SI5321 [ETC]

SONET/SDH PRECISION CLOCK MULTIPLIER IC; SONET / SDH精密时钟乘法器IC
SI5321
型号: SI5321
厂家: ETC    ETC
描述:

SONET/SDH PRECISION CLOCK MULTIPLIER IC
SONET / SDH精密时钟乘法器IC

时钟
文件: 总34页 (文件大小:609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5321  
SONET/SDH PRECISION CLOCK MULTIPLIER IC  
Features  
„
Ultra-low jitter clock output with jitter  
generation as low as 0.3 psRMS  
„
„
Digital hold for loss-of-input clock  
Support for 255/238 (15/14),  
255/237 (85/79), and 66/64 FEC scaling  
(ITU-T G.709 and IEEE 802.3ae)  
Selectable loop bandwidth  
Loss-of-signal alarm output  
Low power  
„
„
„
„
No external components (other than a  
resistor and bypassing)  
Input clock ranges at 19, 39, 78, 155,  
311, or 622 MHz  
Output clock ranges at 19, 39, 78, 155,  
311, 622, 1244, or 2488 MHz  
Maximum range includes 693 MHz for  
10 GbE FEC support  
„
„
„
„
„
321  
Small size (9x9 mm)  
Backwards compatible with Si5320  
Ordering Information:  
Applications  
See page 30.  
„
„
SONET/SDH line/port cards  
Terabit routers  
„
Core switches  
Digital cross connects  
„
Description  
The Si5321 is a precision clock multiplier that exceeds the requirements of high-speed  
communication systems, including OC-192/OC-48 and 10 Gigabit Ethernet. This device  
phase locks to an input clock in the 19, 39, 78, 155, 311 or 622 MHz frequency range  
and generates a frequency-multiplied clock output that can be configured for operation  
in the 19, 39, 78, 155, 622, 1244, or 2488 MHz frequency range. Silicon Laboratories  
DSPLL™ technology provides PLL functionality with unparalleled performance. It  
eliminates external loop filter components, provides programmable loop parameters,  
and simplifies design. FEC rates are supported by selectable forward and reverse 255/  
238 (15/14), 255/237 (85/79), and 66/64 (33/32) conversion factors. The ITU-T G.709  
255/237 rate and the IEEE 802.3ae 66/64 rate are supported when using a 155 MHz or  
higher rate input clock. The performance and integration of Silicon Laboratories’ Si5321  
clock IC provides high-level support of the latest specifications and systems. It operates  
from a single 3.3 V supply.  
Functional Block Diagram  
REXT  
VSEL33  
VDD  
GND  
Biasing & Supply Regulation  
FXDDELAY  
CAL_ACTV  
DH_ACTV  
CLKIN+  
CLKIN–  
2
÷
DSPLL™  
CLKOUT+  
CLKOUT–  
÷
2
VALTIME  
LOS  
FRQSEL[2:0]  
Signal  
Detect  
3
2
2
Calibration  
RSTN/CAL  
BWBOOST  
FEC[2:0]  
BWSEL[1:0]  
INFRQSEL[2:0]  
Rev. 2.3 4/05  
Copyright © 2005 by Silicon Laboratories  
Si5321  
Si5321  
2
Rev. 2.3  
Si5321  
TABLE OF CONTENTS  
SECTION  
PAGE  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.1. DSPLL™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.2. Clock Input and Output Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.3. PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.4. Loss-of-Signal Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.5. Digital Hold of the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.6. Hitless Recovery from Digital Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.7. Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.8. PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.9. Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.10. Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.11. Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.12. Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.13. Design and Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3. Pin Descriptions: Si5321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
6. 9x9 mm CBGA Card Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Rev. 2.3  
3
Si5321  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
1
1
Parameter  
Symbol  
Test Condition  
Typ  
Unit  
Min  
Max  
2
Ambient Temperature  
T
–20  
3.135  
25  
85  
°C  
V
A
3
Si5321 Supply Voltage , 3.3 V Supply  
V
3.3  
3.465  
DD33  
Notes:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
2. The Si5321 is guaranteed by design to operate at –40° C. All electrical specifications are guaranteed for an ambient  
temperature of –20 to 85° C.  
3. The Si5321 specifications are guaranteed when using the recommended application circuit (including component  
tolerance) of Figure 5 on page 16.  
4
Rev. 2.3  
Si5321  
CLKIN+  
CLKIN–  
VIS  
A. Operation with Single-Ended Clock Input*  
Note: W hen using single-ended clock sources, the unused clock  
input on the Si5321 must be ac-coupled to ground.  
CLKIN+  
0.5 VID  
CLKIN–  
(CLKIN+) – (CLKIN–)  
VID  
B. Operation with Differential Clock Input  
Note: Transmission line termination, when required, must be provided  
externally.  
Figure 1. CLKIN Voltage Characteristics  
80%  
20%  
tF  
tR  
Figure 2. Rise/Fall Time Measurement  
(C LK IN+ ) - (C LK IN - )  
0 V  
tL O S  
Figure 3. Transitionless Period on CLKIN for Detecting a LOS Condition  
Rev. 2.3  
5
Si5321  
Table 2. DC Characteristics, VDD = 3.3 V  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
IDD  
622.08 MHz In,  
19.44 MHz Out  
141  
155  
mA  
Supply Current 1  
IDD  
19.44 MHz In,  
622.08 MHz Out  
135  
145  
mA  
Supply Current 2  
Power Dissipation Using 3.3 V Supply  
Clock Output  
Common Mode Input Voltage1,2,3  
(CLKIN)  
Single-Ended Input Voltage2,3,4  
(CLKIN)  
Differential Input Voltage Swing2,3,4  
(CLKIN)  
PD  
19.44 MHz In,  
622.08 MHz Out  
445  
1.5  
479  
2.0  
mW  
V
VICM  
VIS  
1.0  
200  
200  
See Figure 1A  
See Figure 1B  
5004  
5004  
mVPP  
mVPP  
k  
VID  
Input Impedance  
RIN  
80  
(CLKIN+, CLKIN–)  
Differential Output Voltage Swing  
(CLKOUT)  
VOD  
VOCM  
100 Load  
Line-to-Line  
750  
1.4  
825  
1.8  
1100  
2.2  
mVPP  
V
Output Common Mode Voltage  
(CLKOUT)  
100 Load  
Line-to-Line  
Output Short to GND (CLKOUT)  
Output Short to VDD25 (CLKOUT)  
Input Voltage Low (LVTTL Inputs)  
Input Voltage High (LVTTL Inputs)  
Input Low Current (LVTTL Inputs)  
Input High Current (LVTTL Inputs)  
Internal Pulldowns (LVTTL Inputs)  
Input Impedance (LVTTL Inputs)  
Output Voltage Low (LVTTL Outputs)  
Output Voltage High (LVTTL Outputs)  
Notes:  
ISC(–)  
ISC(+)  
VIL  
–60  
15  
mA  
mA  
V
0.8  
VIH  
IIL  
2.0  
V
50  
50  
50  
µA  
µA  
µA  
kΩ  
V
IIH  
Ipd  
RIN  
VOL  
VOH  
50  
IO = 0.5 mA  
IO = 0.5 mA  
0.4  
2.0  
V
1. The Si5321 device provides weak 1.5 V internal biasing that enables ac-coupled operation.  
2. Clock inputs may be driven differentially or single-endedly. When driven single-endedly, the unused input should be ac-  
coupled to ground.  
3. Transmission line termination, when required, must be provided externally.  
4. Although the Si5321 device can operate with input clock swings as high as 1500 mV , Silicon Laboratories recommends  
PP  
maintaining the input clock amplitude below 500 mV for optimal performance.  
PP  
6
Rev. 2.3  
Si5321  
Table 3. AC Characteristics  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input Clock Frequency (CLKIN)  
FEC[2:0] = 000 (non FEC)  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
fCLKIN  
No FEC Scaling  
19.436  
38.872  
77.744  
155.48  
310.97  
621.95  
21.685  
43.369 MHz  
86.738  
173.48  
346.95  
693.90  
Input Clock Frequency (CLKIN)  
FEC[2:0] = 001 (forward FEC)  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
fCLKIN  
fCLKIN  
fCLKIN  
fCLKIN  
255/238 FEC Scaling  
18.142  
36.284  
72.568  
145.13  
290.27  
580.54  
20.239  
40.478 MHz  
80.955  
161.91  
323.82  
647.64  
Input Clock Frequency (CLKIN)  
FEC[2:0] = 010 (reverse FEC)  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
238/255 FEC Scaling  
20.826  
41.652  
83.305  
166.61  
333.22  
666.44  
23.234  
46.465 MHz  
92.934  
185.87  
371.74  
743.47  
Input Clock Frequency (CLKIN)  
FEC[2:0] = 100 (forward FEC)  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
255/237 FEC Scaling  
