RD-19230NEW [ETC]

Resolver and Synchro To Digital Converters ; 解析器和同步数字转换器\n
RD-19230NEW
型号: RD-19230NEW
厂家: ETC    ETC
描述:

Resolver and Synchro To Digital Converters
解析器和同步数字转换器\n

转换器
文件: 总24页 (文件大小:383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Make sure the next  
Card you purchase  
has...  
®
RD-19230  
16-BIT MONOLITHIC TRACKING  
RESOLVER-TO-DIGITAL CONVERTER  
FEATURES  
Accuracy up to 2.3 Arc Minutes  
Internal Synthesized Reference  
+5 Volt Only Option  
Programmable Resolution, Dual  
Bandwidth and Tracking Rate  
Internal Encoder Emulation with  
Independent Resolution Control  
Differential Resolver Input Mode  
Velocity Output Eliminates  
Tachometer  
Built-In-Test (BIT) Output, No 180°  
Hangup  
-40° to +85°C Operating Temperature  
DESCRIPTION  
The RD-19230 is a small and versatile, low cost, state-of-the-art 16-  
bit monolithic Resolver-to-Digital Converter. This single chip convert-  
er offers programmable features such as resolution, bandwidth,  
velocity output scaling and encoder emulation.  
Resolution programming allows selection of 10, 12, 14, or 16 bit, with  
accuracies to 2.3 min. The parallel digital data and the internal  
encoder emulation signals (A QUAD B) have independent resolution  
control. Internal encoder emulation will permit inhibiting (freezing) the  
parallel digital data without interrupting the A and B outputs.  
The internal Synthesized Reference section eliminates errors due to  
quadrature voltage and ensures operation with a rotor-to-stator phase  
shift of up to 45 degrees. The velocity output (VEL) can be used in  
place of a tachometer. It has a range of ±4 V relative to analog  
ground. The velocity scale factor/tracking rate is programmed with a  
single resistor. This converter provides the option of using a second  
set of filter components which can be used in dual bandwidth or  
switch on the fly applications.  
APPLICATIONS  
With its low cost, small size, high accuracy, and versatile perfor-  
mance, the RD-19230 converter is ideal for use in modern high per-  
formance industrial control systems. It is ideal for users who wish to  
use a resolver input in their encoder based system. Typical applica-  
tions include motor control, machine tool control, robotics, and  
process control.  
FOR MORE INFORMATION CONTACT:  
Technical Support:  
1-800-DDC-5757 ext. 7382  
Data Device Corporation  
105 Wilbur Place  
Bohemia, New York 11716  
631-567-5600 Fax: 631-567-7358  
www.ddc-web.com  
©
1998, 1999 Data Device Corporation  
C
bw  
R
b
C
bw/  
V
E
L
V
E
L
10  
R
b
C
bw  
S
J
1
S
J
2
RH  
RL BIT  
C
bw/  
10  
VEL2 VEL1  
SYNTHESIZED  
REFERENCE  
SHIFT  
SIN  
-S  
-
+
+S  
COS  
-C  
CONTROL  
TRANSFORMER  
GAIN  
-
DEMODULATOR  
VEL  
-
+
D1 D0  
+
+C  
R
V
D1  
D0  
HYSTERESIS  
16 BIT  
UP/DOWN  
COUNTER  
VDDP  
PCAP  
NCAP  
VSSP  
-5 V  
INVERTER  
VCO  
&
-VCO  
TIMING  
R CLK  
AGND  
VDD  
GND  
VSS  
INTERNAL  
ENCODER  
EMULATION  
DATA  
LATCH  
R SET  
EM  
EL  
INH  
D1 D0  
A QUAD B A U/B  
UP/DN  
CB/ZIP  
ZIP_EN  
BIT 1 - BIT 16  
FIGURE 1. RD-19230 SERIES BLOCK DIAGRAM  
TABLE 1. RD-19230 SPECIFICATIONS  
TABLE 1. RD-19230 SPECIFICATIONS (CONTINUED)  
These specs apply over the rated power supply, temperature, and ref-  
erence frequency ranges; 10% signal amplitude variation, and 10%  
harmonic distortion.  
These specs apply over the rated power supply, temperature, and ref-  
erence frequency ranges; 10% signal amplitude variation, and 10%  
harmonic distortion.  
PARAMETER  
UNIT  
VALUE  
PARAMETER  
RESOLUTION  
UNIT  
VALUE  
DIGITAL OUTPUTS  
Drive Capability  
Bits 10, 12, 14, or 16 (note 1 & 2)  
50 pF+  
CARRIER FREQUENCY  
RANGE  
Logic 0: 1 TTL load, 1.6 mA  
at 0.4 V max.  
Logic 1; 10 TTL loads, -0.4  
mA at 2.8 V min.  
Logic 0; 100 mV max. driving  
CMOS  
(NOTE 4)  
Hz  
47-1k  
1k - 4k 4k - 10k  
ACCURACY -XX2  
-XX3 (NOTE 3) Min  
REPEATABILITY  
Min  
4 +1 LSB 4 +1 LSB 5 +1 LSB  
2 +1 LSB 2 +1 LSB 3 +1 LSB  
LSB  
±1  
±1  
±1  
±1  
± 2  
± 2  
DIFFERENTIAL LINEARITY LSB  
REFERENCE  
Type  
Voltage: differential  
single ended  
(+REF, -REF)  
Differential  
Vp-p ±10 max. (1 min.)  
Vp ±5 max. (0.5 min)  
Logic 1; +5 V supply minus  
100 mV min. driving  
CMOS High Z; 10 µA  
|| 5 pF max. (Note 8)  
overload  
Frequency  
Vp ±25 continuous; ±100 transient  
Hz DC to 10k  
Parallel Data (1-16)  
Converter Busy (CB)  
10, 12, 14, or 16 parallel  
lines; natural binary angle  
positive logic (see note 2)  
Vp  
Input Impedance  
Common Mode Range  
10M min. || 20 pf  
3
SYNTHESIZED REFERENCE  
(note 5)  
0.25 to 0.75 µs positive pulse  
leading edge initiates counter  
update. (CB functions with  
ZIP_EN pin tied to +5 V or NC)  
Logic 1 at all 0s  
±Sig/Ref Phase Shift Correction deg 45 max. from 400 Hz to 10kHz  
SIGNAL INPUT  
Type  
(+S, -S, SIN, +C, -C, COS)  
Resolver, differential,  
groundbased  
Voltage: operating  
overload  
Input impedance  
Vrms 2 ±15%  
Vp  
±25 continuous  
10M min || 10 pF.  
Zero Index Pulse (ZIP)  
Built-In-Test (BIT)  
(ZIP_EN pin tied to GND)  
Logic 0 for BIT condition.  
DIGITAL INPUTS  
TTL / CMOS COMPATIBLE  
INPUTS  
Logic 0 = 0.8 V max.  
Logic 1 = 2.0 V min.  
Loading = 10 µA max P.U. cur-  
rent source to +5 V || 5 pF max.  
CMOS transient protected  
The BIT error is triggered if  
any of the following conditions  
exist: ~ ±100 LSBs of error,  
Loss of Signal (LOS), or Loss  
of Reference (LOR) is less  
than 500 mVp, or a false null  
occurs when the phase detect  
circuitry causes a BIT and  
corrects the error  
Inhibit (INH)  
Logic 0 inhibits; Data stable  
within 150 ns  
Enable Bits 1 to 8 (EM)  
Enable Bits 9 to 16 (EL)  
Logic 0 enables; Data stable  
within 150 ns  
Logic 1 = High Impedance; Data  
High Z within 100 ns (Note 8)  
A, B  
Incremental Encoder Output  
(at maximum bandwidth)  
DYNAMIC  
CHARACTERISTICS  
Resolution  
Resolution and Mode  
Control (D1 & D0)  
(See notes 1 & 2)  
Mode D1 D0 Resolution  
bits  
10  
12  
14  
16  
Resolver 0  
0
1
10 bits  
12 bits  
14 bits  
16 bits  
8 bits  
10 bits  
12 bits  
14 bits  
Tracking Rate (min)  
Bandwidth (Closed Loop)  
Ka  
A1  
A2  
A
B
Acceleration (1 LSB lag)  
Settling Time (179° step)  
VELOCITY  
rps  
Hz  
1152 288  
72  
18  
0
1200 1200 600  
300  
1
0
2
1/sec  
1/sec  
1/sec  
1/sec  
1/sec  
5.7M 5.7M 1.4M 360k  
19.5 19.5 4.9 1.2  
295k 295k 295k 295k  
1
1
LVDT -5V  
0
0
1
-5V  
-5V  
2400 2400 1200  
1200 1200 600  
600  
300  
2k  
-5V -5V  
Logic 0 enables ZIP  
Logic 1 enables CB  
2
2M  
2
500k 30k  
