MUN5211DW1T1/D [ETC]

Dual Bias Resistor Transistors ; 双偏置电阻晶体管\n
MUN5211DW1T1/D
型号: MUN5211DW1T1/D
厂家: ETC    ETC
描述:

Dual Bias Resistor Transistors
双偏置电阻晶体管\n

晶体 晶体管
文件: 总12页 (文件大小:108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MUN5211DW1T1 Series  
Preferred Devices  
Dual Bias Resistor  
Transistors  
NPN Silicon Surface Mount Transistors  
with Monolithic Bias Resistor Network  
http://onsemi.com  
The BRT (Bias Resistor Transistor) contains a single transistor with  
a monolithic bias network consisting of two resistors; a series base  
resistor and a base–emitter resistor. These digital transistors are  
designed to replace a single device and its external resistor bias  
network. The BRT eliminates these individual components by  
integrating them into a single device. In the MUN5211DW1T1 series,  
two BRT devices are housed in the SOT–363 package which is ideal  
for low power surface mount applications where board space is at a  
premium.  
(3)  
(2)  
(1)  
R
R
1
2
Q
1
Q
2
R
2
R
1
6
(4)  
(5)  
(6)  
Simplifies Circuit Design  
Reduces Board Space  
Reduces Component Count  
Available in 8 mm, 7 inch/3000 Unit Tape and Reel  
5
4
1
2
MAXIMUM RATINGS  
3
(T = 25°C unless otherwise noted, common for Q and Q )  
A
1
2
SOT–363  
CASE 419B  
STYLE 1  
Rating  
Symbol  
Value  
Unit  
Vdc  
Collector-Base Voltage  
Collector-Emitter Voltage  
Collector Current  
V
V
50  
50  
CBO  
CEO  
Vdc  
I
C
100  
mAdc  
MARKING DIAGRAM  
THERMAL CHARACTERISTICS  
Characteristic  
(One Junction Heated)  
7x  
Symbol  
Max  
Unit  
Total Device Dissipation  
P
187 (Note 1.)  
256 (Note 2.)  
1.5 (Note 1.)  
2.0 (Note 2.)  
mW  
D
T = 25°C  
A
Derate above 25°C  
mW/°C  
°C/W  
7x = Device Marking  
= (See Page 2)  
Thermal Resistance –  
Junction-to-Ambient  
R
670 (Note 1.)  
490 (Note 2.)  
θ
JA  
Characteristic  
(Both Junctions Heated)  
DEVICE MARKING INFORMATION  
Symbol  
Max  
Unit  
See specific marking information in the device marking table  
on page 2 of this data sheet.  
Total Device Dissipation  
P
250 (Note 1.)  
385 (Note 2.)  
2.0 (Note 1.)  
3.0 (Note 2.)  
mW  
D
T = 25°C  
A
Derate above 25°C  
mW/°C  
°C/W  
°C/W  
°C  
Preferred devices are recommended choices for future use  
and best overall value.  
Thermal Resistance –  
Junction-to-Ambient  
R
493 (Note 1.)  
325 (Note 2.)  
θ
JA  
JL  
Thermal Resistance –  
Junction-to-Lead  
R
188 (Note 1.)  
208 (Note 2.)  
θ
Junction and Storage Temperature T , T  
–55 to +150  
J
stg  
1. FR–4 @ Minimum Pad  
2. FR–4 @ 1.0 x 1.0 inch Pad  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
January, 2001 – Rev. 3  
MUN5211DW1T1/D  
MUN5211DW1T1 Series  
DEVICE MARKING AND RESISTOR VALUES  
Device  
Package  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
SOT–363  
Marking  
7A  
R1 (K)  
10  
R2 (K)  
10  
Shipping  
MUN5211DW1T1  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
3000/Tape & Reel  
MUN5212DW1T1  
7B  
22  
22  
MUN5213DW1T1  
7C  
47  
47  
MUN5214DW1T1  
7D  
10  
47  
MUN5215DW1T1 (Note 3.)  
MUN5216DW1T1 (Note 3.)  
MUN5230DW1T1 (Note 3.)  
MUN5231DW1T1 (Note 3.)  
MUN5232DW1T1 (Note 3.)  
MUN5233DW1T1 (Note 3.)  
MUN5234DW1T1 (Note 3.)  
MUN5235DW1T1 (Note 3.)  
MUN5236DW1T1 (Note 3.)  
MUN5237DW1T1 (Note 3.)  
7E  
10  
7F  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
7G  
7H  
1.0  
2.2  
4.7  
47  
7J  
7K  
7L  
47  
7M  
7N  
2.2  
100  
47  
47  
100  
22  
7P  
ELECTRICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted, common for Q and Q )  
A
1
2
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Collector-Base Cutoff Current (V = 50 V, I = 0)  
I
I
100  
500  
nAdc  
nAdc  
mAdc  
CB  
E
CBO  
Collector-Emitter Cutoff Current (V = 50 V, I = 0)  
CE  
B
CEO  
Emitter-Base Cutoff Current  
(V = 6.0 V, I = 0)  
MUN5211DW1T1  
MUN5212DW1T1  
MUN5213DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
MUN5236DW1T1  
MUN5237DW1T1  
I
0.5  
0.2  
0.1  
0.2  
0.9  
1.9  
4.3  
2.3  
1.5  
0.18  
0.13  
0.2  
0.05  
0.13  
EBO  
EB  
C
Collector-Base Breakdown Voltage (I = 10 µA, I = 0)  
V
V
50  
50  
Vdc  
Vdc  
C
E
(BR)CBO  
Collector-Emitter Breakdown Voltage (Note 4.) (I = 2.0 mA, I = 0)  
C
B
(BR)CEO  
3. New resistor combinations. Updated curves to follow in subsequent data sheets.  
4. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
http://onsemi.com  
2
MUN5211DW1T1 Series  
ELECTRICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted, common for Q and Q ) (Continued)  
A
1
2
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ON CHARACTERISTICS (Note 5.)  
DC Current Gain  
MUN5211DW1T1  
MUN5212DW1T1  
MUN5213DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
MUN5236DW1T1  
MUN5237DW1T1  
h
FE  
35  
60  
80  
60  
(V = 10 V, I = 5.0 mA)  
100  
140  
140  
350  
350  
5.0  
CE  
C
80  
160  
160  
3.0  
8.0  
15  
80  
80  
80  
80  
15  
30  
200  
150  
140  
150  
140  
80  
Collector-Emitter Saturation Voltage  
(I = 10 mA, I = 0.3 mA)  
V
0.25  
Vdc  
Vdc  
CE(sat)  
C
B
(I = 10 mA, I = 5 mA) MUN5230DW1T1/MUN5231DW1T1  
C
B
(I = 10 mA, I = 1 mA) MUN5215DW1T1/MUN5216DW1T1  
C
B
MUN5232DW1T1/MUN5233DW1T1/MUN5234DW1T1  
Output Voltage (on)  
(V = 5.0 V, V = 2.5 V, R = 1.0 k)  
V
OL  
MUN5211DW1T1  
MUN5212DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
MUN5213DW1T1  
MUN5236DW1T1  
MUN5237DW1T1  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
CC  
B
L
(V = 5.0 V, V = 3.5 V, R = 1.0 k)  
CC  
B
L
(V = 5.0 V, V = 5.5 V, R = 1.0 k)  
CC  
B
L
(V = 5.0 V, V = 4.0 V, R = 1.0 k)  
CC  
B
L
Output Voltage (off)  
(V = 5.0 V, V = 0.5 V, R = 1.0 k)  
V
OH  
4.9  
Vdc  
CC  
B
L
(V = 5.0 V, V = 0.050 V, R = 1.0 k) MUN5230DW1T1  
CC  
B
L
(V = 5.0 V, V = 0.25 V, R = 1.0 k)  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5233DW1T1  
CC  
B
L
5. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
http://onsemi.com  
3
MUN5211DW1T1 Series  
ELECTRICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted, common for Q and Q ) (Continued)  
A
1
2
Characteristic  
ON CHARACTERISTICS (Note 6.) (Continued)  
Input Resistor  
Symbol  
Min  
Typ  
Max  
Unit  
MUN5211DW1T1  
MUN5212DW1T1  
MUN5213DW1T1  
MUN5214DW1T1  
MUN5215DW1T1  
MUN5216DW1T1  
MUN5230DW1T1  
MUN5231DW1T1  
MUN5232DW1T1  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
MUN5236DW1T1  
MUN5237DW1T1  
R1  
7.0  
15.4  
32.9  
7.0  
7.0  
3.3  
0.7  
1.5  
3.3  
3.3  
10  
22  
47  
10  
10  
4.7  
1.0  
2.2  
4.7  
4.7  
22  
2.2  
100  
47  
13  
28.6  
61.1  
13  
13  
6.1  
1.3  
2.9  
6.1  
6.1  
k Ω  
15.4  
1.54  
70  
28.6  
2.86  
130  
61.1  
32.9  
Resistor Ratio MUN5211DW1T1/MUN5212DW1T1/  
MUN5213DW1T1/MUN5236DW1T1  
MUN5214DW1T1  
R1/R2  
0.8  
0.17  
1.0  
0.21  
1.2  
0.25  
MUN5215DW1T1/MUN5216DW1T1  
MUN5230DW1T1/MUN5231DW1T1/MUN5232DW1T1  
0.8  
1.0  
1.2  
MUN5233DW1T1  
MUN5234DW1T1  
MUN5235DW1T1  
MUN5237DW1T1  