Minimum input frequency  
is in the 155 MHz range  
N/A  
N/A  
N/A  
144.52  
289.05  
578.11  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
161.23  
322.46  
644.92  
MHz  
Input Clock Frequency (CLKIN)  
FEC[2:0] = 101 (reverse FEC)  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
237/255 FEC Scaling  
Minimum input frequency  
is in the 155 MHz range  
N/A  
N/A  
N/A  
167.31  
334.62  
669.25  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
186.66  
373.31  
746.61  
MHz  
Note: The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock multiplication function  
with an option for additional frequency scaling by a factor of 255/238, 238/255, 255/237, 237/255, 66/64, or 64/66 for  
FEC rate conversion.  
Rev. 2.3  
7
Si5321  
Table 3. AC Characteristics (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input Clock Frequency (CLKIN)  
FEC[2:0] = 110 (forward FEC)  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
fCLKIN  
66/64 FEC Scaling  
Minimum input frequency  
is in the 155 MHz range  
N/A  
N/A  
N/A  
150.79  
301.58  
603.16  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
168.22  
336.44  
672.88  
MHz  
Input Clock Frequency (CLKIN)  
FEC[2:0] = 111 (reverse FEC)  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
fCLKIN  
64/66 FEC Scaling  
Minimum input frequency  
is in the 155 MHz range  
N/A  
N/A  
N/A  
160.36  
320.72  
641.46  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
178.90  
357.80  
715.59  
MHz  
Input Clock Rise Time (CLKIN)  
Input Clock Fall Time (CLKIN)  
Input Clock Duty Cycle  
tR  
tF  
Figure 2  
Figure 2  
40  
50  
11  
11  
60  
ns  
ns  
%
CDUTY_IN  
CLKOUT Frequency Range  
FRQSEL[2:0] = 001  
FRQSEL[2:0] = 000  
FRQSEL[2:0] = 100  
FRQSEL[2:0] = 010  
FRQSEL[2:0] = 101  
FRQSEL[2:0] = 011  
FRQSEL[2:0] = 110  
FRQSEL[2:0] = 111  
fO_19  
fO_39  
fO_78  
fO_155  
fO_311  
fO_622  
fO_1250  
fO_2500  
19.436  
38.872  
77.744  
155.48  
310.97  
621.95  
1243.9  
2487.8  
21.685  
43.369  
86.738  
173.48  
346.95  
693.90  
1387.8  
2775.6  
MHz  
CLKOUT Rise Time  
tR  
Figure 2; single-ended;  
after 3 cm of 50 FR4  
stripline  
190  
220  
ps  
ps  
CLKOUT Fall Time  
tF  
Figure 2; single-ended;  
after 3 cm of 50 FR4  
stripline  
185  
205  
Output Clock Duty Cycle  
RSTN/CAL Pulse Width  
CDUTY_OUT  
Differential:  
(CLKOUT+) – (CLKOUT–)  
48  
20  
52  
%
tRSTN  
ns  
Note: The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock multiplication function  
with an option for additional frequency scaling by a factor of 255/238, 238/255, 255/237, 237/255, 66/64, or 64/66 for  
FEC rate conversion.  
8
Rev. 2.3  
Si5321  
Table 3. AC Characteristics (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Transitionless Period Required  
on CLKIN for Detecting a LOS  
Condition.  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
tLOS  
Figure 3  
24  
16  
12  
10  
9
32  
/
/
/
/
/
/
/
/
/
/
/
/
fo_622  
fo_622  
fo_622  
fo_622  
fo_622  
fo_622  
fo_622  
fo_622  
fo_622  
fo_622  
fo_622  
fo_622  
32  
32  
32  
32  
32  
s
8
Recovery Time for Clearing an  
LOS Condition  
VALTIME = 0  
tVAL  
Measured from when a  
valid reference clock is  
applied until the LOS flag  
clears  
1.6  
90  
3.2  
220  
ms  
VALTIME = 1  
Note: The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock multiplication function  
with an option for additional frequency scaling by a factor of 255/238, 238/255, 255/237, 237/255, 66/64, or 64/66 for  
FEC rate conversion.  
Rev. 2.3  
9
Si5321  
Table 4. AC Characteristics (PLL Performance Characteristics)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Wander/Jitter at 800 Hz Bandwidth  
(BWSEL[1:0] = 10 and BWBOOST = 0)  
Jitter Tolerance (see Figure 7)  
f = 8 Hz  
1000  
100  
10  
ns  
ns  
ns  
ps  
JTOL(PP)  
f = 80 Hz  
f = 800 Hz  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 000  
JGEN(RMS)  
JGEN(RMS)  
JGEN(PP)  
JGEN(PP)  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
BW = 800 Hz  
0.9  
1.2  
0.27 0.35 ps  
0.9 1.2 ps  
0.27 0.35 ps  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 001, 010, 100, 101, 110, 111  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 000  
7.6  
3.6  
6.7  
3.0  
800  
0.0  
11  
10.0 ps  
9.2 ps  
10.0 ps  
Hz  
0.05 dB  
ps  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 001, 010, 100, 101, 110, 111  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
FBW  
JP  
< 800 Hz  
Wander/Jitter at 1600 Hz Bandwidth  
(BWSEL[1:0] = 10 and BWBOOST = 1)  
Jitter Tolerance (see Figure 7)  
f = 16 Hz  
f = 160 Hz  
500  
50  
5
ns  
ns  
ns  
ps  
ps  
f = 1600 Hz  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 000  
JGEN(RMS)  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
BW = 1600 Hz  
< 1600 Hz  
.80  
.25  
6.4  
3.0  
1600  
0.0  
1.0  
.30  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 000  
JGEN(PP)  
10.0 ps  
5.0  
ps  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
Notes:  
FBW  
JP  
Hz  
0.05 dB  
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5321 (tPT_MTIE) never reaches one nanosecond.  
10  
Rev. 2.3  
Si5321  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Wander/Jitter at 1600 Hz Bandwidth  
(BWSEL[1:0] = 01 and BWBOOST = 0)  
Jitter Tolerance (see Figure 9)  
JTOL(PP)  
f = 16 Hz  
1000  
100  
10  
ns  
ns  
ns  
ps  
f = 160 Hz  
f = 1600 Hz  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 000  
JGEN(RMS)  
JGEN(RMS)  
JGEN(PP)  
JGEN(PP)  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz,  
50 kHz to 80 MHz,  
12 kHz to 20 MHz,  
50 kHz to 80 MHz,  
12 kHz to 20 MHz,  
50 kHz to 80 MHz,  
BW = 1600 Hz  
< 1600 Hz  
0.8  
1.2  
0.27 0.35 ps  
0.9 1.2 ps  
0.27 0.35 ps  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 001, 010, 100, 101, 110, 111  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 000  
6.7  
3.0  
10.0 ps  
5.0 ps  
10.0 ps  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 001, 010, 100, 101, 110, 111  
6.5  
3.0  
5.0  
ps  
Hz  
dB  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
FBW  
JP  
1600  
0.0  
0.1  
Wander/Jitter at 3200 Hz Bandwidth  
(BWSEL[1:0] = 01 and BWBOOST = 1)  
Jitter Tolerance (see figure 7)  
f = 32 Hz  
500  
50  
5
ns  
ns  
ns  
ps  
ps  
f = 320 Hz  
f = 3200 Hz  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 000  
JGEN(RMS)  
JGEN(PP)  
FBW  
12 kHz to 20 MHz,  
50 kHz to 80 MHz,  
12 kHz to 20 MHz,  
50 kHz to 80 MHz,  
BW = 3200 Hz  
0.8  
0.25  
6.1  
3.0  
3200  
1.0  
0.3  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 000  
10.0 ps  
5.0  
ps  
Jitter Transfer Bandwidth (see Figure 6)  
Hz  
Notes:  
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5321 (tPT_MTIE) never reaches one nanosecond.  
Rev. 2.3  
11  
Si5321  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Wander/Jitter Transfer Peaking  
JP  
< 3200 Hz  
0.05  
0.1  
dB  
Wander/Jitter at 3200 Hz Bandwidth  
(BWSEL[1:0] = 00 and BWBOOST= 0)  
Jitter Tolerance (see Figure 7)  
JTOL(PP)  
f = 32 Hz  
1000  
100  
10  
ns  
ns  
ns  
ps  
ps  
ps  
f = 320 Hz  
f = 3200 Hz  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 000  
JGEN(RMS)  
JGEN(RMS)  
JGEN(PP)  
JGEN(PP)  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
BW = 3200 Hz  
< 3200 Hz  
0.9  
0.3  
0.85  
0.3  
7.1  
3.2  
6.6  
3.2  
3200  
0.05  
1.1  
0.4  
1.1  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 001, 010, 100,101, 110, 111  
0.45 ps  
10.0 ps  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 000  
5.0  
ps  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 001, 010, 100,101, 110, 111  
11.0 ps  
5.5  
ps  
Hz  
dB  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
FBW  
JP  
0.1  
Wander/Jitter at 6400 Hz Bandwidth  
(BWSEL[1:0] = 00 and BWBOOST = 1)  
Jitter Tolerance (see Figure 7)  
f = 64 Hz  
f = 640 Hz  
