Output Frequency - MHz  
fMIXout - Pre-Mix. Output Frequency - MHz  
30  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
P
out(MIX) vs fMIXout  
P
out(MIX) vs fMIXout  
Pout(MIX) vs fMIXout  
(at VCC = 2.7 V, T  
A
= +80 °C)  
(at VCC = 3.0 V, T  
A
= +80 °C)  
(at VCC = 3.6 V, T = +80 °C)  
A
0
0
0
Pout (MIX)  
Pout (MIX)  
Pout (MIX)  
–20  
–40  
–20  
–40  
–20  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
Recommended operating range  
Recommended operating range  
Recommended operating range  
900  
950  
1000  
900  
950  
1000  
900  
950  
1000  
f
MIXout - Pre-Mix. Output Frequency - MHz  
f
MIXout - Pre-Mix. Output Frequency - MHz  
fMIXout - Pre-Mix. Output Frequency - MHz  
31  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
TEST CIRCUIT 1 (Modulator+Pre-Mixer / In case of VI/Qin is single ended input)  
Signal Generator  
Spectrum Analyzer  
Voltage  
Signal Generator  
Source  
BPF  
RFin  
51  
IFin Vps2  
RFout  
VCC1  
Q
Qb  
MODout  
51  
1000 pF  
33 pF  
0.22µF  
100 pF  
33 pF  
1000 pF  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PreMixer  
I/Q  
Mixer  
Q
Qb  
Frequency  
Doubler  
TFF  
I/Q Signal  
Generator  
I
I/Q  
Mixer  
Ib  
1
2
3
4
5
6
7
8
9
10  
15 nH  
300  
100 pF  
33 pF  
22 nH  
0.22 µF  
22 nH  
µ
0.22  
F
33 pF  
6.8 nH  
100 pF  
1000 pF  
2 pF  
1000 pF  
2 pF  
LOin VCC1 Vps1  
I
Ib  
VCC2  
Mix out  
6 pF  
Voltage  
Source  
Voltage  
Source  
6.8 nH  
6 pF  
6.8 nH  
2 pF  
6.8 nH  
Filter  
32  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
TEST CIRCUIT 2 (Modulator+Pre-Mixer / In case of VI/Qin is differential input)  
Signal Generator  
Spectrum Analyzer  
Voltage  
Signal Generator  
Source  
BPF  
RFin  
51  
IFin Vps2  
RFout  
V
CC  
1
Q
Qb  
51  
1000 pF  
100 K  
33 pF  
0.22 µF  
10 pF  
22 K  
10 pF  
22 K  
100 pF  
33 pF  
1000 pF  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PreMixer  
I/Q  
Mixer  
Q
Qb  
Frequency  
Doubler  
TFF  
I/Q Signal  
Generator  
I
I/Q  
Mixer  
Ib  
22 K  
22 K  
10 pF  
1
2
3
4
5
6
7
8
9
10  
15 nH  
300  
100 pF  
10 pF  
33 pF  
0.22µF  
22 nH  
0.22 µF  
33 pF  
6.8 nH  
22 nH  
100 pF  
100 K  
1000 pF  
2 pF  
1000 pF  
2 pF  
LOin  
V
CC1  
Vps1  
I
Ib  
V
CC  
2
Mix out  
6 pF  
Voltage  
Source  
Voltage  
Source  
6.8 nH  
2 pF  
6 pF  
6.8 nH  
6.8 nH  
Filter  
33  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
TEST CIRCUIT 3 (Pre-Mixer)  
Signal Generator  
Voltage  
Source  
Signal Generator  
BPF  
IFin Vps2  
RFin  
MODout  
V
CC3  
Q
Qb  
51  
51  
33 pF  
1000  
pF  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PreMixer  
I/Q  
Mixer  
Frequency  
Doubler  
TFF  
I/Q  
Mixer  
1
2
3
4
5
6
7
8
9
10  
15 nH  
0.22 µF  
22 nH  
100 pF  
2 pF  
1000 pF  
LOimb LOin  
V
CC2  
Vps1  
I
Ib  
VCC1  
Mix out  
Voltage  
Source  
Spectrum Analyzer  
34  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
APPLICATION CIRCUIT EXAMPLE  
Note 1  
0.22µF  
1
2
3
4
5
6
7
8
9
V
CC  
1
RF-Loin 20  
GND 19  
1000 pF  
100 pF  
33 pF  
51 Ω  
15 nH  
MIXout  
GND  
Loinb  
Loin  
51 Ω  
Filter  
2 pF 22 nH  
33 pF  
IF-Loin 18  
Vps2 17  
1000 pF  
6.8 nH  
2 pF  
300 Ω  
GND 16  
33 pF  
Note 2  
22 nH  
µ
0.22  
F
V
CC2  
MODout 15  
1000 pF  
33 pF  
1000 pF  
100 pF  
Vps1  
GND  
I
VCC3  
14  
100 pF  
GND 13  
0.22 µF  
Q
12  
10 Ib  
Qb 11  
TABLE 1 : Example of filter connect between pin2 and pin5  
Kind of filter  
Circuit  
BPF  
Zin = 50 Ω  
6.8 nH  
6 pF  
2 pF  
Zout = 50 Ω  
fo = 948 MHz  
Insertion Loss = 3.5 dB  
6 pF  
6.8 nH  
6.8 nH  
Notes 1. 50 matching circuit at fMIXout = 948 MHz.  
In case of using NEC’s evaluation board.  
2. 50 matching circuit at fLoin = 948 MHz.  
In case of using NEC’s evaluation board.  
35  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
EXAMPLE OF TEST CIRCUIT 1 ASSEMBLED ON EVALUATION BOARD  
33 pF  
VCC3  
100 pF 0.22 µF 1000 pF  
Vps2  
51 Ω  
1000 pF  
33 pF  
51 Ω  
Qb  
1000 pF 100 pF 0.22  
F
µ
VCC1  
15 nH  
Ib  
33 pF  
Vps1  
22 nH  
2 pF  
100 pF  
0.22  
1000 pF  
VCC2  
300 Ω  
µ
F
6 pF 2 pF 6.8 nH  
22 nH  
33 pF  
6.8 nH  
6 pF 6.8 nH 6.8 nH  
2 pF  
Notes 1. Double-sided patterning with 35 mm thick copper on polyhimid board.  
2. GND pattern on backside.  
3. solder coating over patterns.  
4.  
,
indicate through-holes.  
NOTICE The test circuits and board pattern on data sheet are for performance evaluation use only. In case of  
actual design-in, matching circuit should be determined using S-parameter of desired frequency in  
accordance to actual mounting pattern.  
36  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
PACKAGE DIMENSIONS  
20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)  
20  
11  
detail of lead end  
+7˚  
–3˚  
3˚  
1
10  
6.7 ± 0.3  
6.4 ± 0.2  
4.4 ± 0.1  
1.8 MAX.  
1.5 ± 0.1  
1.0 ± 0.2  
0.5 ± 0.2  
+0.10  
–0.05  
0.15  
M
0.15  
0.575 MAX.  
0.65  
0.22  
+0.10  
–0.05  
0.10  
0.1 ± 0.1  
NOTE Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.  
37  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
NOTE ON CORRECT USE  
(1) Observe precautions for handling because of electrostatic sensitive devices.  
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).  
(3) Keep the track length of the ground pins as short as possible.  
(4) Connect a bypass capacitor (e.x. 1 000 pF) to the VCC pin.  
RECOMMENDED SOLDERING CONDITIONS  
This product should be soldered in the following recommended conditions. Other soldering method and  
conditions than the recommended conditions are to be consulted with sales representatives.  
µPC8126GR  
Soldering process  
Infrared ray reflow  
Soldering conditions  
Symbol  
Peak package’s surface temperature: 235 °C or below,  
Reflow time: 30 seconds or below (210 °C or higher)  
Number of reflow process: 2, Exposure limitNote: None  
IR35-00-2  
VPS  
Peak package’s surface temperature: 215 °C or below,  
Reflow time: 40 seconds or below (200 °C or higher )  
Number of reflow process: 2, Exposure limitNote: None  
VP15-00-2  
WS60-00-1  
Wave soldering  
Partial heating method  
Solder temperature: 260 °C or below,  
Flow time: 10 seconds or below,  
Number of flow process: 1, Exposure limitNote: None  
Terminal temperature: 300 °C or below,  
Flow time: 3 seconds/pin or below,  
Exposure limitNote: None  
Note Exposure limit before soldering after dry-pack package is opened.  
Storage conditions: 25 °C and relative humidity at 65 % or less.  
Caution Apply only a single process at once, except for ‘‘Partial heating method’’.  
For details of recommended soldering conditions for surface mounting, refer to information  
document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).  
38  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
[MEMO]  
39  
Data Sheet P11487EJ2V0DS00  
µPC8126GR  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98. 8  

