HYS72D32501GR-8-A [ETC]

?256MB (32Mx72) PC1600 1-bank ? ; ? 256MB ( 32Mx72 ) PC1600 1 ,行吗?\n
HYS72D32501GR-8-A
型号: HYS72D32501GR-8-A
厂家: ETC    ETC
描述:

?256MB (32Mx72) PC1600 1-bank ?
? 256MB ( 32Mx72 ) PC1600 1 ,行吗?\n

PC
文件: 总18页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HYS 72D16500/32501GR-7/8-A  
Low Profile Registered DDR-I SDRAM-Modules  
2.5 V Low Profile 184-pin Registered DDR-I SDRAM Modules  
128MB, 256MB, 512MB, 1GByte & 2GByte Modules  
PC1600 & PC2100  
Preliminary Datasheet Rev. 0.9  
184-pin Registered 8-Byte Dual-In-Line  
DDR-I SDRAM Module for “1U” PC,  
Workstation and Server main memory  
applications  
All inputs and outputs SSTL_2 compatible  
Re-drive for all input signals using register  
and PLL devices.  
Serial Presence Detect with E2PROM  
One bank 16M x 72, 32M × 72 organization  
Low Profile Modules form factor:  
133.35 mm x 30,40 mm (1.2”) x 4.00 mm  
(6,80 mm with stacked components)  
JEDEC standard Double Data Rate  
Synchronous DRAMs (DDR-I SDRAM) with a  
single + 2.5 V ( 0.2 V) power supply  
Based on Jedec standard reference card  
layouts RawCard “L”, “M”  
Built with DDR-I SDRAMs in 66-Lead TSOPII  
package  
Gold plated contacts  
Programmable CAS Latency, Burst Length,  
and Wrap Sequence (Sequential &  
Interleave)  
Auto Refresh (CBR) and Self Refresh  
Performance:  
-7  
-8  
Unit  
Component Speed Grade  
Module Speed Grade  
DDR266A DDR200  
PC2100  
143  
PC1600  
125  
fCK  
fCK  
Clock Frequency (max.) @ CL = 2.5  
Clock Frequency (max.) @ CL = 2  
MHz  
MHz  
133  
100  
The HYS72Dxx5x0GR are low profile versions of the standard Registered DIMM modules with 1.2”  
inch (30,40 mm) height for 1U Server Applications. The Low Profile DIMM versions are available as  
16M x 72 (128MB) and 32M x 72 (256MB).  
The memory array is designed with Double Data Rate Synchronous DRAMs for ECC applications.  
All control and address signals are re-driven on the DIMM using register devices and a PLL for the  
clock distribution. This reduces capacitive loading to the system bus, but adds one cycle to the  
SDRAM timing. A variety of decoupling capacitors are mounted on the PC board. The DIMMs  
feature serial presence detect based on a serial E2PROM device using the 2-pin I2C protocol. The  
first 128 bytes are programmed with configuration data and the second 128 bytes are available to  
the customer.  
INFINEON Technologies  
1
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Ordering Information  
Type  
Compliance Code Description  
SDRAM  
Module  
Technology height  
PC2100 (CL=2):  
HYS72D16500GR-7-A  
HYS 72D32501GR-7-A  
PC1600 (CL=2):  
PC2100R-20330-L  
PC2100R-20330-M  
one bank 128 MB Reg. DIMM  
128 MBit (x8) 1.2”  
128 MBit (x4) 1.2”  
one bank 256 MB Reg. DIMM  
HYS72D16500GR-8-A  
HYS 72D32501GR-8-A  
Notes:  
PC1600R-20220-L  
PC1600R-20220-M  
one bank 128 MB Reg. DIMM  
one bank 256 MB Reg. DIMM  
128 MBit (x8) 1.2”  
128 MBit (x4) 1.2”  
1. All part numbers end with a place code (not shown), designating the silicon-die revision. Reference information available  
on request. Example: HYS 72D32500GR-8-A, indicating Rev.A die are used for SDRAM components.  
2. The Compliance Code is printed on the module labels and describes the speed sort fe. “PC2100R”, the latencies (f.e.  
“20330” means CAS latency = 2.5, trcd latency = 3 and trp latency =3 ) and the Raw Card used for this module  
INFINEON Technologies  
2
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Pin Definitions and Functions  
A0 - A11,A12  
Address Inputs  
(A12 for 256Mb & 512Mb based modules)  
VDD  
Power (+ 2.5 V)  
BA0, BA1  
DQ0 - DQ63  
CB0 - CB7  
RAS  
Bank Selects  
VSS  
Ground  
Data Input/Output  
VDDQ  
VDDID  
VDDSPD  
VREF  
I/O Driver power supply  
VDD Indentification flag  
EEPROM power supply  
I/O reference supply  
Serial bus clock  
Check Bits (x72 organization only)  
Row Address Strobe  
Column Address Strobe  
Read/Write Input  
CAS  
WE  
SCL  
CKE0, CKE1  
DQS0 - DQS8  
CK0, CK0  
Clock Enable  
SDA  
SA0 - SA2  
NC  
Serial bus data line  
slave address select  
no connect  
SDRAM low data strobes  
Differential Clock Input  
DM0 - DM8  
DQS9 - DQS17  
SDRAM low data mask/  
high data strobes  
DU  
don’t use  
CS0 - CS1  
Chip Selects  
RESET  
Reset pin (forces register  
inputs low) *)  
*) for detailed description of the Power Up and Power Management on DDR Registered DIMMs see the  
Application Note at the end of this datasheet  
Address Format  
Density Organization  
128 MB 16M x 72  
256 MB 32M x 72  
Memory SDRAMs  
Banks  
# of  
# of row/bank/  
Refresh Period Interval  
SDRAMs columns bits  
1
(128Mb)  
16M x 8  
9
12/2/10  
12/2/11  
4k  
4k  
64 ms 15.6 µs  
64 ms 15.6 µs  
1
(128 Mb)  
32M x 4  
18  
INFINEON Technologies  
3
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Pin Configuration  
Symbol  
PIN#  
Symbol  
PIN#  
Symbol  
Symbol  
PIN#  
1
2
3
4
5
6
7
8
VREF  
DQ0  
VSS  
DQ1  
DQS0  
DQ2  
VDD  
DQ3  
NC  
RESET  
VSS  
DQ8  
DQ9  
DQS1  
VDDQ  
DU  
48  
49  
50  
51  
52  
A0  
CB2  
VSS  
CB3  
BA1  
KEY  
DQ32  
VDDQ  
DQ33  
DQS4  
DQ34  
VSS  
93  
94  
95  
96  
97  
98  
99  
VSS  
DQ4  
DQ5  
VDDQ  
DM0/DQS9  
DQ6  
DQ7  
VSS  
140  
141  
142  
143  
144  
DM8/DQS17  