500  
50  
5
ns  
ns  
ns  
f = 6400 Hz  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 000  
JGEN(RMS)  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
BW = 6400 Hz  
< 6400 Hz  
0.75 0.95 ps  
0.27 0.35 ps  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 000  
JGEN(PP)  
6.1  
3.1  
10.0 ps  
5.0  
ps  
Hz  
dB  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
Notes:  
FBW  
JP  
6400  
0.05  
0.1  
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5321 (tPT_MTIE) never reaches one nanosecond.  
12  
Rev. 2.3  
Si5321  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Wander/Jitter at 6400 Hz Bandwidth  
(BWSEL[1:0] = 11 and BWBOOST = 0)  
Jitter Tolerance (see Figure 7)  
JTOL(PP)  
f = 64 Hz  
1000  
100  
10  
ns  
ns  
ns  
ps  
ps  
ps  
ps  
f = 640 Hz  
f = 6400 Hz  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 000  
JGEN(RMS)  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
1.0  
0.4  
1.0  
.45  
1.3  
.55  
1.5  
0.7  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 001, 010, 100,101, 110, 111  
JGEN(RMS)  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 000  
JGEN(PP)  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
BW = 6400 Hz  
9.3  
4.1  
13.0 ps  
6.0 ps  
20.0 ps  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 001, 010, 100,101, 110, 111  
JGEN(PP)  
8.0  
4.0  
7.5  
ps  
Hz  
dB  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
FBW  
JP  
6400  
0.05  
< 6400 Hz  
0.1  
Wander/Jitter at 12800 Hz Bandwidth  
(BWSEL[1:0] = 11 and BWBOOST = 1)  
Jitter Tolerance (see Figure 7)  
f = 128 Hz  
f = 1280 Hz  
500  
50  
5
ns  
ns  
ns  
ps  
ps  
f = 12800 Hz  
CLKOUT RMS Jitter Generation  
FEC[2:0] = 000  
JGEN(RMS)  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
12 kHz to 20 MHz  
50 kHz to 80 MHz  
BW = 12,800 Hz  
< 12,800 Hz  
.85  
1.2  
.55  
.35  
CLKOUT Peak-Peak Jitter Generation  
FEC[2:0] = 000  
JGEN(PP)  
6.8  
11.0 ps  
3.4  
5.5  
.1  
ps  
Hz  
dB  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
Acquisition Time  
FBW  
JP  
12800  
0.05  
300  
TAQ  
RSTN/CAL high to  
350 ms  
CAL_ACTV low, with valid  
clock input and VALTIME = 0  
Notes:  
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5321 (tPT_MTIE) never reaches one nanosecond.  
Rev. 2.3  
13  
Si5321  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Clock Output Wander with  
Temperature Gradient 1,2  
CCO_TG  
Stable Input Clock;  
Temperature  
Gradient <10 °C/min;  
800 Hz Loop BW  
45  
ps/  
°C/  
min  
Initial Frequency Accuracy in Digital Hold CDH_FA  
Mode (first 100 ms with voltage and  
temperature held constant)  
Stable Input Clock  
Selected until entering  
Digital Hold  
5.5 ppm  
Clock Output Frequency Accuracy Over  
Temperature in Digital Hold Mode  
CDH_T  
Constant Supply Voltage  
17.2  
30 ppm  
/°C  
Clock Output Frequency Accuracy Over CDH_V33  
Supply Voltage in Digital Hold Mode  
Constant Temperature  
600 ppm  
/V  
Clock Output Phase Step3(See Figure 8) tPT_MTIE  
When hitlessly recovering  
from Digital Hold mode  
–200  
0
200 ps  
Clock Output Phase Step Slope3  
(See Figure 8)  
mPT  
When hitlessly recovering  
from Digital Hold mode  
BWSEL[1:0] = 11, BWBOOST = 0  
BWSEL[1:0] = 00, BWBOOST = 0  
BWSEL[1:0] = 01, BWBOOST = 0  
BWSEL[1:0] = 10, BWBOOST = 0  
10  
5
2.5  
1.25  
ps/  
µs  
6400 Hz, No Scaling  
3200 Hz, No Scaling  
1600 Hz, No Scaling  
800 Hz, No Scaling  
Notes:  
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5321 (tPT_MTIE) never reaches one nanosecond.  
14  
Rev. 2.3  
Si5321  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
VDD33  
VDIG  
Value  
–0.5 to 3.6  
–0.3 to (VDD33 + 0.3)  
±50  
Unit  
V
3.3 V DC Supply Voltage  
LVTTL Input Voltage  
V
Maximum Current any output PIN  
Operating Junction Temperature  
Storage Temperature Range  
ESD HBM Tolerance (100 pf, 1.5 k)  
mA  
°C  
°C  
kV  
TJCT  
TSTG  
–55 to 150  
–55 to 150  
1.0  
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Table 6. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
ϕ
Still Air  
20  
°C/W  
JA  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
101  
103  
104  
105  
106  
107  
108  
102  
Offset Frequency  
Figure 4. Typical Si5321 Phase Noise (CLKIN = 155.52 MHz, CLKOUT = 622.08 MHz, and  
Loop BW = 800 Hz)  
Rev. 2.3  
15  
Si5321  
3.3 V Supply  
Ferrite Bead  
0.1µF  
2200 pF  
22 pF  
10 k1%  
33 µF  
Calibration Active  
Status Output  
0.1µF  
100 Ω  
CAL_ACTV  
CLKIN+  
0.1 µF  
Input Clock Source  
CLKOUT+  
CLKOUT–  
CLKIN–  
Clock Output  
0.1 µF  
Input Clock Frequency Select  
0.1 µF  
INFRQSEL[2:0]  
Clock Output  
FRQSEL[2:0]  
Frequency Select  
Si5321  
FEC Scaling Select  
PLL Bandwidth Select  
FEC[2:0]  
BWSEL[1:0]  
BWBOOST  
PLL Bandwidth Multiplier  
LOS Validation Time  
VALTIME  
Loss of Signal (LOS)  
Digital Hold Active  
LOS  
PWRDN/CAL  
FXDDELAY  
Powerdown Control  
DH_ACTV  
Fixed Delay Mode Control  
Figure 5. Si5321 Typical Application Circuit (3.3 V Supply)  
16  
Rev. 2.3  
Si5321  
controlled oscillator (VCO). The technology produces  
low phase noise clocks with less jitter than is generated  
2. Functional Description  
The Si5321 is a high-performance precision clock using traditional methods. See Figure 4 for an example  
multiplication and clock generation device. This device phase noise plot. In addition, because external loop  
accepts a clock input in the 19, 39, 78, 155, 311, or filter components are not required, sensitive noise entry  
622 MHz range, attenuates significant amounts of jitter, points are eliminated thus making the DSPLL less  
and multiplies the input clock frequency to generate a susceptible to board-level noise sources. This digital  
clock output in the 19, 39, 78, 155, 311, 622, 1250, or technology also provides highly-stable and consistent  
2500 MHz range. Additional forward or reverse clock operation over all process, temperature, and voltage  
rate scaling by a factor of 255/238, 255/237, or 66/64 is variations. The benefits are smaller, lower power,  
provided. This allows systems to easily provide clocks cleaner, reliable, and easy-to-use clock circuits.  
that are scaled for forward error correction (FEC) rates.  
2.1.1. Selectable Loop Filter Bandwidth  
The 255/238 and 255/237 factors support the ITU-T  
The digital characteristics of the DSPLL loop filter allow  
G.709 requirements for optical transport unit (OTU) OC-  
control of the loop filter parameters without the need to  
48 and OC-192 rates. The 66/64 factor allows  
change external components. The Si5321 provides the  
conversion between XSBI and 10 GbE Base R rates.  
user with up to eight user-selectable loop bandwidth  
Typical applications for the Si5321 in SONET/SDH  
settings for different system requirements. The base  
systems are generation and/or cleaning of 19.44, 38.88,  
loop bandwidth is selected using the BWSEL[1:0] pins  
77.76, 155.52, 311.04, 622.08, 1244.16, or  
along with BWBOOST = 0 pins. When the BWBOOST  
2488.32 MHz clocks from 19.44, 38.88, 77.76, 155.52,  
is driven high, the bandwidth selected on the  
311.04, or 622.08 MHz clock sources.  
The Si5321 employs Silicon Laboratories DSPLL™  
BWSEL[1:0] pins is doubled. (See Table 7.)  
When the BWBOOST pin is asserted, the Si5321 shows  
technology to provide excellent jitter performance while  
improved jitter generation performance. The BWBOOST  
minimizing the external component count and  
function is defined only when hitless recovery and FEC  
maximizing flexibility and ease of use. The Si5321  
scaling are disabled. Therefore, when BWBOOST is  
DSPLL phase locks to the input clock signal, attenuates  
high, the user must also drive FXDDELAY high and  
jitter, and multiplies the clock frequency to generate the  
FEC[1:0] to 000 for proper operation.  
