RD-19230FX-303 [ETC]

Resolver-to-Digital Converter ; 分解器数字转换器\n
RD-19230FX-303
型号: RD-19230FX-303
厂家: ETC    ETC
描述:

Resolver-to-Digital Converter
分解器数字转换器\n

转换器
文件: 总20页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RD-19230  
16-BIT MONOLITHIC TRACKING  
RESOLVER-TO-DIGITAL CONVERTER  
DESCRIPTION  
FEATURES  
The RD-19230 is a versatile, low cost, range of 4 V relative to analog ground.  
state-of-the-art 16-bit monolithic Resolver- The velocity scale factor/tracking rate is  
to-Digital Converter. This single chip con- programmed with a single resistor. This  
verter offers programmable features such converter provides the option of using a  
as resolution, bandwidth, velocity output second set of filter components which can  
Accuracy up to 2.3 arc minutes  
Internal Synthesized Reference  
+5 Volt Only Option  
scaling and encoder emulation.  
be used in dual bandwidth or switch on the  
fly applications.  
Programmable Resolution,  
Bandwidth and Tracking Rate  
Resolution programming allows selec-  
tion of 10, 12, 14, or 16-bit, with accura- The RD-19230 is available with operating  
cies to 2.3 min. The parallel digital data temperature ranges of 0° to +70°C and  
and the internal encoder emulation sig- -40° to +85°C.  
Internal Encoder Emulation  
with Independent Resolution  
Control  
nals (A QUAD B) have independent res-  
Differential Resolver Input  
Mode  
olution control. Internal encoder emula-  
tion will permit inhibiting (freezing) the  
APPLICATIONS  
parallel digital data without interrupting With its low cost, small size, high accura-  
Velocity Output Eliminates  
Tachometer  
the A and B outputs.  
cy, and versatile performance, the RD-  
19230 converter is ideal for use in modern  
The internal Synthesized Reference sec- high performance industrial control sys-  
tion eliminates errors due to quadrature tems. It is ideal for users who wish to use  
voltage and ensures operation with a a resolver input in their encoder based  
rotor-to-stator phase shift of up to 45 system. Typical applications include motor  
degrees. The velocity output (VEL) can control, machine tool control, robotics, and  
be used in place of a tachometer. It has a process control.  
Built-In-Test (BIT) Output,  
No 180° Hangup  
-40° to +85°C Operating  
Temperature  
C
bw  
R
b
C
bw/  
10  
V
E
L
V
E
L
R
b
C
bw  
C
S
J
1
S
J
2
RH  
RL BIT  
bw/  
10  
VEL2 VEL1  
SYNTHESIZED  
REFERENCE  
SHIFT  
SIN  
-S  
-
+
+S  
COS  
-C  
CONTROL  
TRANSFORMER  
GAIN  
-
DEMODULATOR  
VEL  
-
+
D1 D0  
+
+C  
R
V
D1  
D0  
HYSTERESIS  
16 BIT  
UP/DOWN  
COUNTER  
VDDP  
PCAP  
NCAP  
VSSP  
-5 V  
INVERTER  
VCO  
&
-VCO  
TIMING  
R CLK  
A GND  
VDD  
INTERNAL  
ENCODER  
EMULATION  
DATA  
LATCH  
R SET  
GND  
VSS  
EM  
EL  
INH  
D1 D0  
A QUAD B A U/B  
UP/DN  
CB/ZIP  
ZIP_EN  
BIT 1 - BIT 16  
FIGURE 1. RD-19230 SERIES BLOCK DIAGRAM  
1999 Data Device Corporation  
©
TABLE 1. RD-19230 SPECIFICATIONS (CONTINUED)  
TABLE 1. RD-19230 SPECIFICATIONS  
These specs apply over the rated power supply, temperature, and refer-  
ence frequency ranges; 10ꢀ signal amplitude variation, and 10ꢀ har-  
monic distortion.  
PARAMETER  
UNIT  
VALUE  
DIGITAL OUTPUTS  
Parallel Data (1-16)  
10, 12, 14, or 16 parallel lines;  
natural binary angle positive  
logic (see note 2)  
0.25 to 0.75 µs positive pulse  
leading edge initiates counter  
update. (CB functions with  
ZIP_EN pin tied to +5 V or NC)  
Logic 1 at all 0’s  
PARAMETER  
RESOLUTION  
UNIT  
VALUE  
Bits 10, 12, 14, or 16 (note 1 & 2)  
Converter Busy (CB)  
(4)  
FREQUENCY RANGE  
ACCURACY -XX2  
-XX3 (note 3)  
REPEATABILITY  
Hz  
47-1k  
1k - 4k 4k - 10k  
Min  
Min  
LSB  
4 +1 LSB 4 +1 LSB 5 +1 LSB  
2 +1 LSB 2 +1 LSB 3 +1 LSB  
Zero Index Pulse (ZIP)  
Built-In-Test (BIT)  
1
1
1
1
2
2
(ZIP_EN pin tied to GND)  
Logic 0 for BIT condition.  
DIFFERENTIAL LINEARITY LSB  
REFERENCE  
Type  
(+REF, -REF)  
Differential  
~
100 LSB’s of error with a fil-  
ter of 500 µs, Loss of Signal  
(LOS) less than 500 mV, or  
Loss of Reference (LOR) less  
than 500 mV  
Incremental Encoder Output  
50 pF+  
Voltage: differential  
single ended  
overload  
Vp-p 10 max.  
Vp  
5 max.  
Vrms 25 continuous; 100 transient  
Hz DC to 10k  
Frequency  
A, B  
Input Impedance  
10M min. || 20 pf  
Drive Capability  
SYNTHESIZED REFERENCE  
(note 5)  
Logic 0: 1 TTL load, 1.6 mA at  
0.4 V max.  
Sig/Ref Phase Shift Correction deg 45 max. from 400 Hz to 10kHz  
Logic 1; 10 TTL loads, -0.4 mA  
at 2.8 V min.  
Logic 0; 100 mV max. driving  
CMOS  
Logic 1; +5 V supply minus  
100 mV min. driving CMOS  
High Z; 10 µA || 5 pF max.  
SIGNAL INPUT  
Type  
(+S, -S, SIN, +C, -C, COS)  
Resolver, differential,  
groundbased  
Voltage: operating  
overload  
Input impedance  
Vrms  
Vrms  
2
15ꢀ  
25 continuous  
10M min || 10 pF.  
DIGITAL INPUTS  
TTL / CMOS Compatible  
Inputs  
DYNAMIC  
CHARACTERISTICS  
Resolution  
(at maximum bandwidth)  
Logic 0 = 0.8 V max.  
Logic 1 = 2.0 V min.  
Loading = 10 µA max P.U. cur-  
rent source to +5 V || 5 pF max.  
CMOS transient protected  
bits  
10  
12  
14  
16  
Tracking Rate (min)(note 6)  
Bandwidth (Closed Loop)  
Ka  
A1  
A2  
A
B
rps  
Hz  
1152 288  
72  
18  
1200 1200 600  
300  
2
1/sec  
1/sec  