20  
deg/s  
msec  
ZIP_EN  
8
50  
CHARACTERISTICS  
Polarity  
CMOS Compatible Inputs  
Logic 0 = 1.5 V max.  
Logic 1 = 3.5 V min.  
negative voltage = -3.5 V min.  
Logic 1 select VEL1 components  
Logic 0 select VEL2 components  
Positive for increasing angle  
±4 (at nominal power supply)  
Voltage Range (Full Scale)  
Scale Factor Error  
Scale Factor TC  
Reversal Error  
Linearity  
Zero Offset  
Zero Offset TC  
Load  
V
%
10 typ  
100 typ  
0.75 typ  
0.25 typ  
5 typ  
20 max  
200 max  
1.3 max  
0.50 max  
10 max  
30 max  
8 max  
SHIFT  
UP/DN  
PPM/°C  
%
%
mV  
µV/°C  
kΩ  
Logic 1 will increase gain by 4  
Logic 0 will decrease gain by 4  
-5 V gain remains constant  
15 typ  
A QUAD B  
Logic 0 enables encoder emulation  
Falling edge latches encoder  
resolution  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
3
K-11/02-300  
TABLE 1. RD-19230 SPECIFICATIONS (CONTINUED)  
THEORY OF OPERATION  
These specs apply over the rated power supply, temperature, and ref-  
erence frequency ranges; 10% signal amplitude variation, and 10%  
harmonic distortion.  
The RD-19230 is a mixed signal CMOS IC containing analog  
input and digital output sections. Precision analog circuitry is  
merged with digital logic to form a complete high-performance  
tracking resolver-to-digital converter. For user flexibility and con-  
venience, the converter bandwidth, dynamics, and velocity scal-  
ing are externally set with passive components.  
PARAMETER  
UNIT  
VALUE  
POWER SUPPLIES  
Nominal Voltage  
Voltage Range  
Max Volt. w/o Damage  
Current  
(note 6)  
+5 (VDD)  
±5  
V
%
V
-5 (VSS)  
±5  
-7  
+7  
mA  
25 max. (each), 17 typ.*  
(* Typical current is when  
a 30K resistor is used for  
the current set.)  
FIGURE 1 is the RD-19230 Functional Block Diagram. The ana-  
log conversion electronics require ±5 VDC power supplies, and  
the converter contains a charge pump to provide the user with  
the option of a single-ended +5 VDC supply. The converter front-  
end consists of differential sine and cosine input amplifiers which  
are protected up to ±25 V with 2 kresistors and diode clamps  
to the ±5 VDC supplies. By performing the following trigonomet-  
ric identity, SINθ(COSφ) - COSθ(SINφ) = SIN(θ-φ), the Control  
Transformer (CT) compares the analog input signals ( θ ) with  
the digital output ( φ ), resulting in an error signal proportional to  
the sin of the angular difference. The CT uses a combination of  
amplifiers, switches, logic and capacitors in precision ratios to  
perform the calculation.  
TEMPERATURE RANGE  
Operating  
-30X  
-20X  
Storage  
Junction-to-Case  
Junction-to-Ambient  
Junction Temp Max  
°C  
°C  
°C  
°C/W  
°C/W  
°C  
0 to +70  
-40 to +85  
-65 to +150  
20  
50  
150  
PHYSICAL  
CHARACTERISTICS  
Size: 64-pin Quad Flat Pack in(mm)  
WEIGHT  
0.52 x 0.52 (13.2 x 13.2)  
0.018 ( 0.5 )  
oz(g)  
TABLE 1 notes:  
1. As parallel resolution is reduced, pairs of bits are disabled.  
(Unused bits are set to a logic 0.)  
Note:The error output of the CT is normally sinusoidal, but  
in LVDT mode, it is triangular (linear) and can be used  
to convert any linear transducer output.  
14 bit resolution: 15/16 disabled  
12 bit resolution: 13/14, 15/16 disabled  
10 bit resolution: 11/12, 13/14, 15/16 disabled  
2. In LVDT mode, Bit 3 is the MSB and resolution is programmable to  
8, 10, 12, and 14 bits.  
3. Accuracy in LVDT mode is 0.15% + 1 LSB of full scale.  
4. In the frequency range of 47Hz to 1kHz, there will be 1 LSB of jitter  
at quadrant boundaries.  
The converter accuracy is limited by the precision of the com-  
puting elements in the CT. Instead of a traditional precision  
resistor network, this converter uses capacitors with precisely  
controlled ratios. Sampling techniques are used to eliminate  
errors due to voltage drift and op-amp offsets.  
5. The maximum phase shift tolerance will degrade linearly from 45  
degrees at 400 Hz to 30 degrees at 60 Hz.  
6. When using the -5V inverter, the V  
supply current will double  
DD  
and V  
can be up to 20% low, or -4V.  
SSP  
7. || = in parallel with.  
8. High Z refers to parallel data only.  
9. Normal ESD (Electro Static Device) handling precautions should  
be observed.  
10. Any unused pins may be left floating (unconnected).  
The error processing is performed using the industry standard  
technique for Type II tracking converters. The DC error is inte-  
grated yielding a velocity voltage which in turn drives a voltage  
controlled oscillator (VCO). This VCO is an incremental integra-  
tor (constant voltage input to position rate output) which, togeth-  
er with the velocity integrator, forms a Type II servo feedback  
loop. A lead in the frequency response is introduced to stabilize  
the loop and another lag at higher frequency is introduced to  
reduce the gain and ripple at the carrier frequency and above.  
The settings of the various error processor gains and break fre-  
quencies are done with external resistors and capacitors so that  
the converter loop dynamics can be easily controlled by the user.  
Data Device Corporation  
www.ddc-web.com  
RD-19230  
K-11/02-300  
4
TRANSFER FUNCTION AND BODE PLOT  
The components of gain coefficient are error gradient, integrator  
gain, and VCO gain. These can be broken down as follows:  
The dynamic performance of the converter can be determined  
from its Transfer Function Block Diagrams and Bode Plots (open  
and closed loop). These are shown in FIGURES 2, 3, and 4.  
- Error Gradient = 0.011 volts per LSB (CT + Error Amp + Demod  
with 2 Vrms input)  
Cs Fs  
1.1 CBW  
The open loop transfer function is as follows:  
- Integrator Gain =  
- VCO Gain =  
volts per second per volt  
LSBs per second per volt  
S
A2  
S2  
+1  
1
(B )  
Open Loop Transfer Function =  
1.25 RV CVCO  
S
+1  
(10B )  
where: Cs = 10 pF  
Fs = 67 kHz when R CLK = 30 kΩ  
CVCO = 50 pF  
where A is the gain coefficient and A2=A1A2  
and B is the frequency of lead compensation.  
RV, RB, and CBW are selected by the user to set velocity scaling  
and bandwidth.  
C
R
BW  
B
VEL  
C
/10  
R
V
BW  
VEL SJ1  
VEL  
-VCO  
50 pf  
C
VCO  
CT  
R
1
16 BIT  
UP/DOWN  
COUNTER  
RESOLVER  
INPUT  
(θ)  
+
VCO  
GAIN  
DEMOD  
1
±1.25 V  
THRESHOLD  
-
C
F
S
S
11 mV/LSB  
DIGITAL  
OUTPUT  
(φ)  
H = 1  
FIGURE 2.TRANSFER FUNCTION BLOCK DIAGRAM #1  
(CRITICALLY DAMPED)  
2A  
GAIN = 4  
OPEN LOOP  
ω (rad/sec)  
10B  
B
A
VELOCITY  
OUT  
(B = A/2)  
GAIN = 0.4  
ERROR PROCESSOR  
S
VCO  
CT  
A
S
+ 1  
1
A
DIGITAL  