A10  
CB6  
VDDQ  
CB7  
KEY  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
VSS  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
DQ36  
DQ37  
VDD  
DM4/DQS13  
DQ38  
DQ39  
VSS  
DQ44  
RAS  
DQ45  
VDDQ  
CS0  
CS1  
DM5/DQS14  
VSS  
DQ46  
DQ47  
NC  
VDDQ  
DQ52  
DQ53  
NC  
9
NC  
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
VDDQ  
DQ12  
DQ13  
DM1/DQS10  
VDD  
DQ14  
DQ15  
CKE1  
VDDQ  
NC  
DQ20  
NC / A12  
VSS  
DQ21  
A11  
DM2/DQS11  
VDD  
DQ22  
A8  
DQ23  
VSS  
A6  
DQ28  
DQ29  
VDDQ  
DM3/DQS12  
A3  
DQ30  
VSS  
DQ31  
CB4  
CB5  
VDDQ  
CK0  
CK0  
VSS  
BA0  
DQ35  
DQ40  
VDDQ  
WE  
DQ41  
CAS  
DU  
VSS  
DQ10  
DQ11  
CKE0  
VDDQ  
DQ16  
DQ17  
DQS2  
VSS  
A9  
DQ18  
A7  
VDDQ  
DQ19  
A5  
DQ24  
VSS  
DQ25  
DQS3  
A4  
VDD  
DQ26  
DQ27  
A2  
VSS  
DQS5  
DQ42  
DQ43  
VDD  
NC  
DQ48  
DQ49  
VSS  
DU  
DU  
VDD  
VDDQ  
DQS6  
DQ50  
DQ51  
VSS  
VDDID  
DQ56  
DQ57  
VDD  
DQS7  
DQ58  
DQ59  
VSS  
DM6/DQS15  
DQ54  
DQ55  
VDDQ  
NC  
DQ60  
DQ61  
VSS  
DM7/DQS16  
DQ62  
DQ63  
VDDQ  
SA0  
VSS  
A1  
CB0  
CB1  
VDD  
DQS8  
NC  
SDA  
SCL  
SA1  
SA2  
VDDSPD  
Note: A12 is used for 256Mbit and 512Mbit based modules only  
INFINEON Technologies  
4
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
RS0  
DQS0  
DQS4  
DM4/DQS13  
DM0/DQS9  
DM  
DQS  
CS  
D4  
DQS  
CS  
D0  
DM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 0  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
DQ0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQS5  
DM5/DQS14  
DQS1  
DM1/DQS10  
DM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQS  
DQS  
CS  
D5  
CS  
D1  
DM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ40  
DQ41  
DQ42  
DQ43  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ44  
DQ45  
DQ46  
DQ47  
DQS6  
DM6/DQS15  
DQS2  
DM2/DQS11  
DM  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
CS  
D6  
DQS  
DM  
CS DQS  
D2  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
DQ16  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQS7  
DM7/DQS16  
DQS3  
DM3/DQS12  
DM  
CS DQS  
D7  
CS  
D3  
DM  
DQS  
I/O 0  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
DQ24  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
I/O 1  
I/O 2  
I/O 3  
I/O 4  
I/O 5  
I/O 6  
I/O 7  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQS8  
DM8/DQS17  
V
EEPROM  
D0 - D8  
DDSPD  
Serial PD  
DM  
I/O 7  
I/O 6  
I/O 1  
I/O 0  
I/O 5  
I/O 4  
I/O 3  
I/O 2  
CS  
D8  
DQS  
V
V
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
DD, DDQ  
D0 - D8  
D0 - D8  
SDA  
SCL  
VREF  
A0  
SA0 SA1 SA2  
A1  
A2  
V
SS  
D0 - D8  
V
DDID  
Strap: see Note 4  
CS0  
RS0 -> CS : SDRAMs D0-D8  
R
E
G
I
S
T
E
R
Notes:  
RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D8  
BA0-BA1  
A0-A12  
RAS  
1. DQ-to-I/O wiring may be changed within a byte.  
RA0-RA12 -> A0-A12: SDRAMs D0 - D8  
RRAS -> RAS : SDRAMs D0 - D8  
RCAS -> CAS : SDRAMs D0 - D8  
2. DQ/DQS/DM/CKE/S relationships must be  
maintained as shown.  
3. DQ, DQS, Adress and control resistors: 22 Ohms.  
4. VDDID strap connections  
CAS  
CKE0  
WE  
RCKE0 -> CKE: SDRAMs D0 - D8  
RWE -> WE : SDRAMs D0 - D8  
STRAP OUT (OPEN): VDD = VDDQ  
5. SDRAM placement alternates between the back  
and front of the DIMM.  
CK0, CK 0 --------- PLL*  
* Wire per Clock Loading Table/Wiring Diagrams  
PCK  
PCK  
RESET  
Block Diagram: One Bank 16M x 72 DDR-I SDRAM DIMM Module (x8 components)  
HYS72D16500GR on Raw Card L  
INFINEON Technologies  
5
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
VSS  
RS0B  
RS0A  
DQS0  
DM0/DQS9  
DM  
DQS  
CS  
D0  
DQS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CS  
D9  
DM  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ5  
DQ6  
DQ7  
DQS1  
DQS2  
DQS3  
DM1/DQS10  
DM  
DM  
DM  
DQS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CS  
D1  
DM  
DQS  
CS  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ13  
DQ14  
DQ15  
D10  
DM2/DQS11  
DQS  
DQS  
CS  
CS DM  
D2  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D11  
DM3/DQS12  
DM  
CS  
CS  
DQS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQS  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D12  
D3  
DQS4  
DM4/DQS13  
V
EEPROM  
D0 - D17  
DDSPD  
DQS  
DM  
CS  
DM  
DM  
DQS  
CS  
DQ32  
DQ33  
DQ34  
DQ35  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ36  
DQ37  
DQ38  
DQ39  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
V
V
DD, DDQ  
D4  
D13  
VREF  
D0 - D17  
D0 - D17  
V
DQS5  
DQS6  
SS  
DM5/DQS14  
DQS  
CS  
DQS  
CS DM  
D5  
V
DDID  
Strap: see Note 4  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
D14  
Serial PD  
DM6/DQS15  
CS DM  
D15  
DQS  
CS  
D6  
DQS  
DM  
SDA  
DQ48  
DQ49  
DQ50  
DQ51  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ52  
DQ53  
DQ54  
DQ55  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
SCL  
A0  
SA0 SA1 SA2  
A1 A2  
DQS7  
DQS8  
DM7/DQS16  
DM  
DM  
DM  
DM  
CS  
DQS  
CS  
D7  
DQS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D16  
Notes:  
1. DQ-to-I/O wiring may be changed within a byte.  
DM8/DQS17  
2. DQ/DQS/DM/CKE/S relationships must be  
maintained as shown.  
3. DQ, DQS, Adress and control resistors: 22 Ohms.  