1/sec  
1/sec  
1/sec  
5.7M 5.7M 1.4M 360k  
19.5 19.5 4.9 1.2  
295k 295k 295k 295k  
Inhibit (INH)  
Logic 0 inhibits; Data stable with-  
in 150 ns  
2400 2400 1200  
1200 1200 600  
600  
300  
2k  
Enable Bits 1 to 8 (EM)  
Enable Bits 9 to 16 (EL)  
Logic 0 enables; Data stable  
within 150 ns  
Logic 1 = High Impedance; Data  
High Z within 100 ns  
2
Acceleration (1 LSB lag)  
Settling Time (179° step)  
2M  
2
500k 30k  
20  
deg/s  
msec  
8
50  
VELOCITY  
CHARACTERISTICS  
Polarity  
Resolution and Mode  
Control (D1 & D0)  
(See notes 1 & 2)  
Mode D1 D0 Resolution  
Positive for increasing angle  
4 (at nominal power supply)  
resolver  
0
0
1
1
0
1
0
1
10 bits  
12 bits  
14 bits  
16 bits  
8 bits  
Voltage Range (Full Scale)  
Scale Factor Error  
Scale Factor TC  
Reversal Error  
Linearity  
Zero Offset  
Zero Offset TC  
Load  
POWER SUPPLIES  
Nominal Voltage  
Voltage Range  
Max Volt. w/o Damage  
Current  
V
10 typ  
100 typ  
0.75 typ  
0.25 typ  
5 typ  
20 max  
200 max  
1.3 max  
0.50 max  
10 max  
30 max  
8 max  
PPM/°C  
mV  
µV/°C  
kΩ  
LVDT -5V  
0
0
1
-5V  
-5V  
10 bits  
12 bits  
14 bits  
15 typ  
-5V -5V  
Logic 0 enables ZIP  
Logic 1 enables CB  
ZIP_EN  
(note 6)  
V
V
+5 (VDD)  
-5 (VSS)  
5
+7  
5
-7  
CMOS Compatable Inputs  
Logic 0 = 1.5 V max.  
Logic 1 = 3.5 V min.  
negative voltage = -3.5 V min.  
Logic 1 select VEL1 components  
Logic 0 select VEL2 components  
mA  
25 max. (each)  
TEMPERATURE RANGE  
Operating  
-30X  
-20X  
SHIFT  
UP/DN  
°C  
°C  
°C  
0 to +70  
-40 to +85  
-40 to +85  
Logic 1 will increase gain by 4  
Logic 0 will decrease gain by 4  
-5 V gain remains constant  
Storage  
PHYSICAL  
CHARACTERISTICS  
Size: 64-pin Quad Flat Pack in(mm)  
WEIGHT  
A QUAD B  
Logic 0 enables encoder emulation  
Falling edge latches encoder  
resolution  
0.52 x 0.52 (13.2 x 13.2)  
0.018 ( 0.5 )  
oz(g)  
2
TABLE 1 notes:  
1ꢀ Unused data bits are set to logic 0”  
clamps to the 5 VDC supplies. By performing the following  
trigonometric identity, SINθ(COSφ) - COSθ(SINφ) = SIN(θ-φ),  
the Control Transformer (CT) compares the analog input signals  
( θ ) with the digital output ( φ ), resulting in an error signal pro-  
portional to the sin of the angular difference. The CT uses a  
combination of amplifiers, switches, logic and capacitors in pre-  
cision ratios to perform the calculation.  
.ꢀ In LVDT mode, Bit 3 is the MSB and resolution is  
programmable to 8,10, 1., and 14 bitsꢀ  
3ꢀ Accuracy in LVDT mode is 0ꢀ15% + 1 LSB of full scaleꢀ  
4ꢀ In the frequency range of 47Hz to 1kHz, there will be  
1 LSB of jitter at quadrant boundariesꢀ  
5ꢀ The maximum phase shift tolerance will degrade linearly  
from 45 degrees at 400 Hz to 30 degrees at 60 Hzꢀ  
6ꢀ When using the -5V inverter, the VDD supply current will  
double and VSSP can be up to .0% low, or -4Vꢀ  
7ꢀ || = in parallel withꢀ  
Note:The error output of the CT is normally sinusoidal, but  
in LVDT mode, it is triangular (linear) and can be used to  
convert any linear transducer output.  
The converter accuracy is limited by the precision of the com-  
puting elements in the CT. Instead of a traditional precision  
resistor network, this converter uses capacitors with precisely  
controlled ratios. Sampling techniques are used to eliminate  
errors due to voltage drift and op-amp offsets.  
THEORY OF OPERATION  
The RD-19230 is a mixed signal CMOS IC containing analog  
input and digital output sections. Precision analog circuitry is  
merged with digital logic to form a complete high-performance  
tracking resolver-to-digital converter. For user flexibility and con-  
venience, the converter bandwidth, dynamics, and velocity scal-  
ing are externally set with passive components.  
The error processing is performed using the industry standard  
technique for Type II tracking converters. The DC error is inte-  
grated yielding a velocity voltage which in turn drives a voltage  
controlled oscillator (VCO). This VCO is an incremental integra-  
tor (constant voltage input to position rate output) which, togeth-  
er with the velocity integrator, forms a Type II servo feedback  
loop. A lead in the frequency response is introduced to stabilize  
the loop and another lag at higher frequency is introduced to  
reduce the gain and ripple at the carrier frequency and above.  
The settings of the various error processor gains and break fre-  
quencies are done with external resistors and capacitors so that  
the converter loop dynamics can be easily controlled by the user.  
FIGURE 1 is the Functional Block Diagram of RD-19230. The  
analog conversion electronics require 5 VDC power supplies,  
and the converter contains a charge pump to provide the user  
with the option of a single-ended +5 VDC supply. The converter  
front-end consists of differential sine and cosine input amplifiers  
which are protected up to 25 V with 2 kresistors and diode  
C
R
BW  
B
VEL  
C
/10  
R
V
BW  
VEL SJ1  
VEL  
-VCO  
50 pf  
C
VCO  
CT  
R
1
16 BIT  
UP/DOWN  
COUNTER  
RESOLVER  
INPUT  
(θ)  
+
VCO  
GAIN  
DEMOD  
1
1ꢀ.5 V  
THRESHOLD  
-
C
F
S
S
11 mV/LSB  
DIGITAL  
OUTPUT  
(φ)  
H = 1  
FIGURE 2. TRANSFER FUNCTION BLOCK DIAGRAM #1  
3
TRANSFER FUNCTION AND BODE PLOT  