0.055  
0.38  
0.038  
1.7  
0.1  
0.185  
0.56  
0.056  
2.6  
0.47  
0.047  
2.1  
6. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%  
300  
250  
200  
150  
100  
R
= 833°C/W  
50  
0
θ
JA  
–50  
0
50  
100  
150  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 1. Derating Curve  
http://onsemi.com  
4
MUN5211DW1T1 Series  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5211DW1T1  
1
1000  
I /I = 10  
C B  
V
CE  
= 10 V  
T Ă=Ă-25°C  
A
25°C  
T Ă=Ă75°C  
A
25°C  
0.1  
-25°C  
75°C  
100  
0.01  
0.001  
10  
0
20  
40  
50  
1
10  
100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 2. VCE(sat) versus IC  
Figure 3. DC Current Gain  
4
3
100  
10  
25°C  
75°C  
f = 1 MHz  
I = 0 V  
E
T Ă=Ă-25°C  
A
T = 25°C  
A
1
0.1  
2
1
0
0.01  
0.001  
V = 5 V  
O
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
9
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 4. Output Capacitance  
Figure 5. Output Current versus Input Voltage  
10  
V = 0.2 V  
O
T Ă=Ă-25°C  
A
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 6. Input Voltage versus Output Current  
http://onsemi.com  
5
MUN5211DW1T1 Series  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5212DW1T1  
1000  
1
V
CE  
= 10 V  
I /I = 10  
C B  
T Ă=Ă75°C  
A
25°C  
25°C  
T Ă=Ă-25°C  
A
0.1  
-25°C  
75°C  
100  
0.01  
10  
0.001  
1
10  
100  
0
20  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 7. VCE(sat) versus IC  
Figure 8. DC Current Gain  
4
3
2
1
0
100  
10  
1
75°C  
25°C  
f = 1 MHz  
I = 0 V  
T Ă=Ă-25°C  
A
E
T = 25°C  
A
0.1  
0.01  
V = 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 9. Output Capacitance  
Figure 10. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T Ă=Ă-25°C  
A
10  
1
25°C  
75°C  
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 11. Input Voltage versus Output Current  
http://onsemi.com  
6
MUN5211DW1T1 Series  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5213DW1T1  
10  
1
1000  
V
= 10 V  
CE  
I /I = 10  
C B  
T Ă=Ă75°C  
A
25°C  
-25°C  
25°C  
75°C  
100  
T Ă=Ă-25°C  
A
0.1  
0.01  
10  
0
20  
I , COLLECTOR CURRENT (mA)  
40  
50  
1
10  
100  
I , COLLECTOR CURRENT (mA)  
C
C
Figure 12. VCE(sat) versus IC  
Figure 13. DC Current Gain  
1
100  
10  
1
25°C  
f = 1 MHz  
I = 0 V  
75°C  
E
T Ă=Ă-25°C  
A
0.8  
T = 25°C  
A
0.6  
0.4  
0.1  
0.01  
0.2  
0
V = 5 V  
O
0.001  
0
10  
20  
30  
40  
50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 14. Output Capacitance  
Figure 15. Output Current versus Input Voltage  
100  
V = 0.2 V  
O
T Ă=Ă-25°C  
A
25°C  
75°C  
10  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 16. Input Voltage versus Output Current  
http://onsemi.com  
7
MUN5211DW1T1 Series  
TYPICAL ELECTRICAL CHARACTERISTICS — MUN5214DW1T1  
1
300  
T Ă=Ă75°C  
A
V
CE  
= 10  
I /I = 10  
C B  
T Ă=Ă-25°C  
250  
200  
150  
100  
A
25°C  
25°C  
75°C  
0.1  
-25°C  
0.01  
50  
0
0.001  
0
20  
40  
60  
80  
1
2
4
6
8
10 15 20 40 50 60 70 80 90 100  
I , COLLECTOR CURRENT (mA)  
C
I , COLLECTOR CURRENT (mA)  
C
Figure 17. VCE(sat) versus IC  
Figure 18. DC Current Gain  
4
3.5  
3
100  
10  
1
f = 1 MHz  
l = 0 V  
T Ă=Ă75°C  
25°C  
A
E
T = 25°C  
A
-25°C  
2.5  
2
1.5  
1
V = 5 V  
O
0.5  
0
0
2
4
6
8
10 15 20 25 30 35 40 45 50  
0
2
4
6
8
10  
V , REVERSE BIAS VOLTAGE (VOLTS)  
R
V , INPUT VOLTAGE (VOLTS)  
in  
Figure 19. Output Capacitance  
Figure 20. Output Current versus Input Voltage  