POSITION  
OUT (φ)  
+
2
RESOLVER  
INPUT  
(θ)  
B
e
2 A  
S
fBW = BW (Hz) =  
2 A  
π
S
10B  
+ 1  
-
2A  
2
ω (rad/sec)  
CLOSED LOOP  
H = 1  
FIGURE 4. BODE PLOTS  
FIGURE 3.TRANSFER FUNCTION BLOCK DIAGRAM #2  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
5
K-11/02-300  
GENERAL SETUP CONDITIONS  
5) Setup of bandwidth and velocity scaling for the optimized crit-  
ically damped case should proceed as follows:  
DDC has external component selection software which consid-  
ers all the criteria below. In a simple fashion, it asks the key sys-  
tem parameters (carrier frequency, resolution, bandwidth, and  
tracking rate) needed to derive the external component values.  
- Select the desired f BW (closed loop) based on overall  
system dynamics.  
- Select f  
3.5f BW  
carrier  
The following recommendations should be considered when  
installing the RD-19230 R/D converter:  
- Select the applications tracking rate (in accordance with TABLE 3),  
and use appropriate values for R SET and R CLK  
Full Scale Velocity Voltage  
- Compute Rv =  
1) In setting the bandwidth (BW) and Tracking Rate (TR) (select-  
ing five external components), the system requirements need  
to be considered. For the greatest noise immunity, select the  
minimum BW and TR the system will allow. Selecting a fBW  
that is too low relative to the maximum application tracking  
rate can create a spin-around condition in which the convert-  
er never settles. The relationship to insure against this condi-  
tion is detailed in TABLE 2.  
resolution  
Tracking Rate (rps) x 2  
x 50 pF x 1.25 V  
3.2 x Fs (Hz) x 108  
- Compute CBW (pF) =  
Rv x (f BW)2  
- Where Fs = 67 kHz for R CLK = 30 KΩ  
100 kHz for R CLK = 20 KΩ  
125 kHz for R CLK = 15 KΩ  
0.9  
CBW x f BW  
- Compute RB =  
TABLE 2. TRACKING / BW RELATIONSHIP  
RPS (MAX)/BW  
RESOLUTION  
CBW  
10  
- Compute  
1
10  
12  
14  
16  
0.50  
0.25  
0.125  
As an example:  
2) Power supplies are ±5 VDC. For lowest noise performance it  
is recommended that a 0.1 µF or larger cap be connected  
from each supply to ground near the converter package.  
Calculate component values for a 16-bit converter with 100Hz  
bandwidth, a tracking rate of 10 RPS and a full scale velocity  
of 4 Volts.  
4 V  
3) Resolver inputs and velocity output are referenced to AGND.  
This pin should be connected to GND near the converter  
package. Digital currents flowing through ground will not dis-  
turb the analog signals.  
- Rv =  
= 97655 Ω  
10 rps x 216 x 50 pF x 1.25 V  
3.2 x 67 kHz x 108  
- Compute CBW (pF) =  
= 21955 pF  
97655 x 100 Hz2  
0.9  
4) This device has several high impedance amplifier inputs  
(+C, -C, +S, -S, -VCO, VEL SJ1, and VEL SJ2) that are sensi-  
tive to noise coupling. External components should be con-  
nected as close to the converter as possible.  
- Compute RB =  
= 410 kΩ  
21955 x 10 -12 x 100 Hz  
6) Using the -5V Inverter will eliminate the need for a -5 V sup-  
ply. Refer to FIGURE 5 for the necessary connections.  
+5V  
33  
58  
27  
VDD  
When using the built-in -5 V inverter, the maximum tracking rate  
should be scaled for a full-scale velocity output of 3.5 V max.  
VDD  
VDDP  
26  
PCAP  
+
Notes:  
RD-19230  
10 µF/10V  
24  
NCAP  
23  
16  
VSSP  
VSS *  
1)  
Use of the -5 V inverter is not recommended for appli-  
cations that require the highest BW and Tracking  
Rates.  
17  
VSS  
47 µF/10V  
+
25  
22  
GND  
AGND  
2)  
When using the RD-19230FX with the -5V inverter, the  
negative velocity output voltage should be limited to  
-3.5 Volts. When performing tracking rate calculations  
this must be taken into consideration.  
FIGURE 5. -5V INVERTER CONNECTIONS  
* Pin 16 has been renamed Vss since it will typically be connected to -5 VDC.  
Applications requiring a differential front-end configuration must connect this pin  
to Vss. Voltage follower mode can be implemented with pin 16 tied to Vss by mak-  
ing external connections between the output of the sin/cos amplifiers and their  
respective inputs. When left unconnected, the RD-19230 will internally configure  
the front-end amplifiers in voltage follower mode.  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
6
K-11/02-300  
HIGHER TRACKING RATES AND CARRIER  
FREQUENCIES  
TABLE 4. CARRIER FREQUENCY (MAX) IN KHZ  
RESOLUTION  
R SET  
R CLK  
()  
()  
10  
10  
10  
10  
10  
12  
10  
10  
10  
10  
14  
7
16  
5
Maximum tracking rate is limited by the velocity voltage satura-  
tion (nominally 4 V) and the maximum internal clock rate (nomi-  
nally 1,333,333 Hz for R CLK = 30k). To achieve higher tracking  
rates, a higher internal counting rate must be programmed by  
setting RCLK to a value less than 30k. See TABLE 4 for the  
appropriate values.  
30k** or open  
30k  
30k  
20k  
15k  
23k  
23k  
23k  
10  
10  
*
7
10  
*
* Not recommended.  
** The use of a high quality thin-film resistor will provide better temperature  
stability than leaving open.  
The Rv resistor and an internal 50pF capacitor are configured as  
an integrating circuit that resets to zero after a count occurs in  
either direction. This circuit acts as a VCO with velocity as its  
input and CB as its output. The Rv resistor and an internal 50pF  
capacitor determine the maximum rate of the VCO. Rv must be  
chosen such that the maximum rate of the VCO is less than the  
maximum internal clock rate. Choose the tracking rate in accor-  
dance with TABLE 3 to insure this relationship. The rates shown  
in TABLE 3 are based on ~90% of the nominal internal clock rate.  
The relationship between the velocity voltage and the VCO rate  
is given by:  
1
Velocity Voltage  
VCO Frequency  
=
(Rv x 50 pF x 1.25)  
INPUT CONFIGURATION  
TABLE 3. MAX TRACKING RATE (MIN) IN RPS  
The converter input can be configured using either transformers  
or thin film networks per the following tables and figures.  
RESOLUTION  
R SET  
()  
R CLK  
()  
10  
12  
14  
16  
30k** or open  
30k  
20k  
15k  
1152 288  
72  
18  
Signal input configuration using 0.02% tol thin film networks add  
1 LSB of additional error to accuracy.  
23k  
23k  
1728 432 108 27  
2304 576  
*
*
Signal input configuration using transformers adds 1 min of addi-  
tional error to accuracy.  
* Not recommended.  
** The use of a high quality thin-film resistor will provide better temperature  
stability than leaving open.  
INPUT TRANSFORMERS  
Refer to TABLE 5 to select the proper transformer for Reference,  
Synchro and Resolver inputs.  
TABLE 5. TRANSFORMERS  
