TND308/D [ETC]

Graphical Data Test Circuits for the NCP1651 ; 图形化数据测试电路的NCP1651\n
TND308/D
型号: TND308/D
厂家: ETC    ETC
描述:

Graphical Data Test Circuits for the NCP1651
图形化数据测试电路的NCP1651\n

测试
文件: 总8页 (文件大小:69K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TND308  
Graphical Data Test  
Circuits for the NCP1651  
Prepared by  
Alan Ball  
ON Semiconductor Applications Engineering  
http://onsemi.com  
The following circuits are the test configurations that were  
used to obtain the data for the graphical section of the  
NCP1651/D data sheet. Each graph has a schematic  
associated with it and in some cases a description of the  
procedure.  
APPLICATION NOTE  
14 V  
14 V  
0.1 mF  
0.1 mF  
13  
12  
13  
12  
1 mF  
1 mF  
V
V
V
V
ref  
CC  
ref  
CC  
16  
16  
Startup  
Startup  
1
5
1
5
Output  
Output  
1 nF  
I
S+  
I
S+  
11  
8
8
+
AC Comp  
FB/SD  
FB/SD  
11  
0–1 V  
AC Comp  
7
6
7
6
I
I
avg  
avg  
I
I
avg fltr  
10  
9
10  
9
avg fltr  
0.5 nF  
Ref Fltr  
Ref Fltr  
R8  
1.5 V  
AC Input  
GND  
AC Input  
GND  
Ramp  
Comp  
Ramp  
Comp  
C
C
T
T
4.7 k  
2
3
4
2
3
4
470 pF  
470 pF  
47 k  
47 k  
Figure 1. Current Sense Amplifier Gain  
Figure 2. FB/SD V–I Characteristics  
Re: NCP1651/D data sheet, Figure 4  
Re: NCP1651/D data sheet, Figure 5  
Energize all three power sources, beginning with the 14 volt  
supply. Cycle the 14 volt supply down to 8 volts and back to  
14 to start unit operating. Adjust power supply on pin 5 and  
read voltages on pins 6 and 7.  
Using a decade resistance box for R8, set it to 1 MW. Turn  
on the 14 volt source. Cycle it down to 8 volts and back up to  
14 to turn the unit on. Read the voltage and pin 8 and note the  
resistance. Reduce R8 until the unit shuts down. Calculate the  
current for each reading.  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
May, 2002 – Rev.0  
TND308/D  
TND308  
V
A
V
CC  
0.1 mF  
0.1 mF  
13  
12  
13  
12  
Curve  
Tracer  
1 mF  
V
V
V
V
ref  
CC  
ref  
CC  
16  
16  
Startup  
Startup  
1
5
1
5
Output  
Output  
1 nF  
1 nF  
I
S+  
I
S+  
11  
8
11  
8
AC Comp  
FB/SD  
AC Comp  
FB/SD  
7
6
7
6
I
I
avg  
avg  
I
I
avg fltr  
10  
9
10  
9
avg fltr  
Ref Fltr  
Ref Fltr  
1.5 V  
AC Input  
GND  
AC Input  
GND  
Ramp  
Comp  
Ramp  
Comp  
C
C
T
T
2
3
4
2
3
4
470 pF  
470 pF  
47 k  
47 k  
Figure 3. Bias Current versus VCC  
Re: NCP1651/D data sheet, Figures 6 and 7  
Figure 4. Startup Leakage  
Re: NCP1651/D data sheet, Figure 8  
Apply voltage from 1.5 volt source. Begin with V at 0  
volts and take current readings over a range of 0 to 11 volts.  
Device needs to be non–operational for this test. Begin  
with curve tracer set to about 20 volts for low voltage  
readings. As unit heats up, currents will drop.  
CC  
Reduce V to 8 volts, and then increase to 12 volts, unit  
CC  
should begin operation. Reduce voltage to approximately 10  
volts and take current readings up to 18 volts. If unit shuts  
down before 10 volts, note shutdown voltage. Recycle input  
power (V to 12 volts, 8 volts and 12 again) and adjust V  
CC  
CC  
to just above shutdown threshold and take readings.  
V
A
V
V
CC  
CC  
0–500 V  
0.1 mF  
0.1 mF  
13  
12  
13  
12  
A
1 mF  
1 mF  
V
V
V
V
ref  
CC  
ref  
CC  
16  
16  
Startup  
Startup  
1
5
1
5
Output  
Output  
1 nF  
1 nF  
I
S+  
I
S+  
11  
8
11  
8
AC Comp  
FB/SD  
AC Comp  
FB/SD  
V
7
6
7
6
I
I
avg  
avg  
I
I
avg fltr  
10  
9
10  
9
avg fltr  
Ref Fltr  
Ref Fltr  
1.5 V  
1.5 V  
AC Input  
GND  
AC Input  
GND  
Ramp  
Comp  
Ramp  
Comp  
C
C
T
T
2
3
4
2
3
4
470 pF  
470 pF  
47 k  
47 k  
Figure 5. Startup Current and Leakage  
Re: NCP1651/D data sheet, Figure 9  
Figure 6. UVLO Thresholds  
Re: NCP1651/D data sheet, Figure 10  