10  
V = 0.2 V  
O
T Ă=Ă-25°C  
A
25°C  
75°C  
1
0.1  
0
10  
20  
30  
40  
50  
I , COLLECTOR CURRENT (mA)  
C
Figure 21. Input Voltage versus Output Current  
http://onsemi.com  
8
MUN5211DW1T1 Series  
INFORMATION FOR USING THE SOT–363 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the  
total design. The footprint for the semiconductor packages  
must be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
SOT–363  
0.5 mm (min)  
1.9 mm  
SOT–363 POWER DISSIPATION  
The power dissipation of the SOT–363 is a function of  
one can calculate the power dissipation of the device which  
in this case is 256 milliwatts.  
the pad size. This can vary from the minimum pad size for  
soldering to the pad size given for maximum power  
dissipation. Power dissipation for a surface mount device is  
150°C – 25°C  
PD =  
= 256 milliwatts  
490°C/W  
determined by T  
, the maximum rated junction  
J(max)  
The 490°C/W for the SOT–363 package assumes the use  
of the recommended footprint on a glass epoxy printed  
circuit board to achieve a power dissipation of 256  
milliwatts. There are other alternatives to achieving higher  
power dissipation from the SOT–363 package. Another  
alternative would be to use a ceramic substrate or an  
aluminum core board such as Thermal Clad . Using a  
board material such as Thermal Clad, an aluminum core  
board, the power dissipation can be doubled using the same  
footprint.  
temperature of the die, R , the thermal resistance from  
the device junction to ambient; and the operating  
θJA  
temperature, T . Using the values provided on the data  
A
sheet, P can be calculated as follows:  
D
T
J(max) – TA  
Rθ  
PD =  
JA  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values  
into the equation for an ambient temperature T of 25°C,  
A
SOLDERING PRECAUTIONS  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within  
a short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering  
method, the difference should be a maximum of 10°C.  
The soldering temperature and time should not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient should be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and  
result in latent failure due to mechanical stress.  
Mechanical stress or shock should not be applied  
during cooling.  
* Soldering a device without preheating can cause  
excessive thermal shock and stress which can result in  
damage to the device.  
http://onsemi.com  
9
MUN5211DW1T1 Series  
SOLDER STENCIL GUIDELINES  
Prior to placing surface mount components onto a printed  
or stainless steel with a typical thickness of 0.008 inches.  
The stencil opening size for the surface mounted package  
should be the same as the pad size on the printed circuit  
board, i.e., a 1:1 registration.  
circuit board, solder paste must be applied to the pads. A  
solder stencil is required to screen the optimum amount of  
solder paste onto the footprint. The stencil is made of brass  
TYPICAL SOLDER HEATING PROFILE  
For any given circuit board, there will be a group of  
control settings that will give the desired heat pattern. The  
operator must set temperatures for several heating zones,  
and a figure for belt speed. Taken together, these control  
settings make up a heating “profile” for that particular  
circuit board. On machines controlled by a computer, the  
computer remembers these profiles from one operating  