4. VDDID strap connections  
STRAP OUT (OPEN): VDD = VDDQ  
DQS  
CS  
D8  
CS  
DQS  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
I/O 0  
I/O 1  
I/O 2  
I/O 3  
D17  
5. SDRAM placement alternates between the back  
and front of the DIMM.  
CS0  
RS 0 -> CS : SDRAMs D0-D17  
R
E
G
I
S
T
E
R
BA0-BA1  
A0-A11,A12  
RAS  
RBA0-RBA1 -> BA0-BA1: SDRAMs D0-D17  
RA0-RA11,RA12 -> A0-A11,A12: SDRAMs D0 - D17  
RRAS -> RAS : SDRAMs D0 - D17  
RCAS -> CAS : SDRAMs D0 - D17  
RCKE0A -> CKE: SDRAMs D0 - D8  
RCKEB -> CKE: SDRAMs D9 - D17  
RWE -> WE: SDRAMs D0 - D17  
CAS  
CKE0  
CK0, CK 0 --------- PLL*  
* Wire per Clock Loading Table/Wiring Diagrams  
WE  
PCK  
PCK  
RESET  
Block Diagram: One Bank 32M x 72 DDR-I SDRAM DIMM Modules (x4 comp.)  
HYS72D32501GR on Raw Card M  
INFINEON Technologies  
6
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Absolute Maximum Ratings  
Parameter  
Symbol  
Limit Values  
Unit  
min.  
– 0.5  
– 0.5  
-55  
max.  
3.6  
3.6  
+150  
1
Input / Output voltage relative to VSS  
Power supply voltage on VDD/VDDQ to VSS  
Storage temperature range  
VIN, VOUT  
VDD, VDDQ  
TSTG  
V
V
oC  
W
mA  
Power dissipation (per SDRAM component)  
Data out current (short circuit)  
PD  
IOS  
50  
Permanent device damage may occur if “Absolute Maximum Ratings” are exceeded.  
Functional operation should be restricted to recommended operation conditions.  
Exposure to higher than recommended voltage for extended periods of time affect device reliability  
Supply Voltage Levels  
Parameter  
Symbol  
Limit Values  
nom.  
Unit  
Notes  
min.  
max.  
Device Supply Voltage  
Output Supply Voltage  
Input Reference Voltage  
Termination Voltage  
VDD  
2.3  
2.5  
2.7  
V
V
V
V
V
-
VDDQ  
VREF  
VTT  
2.3  
2.5  
2.7  
1)  
2)  
3)  
0.49 x VDDQ  
VREF – 0.04  
2.3  
0.5 x VDDQ  
VREF  
0.51 x VDDQ  
VREF + 0.04  
3.6  
EEPROM supply voltage  
VDDSPD  
2.5  
1
2
Under all conditions, VDDQ must be less than or equal to VDD  
Peak to peak AC noise on VREF may not exceed 2% VREF (DC)  
VREF is also expected to track noise variations in VDDQ  
VTT of the transmitting device must track VREF of the receiving device.  
.
.
3
DC Operating Conditions (SSTL_2 Inputs)  
(VDDQ = 2.5 V, TA = 70 °C, Voltage Referenced to VSS)  
Parameter  
Symbol  
Limit Values  
max.  
Unit  
Notes  
min.  
DC Input Logic High  
DC Input Logic Low  
Input Leakage Current  
Output Leakage Current  
VIH (DC)  
VIL (DC)  
IIL  
VREF + 0.15  
– 0.30  
– 5  
VDDQ + 0.3  
V
1)  
VREF – 0.15  
V
5
5
µA  
µA  
1)  
2)  
IOL  
– 5  
1) The relationship between the VDDQ of the driving device and the VREF of the receiving device is what  
determines noise margins. However, in the case of VIH (max) (input overdrive), it is the VDDQ of the receiving  
device that is referenced. In the case where a device is implemented such that it supports SSTL_2 inputs but  
has no SSTL_2 outputs (such as a translator), and therefore no VDDQ supply voltage connection, inputs must  
tolerate input overdrive to 3.0 V (High corner VDDQ + 300 mV).  
2) For any pin under test input of 0 V VIN VDDQ + 0.3 V. Values are shown per DDR-SDRAM component.  
INFINEON Technologies  
7
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Operating, Standby and Refresh Currents (PC1600)  
128MB  
x72  
1bank  
-7  
128MB  
x72  
1bank  
-8  
256MB  
x72  
1bank  
-7  
256MB  
x72  
1bank  
-8  
Notes  
5
Symbol  
Parameter/Condition  
Unit  
mA  
MAX  
MAX  
MAX  
MAX  
: one bank; active / precharge; tRC = tRC MIN; tCK =  
Operating Current  
IDD0  
tCK MIN; DQ, DM, and DQS inputs changing once per clock cycle;  
810  
765  
1620  
1530  
1, 4  
address and control inputs changing once every two clock cycles  
: one bank; active/read/precharge; Burst = 4;  
Refer to the following page for detailed test conditions.  
Operating Current  
IDD1  
990  
45  
900  
41  
1980  
90  
1800  
81  
mA  
mA  
1, 3, 4  
2, 4  
: all banks idle; power-down  
Precharge Power-Down Standby Current  
IDD2P  
mode; CKE <= VIL MAX; tCK = tCK MIN  
: /CS >= VIH MIN, all banks idle;  
Precharge Floating Standby Current  
CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs  
changing once per clock cycle, VIN = VREF for DQ, DQS and DM.  
405  
315  
810  
630  
IDD2F  
IDD2Q  
mA  
2, 4  
: /CS >= VIH MIN, all banks idle;  
Precharge Quiet Standby Current  
CKE >= VIH MIN; tCK = tCK MIN ,address and other control inputs  
stable at >= VIH MIN or <= VIL MAX; VIN = VREF for DQ, DQS and DM.  
405  
135  
315  
135  
810  
270  
630  
270  
mA  
mA  
2, 4  
2, 4  
: one bank active; power-down  
Active Power-Down Standby Current  
IDD3P mode; CKE <= VIL MAX; tCK = tCK MIN;VIN = VREF for DQ, DQS and  
DM.  
: one bank active; active / precharge;CS >= VIH  
Active Standby Current  
MIN; CKE >= VIH MIN; tRC = tRAS MAX; tCK = tCK MIN; DQ, DM, and  
DQS inputs changing twice per clock cycle; address and control inputs  
changing once per clock cycle  
IDD3N  
IDD4R  
IDD4W  
405  
990  
990  
315  
810  
855  
810  
630  
mA  
mA  
mA  
2, 4  
1, 3, 4  
1, 4  
: one bank active; Burst = 2; reads; continuous burst;  
Operating Current  
address and control inputs changing once per clock cycle; 50% of data  