device’s SONET/SDH-compliant clock output. The  
2.2. Clock Input and Output Rate Selection  
DSPLL loop bandwidth is user selectable, allowing  
Si5321 jitter performance optimization for different  
applications. The Si5321 can produce a clock output  
with jitter generation as low as 0.3 psRMS (see Table 4  
on page 10), making the device an ideal solution for  
clock multiplication in SONET/SDH (including OC-48,  
OC-192, and OC768), Gigabit Ethernet, and 10 GbE  
systems.  
The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x,  
1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock frequency  
multiplication function with an option for additional  
frequency scaling by a factor of 255/238, 238/255, 255/  
237, 237/255, 66/64, or 64/66 for FEC rate compatibility.  
Output rates vary in accordance with the input clock  
rate. The multiplication factor is configured by selecting  
The Si5321 monitors the clock input signal for loss-of- the input and output clock frequency ranges for the  
signal and provides a loss-of-signal (LOS) alarm when it device.  
detects missing pulses. The Si5321 provides a digital  
The Si5321 accepts an input clock in the 19, 38, 77,  
hold capability that allows the device to continue  
155, 311, or 622 MHz frequency range. The input  
generation of a stable output clock when the input  
frequency range is selected using the INFRQSEL[2:0]  
reference is lost.  
pins. The INFRQSEL[2:0] settings and associated  
output clock rates are listed in Table 8.  
2.1. DSPLL™  
The Si5321’s DSPLL phase locks to the clock input  
The Si5321’s phase-locked loop (PLL) uses Silicon  
signal to generate an internal VCO frequency that is a  
Laboratories' DSPLL technology to eliminate jitter,  
multiple of the input clock frequency. The internal VCO  
noise, and the need for external loop filter components  
frequency is divided down to produce a clock output in  
found in traditional PLL implementations. This is  
the 19, 39, 78, 155, 311, 622, 1250, or 2500 MHz  
achieved by using a digital signal processing (DSP)  
frequency range. The clock output range is selected  
algorithm to replace the loop filter commonly found in  
using the frequency select (FRQSEL[2:0]) pins. The  
analog PLL designs. This algorithm processes the  
FRQSEL[2:0] settings and associated output clock rates  
phase detector error term and generates a digital  
are given in Table 9.  
control value to adjust the frequency of the voltage-  
Rev. 2.3  
17  
Si5321  
The Si5321 clock input frequencies are variable within  
the range specified in Table 3 on page 7. The output  
rates are scaled accordingly. If a 19.44 MHz input clock  
is used, the clock output frequency is 19.44, 38.88,  
77.76, 155.52 MHz, etc.  
Table 8. Nominal Clock Input Frequencies  
INFRQSEL2 INFRQSEL1 INFRQSEL0  
Input Clock  
Frequency  
Range  
Reserved  
622 MHz  
311 MHz  
155 MHz  
77 MHz  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Table 7. Loop Bandwidth and FEC Settings  
External Inputs  
BWSEL  
Effective  
FEC  
Conversion Bandwidth  
Effective  
PLL  
FEC  
[2:0]  
BWBOOST  
[1:0]  
Rate  
(Hz)  
3200  
3200  
3200  
38 MHz  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
00  
00  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
00  
10  
11  
01  
01  
01  
01  
01  
01  
01  
01  
01  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
0xx  
0xx  
0xx  
0xx  
000  
001  
010  
011  
100  
101  
110  
111  
1/1  
19 MHz  
255/238  
238/255  
Reserved  
255/237  
237/255  
66/64  
Reserved  
3200  
3200  
3200  
3200  
800  
Table 9. Nominal Clock Output Frequencies  
FRQSEL2  
FRQSEL1  
FRQSEL0  
Output Clock  
Frequency  
Range  
64/66  
1/1  
2,488.32 MHz  
1244.16 MHz  
622.08 MHz  
311.04 MHz  
155.52 MHz  
77.76 MHz  
1
1
0
1
0
1
0
0
1
1
1
0
1
0
0
0
1
0
1
1
0
0
0
1
255/238  
238/255  
Reserved  
255/237  
237/255  
66/64  
800  
800  
800  
800  
800  
64/66  
800  
38.88 MHz  
1/1  
6400  
6400  
6400  
19.44 MHz  
255/238  
238/255  
Reserved  
255/237  
237/255  
66/64  
2.2.1. FEC Rate Conversion  
The Si5321 provides a 1/32x, 1/16x, 1/8x, 1/4x, 1/2x,  
1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x clock frequency  
multiplication function with an option for additional  
forward or reverse frequency scaling by a factor of 255/  
238 (15/14), 255/237 (85/79), or 66/64 (33/32) for FEC  
rate conversion applications. The 255/237 and the 66/  
64 rate conversions requires the input clock rate to be in  
the 155 MHz or higher ranges. The multiplication factor  
is configured by selecting the input and output clock  
frequency ranges for the device. The additional  
frequency scaling for FEC rate conversion is selected  
using the FEC[2:0] control inputs.  
6400  
6400  
6400  
6400  
6400  
1600  
12800  
3200  
1600  
1600  
1600  
64/66  
1/1  
1/1  
1/1  
1/1  
1/1  
255/238  
238/255  
Reserved  
255/237  
237/255  
66/64  
For example, a 622.08 MHz output clock (a non-FEC  
rate) can be generated from a 19.44 MHz input clock (a  
non-FEC rate) by setting INFRQSEL[2:0] = 001  
(19.44 MHz range), setting FRQSEL[2:0] = 011 (32x  
multiplication) and setting FEC[2:0] = 000 (no FEC  
scaling). A 666.51 MHz output clock (an FEC rate) can  
be generated from a 19.44 MHz input clock (a non-FEC  
rate) by setting INFRQSEL[2:0] = 001 (19.44 MHz  
range), setting FRQSEL[2:0] = 011 (32x multiplication)  
1600  
1600  
1600  
1600  
64/66  
18  
Rev. 2.3  
Si5321  
.
and setting FEC[2:0] = 001 (255/238 FEC scaling).  
Jitter  
Transfer  
Finally, a 622.08 MHz output clock (a non-FEC rate) can  
be generated from a 20.83 MHz input clock (an FEC  
rate) by setting INFRQSEL[2:0] = 001 (19.44 MHz  
range), setting FRQSEL[2:0] = 011 (32x multiplication)  
and setting FEC[2:0] = 010 (238/255 FEC scaling).  
Jitter Out  
Jitter In  
(s)  
0 dB  
Peaking  
Jp  
–20 dB/dec.  
2.3. PLL Performance  
The Si5321 PLL provides extremely low jitter  
generation, high jitter tolerance, and a well-controlled  
jitter transfer function with low peaking and a high  
degree of jitter attenuation.  
fJitter  
FBW  
Figure 6. PLL Jitter Transfer Mask/Template  
2.3.1. Jitter Generation  
2.3.3. Jitter Tolerance  
Jitter generation is defined as the amount of jitter  
produced at the output of the device with a jitter free  
input clock. Generated jitter arises from sources within  
the VCO and other PLL components. Jitter generation is  
a function of the PLL bandwidth setting. Higher loop  
bandwidth settings may result in lower jitter generation  
but may also result in less attenuation of jitter than  
might be present on the input clock signal.  
Jitter tolerance for the Si5321 is defined as the  
maximum peak-to-peak sinusoidal jitter that can be  
present on the incoming clock. The tolerance is a  
function of the jitter frequency because tolerance  
improves for lower input jitter frequency.  
Input  
Jitter  
Amplitude  
2.3.2. Jitter Transfer  
Excessive Input Jitter Range  
–20 dB/dec.  
Jitter transfer is defined as the ratio of output signal jitter  
to input signal jitter for a specified jitter frequency. The  
jitter transfer characteristic determines the amount of  
input clock jitter that passes to the outputs. The DSPLL  
technology used in the Si5321 provides tightly-  
controlled jitter transfer curves because the PLL gain  
parameters are determined by digital circuits that do not  
vary over supply voltage, process, and temperature. In  
a system application, a well-controlled transfer curve  
minimizes the output clock jitter variation from board to  
board and provides more consistent system level jitter  
performance.  
10 ns  
FBW  
fJitter In  
Figure 7. Jitter Tolerance Mask/Template  
2.4. Loss-of-Signal Alarm  
The Si5321 has loss-of-signal (LOS) circuitry that  
constantly monitors the CLKIN input clock for missing  