GENERAL SETUP CONDITIONS  
The dynamic performance of the converter can be determined  
from its Transfer Function Block Diagrams and Bode Plots (open  
and closed loop)ꢀ These are shown in FIGURES ., 3, and 4ꢀ  
DDC has external component selection software which consid-  
ers all the criteria belowꢀ In a simple fashion, it asks the key sys-  
tem parameters (carrier frequency, resolution, bandwidth, and  
tracking rate) needed to derive the external component valuesꢀ  
The open loop transfer function is as follows:  
The following recommendations should be considered when  
installing the RD-19.30 R/D converter:  
S
A.  
S.  
+1  
(B )  
Open Loop Transfer Function =  
S
1) In setting the bandwidth (BW) and Tracking Rate (TR) (select-  
ing five external components), the system requirements need to  
be consideredꢀ For the greatest noise immunity, select the mini-  
mum BW and TR the system will allowꢀ Selecting a fBW that is  
too low relative to the maximum application tracking rate can cre-  
ate a spin-around condition in which the converter never settlesꢀ  
The relationship to insure against this condition is detailed in  
TABLE .ꢀ  
+1  
(10B )  
where A is the gain coefficient and A.=A1A.  
and B is the frequency of lead compensationꢀ  
The components of gain coefficient are error gradient, integrator  
gain, and VCO gainꢀ These can be broken down as follows:  
.) Power supplies are 5 VDCꢀ For lowest noise performance it  
is recommended that a 0ꢀ1 µF or larger cap be connected from  
each supply to ground near the converter packageꢀ  
- Error Gradient = 0ꢀ011 volts per LSB (CT + Error Amp + Demod  
with . Vrms input)  
Cs Fs  
1ꢀ1 CBW  
- Integrator Gain =  
- VCO Gain =  
volts per second per volt  
LSBs per second per volt  
3) Resolver inputs and velocity output are referenced to AGNDꢀ  
This pin should be connected to GND near the converter pack-  
ageꢀ Digital currents flowing through ground will not disturb the  
analog signalsꢀ  
1
1ꢀ.5 RV CVCO  
where: Cs = 10 pF  
Fs = 67 kHz when R CLK = 30 kΩ  
4) This device has several high impedance amplifier inputs  
(+C, -C, +S, -S, -VCO, VEL SJ1, and VEL SJ.) that are sensitive  
to noise couplingꢀ External components should be connected as  
close to the converter as possibleꢀ  
CVCO = 50 pF  
RV, RB, and CBW are selected by the user to set velocity scaling  
and bandwidthꢀ  
(CRITICALLY DAMPED)  
GAIN = 4  
.A  
VELOCITY  
OUT  
ω (rad/sec)  
10B  
OPEN LOOP  
B
A
-6 db/oct  
ERROR PROCESSOR  
VCO  
(B = A/.)  
CT  
S
B
A
S
+ 1  
1
A
S
DIGITAL  
POSITION  
OUT (φ)  
+
.
RESOLVER  
INPUT  
(θ)  
e
GAIN = 0ꢀ4  
S
10B  
+ 1  
-
. A  
fBW = BW (Hz) =  
π
H = 1  
.A  
.
. A  
ω (rad/sec)  
CLOSED LOOP  
FIGURE 3. TRANSFER FUNCTION  
BLOCK DIAGRAM #2  
FIGURE 4. BODE PLOTS  
4
5) Setup of bandwidth and velocity scaling for the optimized crit-  
ically damped case should proceed as follows:  
Note: Use of the -5 V inverter is not recommended for appli-  
cations that require the highest BW and Tracking Rates.  
- Select the desired f BW (closed loop) based on overall  
system dynamicsꢀ  
HIGHER TRACKING RATES AND CARRIER  
FREQUENCIES.  
- Select f  
3ꢀ5f BW  
carrier  
Maximum tracking rate is limited by the velocity voltage satura-  
tion (nominally 4 V) and the maximum internal clock rate (nomi-  
nally 1,333,333 Hz for R CLK = 30k)ꢀ To achieve higher tracking  
- Select the applications tracking rate (in accordance with TABLE 3),  
and use appropriate values for R SET and R CLK  
Full Scale Velocity Voltage  
- Compute Rv =  
resolution  
Tracking Rate (rps) x .  
x 50 pF x 1ꢀ.5 V  
TABLE 3. MAX TRACKING RATE (MIN) IN RPS  
3ꢀ. x Fs (Hz) x 108  
- Compute CBW (pF) =  
RESOLUTION  
R SET  
()  
R CLK  
()  
Rv x (f BW).  
10  
12 14 16  
115. .88 7. 18  
17.8 43. 108 .7  
30k** or open  
30k  
.0k  
15k  
- Where Fs = 67 kHz for R CLK = 30 KΩ  
100 kHz for R CLK = .0 KΩ  
.3k  
.3k  
1.5 kHz for R CLK = 15 KΩ  
.304 576  
*
*
0ꢀ9  
CBW x f BW  
- Compute RB =  
TABLE 4. CARRIER FREQUENCY (MAX)  
IN KHZ  
CBW  
- Compute  
10  
RESOLUTION  
R SET  
R CLK  
()  
()  
10  
10  
10  
10  
10  
12  
10  
10  
10  
10  
14  
7
16  
30k** or open  
30k  
30k  
.0k  
15k  
5
7
As an example:  
.3k  
.3k  
.3k  
10  
10  
*
10  
*
Calculate component values for a 16 bit converter with 100Hz  
bandwidth, a tracking rate of 10 RPS and a full scale velocity  
of 4 Voltsꢀ  
* Not recommendedꢀ  
** The use of a high quality thin-film resistor will provide better temperature  
stability than leaving openꢀ  
4 V  
- Rv =  
= 97655 Ω  
10 rps x .16 x 50 pF x 1ꢀ.5 V  
3ꢀ. x 67 kHz x 108  
- Compute CBW (pF) =  
= .1955 pF  
97655 x 100 Hz.  
+5V  
0ꢀ9  
- Compute RB =  
= 410 kΩ  
.1955 x 10 -1. x 100 Hz  
33  
58  
.7  
VDD  
VDD  
VDDP  
6) Using the -5V Inverter will eliminate the need for a -5 V sup-  
plyRefer to FIGURE 5ꢀ for the necessary connectionsꢀ  
.6  
PCAP  
+
RD-19.30  
10 F/10V  
When using the built-in -5 V inverter, the maximum tracking rate  
should be scaled for a full-scale velocity output of 3ꢀ5 V maxꢀ  
.4  
NCAP  
.3  
16  
VSSP  
VSS  
17  
VSS  
TABLE 2. TRACKING/BW RELATIONSHIP  
47 F/10V  
+
RPS (MAX)/BW  
RESOLUTION  
.5  
..  
GND  
AGND  
1
10  
1.  
14  
16  
0ꢀ50  
0ꢀ.5  
0ꢀ1.5  
FIGURE 5. -5V INVERTER CONNECTIONS  
5