outputs changing on every clock edge; CL = 2 for DDR200, and  
DDR266A, CL=3 for DDR333; tCK = tCK MIN; IOUT = 0mA  
1980  
1980  
1620  
1710  
: one bank active; Burst = 2; writes; continuous burst;  
Operating Current  
address and control inputs changing once per clock cycle; 50% of data  
outputs changing on every clock edge; CL = 2 for DDR200, and  
DDR266A, CL=3 for DDR333; tCK = tCK MIN  
: tRC = tRFC MIN, distributed refresh  
1710  
22,5  
1620  
22,5  
3420  
45  
3240  
45  
Auto-Refresh Current  
IDD5  
IDD6  
mA  
mA  
1, 4  
2, 4  
: CKE <= 0.2V; external clock on; tCK = tCK MIN  
Self-Refresh Current  
: four bank; four bank interleaving with BL=4;  
Refer to the following page for detailed test conditions.  
Operating Current  
IDD7  
2520  
2430  
5040  
4860  
mA  
1, 3, 4  
1. The module IDD values are calculated from the component IDD datasheet values as:  
n * IDDx[component]  
for single bank modules (n: number of components per module bank)  
n * IDDx[component] + n * IDD3N[component]  
for two bank modules (n: number of components per module bank)  
2. The module IDD values are calculated from the component IDD datasheet values as:  
n * IDDx[component]  
2 * n * IDDx[component]  
for single bank modules (n: number of components per module bank)  
for two bank modules (n: number of components per module bank)  
3. DQ I/O (IDDQ) currents are not included into calculations: module IDD values will be measured differently depending on load conditions  
4. DRAM component currents only: module IDD will be measured differently depending upon register and PLL operation currents  
5. Test condition for maximum values: VDD = 2.7V ,Ta = 10°C  
INFINEON Technologies  
8
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Electrical Characteristics & AC Timing for DDR-I components  
(for reference only)  
(0 °C TA 70 °C; VDDQ = 2.5V 0.2V; VDD = 2.5V 0.2V)  
DDR266A  
-7  
DDR200  
-8  
Symbol  
tAC  
Parameter  
Unit Notes  
Min  
Max  
Min  
Max  
+ 0.8  
+ 0.8  
0.55  
0.55  
DQ output access time from CK/CK  
0.75 + 0.75  
0.75 + 0.75  
0.8  
0.8  
0.45  
0.45  
ns  
ns  
tCK  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCK  
1-4  
1-4  
tDQSCK DQS output access time from CK/CK  
tCH  
tCL  
CK high-level width  
CK low-level width  
Clock Half Period  
0.45  
0.45  
0.55  
0.55  
1-4  
1-4  
tHP  
tCK  
tCK  
tDH  
tDS  
tIPW  
min (tCL, tCH)  
min (tCL, tCH)  
1-4  
CL = 2.5  
CL = 2.0  
7
12  
12  
8
10  
12  
12  
1-4  
Clock cycle time  
7.5  
0.5  
0.5  
2.2  
1.75  
1-4  
DQ and DM input hold time  
DQ and DM input setup time  
0.6  
1-4  
0.6  
1-4  
Control and Addr. input pulse width (each input)  
2.5  
1, 10  
1-4,11  
1-4, 5  
1-4, 5  
1-4  
tDIPW DQ and DM input pulse width (each input)  
2
tHZ  
tLZ  
Data-out high-impedence time from CK/CK  
Data-out low-impedence time from CK/CK  
0.75 + 0.75  
0.75 + 0.75  
0.8  
0.8  
0.75  
+ 0.8  
+ 0.8  
1.25  
tDQSS Write command to 1st DQS latching transition  
0.75  
1.25  
DQS-DQ skew  
tDQSQ  
+ 0.5  
+ 0.6  
ns  
1-4  
(for DQS & associated DQ signals)  
tQHS  
tQH  
Data hold skew factor  
+ 0.75  
+ 1.0  
ns  
ns  
tCK  
tCK  
tCK  
ns  
ns  
tCK  
tCK  
ns  
ns  
ns  
ns  
tCK  
tCK  
ns  
ns  
1-4  
1-4  
Data Output hold time from DQS  
tHP-tQHS  
0.35  
0.2  
tHP-tQHS  
0.35  
0.2  
tDQSL,H DQS input low (high) pulse width (write cycle)  
1-4  
tDSS  
tDSH  
DQS falling edge to CK setup time (write cycle)  
DQS falling edge hold time from CK (write cycle)  
1-4  
0.2  
0.2  
1-4  
tMRD Mode register set command cycle time  
tWPRES Write preamble setup time  
tWPST Write postamble  
14  
16  
1-4  
0
0
1-4, 7  
1-4, 6  
1-4  
0.40  
0.25  
0.9  
0.60  
0.40  
0.25  
1.1  
0.60  
tWPRE Write preamble  
fast slew rate  
slow slew rate  
fast slew rate  
slow slew rate  
tIS  
Address and control input setup time  
Address and control input hold time  
1.0  
1.1  
2-4,  
10,11  
0.9  
1.1  
tIH  
1.0  
1.1  
tRPRE Read preamble  
tRPST Read postamble  
0.9  
1.1  
0.60  
0.9  
1.1  
0.60  
1-4  
1-4  
1-4  
1-4  
0.40  
45  
0.40  
50  
120,000  
tRAS  
tRC  
Active to Precharge command  
120,000  
Active to Active/Auto-refresh command period  
65  
70  
Auto-refresh to Active/Auto-refresh  
command period  
tRFC  
tRCD  
75  
20  
80  
20  
ns  
ns  
1-4  
1-4  
Active to Read or Write delay  
INFINEON Technologies  
9
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Electrical Characteristics & AC Timing for DDR-I components  
(for reference only)  
(0 °C TA 70 °C; VDDQ = 2.5V 0.2V; VDD = 2.5V 0.2V)  
DDR266A  
-7  
DDR200  
-8  
Symbol  
Parameter  
Unit Notes  
Min  
Max  
Min  
Max  
tRP  
tRRD  
tWR  
Precharge command period  
20  
15  
15  
20  
15  
15  
ns  
ns  
ns  
1-4  
1-4  
1-4  
Active bank A to Active bank B command  
Write recovery time  
Auto precharge write recovery  
+ precharge time  
tDAL  
(twr/tck) + (trp/tck)  
tCK  
1-4,9  
tWTR Internal write to read command delay  
tXSNR Exit self-refresh to non-read command  
tXSRD Exit self-refresh to read command  
1
1
tCK  
ns  
tCK  
1-4  
1-4  
1-4  
75  
80  
200  
200  
tREFI Average Periodic Refresh Interval  
15.6  
15.6  
µs  
1-4, 8  
128Mb based  
1. Input slew rate >=1V/ns for DDR266 and = 1V/ns for DDR200.  