pulses. The LOS circuitry sets a LOS output alarm  
signal when missing pulses are detected.  
The jitter transfer characteristic is a function of the  
BWSEL[1:0] setting. Lower bandwidth settings result in  
more jitter attenuation of the incoming clock but may  
result in higher jitter generation. Table 4 on page 10  
gives the 3 dB bandwidth and peaking values for  
specified BWSEL settings. Figure 6 shows the jitter  
transfer curve mask.  
The LOS circuitry operates as follows. Regardless of  
the selected input clock frequency range, the LOS  
circuitry divides down the input clock into the 19 MHz  
range. The LOS circuitry then over-samples this divided  
down input clock to search for extended periods of time  
without input clock transitions. If the LOS circuitry  
detects four consecutive samples of the divided down  
input clock that are the same state (i.e., 1111 or 0000), a  
LOS condition is declared; the Si5321 goes into digital  
hold mode, and the LOS output alarm signal is set high.  
The LOS sampling circuitry runs at a frequency of fO_78  
,
where fO_78 is the output clock frequency when the  
FRQSEL[2:0] pins are set to 100. Figure 3 on page 5  
and Table 3 on page 7 list the minimum and maximum  
transitionless time periods required for declaring a LOS  
on the input clock (tLOS).  
Rev. 2.3  
19  
Si5321  
Once the LOS alarm is asserted, it is held high until the  
input clock is validated over a time period designated by  
the VALTIME pin. When VALTIME is low, the validation  
time period is about 1 ms. When VALTIME is high, the  
validation time period is about 100 ms. If another LOS  
condition is detected on the input clock during the  
validation time (i.e., if another set of 1111 or 0000  
samples are detected), the LOS alarm remains asserted  
and the validation time starts over. When the LOS alarm  
is finally released, the Si5321 exits digital hold mode  
and locks to the input clock. The LOS alarm is  
automatically set high at power-on and at every low-to-  
high transition of the RSTN/CAL pin. In these cases, the  
Si5321 undergoes a self-calibration before releasing the  
LOS alarm and locking to the input clock.  
mPT  
tPT_MTIE  
Recovery from digital hold  
Figure 8. Recovery from Digital Hold  
2.7. Reset  
The Si5321 provides a Reset/Calibration pin (RSTN/  
CAL) that resets the device and disables all of the  
device outputs. When the RSTN/CAL pin is driven low,  
the internal circuitry enters reset mode and all LVTTL  
outputs are forced into a high-impedance state. Also,  
the CLKOUT+ and CLKOUT– pins are connected to  
VDD25 through 100 on-chip resistors. This feature is  
useful for applications that employ redundant clock  
sources and for in-circuit test applications. A low-to-high  
transition on RSTN/CAL initializes all digital logic to a  
known condition and initiates self-calibration of the  
DSPLL. At the completion of self-calibration, the DSPLL  
begins to lock to the clock input signal.  
The Si5321 also provides an output indicating the digital  
hold status of the device, DH_ACTV. The Si5321 only  
enters the digital hold mode upon the loss of the input  
clock. When this occurs, the LOS alarm will also be  
active. Therefore, applications that require monitoring of  
the status of the Si5321 need only monitor the  
CAL_ACTV and either the LOS or DH_ACTV outputs to  
know the state of the device.  
2.5. Digital Hold of the PLL  
When no valid input clock is available, the Si5321  
digitally holds the internal oscillator to its last frequency  
value. This provides a stable clock to the system until an  
input clock is valid again. This clock maintains stable  
operation in the presence of constant voltage and  
temperature. The frequency accuracy specifications for  
digital hold mode are given in Table 4 on page 10.  
2.8. PLL Self-Calibration  
The Si5321 achieves optimal jitter performance by  
using self-calibration circuitry to set the VCO center  
frequency and loop gain parameters within the DSPLL.  
Internal circuitry generates self calibration automatically  
on powerup or after a loss-of-power condition. Self-  
calibration also can be manually initiated by a low-to-  
high transition on the RSTN/CAL input.  
2.6. Hitless Recovery from Digital Hold  
When the Si5321 device is locked to a valid input clock,  
a loss of the input clock switches the device to digital  
hold mode. When the input clock signal returns, the  
device performs a hitless transition from digital hold  
mode back to the selected input clock. That is, the  
device executes “phase build-out” to absorb the phase  
difference between the internal VCO clock operating in  
digital hold mode and the new/returned input clock. The  
maximum phase step seen at the clock output during  
this transition, and the maximum slope of this step, is  
specified in Table 4 on page 10.  
A self-calibration should be initiated after changing the  
state of the FEC[2:0] inputs. Whether manually initiated  
or automatically initiated at powerup, the self-calibration  
process requires the presence of a valid input clock.  
If the self-calibration is initiated without a valid input  
clock, the device waits for a valid input clock before  
executing the self-calibration. The Si5321 does not  
provide an output clock while waiting for a valid input  
clock or while executing its self-calibration. When the  
input clock is validated, the calibration procedure  
executes to completion; the device locks to the input  
clock, and the output clock turns on. Subsequent losses  
of the input clock do not require self-calibration. If the  
input clock is lost following self-calibration, the device  
enters digital hold mode with the output clock frequency  
held to its last value before the LOS condition was  
Asserting the Fixed Delay (FXDDELAY) pin disables  
this feature and the output clock phase and frequency  
locks with a known phase relationship to the input clock.  
Consequently, abrupt phase change on the input clock  
propagates through the device and the output slews at  
the loop bandwidth until the phase relationship is  
restored.  
20  
Rev. 2.3  
Si5321  
detected. When the input clock returns and is validated,  
the device exits digital hold mode by re-locking to the  
input clock without executing another self-calibration.  
2.12. Power Supply Connections  
The Si5321 incorporates an on-chip voltage regulator to  
power the device from a 3.3 V supply. The voltage  
regulator requires an external compensation circuit of  
one resistor and one capacitor to ensure stability over  
all operating conditions.  
2.9. Bias Generation Circuitry  
The Si5321 makes use of an external resistor to set  
internal bias currents. The external resistor allows  
precise generation of bias currents, which significantly  
reduces power consumption and variation as compared  
with traditional implementations that use an internal  
resistor. The bias generation circuitry requires a 10 kΩ  
(1%) resistor connected between REXT and GND.  
Internally, the Si5321 VDD33 pins are connected to the  
on-chip voltage regulator input and to the device’s  
LVTTL I/O circuitry. The VDD25 pins supply power to the  
core DSPLL circuitry, and are also used for connection  
of the external compensation circuit.  
The regulator’s compensation circuit is a resistor and a  
capacitor in series between the VDD25 node and ground.  
2.10. Differential Input Circuitry  
The Si5321 provides a differential input for the clock Typically, the resistor is incorporated into the capacitor’s  
input, CLKIN. This input is internally-biased to a voltage equivalent series resistance (ESR). The target RC time  
of VICM (see Table 2 on page 6) and may be driven by a constant for this combination is 15 to 50 µs. The  
differential or single-ended driver circuit. For capacitor used in the Si5321 evaluation board is a 33 µf  