rates, a higher internal counting rate must be programmed by  
setting RCLK to a value less than 30kꢀ See TABLE 4ꢀ for the  
appropriate valuesꢀ  
internal clock rateꢀ Choose the tracking rate in accordance with  
TABLE 3 to insure this relationshipꢀ The rates shown in TABLE  
3 are based on ~90% of the nominal internal clock rateꢀ  
The Rv resistor and an internal 50pF cap are configured as an  
integrating circuit that resets to zero after a count occurs in either  
directionꢀ This circuit acts as a VCO with velocity as its input and  
CB as its outputThe Rv resistor and an internal 50pF cap deter-  
mine the maximum rate of the VCOꢀ Rv must be chosen such  
that the maximum rate of the VCO is less than the maximum  
The relationship between the velocity voltage and the VCO rate  
is given by:  
1
Velocity Voltage  
VCO Frequency  
=
(Rv x 50 pF x 1ꢀ.5)  
TABLE 5. TRANSFORMERS  
INPUT SIGNAL INPUT VOLTAGE INPUT FREQUENCY  
PART  
FIGURE  
TYPE  
(Vrms)  
(HZ)  
NUMBER  
NUMBER  
Synchro  
11ꢀ8  
400  
5.034  
5.035  
5.036  
5.037  
5.038  
B-4.6*  
5.039**  
.4133**  
6
6
7
7
7
8
9
9
Synchro  
Resolver  
Resolver  
Resolver  
Reference  
Synchro  
90  
11ꢀ8  
400  
400  
400  
400  
400  
60  
.6  
90  
Reference  
Synchro  
Reference  
Reference  
60  
* Beta Transformer  
** 60 Hz synchro transformers are active (require 15V DC power supplies) and are available in two  
temperature ranges; -1: -55° to +1.5° and -3: 0° to + 70°ꢀ  
6
0ꢀ61 MAX  
(15ꢀ49)  
0ꢀ61 MAX  
(15ꢀ49)  
0ꢀ15 MAX  
(3ꢀ81)  
0ꢀ09 MAX  
(.ꢀ.9)  
0ꢀ30 MAX  
(7ꢀ6.)  
0ꢀ09 MAX  
(.ꢀ.9)  
0ꢀ15 MAX  
(3ꢀ81)  
1
3
T1A  
8
4
7
5
6
11 1.  
14 15  
0ꢀ81 MAX  
(.0ꢀ57)  
T1B  
0ꢀ600  
(15ꢀ.4)  
10  
9
.0 19 18 17 16  
0ꢀ115 MAX  
(.ꢀ9.)  
SIDE VIEW  
0ꢀ100 (.ꢀ54) TYP  
TOL NON CUM  
BOTTOM VIEW  
BOTTOM VIEW  
TERMINALS  
0ꢀ0.5 0ꢀ001 (6ꢀ35 0ꢀ03) DIAM  
0ꢀ1.5 (3ꢀ18) MIN LENGTH  
SOLDER PLATED BRASS  
PIN NUMBERS FOR REF. ONLY  
Dimensions are shown in inches (mm)ꢀ  
T1A  
1
6
-SIN  
S1  
S3  
5
3
10  
+SIN  
SYNCHRO  
INPUT  
RESOLVER  
OUTPUT  
T1B  
11  
16  
.0  
-COS  
15  
+COS  
S.  
FIGURE 6. TRANSFORMER LAYOUT AND SCHEMATIC (SYNCHRO INPUT - 52034/52035)  
0ꢀ61 MAX  
(15ꢀ49)  
0ꢀ61 MAX  
(15ꢀ49)  
0ꢀ15 MAX  
(3ꢀ81)  
0ꢀ09 MAX  
(.ꢀ.9)  
0ꢀ30 MAX  
(7ꢀ6.)  
0ꢀ09 MAX  
(.ꢀ.9)  
0ꢀ15 MAX  
(3ꢀ81)  
1
3
T1A  
8
4
5
6
11 1.  
14 15  
0ꢀ81 MAX  
(.0ꢀ57)  
T1B  
0ꢀ600  
(15ꢀ.4)  
10  
9
7
.0 19 18 17 16  
0ꢀ115 MAX  
(.ꢀ9.)  
SIDE VIEW  
0ꢀ100 (.ꢀ54) TYP  
TOL NON CUM  
BOTTOM VIEW  
BOTTOM VIEW  
TERMINALS  
0ꢀ0.5 0ꢀ001 (6ꢀ35 0ꢀ03) DIAM  
0ꢀ1.5 (3ꢀ18) MIN LENGTH  
SOLDER PLATED BRASS  
PIN NUMBERS FOR REF. ONLY  
Dimensions are shown in inches (mm)ꢀ  
T1A  
1
6
-SIN  
S1  
S3  
3
10  
+SIN  
RESOLVER  
INPUT  
RESOLVER  
OUTPUT  
T1B  
11  
16  
.0  
-COS  
S4  
S.  
15  
+COS  
FIGURE 7. TRANSFORMER LAYOUT AND SCHEMATIC (RESOLVER INPUT - 52036/52037/52038)  
7
CASE IS BLACK AND  
NON-CONDUCTIVE  
0ꢀ.5  
(6ꢀ35)  
MINꢀ  
0ꢀ61 MAX  
(15ꢀ49)  
0ꢀ3. MAX  
(8ꢀ13)  
1ꢀ14 MAX  
(.8ꢀ96)  
0ꢀ1.5 MIN  
(3ꢀ17)  
0ꢀ09 MAX  
(.ꢀ.9)  
0ꢀ15 MAX  
(3ꢀ81)  
+
S3  
S1  
+15 V  
+S  
*
*
(+15 V) (-R)  
*
*
1
.
9
3
T1A  
8
5
6
0ꢀ600  
(15ꢀ.4)  
0ꢀ81 MAX  
(.0ꢀ57)  
1ꢀ14 MAX  
(.8ꢀ96)  
0ꢀ85 0ꢀ010  
(.1ꢀ59 0ꢀ.5)  
5.039  
or  
.4133  
10  
7
0ꢀ105 (.ꢀ66)  
SIDE VIEW  
0ꢀ100 (.ꢀ54) TYP  
TOL NON CUM  
BOTTOM VIEW  
(RH)  
S.  
(RL)  
(V)  
V
(+R)  
+C  
(-Vs)  
-Vs  
TERMINALS  
*
0ꢀ0.5 0ꢀ001 (6ꢀ35 0ꢀ03) DIAM  
0ꢀ1.5 (3ꢀ18) MIN LENGTH  
SOLDER-PLATED BRASS  
+
(BOTTOM VIEW)  
0ꢀ4.  
(10ꢀ67)  
MAXꢀ  
0ꢀ13 0ꢀ03  
(3ꢀ30 0ꢀ76)  
Dimensions are shown in inches (mm)ꢀ  
0ꢀ.1 0ꢀ3  
(5ꢀ33 0ꢀ76)  
0ꢀ175 0ꢀ010 (4ꢀ45 0ꢀ.5)  
NONCUMULATIVE  
TOLERANCE  
0ꢀ040 0ꢀ00. DIAꢀ PINꢀ  
SOLDER PLATED BRASS  
1
6
INPUT  
OUTPUT  
5
10  
The mechanical outline is the same for the synchro input trans-  
former (5.039) and the reference input transformer (.4133),  
except for the pinsꢀ Pins for the reference transformer are shown  
in parenthesis ( ) belowꢀ An asterisk * indicates that the pin is  
omittedꢀ  
FIGURE 9. 60 HZ SYNCHRO AND REFERENCE  
TRANSFORMER DIAGRAMS  
(SYNCHRO INPUT - 52039 / REFERENCE INPUT - 24133)  
FIGURE 8. TRANSFORMER LAYOUT AND SCHEMATIC  
(REFERENCE INPUT - B-426)  
TYPICAL INPUTS  
FIGURES 10 through 14 illustrate typical input configurationsꢀ  
EXTERNAL  
REFERENCE  
LO HI  
6
1
B-4.6  
10  
5
RH  
RL  
RESOLVER INPUT OPTION  
S1  
-S SIN  
+S  
-R +R  
1
10  
TIA  
S3  
S4  
6
3
+C  
-C  
RD-19.30  
11  
15  
.0  
TIB  
S.  
COS  
16  
AGND  
5.036(11ꢀ8V)  
OR  
5.037(.6V)  
OR  
GND  
5.038(90V)  
OR  
SYNCHRO INPUT OPTION  
RH  
RL  
S1  
+S  
1
3
10  
S3  
TIA  
TIB  
6
5
+C  
.0  
11  
S.  
15  
16  
5.034(11ꢀ8V)  
OR  
5.037(90V)  
FIGURE 10. TYPICAL TRANSFORMER CONNECTIONS  
8
EXTERNAL  
REF  
LO HI  
R
R
R
1
.
4
R
3
RL RH  
See Note 3ꢀ  
+S  
-S  
S3  
S1  
SIN  
COS  
-C  
+C  
See Note 3ꢀ  
S.  
S4  
A GND  
GND  
RESOLVER  
Notes:  
1) Resistors selected to limit Vref peak to between 1ꢀ5 V and 4 Vꢀ  
.) External reference LO is grounded, then R3 and R4 are not  
needed, and -R is connected to GNDꢀ  
3) 10k ohms, 1% series current limit resistors are recommendedꢀ  
FIGURE 11. TYPICAL CONNECTIONS, 2 V RESOLVER, DIRECT INPUT  
R
1
-S  
SIN  
S3  
S1  
+S  
R
R
.
R
1
S.  
S4  
+C  
.
A GND  
GND  
-C  
COS  
.
R
.
=
X Volt  
R + R  
1
.