2. The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference  
level for signals other than CK/CK, is VREF. CK/CK slew rate are >= 1.0 V/ns.  
3. Inputs are not recognized as valid until VREF stabilizes.  
4. The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (Note 3) is VTT  
.
5. tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred  
to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ).  
6. The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but  
system performance (bus turnaround) degrades accordingly.  
7. The specific requirement is that DQS be valid (HIGH, LOW, or some point on a valid transition) on or before this CK edge.  
A valid transition is defined as monotonic and meeting the input slew rate specifications of the device. When no writes were  
previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress,  
DQS could be HIGH, LOW, or transitioning from HIGH to LOW at this time, depending on tDQSS  
.
8. A maximum of eight Autorefresh commands can be posted to any given DDR SDRAM device.  
9. For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock  
cycle time.  
10. These parameters guarantee device timing, but they are not necessarily tested on each device  
11. Fast slew rate >= 1.0 V/ns , slow slew rate >= 0.5 V/ns and < 1V/ns for command/address and CK & CK slew rate >1.0 V/  
ns, measured between VOH(ac) and VOL(ac)  
INFINEON Technologies  
10  
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
SPD Codes  
128MB  
x72  
128MB  
x72  
256MB  
x72  
256MB  
x72  
Byte#  
Description  
1bank  
-7  
1bank  
-8  
1bank  
-7  
1bank  
-8  
HEX  
HEX  
HEX  
HEX  
0
1
2
3
4
5
6
7
8
9
Number of SPD Bytes  
128  
80  
08  
07  
0C  
0A  
01  
48  
00  
04  
70  
75  
02  
80  
08  
08  
80  
08  
07  
0C  
0A  
01  
48  
00  
04  
80  
80  
02  
80  
08  
08  
80  
08  
07  
0C  
0B  
01  
48  
00  
04  
70  
75  
02  
80  
04  
04  
80  
08  
07  
0C  
0B  
01  
48  
00  
04  
80  
80  
02  
80  
04  
04  
Total Bytes in Serial PD  
Memory Type  
256  
DDR-SDRAM  
Number of Row Addresses  
Number of Column Addresses  
Number of DIMM Banks  
Module Data Width  
Module Data Width (cont’d)  
Module Interface Levels  
SDRAM Cycle Time at CL = 2.5  
12  
10 / 11  
1
x72  
0
SSTL_2.5  
7ns / 8ns  
0.75ns / 0.8ns  
ECC  
10  
11  
12  
13  
14  
Access Time from Clock at CL = 2.5  
DIMM Config  
Refresh Rate/Type  
Self-Refresh, 15.6ms  
x8 / x4  
SDRAM Width, Primary  
Error Checking SDRAM Data Width  
Minimum Clock Delay for Back-to-Back  
Random Column Address  
Burst Length Supported  
Number of SDRAM Banks  
Supported CAS Latencies  
CS Latencies  
na  
15  
tccd = 1 CLK  
01  
01  
01  
01  
16  
17  
18  
19  
20  
21  
2, 4 & 8  
0E  
04  
0C  
01  
02  
26  
0E  
04  
0C  
01  
02  
26  
0E  
04  
0C  
01  
02  
26  
0E  
04  
0C  
01  
02  
26  
4
CAS latency = 2 & 2.5  
CS latency = 0  
Write latency = 1  
WE Latencies  
SDRAM DIMM Module Attributes  
registered  
Concurrent Auto  
Precharge  
22  
SDRAM Device Attributes: General  
C0  
C0  
C0  
C0  
23  
24  
25  
Min. Clock Cycle Time at CAS Latency = 2  
Access Time from Clock for CL = 2  
Minimum Clock Cycle Time at CL = 1.5  
Access Time from Clock at CL = 1.5  
Minimum Row Precharge Time  
Minimum Row Act. to Row Act. Delay tRRD  
Minimum RAS to CAS Delay tRCD  
Minimum RAS Pulse Width tRAS  
Module Bank Density (per bank)  
Addr. and Command Setup Time  
Addr. and Command Hold Time  
Data Input Setup Time  
7.5ns / 10ns  
75  
75  
00  
A0  
80  
00  
75  
75  
00  
A0  
80  
00  
0.75ns / 0.8ns  
not supported  
26  
27  
28  
not supported  
00  
50  
3C  
50  
2D  
20  
00  
50  
3C  
50  
32  
00  
50  
3C  
50  
2D  
40  
00  
50  
3C  
50  
32  
20ns  
15ns  
29  
30  
20ns  
45ns / 50ns  
31  
32  
128MByte / 256MByte  
20  
B0  
40  
B0  
0.9ns / 1.1ns  
90  
90  
33  
34  
0.9ns / 1.1ns  
0.5ns / 0.6ns  
90  
50  
B0  
60  
90  
50  
B0  
60  
35  
Data Input Hold Time  
0.5ns / 0.6ns  
50  
60  
50  
60  
36-40  
41  
Superset Information  
00  
41  
00  
46  
00  
41  
00  
46  
Minimum Core Cycle Time tRC  
Min. Auto Refresh Cmd Cycle Time tRFC  
Maximum Clock Cycle Time tck  
Max. DQS-DQ Skew tDQSQ  
X-Factor tQHS  
65ns / 70ns  
42  
43  
75ns / 80ns  
12ns  
4B  
30  
50  
30  
4B  
30  
50  
30  
44  
45  
0.5ns / 0.6ns  
0.75ns / 1.0ns  
32  
75  
3C  
A0  
32  
75  
3C  
A0  
46-61  
62  
Superset Information  
SPD Revision  
00  
00  
00  
00  
00  
00  
00  
00  
Revision 0.0  
63  
64  
Checksum for Bytes 0 - 62  
Manufacturers JEDEC ID Code  
Manufacturer  
Module Assembly Location  
Module Part Number  
A7  
C1  
INFINEON  
9C  
C1  
INFINEON  
C0  
C1  
INFINEON  
B5  
C1  
INFINEON  
65-71  
72  
73-90  
91-92  
93-94  
95-98  
99-127  
Module Revision Code  
Module Manufacturing Date  
Module Serial Number  
128-255  
open for Customer use  
INFINEON Technologies  
11  
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Package Outlines Raw Card L  
Module Package  
DDR-I Registered DIMM Modules 1.2” Low Profile Raw Card L  
128MB (one physical bank, 9 components)  
+ 0.15  
-
133.35  
4.0 max.  
Front View  
4.0  
Register  
Register  
53  
PLL  
92  
52  
pin 1  
2.3 typ.  
+ 0.1  
-
1.27  
64.77  
49.53  
6.62  
Backside View  
144  
pin 93  
145  
184  
2.5D  
3
3