Apply voltage from 1.5 volt source. Turn on V and  
Apply voltage from 1.5 volt source. Turn on V and  
CC  
CC  
bring up to 12 volts. Reduce it to 8 volts and then increase  
it back to 12 volts. Adjust high voltage to 500 volts and take  
current measurement.  
bring up to 12 volts. Reduce it to 8 volts and then increase  
it slowly to the point when the unit begins operation. At that  
point the input current will jump from about 0.5 mA to  
roughly 5 mA. Decrease the V voltage until the V  
CC  
CC  
current drops back to 0.5 mA, this is the turn–off voltage.  
http://onsemi.com  
2
TND308  
14 V  
1 mF  
V
CC  
0.1 mF  
0.1 mF  
13  
12  
13  
12  
1 mF  
V
V
V
V
ref  
CC  
ref  
CC  
16  
16  
Startup  
Startup  
1
5
1
5
Output  
Output  
I
S+  
I
S+  
11  
8
11  
8
AC Comp  
FB/SD  
AC Comp  
FB/SD  
0–5 V  
1 mF  
7
6
7
6
I
I
avg  
avg  
I
I
avg fltr  
10  
9
10  
9
avg fltr  
0.5 nF  
0.5 nF  
Ref Fltr  
Ref Fltr  
V
AC Input  
GND  
AC Input  
GND  
2
Ramp  
Comp  
Ramp  
Comp  
V
C
C
T
T
4.7 k  
4.7 k  
2
3
4
3
4
0–5 V  
470 pF  
470 pF  
47 k  
47 k  
Figure 7. Clamp Voltage versus VCC  
Figure 8. Reference Multiplier Family of Curves  
Re: NCP1651/D data sheet, Figure 11  
Re: NCP1651/D data sheet, Figure 12  
Begin with V at 0 volts and increase to 11 volts taking  
Energize the 14 volt bias supply, and then the other two  
supplies on pins 8 and 9. Adjust pin 8 to about 1 volt, then  
reduce the 14 volt supply to 8 volts and back up to 14. This  
will start the chip operating. Adjust the supplies on pins 8  
and 9, and measure the voltage on pin 10.  
CC  
measurements at frequent intervals. This will not allow the  
chip to go into the operational mode, as that would turn off  
the clamp.  
+
14 V  
0.1 mF  
0.1 mF  
50 Vdc  
+
13  
12  
16  
13 12  
C
charge  
1 mF  
V
V
ref  
Startup  
V
CC  
V
ref  
CC  
16  
Startup  
1
5
1
Output  
Output  
1 nF  
5
I
S+  
I
S+  
11  
8
11  
8
AC Comp  
FB/SD  
AC Comp  
FB/SD  
7
6
7
6
I
I
avg  
avg  
I
I
10  
9
10  
9
avg fltr  
avg fltr  
Ref Fltr  
Ref Fltr  
1.5 V  
AC Input  
AC Input  
GND  
Ramp  
Comp  
Ramp  
Comp  
GND  
2
C
T
C
T
3
4
2
3
4
C
T
470 pF  
47 k  
47 k  
Figure 9. Turn–on Time  
Re: NCP1651/D data sheet, Figure 13  
Figure 10. Frequency versus CT  
Re: NCP1651/D data sheet, Figure 14  
Using a series of capacitors from 1 mF to 1000 mF, apply  
the 50 volt supply with a rise time of less than 100 ms.  
Apply both voltage sources, reduce the 14 volt source to  
8 volts and then increase to 14 volts. Measure frequency.  
Measure time required for the V cap to charge to its peak.  
Repeat for various values of C , and measure the frequency  
CC  
T
This is the point at which the chip will start operating if  
at pin 4. Do not measure directly from pin 3, as the  
impedance of the measuring device will cause errors in the  
reading.  
possible. Since this is not an operable configuration, V  
will then decay to the turn off threshold.  
CC  
http://onsemi.com  
3
TND308  
14 V  
1 mF  
14 V  
1 mF  
0.1 mF  
0.1 mF  
13  
12  
13  
12  
V
V
V
V
ref  
CC  
ref  
CC  
16  
16  
Startup  
Startup  
1
5
1
5
Output  
Output  
I
S+  
I
S+  
8
8
FB/SD  
FB/SD  
11  
11  
AC Comp  
AC Comp  
7
6
7
6
I
I
avg  
avg  
I
I
avg fltr  
10  
9
10  
9
avg fltr  
Ref Fltr  
Ref Fltr  
2.5 V  
1.5 V  
AC Input  
AC Input  
Ramp  
Comp  
Ramp  
Comp  
GND  
2
C
GND  
2
C
T
T
3
4
3
4
C
C
T
T
47 k  
47 k  
Figure 11. Ramp Peak versus Frequency  
Figure 12. Maximum Duty Cycle versus Frequency  
Re: NCP1651/D data sheet, Figure 15  
Re: NCP1651/D data sheet, Figure 16  
Apply both voltage sources, reduce the 14 volt source to  
8 volts and then increase to 14 volts. Measure ramp peak at  
Apply both voltage sources, reduce the 14 volt source to  