R + R should not load the Resolver; it is recommended to use a R = 10 kΩ  
1
.
.
R + R Ratio erros will result in Angular errors,  
1
.
. cycle, 0ꢀ1% Ratio error = 0ꢀ0.9 Peak Errorꢀ  
FIGURE 12. TYPICAL CONNECTIONS, X- VOLT RESOLVER, DIRECT INPUT  
9
SIN  
3
R
R
f
R
R
i
i
-S  
1
6
-
S1  
S3  
.
5
+S  
+
f
f
4
RESOLVER  
INPUT  
A GND  
COS  
13  
R
R
R
i
i
-C  
15  
16  
7
-
S4  
S.  
+C  
+
8
10  
R
f
1.  
CONVERTER  
S1 and S3, S. and S4, and RH and RL should be ideally twisted shielded, with the shield tied to GND at the converterꢀ  
For DDC-49530: R = 70ꢀ8 K, 11ꢀ8 V input, synchro or resolverꢀ  
i
For DDC-49590: R = .70 K, 90 Volt input, synchro or resolverꢀ  
i
Maximum additional error is 1 minuteꢀ  
When using discrete resistors: Resolver L-L voltage =  
R
R
i
f
x . Vrms, where R 6 kΩ  
f
FIGURE 13. DIFFERENTIAL RESOLVER INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V)  
SIN  
3
R
f
R
i
-S  
1
6
-
S1  
S3  
.
5
R
i
+S  
+
R
f
4
A GND  
SYNCHRO  
INPUT  
COS  
14  
R
R
i
i
16  
7
R /  
f
3
8
15  
-C  
15  
-
R /.  
i
+C  
10  
9
+
S.  
R /  
f
3
11  
CONVERTER  
S1, S., S3 should be triple twisted shielded; RH and RL should be twisted shielded;  
In both cases the shield should be tied to GND at the converterꢀ  
11ꢀ8 Volt input = DDC-49530: R = 70ꢀ8 K, 11ꢀ8 V input, synchro or resolverꢀ  
i
90 Volt input = DDC-49590: R = .70 K, 90 Volt input, synchro or resolverꢀ  
i
Maximum additional error is 1 minuteꢀ  
When using discrete resistors: Resolver L-L voltage =  
R
R
i
f
x . Vrms, where R 6 kΩ  
f
FIGURE 14. SYNCHRO INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V)  
10  
DC INPUTS  
TABLE 6. PRECHARGE AMPLIFIER  
GAIN PROGRAMMING  
As noted in TABLE 1 the RD-19.30 will accept DC inputsꢀ It is  
necessary to set the REF input to DC by tying RH to +5 V and  
RL to GND or -5 \/ꢀ  
UP/DN  
GAIN  
4
Logic 0  
Logic 1  
-5 V  
1/4  
1
VELOCITY TRIMMING  
RD-19.30 specifications for velocity scaling, reversal error, and  
offset are contained in TABLE 1ꢀ Velocity scaling and offset are  
externally trimmable for applications requiring tighter specifica-  
tions than those available from the standard unitꢀ FIGURE 15  
shows the setup for trimming these parameters with external  
potsꢀ It should also be noted that when the resolution is changed,  
VEL Scaling is also changedꢀ  
UP/DN  
The UP/DN input selects the gain of the amplifier driving the de-  
selected set of bandwidth componentsꢀ UP/DN has three input  
statesꢀ See TABLE 6 to relate input to gainꢀ  
BENEFIT OF SWITCHING RESOLUTION ONTHE FLY  
OPTIONAL BANDWIDTH COMPONENTS  
Switching resolution on the fly can be used in applications that  
require high resolution for accurate position control, and tracking  
rates or settling times that are faster than the high resolution  
mode will allowꢀ  
The RD-19.30 provides the option of using a second set of  
bandwidth componentsꢀ The second set of components can be  
used for switch-on-the-fly or dual-bandwidth applicationsꢀ The  
SHIFT and UP/DN inputs are used when when switching band-  
width components, and their operation is described belowꢀ Refer  
to the block diagram on page 1ꢀ  
The RD-19.30 can track four times faster for each step down in  
resolution (iꢀeꢀ, a step from 16 bits to 14 bits)ꢀ The velocity out-  
put will be scaled down by a factor of four with each step down  
in resolutionꢀ For example, if the velocity output is scaled such  
that 4 Volts = 10 RPS in 16 bit resolution, then the same con-  
verter will output 1 Volt for 10 RPS in 14 bit resolutionꢀ To avoid  
glitches in the velocity output, the second set of bandwidth com-  
ponents can be pre-charged to the expected voltage, and  
switched in using the SHIFT input at the same time the resolu-  
tion is changedꢀ This will allow for a smooth velocity transition,  
resulting in reduced errors and minimal settling time after the  
changeꢀ  
SHIFT  
The SHIFT pin is an input that chooses between the VEL1 and  
VEL. bandwidth componentsꢀ This pin has an internal pull-up to  
+5VWhen the SHIFT pin is left open, or a logic 1 is applied, the  
VEL1 components are selectedꢀ When a Logic 0 is applied, the  
VEL. components are selectedꢀ The deselected set of band-  
width components are driven by an amplifier, with programmable  
gain, that follows the velocity amplifierꢀ This amplifier can be  
used to pre-charge the deselected set of components to the volt-  
age level that is expected after a change in resolutionꢀ (See  
description on BENEFIT OF SWITCHING RESOLUTION ON  
THE FLY)  
FIGURE 17 shows the way the converter behaves during a  
change in resolution while tracking at a constant velocity The  
first illustration shows the benefits of switching in pre-charged  
components while changing resolutionꢀ The second illustration  
shows the result without the benefits of switching on the flyꢀ  
The signals that have been recorded are:  
1) VEL: velocity output pin on the RD-19.30  
+5 V  
100 R  
V
.
100 k  
-VCO  
(OFFSET)  
-5 V  
0ꢀ8 R  
V
.) ERROR: this is the analog representation of the error between  
the input and the output of the RD-19.30  
RD-19.30  
0ꢀ4 R (SCALING)  
V
3) D0: an input resolution control line to the RD-19.30  
4) BIT: built-in-test output pin of the RD-19.30  
1
VEL  