transmission line termination, the termination resistor is tantalum capacitor with an ESR of 0.8 . This gives an  
connected externally as shown.  
RC time constant of 26.4 µs. The Venkel part number  
TA6R3TCR336KBR is an example of a capacitor that  
meets these specifications. (See Figure 5.)  
2.11. Differential Output Circuitry  
The Si5321 utilizes a current mode logic (CML)  
architecture to drive the differential clock output,  
CLKOUT.  
To get optimal performance from the Si5321 device, the  
power supply noise spectrum must comply with the plot  
in Figure 9. This plot shows the power supply noise  
For single-ended output operation simply connect to tolerance mask for the Si5321. The customer should  
either CLKOUT+ or CLKOUT– and leave the unused provide a 3.3 V supply that does not have noise density  
signal unconnected.  
in excess of the amount shown in the diagram.  
However, the diagram cannot be used as spur criteria  
for a power supply that contains single tone noise.  
(µ /√  
Vn V Hz  
)
2100  
42  
f
100 Mhz  
10 kHz  
500 kHz  
Figure 9. Power Supply Noise Tolerance Mask  
Rev. 2.3  
21  
Si5321  
2.13. Design and Layout Guidelines  
Precision clock circuits are susceptible to board noise  
and EMI. To take precautions against unacceptable  
levels of board noise and EMI affecting performance of  
the Si5321, consider the following:  
„
Power the device from 3.3 V since the internal  
regulator provides >40 dB of isolation to the VDD25  
pins (which power the PLL circuitry).  
„
When powering the device from 3.3 V, use an  
isolated, local plane to connect the VDD25 pins.  
Avoid running signal traces over or below this plane  
without a ground plane in between.  
„
„
Route all I/O traces between ground planes as much  
as possible  
Maintain an input clock amplitude in the 200 mVPP to  
500 mVPP differential range.  
„
Excessive high-frequency harmonics of the input  
clock should be minimized. The use of filters on the  
input clock signal can be used to remove high-  
frequency harmonics.  
22  
Rev. 2.3  
Si5321  
3. Pin Descriptions: Si5321  
8
7
6
5
4
3
2
1
Rsvd_NC  
Rsvd_NC  
Rsvd_NC  
Rsvd_NC  
Rsvd_NC  
FEC[0]  
FEC[1]  
A
B
C
D
E
F
Rsvd_NC  
Rsvd_GND  
Rsvd_GND  
Rsvd_NC  
GND  
FXDDELAY  
FRQSEL[2]  
FEC[2]  
BWSEL[0]  
BWSEL[1]  
Rsvd_GND  
GND  
GND  
GND  
GND  
VSEL33  
DH_ACTV  
CAL_ACTV  
LOS  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
VDD33  
VDD33  
VDD25  
VDD33  
VDD33  
VDD25  
VDD33  
VDD33  
VDD25  
BWBOOST  
CLKIN+  
CLKIN–  
GND  
GND  
INFRQSEL[0]  
G
H
GND  
GND  
GND  
GND  
GND  
GND  
GND  
INFRQSEL[1]  
INFRQSEL[2]  
REXT  
FRQSEL[1]  
CLKOUT–  
CLKOUT+  
FRQSEL[0]  
VALTIME  
RSTN/CAL  
Bottom View  
Figure 10. Si5321 Pin Configuration (Bottom View)  
Rev. 2.3  
23  
Si5321  
1
2
3
4
5
6
7
8
FEC[1]  
FEC[0]  
Rsvd_NC  
Rsvd_NC  
Rsvd_NC  
Rsvd_NC  
Rsvd_NC  
A
B
C
D
E
F
BWSEL[0]  
BWSEL[1]  
FEC[2]  
FRQSEL[2]  
FXDDELAY  
Rsvd_NC  
GND  
Rsvd_GND  
Rsvd_GND  
Rsvd_NC  
VSEL33  
GND  
GND  
GND  
GND  
Rsvd_GND  
CLKIN+  
CLKIN–  
BWBOOST  
VDD33  
VDD33  
VDD25  
VDD33  
VDD33  
VDD25  
VDD33  
VDD33  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
DH_ACTV  
CAL_ACTV  
LOS  
GND  
INFRQSEL[0]  
GND  
G
H
INFRQSEL[1]  
INFRQSEL[2]  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
REXT  
RSTN/CAL  
VALTIME  
FRQSEL[0]  
CLKOUT+  
CLKOUT–  
FRQSEL[1]  
Top View  
Figure 11. Si5321 Pin Configuration (Transparent Top View)  
24  
Rev. 2.3  
Si5321  
Table 10. Si5321 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
System Clock Input.  
D1  
E1  
CLKIN+  
CLKIN–  
I
AC Coupled  
200–500 mVPPD  
(See Table 2)  
Clock input to the DSPLL circuitry. The frequency of  
the CLKIN signal is multiplied by the DSPLL to gen-  
erate the CLKOUT clock output. The input-to-output  
frequency multiplication factor is set by selecting the  
clock input range and the clock output range. The  
frequency of the CLKIN clock input can be in the 19,  
38, 77, 155, 311, or 622 MHz range (nominally  
19.44, 38.88, 77.76, 155.52, 311.04, or  
622.08 MHz) as indicated in Table 3 on page 7. The  
clock input frequency is selected using the  
INFRQSEL[2:0] pins. The clock output frequency is  
selected using the FRQSEL[1:0] pins. An additional  
scaling factor may be selected for FEC operation  
using the FEC[2:0] control pins.  
F1  
G1  
H1  
INFRQSEL[0]  
INFRQSEL[1]  
INFRQSEL[2]  
I*  
LVTTL*  
Input Frequency Range Select.  
Pins(INFRQSEL[2:0]) select the frequency range for  
the input clock, CLKIN. (See Table 3 on page 7.)  
000 = Reserved.  
001 = 19 MHz range.  
010 = 38 MHz range.  
011 = 77 MHz range.  
100 = 155 MHz range.  
101 = 311 MHz range.  
110 = 622 MHz range.  
111 = Reserved.  
H6  
H7  
CLKOUT+  
CLKOUT–  
O
CML  
Differential Clock Output.  
High-frequency clock output. The frequency of the  
CLKOUT output is a multiple of the frequency of the  
CLKIN input. The input-to-output frequency multipli-  
cation factor is set by selecting the clock input range  
and the clock output range. The frequency of the  
CLKOUT clock output can be in the 19, 38, 77, 155,  
311, 622, 1244 or 2488 MHz range as indicated in  
Table 3 on page 7. The clock output frequency is  
selected using the FRQSEL[2:0] pins. The clock  
input frequency is selected using the  
INFRQSEL[2:0] pins. An additional scaling factor  
may be selected for FEC operation using the  
FEC[2:0] control pins.  
*Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a  
logic low state if the input is not driven from an external source.  
Rev. 2.3  
25  
Si5321  
Table 10. Si5321 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
H5  
H8  
B3  
FRQSEL[0]  
FRQSEL[1]  
FRQSEL[2]  
I*  
LVTTL*  
Clock Output Frequency Range Select.  
Select the frequency range of the clock output, CLK-  
OUT. (See Table 3 on page 7.)  
001 = 19 MHz Frequency Range.  
000 = 39 MHz Frequency Range.  
100 = 78 MHz Frequency Range.  
010 = 155 MHz Frequency Range.  
101 = 311 MHz Frequency Range.  
011 = 622 MHz Frequency Range.  
110 = 1.25 GHz Frequency Range.  
111 = 2.5 GHz Frequency Range.  
A3  
A2  
B2  
FEC[0]  
FEC[1]  
FEC[2]  
I*  
LVTTL*  
FEC Selection.  
Enables or disables scaling of the input-to-output  
frequency multiplication factor for FEC clock rate  
compatibility.  
The frequency of the CLKOUT output is a multiple of  
the frequency of the CLKIN input. Selecting the  
clock input range, the clock output range, and the  
FEC scaling factor sets the input-to-output fre-  
quency multiplication factor. The clock output fre-  
quency is selected using the FRQSEL[2:0] pins. The  
clock input frequency is selected using the  
INFRQSEL[2:0] pins. Scaling factors of 255/238,  
238/255, 255/237, 237/255, 66/64, or 64/66 may be  
selected for FEC operation using the FEC[2:0] con-  
trol pins as indicated below. Scaling factors of 255/  
237, 237/255, 66/64, or 64/66 require that the input  
clock rate be in the 155 MHz or higher range.  
000 = No FEC scaling.  
001 = 255/238 FEC scaling.  
010 = 238/255 FEC scaling.  
011 = Reserved.  
100 = 255/237 FEC scaling (155 MHz or higher  
input clock range required).  
101 = 237/255 FEC scaling (155 MHz or higher  
input clock range required).  
110 = 66/64 FEC scaling (155 MHz or higher input  
clock range required).  
111 = 64/66 FEC scaling (155 MHz or higher input  
clock range required).  
*Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a  
logic low state if the input is not driven from an external source.  
26  
Rev. 2.3  
Si5321  
Table 10. Si5321 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
B1  
C1  
BWSEL[0]  
BWSEL[1]  
I*  
LVTTL*  
Bandwidth Select.  
BWSEL[1:0] pins set the bandwidth of the loop filter  
within the DSPLL to 6400, 3200, 1600, or 800 Hz as  
indicated below.  
00 = 3200 Hz  
01 = 1600 Hz  