*) on ECC modules only  
Detail of Contacts B  
6.35  
Detail of Contacts A  
0.9R  
+ 0.05  
-
1
1.27  
1.8  
2.175  
L-DIM-184-13 Raw Card L Reg.  
1U  
note: all outline dimensions and tolerances are in accordance with the JEDEC standard  
INFINEON Technologies  
12  
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Package Outlines Raw Card M  
Module Package  
DDR-I Registered DIMM Modules 1.2” Low Profile Raw Card M  
256MB (one physical bank, 18 components)  
+ 0.15  
-
133.35  
4.0 max.  
Front View  
4.0  
PLL  
53  
92  
52  
pin 1  
2.3 typ.  
+ 0.1  
-
1.27  
64.77  
49.53  
6.62  
17  
pin 93  
144  
145  
184  
2.5D  
Register  
3
3
*) on ECC modules only  
Detail of Contacts B  
6.35  
Detail of Contacts A  
0.9R  
+ 0.05  
-
1
1.27  
1.8  
2.175  
L-DIM-184-12 Raw Card M Reg.  
1U  
note: all outline dimensions and tolerances are in accordance with the JEDEC standard  
INFINEON Technologies  
13  
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
APPLICATION NOTE:  
Power Up and Power Management on DDR Registered DIMMs  
(according to JEDEC ballot JC-42.5 Item 1173)  
184-pin Double Data Rate (DDR) Registered DIMMs include two new features to facilitate controlled power-up  
and to minimize power consumption during low power mode. One feature is externally controlled via a system-  
generated RESET signal; the second is based on module detection of the input clocks. These enhancements  
permit the modules to power up with SDRAM outputs in a High-Z state (eliminating risk of high current dissipa-  
tions and/or dotted I/Os), and result in the powering-down of module support devices (registers and Phase-  
Locked Loop) when the memory is in Self-Refresh mode.  
The new RESET pin controls power dissipation on the module’s registers and ensures that CKE and other  
SDRAM inputs are maintained at a valid ‘low’ level during power-up and self refresh. When RESET is at a low  
level, all the register outputs are forced to a low level, and all differential register input receivers are powered  
down, resulting in very low register power consumption. The RESET pin, located on DIMM tab #10, is driven  
from the system as an asynchronous signal according to the attached details. Using this function also permits the  
system and DIMM clocks to be stopped during memory Self Refresh operation, while ensuring that the SDRAMs  
stay in Self Refresh mode.  
The function for RESET is as follows:  
Register  
Register Inputs  
Outputs  
RESET  
CK  
CK  
Data in (D)  
Data out (Q)  
H
H
H
Rising  
Rising  
L or H  
Falling  
Falling  
L or H  
H
L
H
L
X
Qo  
Illegal input  
conditions  
H
High Z  
High Z  
X
L
X or Hi-Z  
X or Hi-Z  
X or Hi-Z  
L
X : Don’t care, Hi-Z : High Impedance, Qo: Data latched at the previous of CK  
risning and CK falling  
As described in the table above, a low on the RESET input ensures that the Clock Enable (CKE) signal(s) are  
maintained low at the SDRAM pins (CKE being one of the 'Q' signals at the register output). Holding CKE low  
maintains a high impedance state on the SDRAM DQ, DQS and DM outputs — where they will remain until acti-  
vated by a valid ‘read’ cycle. CKE low also maintains SDRAMs in Self Refresh mode when applicable.  
The DDR PLL devices automatically detect clock activity above 20MHz. When an input clock frequency of  
20MHz or greater is detected, the PLL begins operation and initiates clock frequency lock (the minimum operat-  
ing frequency at which all specifications will be met is 95MHz). If the clock input frequency drops below 20MHz  
(actual detect frequency will vary by vendor), the PLL VCO (Voltage Controlled Oscillator) is stopped, outputs are  
INFINEON Technologies  
14  
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
made High-Z, and the differential inputs are powered down — resulting in a total PLL current consumption of less  
than 1mA. Use of this low power PLL function makes the use of the PLL RESET (or G pin) unnecessary, and it is  
tied inactive on the DIMM.  
This application note describes the required and optional system sequences associated with the DDR Regis-  
tered DIMM 'RESET' function. It is important to note that all references to CKE refer to both CKE0 and CKE1 for  
a 2-bank DIMM. Because RESET applies to all DIMM register devices, it is therefore not possible to uniquely  
control CKE to one physical DIMM bank through the use of the RESET pin.  
Power-Up Sequence with RESET — Required  
1. The system sets RESET at a valid low level.  
This is the preferred default state during power-up. This input condition forces all register outputs to a low  
state independent of the condition on the register inputs (data and clock), ensuring that CKE is at a stable  
low-level at the DDR SDRAMs.  
2. The power supplies should be initialized according to the JEDEC-approved initialization sequence for DDR  
SDRAMs.  
3. Stabilization of Clocks to the SDRAM  
The system must drive clocks to the application frequency (PLL operation is not assured until the input clock  
reaches 20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices,  
and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM  
PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds. When  