When this system uses the switch resolution on the fly imple-  
mentation, the velocity signal immediately assumes the pre-  
FIGURE 15. VELOCITY TRIMMING  
11  
charged level of the second set of components, resulting in small  
errors and reduced settling timesꢀ Notice that the BIT output  
does not indicate a fault conditionꢀ (refer to FIGURE 17)  
components to settle to the pre-charged levelꢀ This time will  
depend on the time constant of the bandwidth components being  
chargedꢀ If switching is limited to two adjacent resolutions (iꢀeꢀ,  
14 and 16) then the pre-charge amplifier can be set up to con-  
tinuously maintain the appropriate velocity voltage on the dese-  
lected components, resulting in the fastest possible switching  
timesꢀ See FIGURE 16 for an example of the input wiring con-  
nections necessary for switching on the fly between 14 and 16  
bit resolutionꢀ  
When this system type does not use the switch resolution on the  
fly implementation, large errors and increased settling times  
resultꢀ The errors exceed 100 LSBs causing the BIT to flag for a  
fault conditionꢀ  
SWITCH ONTHE FLY IMPLEMENTATION  
DUAL BANDWIDTHS  
The following steps detail switching resolution on the flyꢀ  
With the second set of BW component pins, the user can set two  
bandwidths for the RD-19.30 and choose between themꢀ To use  
two bandwidths, proceed as follows:  
1) The SHIFT pin should be controlled synchronously with the  
change in resolutionꢀ When shift is logic high, the VEL1 compo-  
nents will be selectedꢀ When shift is logic 0, the VEL. compo-  
nents will be selectedꢀ  
1) Tie UP/DN to pin -5Vꢀ  
.) The second set of BW components (CBW., RB., CBW./10  
should typically be of the same value as the first set (CBW1, RB1  
BW1/10,) and should be installed on VEL. and VEL SJ.ꢀ  
)
,
C
With Switch Resolution on the Fly Implemented  
Note: Each set of bandwidth components must be chosen to  
insure that the tracking rate to BW ratio (listed in TABLE 2)  
is not exceeded for the resolution in which it will be used.  
VEL 0V  
-5V  
3) UP/DN will program the direction of the gainꢀ If the resolution  
is increasing (UP/DN logic 0), the gain of the pre-charge amplifi-  
er should be set to fourꢀ If the resolution is decreasing  
(UP/DN logic 1), the gain should be set to 1/4ꢀ The gain of the  
pre-charge amplifier should be programmed prior to switching  
the resolution of the converter, allowing enough time for the the  
0°  
ERROR  
5V  
D0  
0V  
5V  
BIT  
0V  
ERROR = 13ꢀ6 LSBs per box  
Without Switch Resolution on the Fly Implemented  
VEL 0V  
+5V  
-5V  
D1  
0°  
ERROR  
RD-19.30  
5V  
D0  
0V  
D0  
58  
5V  
SHIFT  
.7  
UP/DN  
BIT  
0V  
ERROR = 1500 LSBs per box  
FIGURE 17. BENEFIT OF SWITCHING  
RESOLUTION ON THE FLY  
FIGURE 16. INPUT WIRING - SWITCHING ON THE FLY  
BETWEEN 14 AND 16 BIT RESOLUTION  
12  
.) Choose the two bandwidths following the guidelines in the  
General Setup Considerations; the RV resistor must be the same  
value for both bandwidthsꢀ  
The Converter Busy (CB) signal indicates that the tracking con-  
verter output angle is changing 1 LSBꢀ As shown in FIGURE .0,  
output data is valid 50 nS maximum after the middle of the CB  
pulseꢀ CB pulse width is 1/40 FS, which is nominally 375 nsꢀ  
3) Use the SHIFT pin to choose between bandwidthsꢀ A logic 1  
selects the VEL1 components and a logic 0 selects the VEL.  
componentsꢀ  
INTERNAL ENCODER EMULATION  
The RD-19.30 can be programmed to encoder emulation mode  
by connecting the A_QUAD_B input to GNDꢀ The U/B output pin  
becomes B (LSB XOR LSB + 1) The A (LSB + 1) and B output  
signals can be used in control systems that are designed to inter-  
face with incremental optical encodersꢀ To enable the Zero Index  
pulse, ZIP_EN should be tied to GNDꢀ  
INHIBIT, ENABLE, AND CB TIMING  
The Inhibit (INH) signal is used to freeze the digital output angle  
in the transparent output data latch while data is being trans-  
ferredꢀ Application of an Inhibit signal does not interfere with the  
continuous tracking of the converterꢀ As shown in FIGURE 18,  
angular output data is valid 150 ns maximum after the applica-  
tion of the negative inhibit pulseꢀ  
The resolution of the incremental outputs is latched from the D0  
and D1 inputs on the low going edge of A_QUAD_BThe resolu-  
tion of the parallel data outputs may be changed any time after  
the encoder resolution is latched (see FIGURE .3)ꢀ  
Output angle data is enabled onto the tri-state data bus in two  
bytesꢀ Enable MSBs (EM) is used for the most significant 8 bits  
and Enable LSBs (EL) is used for the least significant 8 bitsꢀ As  
shown in FIGURE 19, output data is valid 150 ns maximum after  
the application of a negative enable pulseꢀ The tri-state data bus  
returns to the high impedance state 100 ns maximum after the  
rising edge of the enable signalꢀ  
Note: The encoder resolution must be less than or equal to  
the resolution of the parallel data outputs. Refer to FIGURE  
21.  
The timing of the A, B and ZIP (or North Reference Pole [NRP])  
output is dependent on the rate of change of the  
synchro/resolver position (rps or degrees per second) and the  
encoder resolution latched into the RD-19.30 (refer to  
FIGURE ..)ꢀ The calculations for the timing is:  