ANGLE  
ACCURACY***  
FIGURE  
NUMBER  
P/N  
TYPE  
FREQUENCY (HZ)* IN (VRMS)* OUT (VRMS)**  
LENGTH (IN) WIDTH (IN) HEIGHT (IN)  
52034  
52035  
52036  
52037  
52038  
B-426  
52039  
24133  
S - R  
S - R  
400  
400  
400  
400  
400  
400  
60  
11.8  
90  
2
1
1
0.81  
0.81  
0.81  
0.81  
0.81  
0.81  
1.1  
0.61  
0.61  
0.61  
0.61  
0.61  
0.61  
1.14  
1.125  
0.3  
0.3  
0.3  
0.3  
0.3  
0.32  
.42  
.42  
6
6
7
7
7
8
9
9
2
R - R  
11.8  
26  
2
1
R - R  
2
1
R - R  
90  
2
3.4  
1
Reference  
Synchro  
Reference  
115  
90  
N/A  
1
2
60  
115  
3/6 ****  
N/A  
1.125  
*
±10% Frequency (Hz) and Line-to-Line input voltage (Vrms) tolerances  
** 2 Vrms Output Magnitudes are -2 Vrms ±0.5% full scale  
*** Angle Accuracy (Max Minutes)  
**** 3 Vrms to ground or 6 Vrms differential (±3% full scale)  
Dimensions are for each individual main and teaser  
60 Hz Synchro transformers are active (requires ±15 Vdc power supplies)  
400 Hz transformer temperature range: -55°C to +125°C  
60 Hz transformer temperature ranges: -55°C to +125°C, 0 to +70°C  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
7
K-11/02-300  
0.61 MAX  
(15.49)  
0.61 MAX  
(15.49)  
0.15 MAX  
(3.81)  
0.09 MAX  
(2.29)  
0.30 MAX  
(7.62)  
0.09 MAX  
(2.29)  
0.15 MAX  
(3.81)  
1
3
T1A  
8
4
7
5
6
11 12  
14 15  
0.81 MAX  
(20.57)  
T1B  
0.600  
(15.24)  
10  
9
20 19 18 17 16  
0.115 MAX  
(2.92)  
SIDE VIEW  
0.100 (2.54) TYP  
TOL NON CUM  
BOTTOM VIEW  
BOTTOM VIEW  
TERMINALS  
0.025 0.001 (6.35 0.03) DIAM  
0.125 (3.18) MIN LENGTH  
SOLDER PLATED BRASS  
PIN NUMBERS FOR REF. ONLY  
Dimensions are shown in inches (mm).  
T1A  
1
6
-SIN  
S1  
S3  
5
3
10  
+SIN  
SYNCHRO  
INPUT  
RESOLVER  
OUTPUT  
T1B  
11  
16  
20  
-COS  
15  
+COS  
S2  
FIGURE 6. TRANSFORMER LAYOUT AND SCHEMATIC (SYNCHRO INPUT - 52034/52035)  
0.61 MAX  
(15.49)  
0.61 MAX  
(15.49)  
0.15 MAX  
(3.81)  
0.09 MAX  
(2.29)  
0.30 MAX  
(7.62)  
0.09 MAX  
(2.29)  
0.15 MAX  
(3.81)  
1
3
T1A  
8
4
5
6
11 12  
14 15  
0.81 MAX  
(20.57)  
T1B  
0.600  
(15.24)  
10  
9
7
20 19 18 17 16  
0.115 MAX  
(2.92)  
SIDE VIEW  
0.100 (2.54) TYP  
TOL NON CUM  
BOTTOM VIEW  
BOTTOM VIEW  
TERMINALS  
0.025 0.001 (6.35 0.03) DIAM  
0.125 (3.18) MIN LENGTH  
SOLDER PLATED BRASS  
PIN NUMBERS FOR REF. ONLY  
Dimensions are shown in inches (mm).  
T1A  
1
6
-SIN  
S1  
S3  
3
10  
+SIN  
RESOLVER  
INPUT  
RESOLVER  
OUTPUT  
T1B  
11  
16  
20  
-COS  
S4  
S2  
15  
+COS  
FIGURE 7. TRANSFORMER LAYOUT AND SCHEMATIC (RESOLVER INPUT - 52036/52037/52038)  
Data Device Corporation  
www.ddc-web.com  
RD-19230  
K-11/02-300  
8
CASE IS BLACK AND  
NON-CONDUCTIVE  
0.25  
(6.35)  
MIN.  
1.14 MAX  
(28.96)  
+
+S  
0.61 MAX  
(15.49)  
S3  
S1  
+15 V  
0.32 MAX  
(8.13)  
*
*
(+15 V) (-R)  
*
*
0.125 MIN  
(3.17)  
0.09 MAX  
(2.29)  
0.15 MAX  
(3.81)  
1.14 MAX  
(28.96)  
0.85 ±0.010  
(21.59 ±0.25)  
52039  
or  
24133  
1
2
9
3
T1A  
8
5
6
(RH)  
S2  
(RL)  
(V)  
V
(+R)  
+C  
(-Vs)  
-Vs  
0.600  
(15.24)  
0.81 MAX  
(20.57)  
*
+
(BOTTOM VIEW)  
0.42  
(10.67)  
MAX.  
10  
7
0.13 ±0.03  
(3.30 ±0.76)  
0.105 (2.66)  
0.21 ±0.3  
(5.33 ±0.76)  
0.175 ±0.010 (4.45 ±0.25)  
NONCUMULATIVE  
TOLERANCE  
SIDE VIEW  
0.100 (2.54) TYP  
TOL NON CUM  
0.040 ±0.002 DIA. PIN.  
SOLDER PLATED BRASS  
TERMINALS  
BOTTOM VIEW  
0.025 ±0.001 (6.35 ±0.03) DIAM  
0.125 (3.18) MIN LENGTH  
SOLDER-PLATED BRASS  
+15 V  
+15 V  
Dimensions are shown in inches (mm).  
Input  
RH  
Input  
S1  
Output  
+R (RH)  
Output  
+S  
24133  
52039  
S2  
-R (RL)  
+C  
RL  
S3  
1
6
V
-Vs  
(-15 V)  
V
-Vs  
(-15 V)  
(Analog  
Gnd)  
(Analog  
Gnd)  
INPUT  
OUTPUT  
5
10  
The mechanical outline is the same for the synchro input trans-  
former (52039) and the reference input transformer (24133),  
except for the pins. Pins for the reference transformer are shown  
in parenthesis ( ) below. An asterisk * indicates that the pin is  
omitted.  
FIGURE 9. 60 HZ SYNCHRO AND REFERENCE  
TRANSFORMER DIAGRAMS  
(SYNCHRO INPUT - 52039 / REFERENCE INPUT - 24133)  
FIGURE 8. TRANSFORMER LAYOUT AND SCHEMATIC  
(REFERENCE INPUT - B-426)  
TYPICAL INPUTS  
FIGURES 10 through 14 illustrate typical input configurations.  
EXTERNAL  
REFERENCE  
LO HI  
6
1
B-426  
10  
5
RH  
RL  
RESOLVER INPUT OPTION  
S1  
-S SIN  
+S  
-R +R  
1
10  
TIA  
S3  
S4  
6
3
+C  
-C  
RD-19230  
11  
15  
20  
TIB  
S2  
COS  
AGND  
16  
52036(11.8V)  
OR  
52037(26V)  
OR  
GND  
52038(90V)  
OR  
SYNCHRO INPUT OPTION  
Note: The external BW components  
as shown in Figures 1 and 2  
are necessary for the R/D to  
function.  
RH  
RL  
S1  
+S  
1
3
10  
S3  
TIA  
TIB  
6
5
+C  
20  
11  
S2  
15  
16  
52034(11.8V)  
OR  
52035(90V)  
FIGURE 10. TYPICAL TRANSFORMER CONNECTIONS  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
9
K-11/02-300  
EXTERNAL  
REF  
LO HI  
R
R
R
1
2
4
R
3
RL RH  
See Note 3.  
+S  
-S  
S3  
S1  
SIN  
Note: The external BW components  
as shown in Figures 1 and 2  
are necessary for the R/D to  
function.  
COS  
-C  
+C  
See Note 3.  
S2  
S4  
A GND  
GND  
RESOLVER  
Notes:  
1) Resistors selected to limit Vref peak to between 1.5 V and 4 V.  
2) External reference LO is grounded, then R3 and R4 are not  
needed, and -R is connected to GND.  
3) 10k ohms, 1% series current limit resistors are recommended.  
FIGURE 11. TYPICAL CONNECTIONS, 2 V RESOLVER, DIRECT INPUT  
R
1
-S  
SIN  
S3  
S1  
+S  
R
R
2
Note: The external BW components  
as shown in Figures 1 and 2  
are necessary for the R/D to  
function.  
R
1
S2  
S4  
+C  
2
A GND  
GND  
-C  
COS  
2
R
2
=
X Volt  
R + R  
1
2
R + R should not load the Resolver; it is recommended to use an R = 10 kΩ  
1
2
2
R + R Ratio errors will result in Angular errors,  
1
2
2 cycle, 0.1% Ratio error = 0.029˚ Peak Error.  
FIGURE 12. TYPICAL CONNECTIONS, X- VOLT RESOLVER, DIRECT INPUT  
Data Device Corporation  
www.ddc-web.com  
RD-19230  
K-11/02-300  
10  
SIN  
3
R
R
f
R
R
i
i
-S  
1
6
-
S1  
S3  
2
5
+S  
+
Note: The external BW components  
as shown in Figures 1 and 2  
are necessary for the R/D to  
function.  
f
f
4
RESOLVER  
INPUT  
A GND  
COS  
13  
R
R
R
i
i
-C  
15  
16  
7
-
S4  
S2  
+C  
+
8
10  
R
f
12  
CONVERTER  
S1 and S3, S2 and S4, and RH and RL should be ideally twisted shielded, with the shield tied to GND at the converter.  
For DDC-49530: R = 70.8 K, 11.8 V input, synchro or resolver.  
i
For DDC-49590: R = 270 K, 90 Volt input, synchro or resolver.  
i
Maximum additional error is 1 minute.  
When using discrete resistors: Resolver L-L voltage =  