a stable clock is present at the SDRAM input (driven from the PLL), the DDR SDRAM requires 200 µsec prior  
to SDRAM operation.  
4. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM con-  
nector).  
CKE must be maintained low and all other inputs should be driven to a known state. In general these com-  
mands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with  
CKE low), as this is the first command defined by the JEDEC initialization sequence (ideally this would be a  
‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent  
with the state of the register outputs.  
5. The system switches RESET to a logic highlevel.  
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,  
setting the RESET timing in relation to a specific clock edge is not required (during this period, register inputs  
must remain stable).  
6. The system must maintain stable register inputs until normal register operation is attained.  
The registers have an activation time that allows their clock receivers, data input receivers, and output drivers  
sufficient time to be turned on and become stable. During this time the system must maintain the valid logic  
levels described in step 5. It is also a functional requirement that the registers maintain a low state at the CKE  
outputs to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time  
(t (ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to  
accept an input signal, is specified in the register and DIMM do-umentation.  
7. The system can begin the JEDEC-defined DDR SDRAM power-up sequence (according to the JEDEC-  
pproved initialization sequence).  
Self Refresh Entry (RESET low, clocks powered off) — Optional  
Self Refresh can be used to retain data in DDR SDRAM DIMMs even if the rest of the system is powered down  
and the clocks are off. This mode allows the DDR SDRAMs on the DIMM to retain data without external clocking.  
Self Refresh mode is an ideal time to utilize the RESET pin, as this can reduce register power consumption  
(RESET low deactivates register CK and CK, data input receivers, and data output drivers).  
INFINEON Technologies  
15  
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
1. The system applies Self Refresh entry command.  
(CKELow, CSLow, RAS Low, CASLow, WEHigh)  
Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a  
Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input  
conditions to the SDRAM are Don’t Cares— with the exception of CKE.  
2. The system sets RESET at a valid low level.  
This input condition forces all register outputs to a low state, independent of the condition on the registerm  
inputs (data and clock), and ensures that CKE, and all other control and address signals, are a stable low-  
level at the DDR SDRAMs. Since the RESET signal is asynchronous, setting the RESET timing in relation to  
a specific clock edge is not required.  
3. The system turns off clock inputs to the DIMM. (Optional)  
a. In order to reduce DIMM PLL current, the clock inputs to the DIMM are turned off, resulting in High-Z clock  
inputs to both the SDRAMs and the registers. This must be done after the RESET deactivate time of the reg-  
ister (t (INACT) ). The deactivate time defines the time in which the clocks and the control and address sig-  
nals must maintain valid levels after RESET low has been applied and is specified in the register and DIMM  
documentation.  
b. The system may release DIMM address and control inputs to High-Z.  
This can be done after the RESET deactivate time of the register. The deactivate time defines the time in  
which the clocks and the control and the address signals must maintain valid levels after RESET low has  
been applied. It is highly recommended that CKE continue to remain low during this operation.  
4. The DIMM is in lowest power Self Refresh mode.  
Self Refresh Exit (RESET low, clocks powered off) — Optional  
1. Stabilization of Clocks to the SDRAM.  
The system must drive clocks to the application frequency (PLL operation is not assured until the input clock  
reaches ~20MHz). Stability of clocks at the SDRAMs will be affected by all applicable system clock devices,  
and time must be allotted to permit all clock devices to settle. Once a stable clock is received at the DIMM  
PLL, the required PLL stabilization time (assuming power to the DIMM is stable) is 100 microseconds.  
2. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM con-  
nector).  
CKE must be maintained low and all other inputs should be driven to a known state. In general these com-  
mands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with  
CKE low), as this is the first command defined by the JEDEC Self Refresh Exit sequence (ideally this would  
be a ‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs, to be con-  
sistent with the state of the register outputs.  
3. The system switches RESET to a logic highlevel.  
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,  
RESET timing relationship to a specific clock edge is not required (during this period, register inputs must  
remain stable).  
4. The system must maintain stable register inputs until normal register operation is attained.  
The registers have an activation time that allows the clock receivers, input receivers, and output drivers suffi-  