10 = 800 Hz  
11 = 6400 Hz  
Note: The loop filter bandwidth is twice the value  
indicated here when BWBOOST is set high.  
D2  
B4  
BWBOOST  
FXDDELAY  
I*  
I*  
LVTTL*  
LVTTL*  
Bandwidth Boost.  
Active high input to boost the selected bandwidth  
2x. When this pin is high the loop filter bandwidth  
selected on BWSEL[1:0] is doubled. When this pin  
is high, FXDDELAY must also be high and FEC[2:0]  
must be 000.  
Fixed Delay Mode.  
Set high to disable hitless recovery from digital hold  
mode. This configuration is useful in applications  
that require a known or constant input-to-output  
phase relationship.  
When this pin is high, hitless switching from digital  
hold mode back to a valid clock input is disabled.  
When switching from digital hold mode to a valid  
clock input with FXDDELAY high, the clock output  
changes as necessary to re-establish the initial/  
default input-to-output phase relationship that is  
established after powerup or reset. The rate of  
change is determined by the setting of BWSEL[1:0].  
When this pin is low, hitless switching from Digital  
Hold mode back to a valid clock input is enabled.  
When switching from digital hold mode to a valid  
clock input with FXDDELAY low, the device enables  
“phase build out” to absorb the phase difference  
between the clock output and the clock input so that  
the phase change at the clock output is minimized.  
In this case, the input-to-output phase relationship  
following the transition out of digital hold mode is  
determined by the phase relationship at the time  
that switching occurs.  
Note: FXDDELAY should remain at a static high or static  
low level during normal operation. Transitions on  
this pin are allowed only when the RSTN/CAL pin  
is low. FXDDELAY must be set high when  
BWBOOST is set high.  
*Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a  
logic low state if the input is not driven from an external source.  
Rev. 2.3  
27  
Si5321  
Table 10. Si5321 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
H4  
VALTIME  
I*  
LVTTL*  
Clock Validation Time for LOS.  
VALTIME sets the clock validation times for recovery  
from an LOS alarm condition. When VALTIME is  
high, the validation time is approximately 100 ms.  
When VALTIME is low, the validation time is approx-  
imately 2 ms.  
H3  
RSTN/CAL  
I*  
LVTTL*  
Reset/Calibrate.  
When low, all LVTTL outputs are forced into a high  
impedance state, the DSPLL is forced out-of-lock,  
and the device control logic is reset.  
A low-to-high transition on RSTN/CAL initializes all  
digital logic to a known condition and initiates self-  
calibration of the DSPLL. At the completion of self-  
calibration, the DSPLL begins to lock to the selected  
clock input signal and begins to drive out the output  
clock signal onto the CLKOUT pins.  
F8  
D8  
LOS  
O
O
LVTTL  
LVTTL  
Loss-of-Signal (LOS) Alarm for CLKIN.  
Active high output indicates that the Si5321 has  
detected missing pulses on the input clock signal.  
The LOS alarm is cleared after either 100 ms or 13 s  
of a valid CLKIN clock input, depending on the set-  
ting of the VALTIME input.  
DH_ACTV  
Digital Hold Mode Active.  
Active high output indicates that the DSPLL is in  
digital hold mode. Digital hold mode locks the  
current state of the DSPLL and forces the DSPLL to  
continue generation of the output clock with no  
additional phase or frequency information from the  
input clock.  
E8  
C2  
CAL_ACTV  
O
LVTTL  
Calibration Mode Active.  
This output is driven high during the DSPLL self-cal-  
ibration and the subsequent initial lock acquisition  
period.  
Select 3.3 V V Supply.  
VSEL33  
I*  
LVTTL*  
Supply  
DD  
This is an enable pin for the internal regulator. To  
enable the regulator, connect this pin to the VDD33  
pins.  
3.3 V Supply.  
D3–D5,  
E3–E5  
VDD33  
VDD  
3.3 V power is applied to the VDD33 pins. Typical  
supply bypassing/decoupling for this configuration is  
indicated in the typical application diagram for 3.3 V  
supply operation.  
*Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a  
logic low state if the input is not driven from an external source.  
28  
Rev. 2.3  
Si5321  
Table 10. Si5321 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
2.5 V Supply.  
D6, D7, E6,  
E7, F3–F7  
VDD25  
VDD  
Supply  
These pins provide a means of connecting the  
compensation network for the on-chip regulator.  
C3–C7, E2,  
F2, G2–G8  
GND  
GND  
Supply  
Analog  
Ground.  
Must be connected to system ground. Minimize the  
ground path impedance for optimal performance of  
the device.  
H2  
REXT  
I
External Biasing Resistor.  
Used by on-chip circuitry to establish bias currents  
within the device. This pin must be connected to  
GND through a 10 k(1%) resistor.  
A4–8, B5, B8  
B6, B7, C8  
RSVD_NC  
LVTTL  
LVTTL  
Reserved—No Connect.  
This pin must be left unconnected for normal  
operation.  
RSVD_GND  
Reserved—GND.  
This pin must be tied to GND for normal operation.  
*Note: The LVTTL inputs on the Si5321 device have an internal pulldown mechanism that causes the input to default to a  
logic low state if the input is not driven from an external source.  
Rev. 2.3  
29  
Si5321  
4. Ordering Guide  
Part Number  
Package  
Temperature  
Si5321-X-BC  
63-Ball CBGA  
–20 to 85 °C  
Note: “X” denotes product revision.  
30  
Rev. 2.3  
Si5321  
5. Package Outline  
Figure 12 illustrates the package details for the Si5321. Table 11 lists the values for the dimensions shown in the  
illustration.  
Figure 12. 63-Ball Ceramic Ball Grid Array (CBGA)  
Table 11. Package Drawing Dimensions  
Dimension  
Description  
Total Package Height  
Standoff  
Minimum  
2.13  
Nominal  
2.28  
Maximum  
2.43  
A
A1  
A2  
A3  
b
0.60  
0.70  
0.80  
Ceramic Thickness  
Mold Cap Thickness  
Solder Ball Diameter  
Ceramic Body Size  
Mold Cap Size  
0.88  
0.98  
1.08  
0.55  
0.60  
0.65  
0.65  
0.70  
0.75  
D
8.85  
9.00  
9.15  
D1  
e
8.55  
8.75  
8.95  
Solder Ball Pitch  
Pitch to Centerline  
1.00 BSC  
0.50 BSC  
S
Rev. 2.3  
31  
Si5321  
6. 9x9 mm CBGA Card Layout  
Placement Courtyard  
Table 12. Recommended Land Pattern Dimensions  
Symbol  
Parameter  
Dimension  
Nom  
Notes  
Min  
Max  
C
Column Width  
Row Height  
7.00 REF  
7.00 REF  
1.00 BSC  
D
E
F
Pad Pitch  
Placement Courtyard  
Pad Diameter  
10.00  
0.64  
1
X
0.68  
0.72  
2, 3  
Notes:  
1. The Placement Courtyard is the minimum keep-out area required to assure assembly clearances.  
2. Pad Diameter is Copper Defined (Non-Solder Mask Defined/NSMD).  
3. OSP Surface Finish Recommended.  
4. Controlling dimension is millimeters.  
5. Land Pad Dimensions comply with IPC-SM-782 guidelines.  
6. Target solder paste volume per pad is 0.065 mm3 ± 0.010 mm3 (4000 mils3 ± 600 mils3).  
Recommended stencil aperture dimensions to achieve target solder paste volume are 0.191 mm  
thick x 0.68±0.01 mm diameter, with a 0.025 mm taper.  
7. Recommended stencil type is chemically etched stainless steel with circularly tapered apertures.  
32  
Rev. 2.3  
Si5321  
DOCUMENT CHANGE LIST  
Revision 2.0 to Revision 2.1  
„
Updated Table 3, “AC Characteristics,” on page 7.  
„
Updated Figure 8, “Recovery from Digital Hold,” on  
page 20.  
„
„
„
Updated Figure 12, “63-Ball Ceramic Ball Grid Array  
(CBGA),” on page 31.  
Updated Table 11, “Package Diagram Dimensions,”  
on page 31.  
Added Figure 4, “Typical Si5321 Phase Noise  
(CLKIN = 155.52 MHz, CLKOUT = 622.08 MHz, and  
Loop BW = 800 Hz),” on page 15.  
Revision 2.1 to Revision 2.2  
„
„
Updated Table 3, “AC Characteristics,” on page 7.  
Updated Table 11, “Package Diagram Dimensions,”  
on page 31.  
Revision 2.2 to Revision 2.3  
„
Updated "5. Package Outline" on page 31.  
Rev. 2.3  
33  
Si5321  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
34  
Rev. 2.3  