相关型号:

UPC8126K

900 MHz BAND DIRECT QUADRATURE MODULATOR IC FOR DIGITAL MOBILE COMMUNICATION SYSTEMS
NEC

UPC8126K-E1

900 MHz BAND DIRECT QUADRATURE MODULATOR IC FOR DIGITAL MOBILE COMMUNICATION SYSTEMS
NEC

UPC8128TA

SILICON MMIC LOW CURRENT AMPLIFIERS FOR CELLULAR/CORDLESS TELEPHONES
NEC

UPC8128TA-E3

SILICON MMIC LOW CURRENT AMPLIFIERS FOR CELLULAR/CORDLESS TELEPHONES
NEC

UPC8128TB

SILICON MMIC LOW CURRENT AMPLIFIERS FOR CELLULAR/CORDLESS TELEPHONES
NEC

UPC8128TB-A

Wide Band Low Power Amplifier, 100MHz Min, 1900MHz Max, SUPER MINIMOLD, 6 PIN
NEC

UPC8128TB-E3

SILICON MMIC LOW CURRENT AMPLIFIERS FOR CELLULAR/CORDLESS TELEPHONES
NEC

UPC8128TB-E3

Wide Band Low Power Amplifier, 100MHz Min, 1900MHz Max, SOT-363, 6 PIN
CEL

UPC8128TB-E3-A

Wide Band Low Power Amplifier, 100MHz Min, 1900MHz Max, SUPER MINIMOLD, 6 PIN
NEC

UPC8129GR

900 MHz BAND DIRECT QUADRATURE MODULATOR IC FOR DIGITAL MOBILE COMMUNICATION SYSTEMS
NEC

UPC8129GR-E1

UP CONVERTER WITH AGC FUNCTION + QUADRATURE MODULATOR IC FOR DIGITAL MOBILE COMMUNICATION SYSTEMS
NEC

UPC812C

DUAL J-FET INPUT LOW-OFFSET OPRERATIONAL AMPLIFIER
NEC