R
R
i
f
x 2 Vrms, where R 6 kΩ  
f
FIGURE 13. DIFFERENTIAL RESOLVER INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V),  
OR (2 V) DIRECT USING DISCRETE RESISTORS  
SIN  
3
R
f
R
i
-S  
1
6
-
S1  
S3  
2
5
R
i
+S  
+
Note: The external BW components  
as shown in Figures 1 and 2  
are necessary for the R/D to  
function.  
R
f
4
A GND  
SYNCHRO  
INPUT  
COS  
14  
R
R
i
i
16  
7
R /  
f
3
8
15  
-C  
15  
-
R /2  
i
+C  
10  
9
+
S2  
R /  
f
3
11  
CONVERTER  
S1, S2, S3 should be triple twisted shielded; RH and RL should be twisted shielded;  
In both cases the shield should be tied to GND at the converter.  
11.8 Volt input = DDC-49530: R = 70.8 K, 11.8 V input, synchro or resolver.  
i
90 Volt input = DDC-49590: R = 270 K, 90 Volt input, synchro or resolver.  
i
Maximum additional error is 1 minute.  
When using discrete resistors: Resolver L-L voltage =  
R
R
i
f
x 2 Vrms, where R 6 kΩ  
f
FIGURE 14. SYNCHRO INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V)  
Data Device Corporation  
www.ddc-web.com  
RD-19230  
K-11/02-300  
11  
DC INPUTS  
UP/DN  
The UP/DN input selects the gain of the amplifier driving the de-  
selected set of bandwidth components. UP/DN has three input  
states. See TABLE 6 to relate input to gain.  
As noted in TABLE 1, the RD-19230 will accept DC inputs. It is  
necessary to set the REF input to DC by tying RH to +5 V and  
RL to GND or -5 \/.  
TABLE 6. PRECHARGE AMPLIFIER  
GAIN PROGRAMMING  
VELOCITY TRIMMING  
UP/DN  
Logic 1  
Logic 0  
-5 V  
GAIN  
4
FUNCTION  
RD-19230 specifications for velocity scaling, reversal error, and  
offset are listed in TABLE 1. Velocity scaling and offset are exter-  
nally trimmable for applications requiring tighter specifications  
than those available from the standard unit. FIGURE 15 shows  
the setup for trimming these parameters with external pots. It  
should also be noted that when the resolution is changed, VEL  
Scaling is also changed.  
Resolution Increase  
Resolution Decrease  
Dual Bandwidth  
1/4  
1
BENEFIT OF SWITCHING RESOLUTION  
ON THE FLY  
Switching resolution on the fly can be used in applications that  
require high resolution for accurate position control, and tracking  
rates or settling times that are faster than the high resolution  
mode will allow.  
OPTIONAL BANDWIDTH COMPONENTS  
The RD-19230 provides the option of using a second set of  
bandwidth components. The second set of components can be  
used for switch-on-the-fly or dual-bandwidth applications. The  
SHIFT and UP/DN inputs are used when switching bandwidth  
components, and their operation is described below. Refer to the  
block diagram, FIGURE 1.  
The RD-19230 can track four times faster for each step down in  
resolution (i.e., a step from 16 bits to 14 bits). The velocity out-  
put will be scaled down by a factor of four with each step down  
in resolution. For example, if the velocity output is scaled such  
that 4 Volts = 10 RPS in 16 bit resolution, then the same con-  
verter will output 1 Volt for 10 RPS in 14 bit resolution. To avoid  
glitches in the velocity output, the second set of bandwidth com-  
ponents can be pre-charged to the expected voltage, and  
switched in using the SHIFT input at the same time the resolu-  
tion is changed. This will allow for a smooth velocity transition,  
resulting in reduced errors and minimal settling time after the  
change.  
SHIFT  
The SHIFT pin is an input that chooses between the VEL1 and  
VEL2 bandwidth components. This pin has an internal pull-up to  
+5V. When the SHIFT pin is left open, or a logic 1 is applied, the  
VEL1 components are selected. When a Logic 0 is applied, the  
VEL2 components are selected. The deselected set of band-  
width components are driven by an amplifier, with programmable  
gain, that follows the velocity amplifier. This amplifier can be  
used to pre-charge the deselected set of components to the volt-  
age level that is expected after a change in resolution. (See  
description on BENEFIT OF SWITCHING RESOLUTION ON  
THE FLY.)  
FIGURE 17 shows the way the converter behaves during a  
change in resolution while tracking at a constant velocity. The  
first illustration shows the benefits of switching in pre-charged  
components while changing resolution. The second illustration  
shows the result without the benefits of switching on the fly.  
The signals that have been recorded are:  
1) VEL: velocity output pin on the RD-19230  
+5 V  
100 R  
V
2
100 k  
(OFFSET)  
-VCO  
2) ERROR: this is the analog representation of the error between  
the input and the output of the RD-19230  
-5 V  
0.8 R  
V
RD-19230  
3) D0: an input resolution control line to the RD-19230  
4) BIT: built-in-test output pin of the RD-19230  
0.4 R (SCALING)  
V
1
VEL  
When this system uses the switch resolution on the fly imple-  
mentation, the velocity signal immediately assumes the pre-  
charged level of the second set of components, resulting in small  
FIGURE 15. VELOCITY TRIMMING  
Data Device Corporation  
www.ddc-web.com  
RD-19230  
K-11/02-300  
12  
errors and reduced settling times. Notice that the BIT output,  
in FIGURE 17, does not indicate a fault condition.  
ble switching times. See FIGURE 16 for an example of the  
input wiring connections necessary for switching on the fly  
between 14 and 16 bit resolution.  
When this system type does not use the switch resolution on the  
fly implementation, large errors and increased settling times  
result. The errors exceed 100 LSBs causing the BIT to flag for a  
fault condition.  
DUAL BANDWIDTHS  
With the second set of BW component pins, the user can set two  
bandwidths for the RD-19230 and choose between them. To use  
two bandwidths, proceed as follows:  
SWITCH ON THE FLY IMPLEMENTATION  
The following steps detail switching resolution on the fly.  
1) Tie UP/DN to pin -5V.  
1) The SHIFT pin should be controlled synchronously with the  
change in resolution. When shift is logic high, the VEL1 com-  
ponents will be selected. When shift is logic 0, the VEL2 com-  
ponents will be selected.  
2) Choose the two bandwidths following the guidelines in the  
General Setup Considerations; the RV resistor must be the  
same value for both bandwidths.  
3) Use the SHIFT pin to choose between bandwidths. A logic 1  
selects the VEL1 components and a logic 0 selects the VEL2  
components.  
2) The second set of BW components (CBW2, RB2, CBW2/10  
should typically be of the same value as the first set (CBW1  
B1, CBW1/10,) and should be installed on VEL2 and VEL SJ2.  