session to the next. Figure 22 shows a typical heating  
profile for use when soldering a surface mount device to a  
printed circuit board. This profile will vary among  
soldering systems but it is a good starting point. Factors that  
can affect the profile include the type of soldering system in  
use, density and types of components on the board, type of  
solder used, and the type of board or substrate material  
being used. This profile shows temperature versus time.  
The line on the graph shows the actual temperature that  
might be experienced on the surface of a test board at or  
near a central solder joint. The two profiles are based on a  
high density and a low density board. The Vitronics  
SMD310 convection/infrared reflow soldering system was  
used to generate this profile. The type of solder used was  
62/36/2 Tin Lead Silver with a melting point between  
177–189°C. When this type of furnace is used for solder  
reflow work, the circuit boards and solder joints tend to  
heat first. The components on the board are then heated by  
conduction. The circuit board, because it has a large surface  
area, absorbs the thermal energy more efficiently, then  
distributes this energy to the components. Because of this  
effect, the main body of a component may be up to 30  
degrees cooler than the adjacent solder joints.  
STEP 5  
HEATING  
ZONES 4 & 7  
SPIKE"  
STEP 6 STEP 7  
VENT COOLING  
STEP 1  
PREHEAT  
ZONE 1  
RAMP"  
STEP 2  
VENT  
STEP 3  
HEATING  
STEP 4  
HEATING  
ZONES 3 & 6  
SOAK"  
SOAK" ZONES 2 & 5  
RAMP"  
205° TO 219°C  
PEAK AT  
SOLDER JOINT  
200°C  
150°C  
170°C  
DESIRED CURVE FOR HIGH  
MASS ASSEMBLIES  
160°C  
150°C  
SOLDER IS LIQUID FOR  
40 TO 80 SECONDS  
(DEPENDING ON  
140°C  
100°C  
MASS OF ASSEMBLY)  
100°C  
50°C  
DESIRED CURVE FOR LOW  
MASS ASSEMBLIES  
TIME (3 TO 7 MINUTES TOTAL)  
T
MAX  
Figure 22. Typical Solder Heating Profile  
http://onsemi.com  
10  
MUN5211DW1T1 Series  
PACKAGE DIMENSIONS  
SOT–363  
CASE 419B–01  
ISSUE G  
A
G
V
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
6
1
5
4
3
S
–B–  
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
0.2 (0.008)  
D 6 PL  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
V
N
0.008 REF  
0.20 REF  
0.079  
0.012  
0.087  
0.016  
2.00  
0.30  
2.20  
0.40  
J
STYLE 1:  
C
PIN 1. EMITTER 2  
2. BASE 2  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 1  
K
6. COLLECTOR 2  
H
http://onsemi.com  
11  
MUN5211DW1T1 Series  
Thermal Clad is a trademark of the Bergquist Company  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
MUN5211DW1T1/D  

相关型号:

MUN5211DW1T1G

Dual Bias Resistor Transistors
ONSEMI

MUN5211DW1T1G_09

Dual Bias Resistor Transistors
ONSEMI

MUN5211DW1T1_05

Dual Bias Resistor Transistors
ONSEMI

MUN5211DW1T2

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 2-Element, NPN, Silicon
MOTOROLA

MUN5211DW1T3

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 2-Element, NPN, Silicon, CASE 419B-01, 6 PIN
MOTOROLA

MUN5211DW_08

Surface Mount Dual Bias Resistor Transistor
WEITRON

MUN5211T1

NPN SILICON BIAS RESISTOR TRANSISTORS
MOTOROLA

MUN5211T1

NPN SILICON BIAS RESISTOR TRANSISTORS
ONSEMI

MUN5211T1

100mA, 50V, NPN, Si, SMALL SIGNAL TRANSISTOR, CASE 419-04, SC-70, 3 PIN
ROCHESTER

MUN5211T1/D

Bias Resistor Transistor
ETC

MUN5211T1G

NPN SILICON BIAS RESISTOR TRANSISTORS
ONSEMI

MUN5211T1_06

Bias Resistor Transistor
ONSEMI