8 volts and then increase to 14 volts. Measure frequency and  
duty cycle, using an oscilloscope on pin 1, for various values  
pin 3 with an oscilloscope for various values of C .  
T
of C .  
T
0.1 mF  
14 V  
1 mF  
14 V  
1 mF  
0.1 mF  
13  
12  
13  
12  
680  
V
V
V
V
ref  
CC  
ref  
CC  
16  
16  
Startup  
Startup  
1
5
1
5
Output  
Output  
C
L
I
I
S+  
8
S+  
8
FB/SD  
FB/SD  
11  
11  
AC Comp  
7
6
AC Comp  
7
6
I
I
avg  
avg  
I
I
avg fltr  
10  
9
10  
9
avg fltr  
Ref Fltr  
Ref Fltr  
1.5 V  
1.5 V  
AC Input  
AC Input  
Ramp  
Comp  
Ramp  
Comp  
GND  
2
C
GND  
2
C
T
T
3
4
3
4
470 pF  
47 k  
470 pF  
47 k  
Figure 13. Driver Rise and Fall Times versus  
Capacitance  
Figure 14. Vref Transient Response  
Re: NCP1651/D data sheet, Figure 18  
Re: NCP1651/D data sheet, Figure 17  
Apply both voltage sources, reduce the 14 volt source to  
8 volts and then increase to 14 volts. Adjust the voltage of  
the 1.5 volt source for approximately 50% duty cycle on the  
output driver pin. Measure the waveform on pin 1 with an  
oscilloscope for the 10% and 90% rise and fall time. Change  
Apply both voltage sources, reduce the 14 volt source to  
8 volts and then increase to 14 volts. Adjust the voltage of  
the 1.5 volt source for approximately 50% duty cycle on the  
output driver pin. Measure the waveform on pin 12 with an  
oscilloscope.  
C as required.  
L
http://onsemi.com  
4
TND308  
14 V  
1 mF  
14 V  
1 mF  
0.1 mF  
0.1 mF  
13  
12  
13  
12  
V
V
V
V
ref  
CC  
ref  
CC  
16  
16  
Startup  
Startup  
1
5
1
5
Output  
Output  
I
S+  
I
S+  
11  
8
8
AC Comp  
FB/SD  
FB/SD  
11  
AC Comp  
7
6
7
6
I
I
avg  
avg  
I
I
avg fltr  
10  
9
10  
9
avg fltr  
Ref Fltr  
Ref Fltr  
1.5 V  
1.5 V  
AC Input  
AC Input  
Ramp  
Comp  
Ramp  
Comp  
GND  
2
C
GND  
2
C
T
T
3
4
3
4
470 pF  
470 pF  
47 k  
47 k  
Figure 15. Frequency versus Temperature  
Figure 16. Ramp Peak versus Temperature  
Re: NCP1651/D data sheet, Figures 19 and 20  
Re: NCP1651/D data sheet, Figure 21  
Apply both voltage sources, reduce the 14 volt source to  
8 volts and then increase to 14 volts. Measure the frequency  
at pin 1 using an oscilloscope or frequency counter.  
Apply both voltage sources, reduce the 14 volt source to  
8 volts and then increase to 14 volts. Measure ramp peak at  
pin 3 with an oscilloscope.  
10 mA  
5 mA  
2 mA  
14 V  
1 mF  
A
V
0.1 mF  
0 mA  
0.65 k 1.30 k 3.25 k  
13  
12  
V
V
ref  
V
CC  
16  
Startup  
1
5
Output  
I
8
S+  
FB/SD  
11  
AC Comp  
7
6
I
avg  
I
10  
9
avg fltr  
Ref Fltr  
1.5 V  
AC Input  
GND  
Ramp  
Comp  
C
T
2
3
4
470 pF  
47 k  
Figure 17. Vref Line/Load Regulation  
Re: NCP1650/D data sheet, Figures 22 and 23  
Apply both voltage sources, reduce the 14 volt source to  
8 volts and then increase to 14 volts. To measure load  
10 mA. To measure line regulation, hold the load constant  
and measure V and V at various V levels between 10  
ref  
CC  
CC  
regulation, hold the V voltage constant and vary the load,  
and 18 volts.  
CC  
measuring V a load current at various loads between 0 and  
ref  
http://onsemi.com  
5
TND308  
V
V
CC  
0.1 mF  
13  
12  
R
1 mF  
V
LOAD  
V
V
ref  
CC  
16  
Startup  
1
5
Output  
I
S+  
11  
8
AC Comp  
FB/SD  
7
6
I
avg  
I
10  
9
avg fltr  
Ref Fltr  
AC Input  
Ramp  
Comp  
GND  
2
C
T
3
4
470 pF  
47 k  
Figure 18. Vref versus VCC in Shutdown Mode  
Re: NCP1651/D data sheet, Figure 24  
Connect desired load to pin 12. Apply 14 volts to VCC pin, unit will be in shutdown mode. Measure Vref voltage.  
http://onsemi.com  
6
TND308  
Notes  
http://onsemi.com  
7
TND308  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make  
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
TND308/D  