)
,
R
Note: Each set of bandwidth components must be chosen to  
insure that the tracking rate to BW ratio (listed in  
TABLE 2) is not exceeded for the resolution in which  
it will be used.  
With Switch Resolution on the Fly Implemented  
0V  
VEL  
3) UP/DN will program the direction of the gain. If the resolution  
is increasing (UP/DN logic 0), the gain of the pre-charge  
amplifier should be set to four. If the resolution is decreasing  
(UP/DN logic 1), the gain should be set to 1/4. The gain of the  
pre-charge amplifier should be programmed prior to switching  
the resolution of the converter, allowing enough time for the  
components to settle to the pre-charged level. This time will  
depend on the time constant of the bandwidth components  
being charged. If switching is limited to two adjacent resolu-  
tions (i.e., 14 and 16) then the pre-charge amplifier can be set  
up to continuously maintain the appropriate velocity voltage  
on the deselected components, resulting in the fastest possi-  
-5V  
0˚  
ERROR  
5V  
D0  
0V  
5V  
BIT  
0V  
ERROR = 13.6 LSBs per box  
Without Switch Resolution on the Fly Implemented  
0V  
VEL  
-5V  
+5V  
0˚  
ERROR  
D1  
RD-19230  
5V  
D0  
0V  
D0  
58  
SHIFT  
5V  
27  
UP/DN  
BIT  
0V  
ERROR = 1500 LSBs per box  
FIGURE 17. BENEFIT OF SWITCHING  
RESOLUTION ON THE FLY  
FIGURE 16. INPUT WIRING - SWITCHING ON THE FLY  
BETWEEN 14 AND 16 BIT RESOLUTION  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
13  
K-11/02-300  
INHIBIT, ENABLE, AND CB TIMING  
An example circuit to create a low going edge of A_QUAD_B is  
depicted in Figure 23B. A time constant greater than 50ns  
should be considered.  
The Inhibit (INH) signal is used to freeze the digital output angle  
in the transparent output data latch while data is being trans-  
ferred. Application of an Inhibit signal does not interfere with the  
continuous tracking of the converter. As shown in FIGURE 18,  
angular output data is valid 150 ns maximum after the applica-  
tion of the negative inhibit pulse.  
The resolution of the incremental outputs is latched from the D0  
and D1 inputs on the low going edge of A_QUAD_B. The resolu-  
tion of the parallel data outputs may be changed any time after  
the encoder resolution is latched (see FIGURE 23).  
Output angle data is enabled onto the tri-state data bus in two  
bytes. Enable MSBs (EM) is used for the most significant 8 bits  
and Enable LSBs (EL) is used for the least significant 8 bits. As  
shown in FIGURE 19, output data is valid 150 ns maximum after  
the application of a negative enable pulse. The tri-state data bus  
returns to the high impedance state 100 ns maximum after the  
rising edge of the enable signal.  
When in A_QUAD_B mode, the resolution of the parallel data  
can be changed to a resolution equal to or greater than the  
A_QUAD_B resolution setting only. For example if the  
A_QUAD_B mode is active and the resolution is set to 12-bits,  
the resolution of the parallel programmed data can be changed  
using D0 & D1 to 14 or 16-bits only. If 10-bit mode is required for  
the parallel data, the A_QUAD_B resolution must also be pro-  
grammed to 10-bits.  
The Converter Busy (CB) signal indicates that the tracking con-  
verter output angle is changing 1 LSB. As shown in FIGURE 20,  
output data is valid 50 nS maximum after the middle of the CB  
pulse. CB pulse width is 1/40 FS, which is nominally 375 ns.  
Note: The encoder resolution must be less than or equal to  
the resolution of the parallel data outputs. Refer to  
FIGURE 21.  
INHIBIT  
The timing of the A, B and ZIP (or North Reference Pole [NRP])  
output is dependent on the rate of change of the  
synchro/resolver position (rps or degrees per second) and the  
encoder resolution latched into the RD-19230 (refer to  
FIGURE 22). The calculations for the timing are:  
150 nsec max  
DATA  
DATA  
VALID  
FIGURE 18. INHIBIT TIMING  
n = resolution of parallel data  
t = 1 / ( 2n* Velocity(RPS))  
T = 1 / ( Velocity(RPS))  
ENABLE  
100 nsec MAX  
HIGH Z  
150 nsec MAX  
DATA  
VALID  
DATA  
HIGH Z  
Note: The Z1 pulse is high when all the bits of the counter  
are zero. If the resolution of the counter, (parallel data) is  
programmed differently than that of the A_QUAD_B then the  
resolution of the counter will determine the resolution of the  
ZIP.  
FIGURE 19. ENABLE TIMING  
250 to 750 nsec  
CB  
50 nsec  
DATA  
VALID  
DATA  
VALID  
DATA  
CLARIFICATION OF A_QUAD_B, U/B AND  
ZIP_EN FUNCTIONS  
FIGURE 20. CONVERTER BUSY TIMING  
INTERNAL ENCODER EMULATION  
The RD-19230 is a tracking converter which is designed with a  
Type II closed servo loop. The Type II closed servo loop has an  
internal incremental integrator. This integrator acts as an up-  
down position counter. An AC error (e) within the RD-19230 rep-  
resents the difference between θ (current angle to be digitized)  
and φ (the angle stored in digital form in the up-down counter).  
Because the RD-19230 constitutes in itself a Type II closed loop  
servomechanism, it continuously attempts to null the error to  
zero. This is accomplished by counting up or down 1 LSB until φ  
is equal to θ thus having an error of zero.  
The RD-19230 can be programmed to encoder emulation mode  
by toggling the A_QUAD_B input to a logic 0. The U/B output pin  
becomes B (LSB XOR LSB + 1). The A (LSB + 1) and B output  
signals can be used in control systems that are designed to inter-  
face with incremental optical encoders. To enable the Zero Index  
pulse, ZIP_EN should be tied to a logic 0.  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
14  
K-11/02-300  
B(X- or LSB & LSB+1)  
A (LSB+1)  
When A_QUAD_B is logic 0, encoder emulation mode is select-  
ed (i.e. The U/B output [Pin 29] is programmed to B). The  
encoder emulator resolution is set on the falling edge of  
A_QUAD_B (see TABLE 7).  
2t  
ZIP (NRP)  
t
TABLE 7. A_QUAD_B (PIN 30) FUNCTION  
A_QUAD_B (PIN 30)  
U/B (PIN 29)  
T
359.95  
0
0
1
B
U
FIGURE 22. INCREMENTAL ENCODER EMULATION  
TABLE 8. ZIP_EN (PIN 55) FUNCTION  
ZIP_EN (PIN 55)  
CB/ZI (PIN 31)  
DATA  
D0/D1  
VALID  
0
1
ZI  
CB  
50 nsec  
When A_QUAD_B is logic 1, encoder emulation mode is not  
selected (i.e. The U/B output is set to U, which indicates the  
direction of the internal position counter).  
A QUAD B  
FIGURE 23A. TIMING FOR INCREMENTAL ENCODER  
EMULATION RESOLUTION CONTROL  
Note: U indicates the direction of the counter. It stands for  
“UP”. If the RD-19230 is at a static angle awaiting a  