n = encoder resolution latched into RD-19.30  
t = 1 / ( .n* Velocity(RPS))  
INHIBIT  
T = 1 / ( Velocity(RPS))  
150 nsec max  
DATA  
DATA  
VALID  
FIGURE 18. INHIBIT TIMING  
.50 to 750 nsec  
CB  
ENABLE  
50 nsec  
100 nsec MAX  
HIGH Z  
150 nsec MAX  
DATA  
VALID  
DATA  
VALID  
DATA  
VALID  
DATA  
HIGH Z  
DATA  
FIGURE 19. ENABLE TIMING  
FIGURE 20. CONVERTER BUSY TIMING  
13  
SYNTHESIZED REFERENCE  
BUILT-IN-TEST (BIT)  
The synthesized reference section of the RD-19.30 eliminates  
errors due to phase shift between the reference and signal  
inputsꢀ Quadrature voltages in a resolver or synchro are by def-  
inition the resulting 90° fundamental signal in the nulled out error  
voltage (e) in the converterꢀ Due to the inductive nature of syn-  
chros and resolvers, their output signals lead the reference input  
signal (RH and RL)ꢀ When an uncompensated reference signal  
is used to demodulate the control transformers output, quadra-  
ture voltages are not completely eliminatedꢀ As shown in FIG-  
URE 1, the converter synthesizes its own internal reference sig-  
nal based on the SIN and COS signal inputsꢀ Therefore, the  
phase of the synthesized (internal) reference is determined by  
the signal input, resulting in reduced quadrature errorsꢀ  
The BIT output is active low, and will be asserted during the fol-  
lowing three error conditions:  
Loss of Signal (LOS) - Sin and Cos inputs both less than 500mVꢀ  
Loss of Reference (LOR) - Reference Input less than 500 mVꢀ  
Excessive Error - This error is detected by monitoring the  
demodulator output, which is proportional to the difference  
between the analog input and digital outputꢀ When it exceeds  
approximately 100 LSBs (in the selected resolution), BIT will be  
assertedꢀ This condition can occur any time the analog input  
changes at a rate in excess of the maximum tracking rateꢀ  
During power up, the converter may see a large difference  
between the sin/cos inputs and the digital output angle held in its  
counterꢀ BIT will be asserted until the converter settles within  
~ 100 LSBs of the final resultꢀ  
RD-19.30  
1 MSB  
.
3
4
5
6
7
8
9
10  
11  
1.  
13  
14  
15  
BIT 16 LSB  
1
0
1
.
1
4
1
6
A
B
FIGURE 21. INCREMENTAL ENCODER EMULATION RESOLUTION CONTROL  
B(X- or LSB & LSB+1)  
A (LSB+1)  
.t  
Data Valid  
D0/D1  
50 nsec  
ZIP (NRP)  
A QUAD B  
t
T
359ꢀ95  
0
FIGURE 23. TIMING FOR INCREMENTAL ENCODER  
EMULATION RESOLUTION CONTROL  
FIGURE 22. INCREMENTAL ENCODER EMULATION  
14  
LVDT MODE  
As shown in TABLE 1 the RD-19.30 unit can be made to oper-  
ate as an LVDT-to-digital converterꢀ In this mode the RD-19.30  
functions as a ratiometric tracking linear converterꢀ When linear  
AC inputs are applied from a LVDT the converter operates over  
one quarter of its rangeThis results in two less bits of resolution  
for LVDT mode than are provided in resolver modeꢀ  
Data output of the RD-19.30 is Binary Coded in LVDT modeThe  
most negative stroke of the LVDT is represented by ALL ZEROS  
and the most positive stroke of the LVDT is represented by ALL  
ONESThe most significant . bits (. MSBs) may be used as over-  
range indicatorsꢀ Positive overrange is indicated by code 01and  
negative overrange is indicated by code 11(see TABLE 7)ꢀ  
LDVT output signals need to be scaled to be compatible with the  
converter inputꢀ FIGURE .5 is a schematic of an input scaling  
circuit applicable to 3-wire LVDTsꢀ The value of the scaling con-  
stant ais selected to provide an input of . Vrms at full stroke of  
the LVDTThe value of scaling constant bis selected to provide  
an input of 1 Vrms at null of the LVDTSuggested components  
for implementing the input scaling circuit are a quad op-amp,  
such as a OP11 type, and precision thin-film resistors of 0ꢀ1%  
toleranceꢀ FIGURE .4 illustrates a .-wire LVDT configurationꢀ  
TABLE 7. 12-BIT LVDT OUTPUT CODE FOR FIGURE 25  
LVDT OUTPUT  
MSB  
LSB  
+ over full travel  
+ full travel -1 LSB  
+0ꢀ5 travel  
+1 LSB  
null  
- 1 LSB  
-0ꢀ5 travel  
- full travel  
- over full travel  
01  
00  
00  
00  
00  
00  
00  
00  
11  
xxxx  
1111  
1100  
1000  
1000  
0111  
0100  
0000  
xxxx  
xxxx  
1111  
0000  
0000  
0000  
1111  
0000  
0000  
xxxx  
xxxx  
1111  
0000  
0001  
0000  
1111  
0000  
0000  
xxxx  
C1  
SIN  
aR  
-S  
. WIRE LVDT  
R
-
R
+S  
REF IN  
R
+
FS = . V  
aR  
C.  
COS  
bR  
R
R
.R  
-C  
R
R
-
.R  
+C  
+
. V  
R
bR  
+RH  
-RL  
C
= C , set for phase lag = phase lead through the LVDTꢀ  
.
1
FIGURE 24. 2-WIRE LVDT DIRECT INPUT  
15  
aR  
SIN  
-S  
R
R
V
B
-
R'  
R'  
+S  
+
R'  
aR  
bR  
R
.R'  
COS  
-C  
R
-
V
A
R'  
R/.  
.R'  
+
+C  
+RH  
-RL  
bR  
Notes:  
1ꢀ R' 10 kΩ  
.ꢀ Consideration for the value of R is LVDT loadingꢀ  
1
null  
1
b =  
a =  
=
RDC-19.30  
INPUT  
VA  
VB  
null  
LVDT  
OUTPUT  
.V  
.
SIN  
(VA - VB) max  
V
A
1V  
a
SIN = 1+ (VA - VB)  
.
V
B
COS  
+FS  
+FS  
NULL  
-FS  
-FS  
NULL  
a
COS = 1- (VA - VB)  
.
FIGURE 25. 3-WIRE LVDT SCALING CIRCUIT  
16  
TABLE 8. RD-19230 PINOUTS  
#
1
NAME  
#
NAME  
VSS (-5V)  
#
NAME  
VDD (+5V)  
N/C  
#
NAME  
VEL  
-VCO  
SJ1  
17  
18  
19  
.0  
.1  
..  
.3  
.4  
.5  
.6  
.7  
.8  
.9  
30  
31  
3.  
33  
34  
35  
36  
37  
38  
39  