相关型号:

TND308TD

TND308TD
SANYO

TND311S

ExPD (Excellent Power Device) General Purpose Driver for PDP Sustain Pulse Drive, Motor Drive
SANYO

TND312S

ExPD (Excellent Power Device) General Purpose Driver for PDP Sustain Pulse Drive, Motor Drive
SANYO

TND313S

ExPD (Excellent Power Device) General Purpose Driver for PDP Sustain Pulse Drive, Motor Drive
SANYO

TND314S

ExPD (Excellent Power Device) General Purpose Driver for PDP Sustain Pulse Drive, Motor Drive
SANYO

TND314S-TL-E

IC,PERIPHERAL DRIVER,2 DRIVER,CMOS,SOP,8PIN,PLASTIC
ONSEMI

TND315S

ExPD (Excellent Power Device) General Purpose Driver for PDP Sustain Pulse Drive, Motor Drive
SANYO

TND315S-TL-2H

优秀电源器件,双缓冲器驱动器,适用于通用应用,双 SOIC8
ONSEMI

TND315S-TL-E

IC,PERIPHERAL DRIVER,2 DRIVER,CMOS,SOP,8PIN,PLASTIC
ONSEMI

TND316S

ExPD (Excellent Power Device) General Purpose Driver for PDP Sustain Pulse Drive, Motor Drive
SANYO

TND316S-TL-2H

优秀电源器件,逆变器和缓冲器驱动器,适用于通用型应用,双 SOIC8
ONSEMI

TND316S-TL-E

IC,PERIPHERAL DRIVER,2 DRIVER,CMOS,SOP,8PIN,PLASTIC
ONSEMI