new angle θ, U indicates the direction the counter was  
going to get to the current angle φ. As the error is  
approaching zero, the internal analog circuitry voltage  
may over shoot before settling - which would then  
indicate an incorrect direction. Because of this over  
shoot, the U output should not be relied on after set-  
tling to a static state. Only during active resolver  
movement will the U output state be reliable. U is a  
logic 1 when going in the positive direction (increas-  
ing angle). It is a logic 0 when going in the negative  
direction (decreasing angle). This is the same as it is  
in the RDC-19220.  
+5V  
C
A quad B  
R
~
= RC  
(ie. 50ms = 50Kohms x 1µf)  
FIGURE 23B. EXAMPLE CIRCUIT FOR A QUAD B  
RESET  
ZIP_EN chooses between the CB and Zero Index pulse outputs  
and is independent of encoder emulation mode. A logic 1  
enables the CB pulse, a logic 0 enables the Zero Index pulse  
(see TABLE 8).  
Note: When the RD-19230FX is set for 16-bit mode, the LSB  
is bit 16. When the RD-19230FX is set for 14-bit mode,  
the LSB is bit 14 and bits 15 and 16 are set to logic0”.  
(See TABLE 1, NOTE 1).  
RD-19230  
1
MSB  
2
3
4
5
6
7
8
SYNTHESIZED REFERENCE  
9
10  
11  
The synthesized reference section of the RD-19230 eliminates  
errors due to phase shift between the reference and signal  
inputs. Quadrature voltages in a resolver or synchro are by def-  
inition the resulting 90° fundamental signal in the nulled out error  
voltage (e) in the converter. Due to the inductive nature of syn-  
chros and resolvers, their output signals lead the reference input  
signal (RH and RL). When an uncompensated reference signal  
is used to demodulate the control transformers output, quadra-  
ture voltages are not completely eliminated. As shown in  
12  
13  
14  
15  
BIT 16 LSB  
1
0
1
2
1
4
1
6
A
B
FIGURE 21. INCREMENTAL ENCODER EMULATION  
RESOLUTION CONTROL  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
15  
K-11/02-300  
the block diagram, FIGURE 1, the converter synthesizes its own  
internal reference signal based on the SIN and COS signal  
inputs. Therefore, the phase of the synthesized (internal) refer-  
ence is determined by the signal input, resulting in reduced  
quadrature errors.  
the LVDT. The value of scaling constant bis selected to provide  
an input of 1 Vrms at null of the LVDT. Suggested components  
for implementing the input scaling circuit are a quad op-amp,  
such as a OP11 type, and precision thin-film resistors of 0.1%  
tolerance. FIGURE 24 illustrates a 2-wire LVDT configuration.  
Data output of the RD-19230 is Binary Coded in LVDT mode.The  
most negative stroke of the LVDT is represented by ALL ZEROS  
and the most positive stroke of the LVDT is represented by ALL  
ONES.The most significant 2 bits (2 MSBs) may be used as over-  
range indicators. Positive overrange is indicated by code 01and  
negative overrange is indicated by code 11(see TABLE 9).  
BUILT-IN-TEST (BIT)  
The BIT output is active low, and is triggered if any of the follow-  
ing conditions exist:  
1) Loss of Signal (LOS) - Sin and Cos inputs both less than  
500mV.  
2) Loss of Reference (LOR) - Reference Input less than 500 mV.  
TABLE 9. 12-BIT LVDT OUTPUT CODE  
FOR FIGURE 25  
3) Excessive Error - This error is detected by monitoring the  
demodulator output, which is proportional to the difference  
between the analog input and digital output. When it exceeds  
approximately 100 LSBs (in the selected resolution), BIT will  
be asserted. This condition can occur any time the analog  
input changes at a rate in excess of the maximum tracking  
rate. During power up, the converter may see a large differ-  
ence between the sin/cos inputs and the digital output angle  
held in its counter. BIT will be asserted until the converter set-  
tles within ~ 100 LSBs of the final result.  
LVDT OUTPUT  
MSB  
LSB  
+ over full travel  
+ full travel -1 LSB  
+0.5 travel  
+1 LSB  
null  
- 1 LSB  
-0.5 travel  
- full travel  
- over full travel  
01  
00  
00  
00  
00  
00  
00  
00  
11  
xxxx  
1111  
1100  
1000  
1000  
0111  
0100  
0000  
xxxx  
xxxx  
1111  
0000  
0000  
0000  
1111  
0000  
0000  
xxxx  
xxxx  
1111  
0000  
0001  
0000  
1111  
0000  
0000  
xxxx  
4) 180° phase error input signal to reference input (false null)  
causes a BIT plus kickstarts the converter counter to correct  
the error.  
The LOS has a filter on it to filter out the reference. Since the  
lowest specified reference frequency is 47 Hz (~27 mS), the  
filter must have a time constant long enough to filter this out.  
Time constants of 50 mS or more are possible.  
C1  
SIN  
aR  
A 500 µs dynamic delay occurs before the error BIT becomes  
active. This dynamic delay is responsive to the active filter  
loop.  
-S  
2 WIRE LVDT  
R
-
R
+S  
REF IN  
R
+
FS = 2 V  
aR  
C2  
COS  
bR  
R
LVDT MODE  
R
2R  
-C  
R
R
As shown in TABLE 1, the RD-19230 unit can be made to oper-  
ate as an LVDT-to-digital converter. In this mode the RD-19230  
functions as a ratiometric tracking linear converter. When linear  
AC inputs are applied from a LVDT the converter operates over  
one quarter of its range. This results in two less bits of resolution  
for LVDT mode than are provided in resolver mode.  
-
2R  
+C  
+
2 V  
R
bR  
+RH  
-RL  
C
= C , set for phase lag = phase lead through the LVDT.  
2
1
LDVT output signals need to be scaled to be compatible with the  
converter input. FIGURE 25 is a schematic of an input scaling  
circuit applicable to 3-wire LVDTs. The value of the scaling con-  
stant ais selected to provide an input of 2 Vrms at full stroke of  
FIGURE 24. 2-WIRE LVDT DIRECT INPUT  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
16  
K-11/02-300  
aR  
SIN  
-S  
R
R
V
B
-
R'  
R'  
+S  
+
R'  
aR  
bR  
R
2R'  
COS  
-C  
R
-
V
A
R'  
R/2  
2R'  
+
+C  
+RH  
-RL  
bR  
Notes:  
1. R' 10 kΩ  
2. Consideration for the value of R is LVDT loading.  
1
null  
1
VB  
b =  
=
VA  
null  
RDC-19230  
INPUT  
LVDT  
OUTPUT  
2
a =  
2V  
SIN  
(VA - VB) max  
V
A
1V  
a
SIN = 1+ (VA - VB)  
2
V
B
COS  
+FS  
+FS  
NULL  
-FS  
-FS  
NULL  
a
COS = 1- (VA - VB)  
2
FIGURE 25. 3-WIRE LVDT SCALING CIRCUIT  
Data Device Corporation  
www.ddc-web.com  
RD-19230  
K-11/02-300  
17  
TABLE 10. RD-19230 PINOUTS  
#
1
NAME  
#
NAME  
VSS (-5V)  
#
NAME  
VDD (+5V)  
N/C  
#
NAME  
VEL  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Bit 8  
2
-VCO  
TP3 (test point)  
R CLK  
R SET  
ENM  
Bit 16  
3
SJ1  