40  
41  
4.  
43  
44  
45  
46  
47  
48  
49  
50  
51  
5.  
53  
54  
55  
56  
57  
58  
59  
60  
61  
6.  
63  
64  
Bit 8  
.
TP3 (test point)  
R CLK  
R SET  
ENM  
Bit 16  
3
Bit 9  
A (LSB + 1)  
TP4 (test point)  
N/C  
4
SJ.  
Bit .  
5
SHIFT  
Bit 10  
Bit 3  
6
VEL.  
AGND  
VSSP  
TP5 (test point)  
ZIP_EN  
TP6 (test point)  
ENL  
7
TP1 (test point)  
Bit 11  
Bit 4  
8
VEL1  
NCAP  
GND  
9
TP. (test point)  
N/C  
10  
11  
1.  
13  
14  
15  
16  
+C  
PCAP  
VDDP  
BIT  
Bit 1.  
Bit 5  
VDD (+5V)  
UP/DN  
D0  
COS  
-C  
Bit 13  
Bit 6  
+S  
U/B  
D1  
SIN  
A_QUAD_B  
CB (ZI)  
Bit 1  
Bit 14  
Bit 7  
INH  
-S  
RH  
VSS (-5V)  
Bit 15  
RL  
Notes:  
1ꢀ See FIGURE 5 for +5 V only operationꢀ  
0ꢀ078+0ꢀ004  
-0ꢀ00.  
.ꢀ00+0ꢀ10  
(
)
-0ꢀ05  
17  
3.  
0ꢀ096MAX  
(.ꢀ45MAX)  
16  
33  
0ꢀ0098MIN,0ꢀ0197MAX  
(0ꢀ.5MIN,0ꢀ50MAX)  
0ꢀ0197  
(0ꢀ50)  
0ꢀ5.0 0ꢀ010  
(13ꢀ. 0ꢀ.5)  
RD-19230FX  
-XXX  
Date Code  
0ꢀ394 0ꢀ004  
(10ꢀ00 0ꢀ10)  
pin1  
48  
0ꢀ0098MIN,0ꢀ0197MAX  
(0ꢀ.5MIN,0ꢀ50MAX)  
0ꢀ096MAX  
(.ꢀ45MAX)  
49  
64  
0ꢀ394 0ꢀ004  
(10ꢀ00 0ꢀ10)  
0ꢀ007MAX  
(0ꢀ17MAX)  
0ꢀ008  
(0ꢀ..)  
0ꢀ5.0 0ꢀ010  
(13ꢀ. 0ꢀ.5)  
0ꢀ035+0ꢀ006  
-0ꢀ004  
0ꢀ88+0ꢀ15  
(
)
-0ꢀ10  
Dimensions shown are in inches (millimeters)  
FIGURE 26. RD-19230 MECHANICAL OUTLINE  
17  
TABLE 9. FRONT-END THIN-FILM RESISTOR NETWORKS  
(SEE FIGURE 27)  
DDC-49530, DDC-57470 RESISTOR VALUES (11.8 V INPUTS)  
SYMBOL  
ABS  
VALUE  
TOL  
(%)  
REL TO  
REL  
VALUE  
TOL TCR(PPM)  
(%)  
R1  
R.  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
70ꢀ8 k  
0ꢀ1  
.5  
R1  
R4  
1. k  
1. k  
0ꢀ0.  
0ꢀ0.  
0ꢀ0.  
0ꢀ0.  
0ꢀ0.  
.
.
.
.
.
.
.
.
.
.
R1  
70ꢀ8 k  
70ꢀ8 k  
35ꢀ4 k  
R1  
R1  
16  
R11  
15  
R10  
14  
R9  
13  
1.  
R8  
11  
R7  
10  
R6  
9
R6  
6ꢀ9.8. k 0ꢀ0.  
5ꢀ0718 k 0ꢀ0.  
R6  
R11  
R11  
R1  
5ꢀ0718  
6ꢀ9.8. k 0ꢀ0.  
70ꢀ8 k 0ꢀ0.  
0ꢀ0.  
R1  
R.  
R3  
R4  
R5  
DDC-49590 RESISTOR VALUES (90 V INPUTS)  
.70 k 0ꢀ1  
R1  
R.  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
.5  
.
.
.
.
.
.
.
.
.
.
1
.
3
4
5
6
7
8
R1  
R4  
6 k  
0ꢀ0.  
0ꢀ0.  
0ꢀ0.  
0ꢀ0.  
0ꢀ0.  
6 k  
R1  
.70 k  
.70 k  
135 k  
R1  
R1  
R6  
3ꢀ4641 k 0ꢀ0.  
.ꢀ5359 k 0ꢀ0.  
.ꢀ5359 k 0ꢀ0.  
3ꢀ4641 k 0ꢀ0.  
R6  
R11  
R11  
R1  
FIGURE 27. (DDC-49530, DDC-49590, DDC-57470)  
LAYOUT AND RESISTOR VALUES (SEE TABLE 9)  
.70 k  
0ꢀ0.  
0ꢀ870 MAX  
(..ꢀ10)  
ꢀ405  
7˚  
45˚  
0ꢀ.50 0ꢀ005  
(6ꢀ35 0ꢀ13)  
0ꢀ.99  
(7ꢀ6)  
0ꢀ101  
(.ꢀ6)  
0ꢀ406  
(10ꢀ3)  
0ꢀ3.0 - 0ꢀ300  
(8ꢀ13 - 7ꢀ6.)  
0ꢀ014  
(ꢀ36)  
0ꢀ13 0ꢀ005  
(3ꢀ30 0ꢀ13)  
0ꢀ34.  
(8ꢀ7)  
0ꢀ009  
(0ꢀ.3)  
0ꢀ09.  
(.ꢀ3)  
0ꢀ015 0ꢀ009  
(0ꢀ38 0ꢀ.3)  
0ꢀ0.0 MIN  
(0ꢀ51)  
0ꢀ1.5 MIN  
(3ꢀ18)  
0ꢀ075 0ꢀ015  
(1ꢀ91 0ꢀ38)  
0ꢀ018 0ꢀ003  
(0ꢀ46 0ꢀ08)  
0ꢀ016  
(0ꢀ40)  
+0ꢀ0.5  
0ꢀ3.5  
0ꢀ050  
(1ꢀ.7)  
-0ꢀ015  
0ꢀ100 TYP  
(.ꢀ54)  
+0ꢀ64  
(8ꢀ.6  
)
-0ꢀ38  
DIMENSIONS SHOWN ARE IN INCHES (MM)ꢀ  
DIMENSIONS SHOWN ARE IN INCHES (MM)ꢀ  
FIGURE 28. 16-PIN THIN-FILM RESISTOR NETWORK  
DIP MECHANICAL OUTLINE  
FIGURE 29. 16-PIN THIN-FILM RESISTOR NETWORK  
FLAT-PACK MECHANICAL OUTLINE  
(DDC-57470)  
(DDC-49530, DDC-49590)  
18  
ORDERING INFORMATION  
RD-19.30FX-X X X X  
Supplemental Process Requirements:  
T = Tape and Reel (50 pcꢀ minꢀ order)  
Accuracy:  
. = 4 min + 1 LSB  
3 = . min + 1 LSB  
Reliability:  
0 = Standard DDC Procedures  
Operating Temperature Range:  
. = -40° to +85°C  
3 = 0° to +70°C  
THIN-FILM RESISTOR NETWORKS:  
DDC-49530 = 11ꢀ8 V inputs DIP package  
DDC-57470 = 11ꢀ8 V inputs Flat-pack package  
DDC-49590 = 90 V inputs DIP package  
COMPONENT SELECTION SOFTWARE:  
Component selection software can be downloaded from our website ( wwwꢀddc-webꢀcom )  
19  
The information in this data sheet is believed to be accurate; however, no responsibility is  
assumed by Data Device Corporation for its use, and no license or rights are  
granted by implication or otherwise in connection therewithꢀ  
Specifications are subject to change without noticeꢀ  
105 Wilbur Place, Bohemia, New York 11716-.48.  
For Technical Support - 1-800-DDC-5757 ext. 7402 or 7413  
Headquarters - Tel: (631) 567-5600 extꢀ 740. or 7413, Fax: (631) 567-7358  
West Coast - Tel: (714) 895-9777, Fax: (714) 895-4988  
Southeast - Tel: (703) 450-7900, Fax: (703) 450-6610  
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-3..64  
Ireland - Tel: +353-.1-341065, Fax: +353-.1-341568  
France - Tel: +33-(0)1-41-16-34.4, Fax: +33-(0)1-41-16-34.5  
Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089  
Sweden - Tel: +46-(0)8-54490044, Fax +46-(0)8-7550570  
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689  
World Wide Web - http://wwwꢀddc-webꢀcom  
PRINTED IN THE UꢀSꢀAꢀ  
D-05/00-500  
20  

相关型号:

RD-19230FX-303T

Resolver-to-Digital Converter
ETC

RD-19230NEW

Resolver and Synchro To Digital Converters
ETC

RD-2405D

ECONOLINE - DC/DC - CONVERTER
RECOM

RD-2405D/H

CONV DC/DC 2W 24VIN +/-05VOUT
ETC

RD-2405D/HP

CONV DC/DC 2W 24VIN +/-05VOUT
ETC

RD-2405D/P

CONV DC/DC 2W 24VIN +/-05VOUT
ETC

RD-2405DHP

2 Watt SIP7 & DIP14 Dual Output
RECOM

RD-2405DP

2 Watt SIP7 & DIP14 Dual Output
RECOM

RD-2409D

ECONOLINE - DC/DC - CONVERTER
RECOM

RD-2409DHP

2 Watt SIP7 & DIP14 Dual Output
RECOM

RD-2409DP

2 Watt SIP7 & DIP14 Dual Output
RECOM

RD-2412D

ECONOLINE - DC/DC - CONVERTER
RECOM