相关型号:

SI5321-G-XC5

Support Circuit, 1-Func, CBGA63, 9 X 9 MM, CERAMIC, MO-192AAB-1, BGA-63
SILICON

SI5321-H-BL

暂无描述
SILICON

SI5321-H-GL

Support Circuit, 1-Func, PBGA63, 9 X 9 MM, PLASTIC, ROHS COMPLIANT, MO-192AAB-1, BGA-63
SILICON

SI5321-H-XL3

Support Circuit, 1-Func, PBGA63, 9 X 9 MM, ROHS COMPLIANT, PLASTIC, MO-192AAB-1, BGA-63
SILICON

SI5321-H-ZL4

Support Circuit, 1-Func, PBGA63, 9 X 9 MM, ROHS COMPLIANT, PLASTIC, MO-192AAB-1, BGA-63
SILICON

SI5321-H-ZL5

Support Circuit, 1-Func, PBGA63, 9 X 9 MM, ROHS COMPLIANT, PLASTIC, MO-192AAB-1, BGA-63
SILICON

SI5322

PIN-PROGRAMMABLE PRECISION CLOCK MULTIPLIER
SILICON

SI5322-C-GM

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5323

PIN-PROGRAMMABLE PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5323-B-GM

PIN-PROGRAMMABLE PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5323-B-GMR

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5323-C-GMR

Support Circuit, 1-Func, QFN-36
SILICON