Bit 9  
A (LSB + 1)  
TP4 (test point)  
N/C  
4
SJ2  
Bit 2  
5
SHIFT  
Bit 10  
Bit 3  
6
VEL2  
AGND  
VSSP  
TP5 (test point)  
ZIP_EN  
TP6 (test point)  
ENL  
7
TP1 (test point)  
Bit 11  
Bit 4  
8
VEL1  
NCAP  
GND  
9
TP2 (test point)  
N/C  
10  
11  
12  
13  
14  
15  
16  
+C  
PCAP  
Bit 12  
Bit 5  
VDD (+5V)  
UP/DN  
D0  
COS  
-C  
VDDP  
BIT  
Bit 13  
Bit 6  
+S  
U/B  
D1  
SIN  
A_QUAD_B  
CB (ZI)  
Bit 1  
Bit 14  
Bit 7  
INH  
-S  
RH  
VSS (-5V)  
Bit 15  
RL  
NOTES:  
1. See FIGURE 5 for +5 V only operation.  
0.078+0.004  
-0.002  
2.00+0.10  
-0.05  
(
)
17  
32  
0.096MAX  
(2.45MAX)  
16  
33  
0.0098MIN,0.0197MAX  
(0.25MIN,0.50MAX)  
0.0197  
(0.50)  
0.520±0.010  
(13.2±0.25)  
RD-19230FX  
-XXX  
0.394±0.004  
(10.00±0.10)  
*
Date Code  
pin1  
48  
0.0098MIN,0.0197MAX  
(0.25MIN,0.50MAX)  
0.096MAX  
(2.45MAX)  
49  
64  
0.394±0.004  
(10.00±0.10)  
0.007MAX  
(0.17MAX)  
*
0.008  
(0.22)  
0.520±0.010  
(13.2±0.25)  
0.035+0.006  
-0.004  
0.88+0.15  
(
)
-0.10  
Dimensions shown are in inches (millimeters).  
Mechanical Design done in millimeters.  
DIMENSIONS SHOWN ARE TO  
DOTTED LINES  
*
FIGURE 26. RD-19230 MECHANICAL OUTLINE  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
18  
K-11/02-300  
TABLE 11. FRONT-END THIN-FILM RESISTOR  
NETWORKS(SEE FIGURE 28)  
16  
15  
14  
13  
12  
11  
10  
9
DDC-49530, DDC-57470 RESISTOR VALUES (11.8 V INPUTS)  
SYMBOL  
ABS  
VALUE  
TOL  
(%)  
REL TO  
REL  
VALUE  
TOL TCR(PPM)  
(%)  
R1  
R2  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
70.8 k  
0.1  
25  
R1  
R4  
12 k  
12 k  
0.02  
0.02  
0.02  
0.02  
0.02  
2
2
2
2
2
2
2
2
2
2
1
2
3
4
5
6
7
8
R1  
70.8 k  
70.8 k  
35.4 k  
FIGURE 27. (DDC-55688)  
LAYOUT AND RESISTOR VALUES  
(R1 AND R2 = 10 K 1.0% TOL,  
R1  
R1  
R6  
6.9282 k 0.02  
5.0718 k 0.02  
ABSOLUTE TC = ±100 PPM MAX)  
R6  
R11  
R11  
R1  
5.0718  
6.9282 k 0.02  
70.8 k 0.02  
0.02  
DDC-49590 RESISTOR VALUES (90 V INPUTS)  
270 k 0.1  
16  
15  
R10  
14  
R9  
13  
12  
R8  
11  
R7  
10  
R6  
9
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
25  
2
2
2
2
2
2
2
2
2
2
R1  
R4  
6 k  
0.02  
0.02  
0.02  
0.02  
0.02  
R11  
6 k  
R1  
270 k  
270 k  
135 k  
R1  
R2  
R3  
R4  
R5  
R1  
R1  
R6  
3.4641 k 0.02  
2.5359 k 0.02  
2.5359 k 0.02  
3.4641 k 0.02  
1
2
3
4
5
6
7
8
R6  
R11  
R11  
R1  
FIGURE 28. (DDC-49530, DDC-49590, DDC-57470)  
LAYOUT AND RESISTOR VALUES (SEE TABLE 11)  
270 k  
0.02  
0.870 MAX  
(22.10)  
.405  
7˚  
45˚  
0.250 ±0.005  
(6.35 ±0.13)  
0.299  
(7.6)  
0.101  
(2.6)  
0.406  
(10.3)  
0.320 - 0.300  
(8.13 - 7.62)  
0.014  
(.36)  
0.13 ±0.005  
(3.30 ±0.13)  
0.342  
(8.7)  
0.009  
(0.23)  
0.092  
(2.3)  
0.015 ±0.009  
(0.38 ±0.23)  
0.020 MIN  
(0.51)  
0.125 MIN  
(3.18)  
0.075 ±0.015  
(1.91 ±0.38)  
0.018 ±0.003  
(0.46 ±0.08)  
0.016  
(0.40)  
+0.025  
0.325  
0.050  
(1.27)  
-0.015  
0.100 TYP  
(2.54)  
+0.64  
(8.26  
)
-0.38  
DIMENSIONS SHOWN ARE IN INCHES (MM).  
DIMENSIONS SHOWN ARE IN INCHES (MM).  
FIGURE 29. 16-PIN THIN-FILM RESISTOR NETWORK  
DIP MECHANICAL OUTLINE  
FIGURE 30. 16-PIN THIN-FILM RESISTOR NETWORK  
FLAT-PACK MECHANICAL OUTLINE  
(DDC-57470)  
(DDC-49530, DDC-49590, DDC-55688)  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
19  
K-11/02-300  
0.810 MAX  
XXX-XXX  
0.305 MAX  
0.200 MAX  
0.300 ±0.10  
DATECODE  
Pin #1  
0.125 MIN  
0.100 TYP  
0.820 MAX  
XXX-XXX  
0.260 ±0.010  
0.200 MAX  
DATECODE  
Pin #1  
0.325 ±0.010  
0.125 MIN  
0.010 TYP  
0.087 MAX  
0.100 TYP  
DIMENSIONS SHOWN ARE IN INCHES  
FIGURE 31. 16-PIN THIN-FILM RESISTOR NETWORK DIP MECHANICAL OUTLINE  
(ALTERNATIVE CERAMIC PACKAGE FOR DDC-49590)  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
20  
K-11/02-300  
NOTES:  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
21  
K-11/02-300  
NOTES:  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
22  
K-11/02-300  
NOTES:  
Data Device Corporation  
RD-19230  
www.ddc-web.com  
23  
K-11/02-300  
ORDERING INFORMATION  
RD-19230FX-X X X X  
Supplemental Process Requirements:  
T = Tape and Reel (50 pc. min. order)  
Accuracy:  
2 = 4 min + 1 LSB  
3 = 2 min + 1 LSB  
Reliability:  
0 = Standard DDC Procedures  
Operating Temperature Range:  
2 = -40° to +85°C  
3 = 0° to +70°C  
Notes:  
1) DDC reserves the right to supply ceramic packages in place of plastic packages.  
2) Consult factory for External Component Selection Software.  
3) DDC does not recommend Tape and Reel due to potential lead damage.  
THIN-FILM RESISTOR NETWORKS:  
DDC-49530 = 11.8 V input, DIP package  
DDC-57470 = 11.8 V input, Flat-pack package  
DDC-49590 = 90 V input, DIP package  
DDC-55688 = 2 V direct, DIP package  
COMPONENT SELECTION SOFTWARE:  
Component selection software can be downloaded from our website ( www.ddc-web.com )  
Evaluation Card Available  
P/N RD19230EX-300 (See the DDC website for this cards user guide)  
The information in this data sheet is believed to be accurate; however, no responsibility is  
assumed by Data Device Corporation for its use, and no license or rights are  
granted by implication or otherwise in connection therewith.  
Specifications are subject to change without notice.  
105 Wilbur Place, Bohemia, New York, U.S.A. 11716-2482  
For Technical Support - 1-800-DDC-5757 ext. 7382  
Headquarters, N.Y., U.S.A. - Tel: (631) 567-5600, Fax: (631) 567-7358  
Southeast, U.S.A. - Tel: (703) 450-7900, Fax: (703) 450-6610  
West Coast, U.S.A. - Tel: (714) 895-9777, Fax: (714) 895-4988  
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264  
Ireland - Tel: +353-21-341065, Fax: +353-21-341568  
France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425  
Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089  
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689  
World Wide Web - http://www.ddc-web.com  
U
®
DATA DEVICE CORPORATION  
REGISTERED TO ISO 9001  
FILE NO. A5976  
K-11/02-300  
24  
PRINTED IN THE U.S.A.  

相关型号:

RD-2405D

ECONOLINE - DC/DC - CONVERTER
RECOM

RD-2405D/H

CONV DC/DC 2W 24VIN +/-05VOUT
ETC

RD-2405D/HP

CONV DC/DC 2W 24VIN +/-05VOUT
ETC

RD-2405D/P

CONV DC/DC 2W 24VIN +/-05VOUT
ETC

RD-2405DHP

2 Watt SIP7 & DIP14 Dual Output
RECOM

RD-2405DP

2 Watt SIP7 & DIP14 Dual Output
RECOM

RD-2409D

ECONOLINE - DC/DC - CONVERTER
RECOM

RD-2409DHP

2 Watt SIP7 & DIP14 Dual Output
RECOM

RD-2409DP

2 Watt SIP7 & DIP14 Dual Output
RECOM

RD-2412D

ECONOLINE - DC/DC - CONVERTER
RECOM

RD-2412D/H

CONV DC/DC 2W 24VIN +/-12VOUT
ETC

RD-2412D/HP

CONV DC/DC 2W 24VIN +/-12VOUT
ETC