cient time to be turned on and become stable. During this time the system must maintain the valid logic levels  
described in Step 2. It is also a functional requirement that the registers maintain a low state at the CKE out-  
puts to guarantee that the DDR SDRAMs continue to receive a low level on CKE. Register activation time (t  
(ACT) ), from asynchronous switching of RESET from low to high until the registers are stable and ready to  
accept an input signal, is specified in the register and DIMM do-umentation.  
5. System can begin the JEDEC-defined DDR SDRAM Self Refresh Exit Procedure.  
Self Refresh Entry (RESET low, clocks running) — Optional  
INFINEON Technologies  
16  
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
Although keeping the clocks running increases power consumption from the on-DIMM PLL during self refresh,  
this is an alternate operating mode for these DIMMs.  
1. System enters Self Refresh entry command.  
(CKELow, CSLow, RASLow, CASLow, WEHigh)  
Note: The commands reach the DDR SDRAM one clock later due to the additional register pipelining on a  
Registered DIMM. After this command is issued to the SDRAM, all of the address and control and clock input  
conditions to the SDRAM are Don’t Cares — with the exception of CKE.  
2. The system sets RESET at a valid low level.  
This input condition forces all register outputs to a low state, independent of the condition on the data and  
clock register inputs, and ensures that CKE is a stable low-level at the DDR SDRAMs.  
3. The system may release DIMM address and control inputs to High-Z.  
This can be done after the RESET deactivate time of the register (t (INACT) ). The deactivate time describes  
the time in which the clocks and the control and the address signals must maintain valid levels after RESET  
low has been applied. It is highly recommended that CKE continue to remain low during the operation.  
4. The DIMM is in a low power, Self Refresh mode.  
Self Refresh Exit (RESET low, clocks running) — Optional  
1. The system applies valid logic levels to the data inputs of the register (address and controls at the DIMM con-  
nector).  
CKE must be maintained low and all other inputs should be driven to a known state. In general these com-  
mands can be determined by the system designer. One option is to apply an SDRAM ‘NOP’ command (with  
CKE low), as this is the first command defined by the Self Refresh Exit sequence (ideally this would be a  
‘NOP Deselect’ command). A second option is to apply low levels on all of the register inputs to be consistent  
with the state of the register outputs.  
2. The system switches RESET to a logic 'high' level.  
The SDRAM is now functional and prepared to receive commands. Since the RESET signal is asynchronous,  
it does not need to be tied to a particular clock edge (during this period, register inputs must continue to  
remain stable).  
3. The system must maintain stable register inputs until normal register operation is attained.  
The registers have an activation time that allows the clock receivers, input receivers, and output drivers suffi-  
cient time to be turned on and become stable. During this time the system must maintain the valid logic levels  
described in Step 1. It is also a functional requirement that the registers maintain a low state at the CKE out-  
puts in order to guarantee that the DDR SDRAMs continue to receive a low level on CKE. This activation  
time, from asynchronous switching of RESET from low to high, until the registers are stable and ready to  
accept an input signal, is t (ACT ) as specified in the register and DIMM documentation.  
4. The system can begin JEDEC defined DDR SDRAM Self Refresh Exit Procedure.  
Self Refresh Entry/Exit (RESET high, clocks running) — Optional  
As this sequence does not involve the use of the RESET function, the JEDEC standard SDRAM specification  
explains in detail the method for entering and exiting Self Refresh for this case.  
Self Refresh Entry (RESET high, clocks powered off) — Not Permissible  
In order to maintain a valid low level on the register output, it is required that either the clocks be running and the  
system drive a low level on CKE, or the clocks are powered off and RESET is asserted low according to the  
INFINEON Technologies  
17  
2002-05-08 (0.9)  
HYS 72D16500/32501GR-7/8-A  
Registered DDR-I SDRAM-Modules  
sequence defined in this application note. In the case where RESET remains high and the clocks are powered  
off, the PLL drives a High-Z clock input into the register clock input. Without the low level on RESET an unknown  
DIMM state will result.  
INFINEON Technologies  
18  
2002-05-08 (0.9)  

相关型号:

HYS72D64000GR-7-A

2.5 V 184-pin Registered DDR-I SDRAM Modules
INFINEON

HYS72D64000GR-7-B

2.5 V 184-pin Registered DDR-I SDRAM Modules
INFINEON

HYS72D64000GR-8-A

2.5 V 184-pin Registered DDR-I SDRAM Modules
INFINEON

HYS72D64000GR-8-B

2.5 V 184-pin Registered DDR-I SDRAM Modules
INFINEON

HYS72D64000GU-7-A

2.5 V 184-pin Unbuffered DDR-I SDRAM Modules
INFINEON

HYS72D64000GU-8-A

2.5 V 184-pin Unbuffered DDR-I SDRAM Modules
INFINEON

HYS72D64020GR-7-A

2.5 V 184-pin Registered DDR-I SDRAM Modules
INFINEON

HYS72D64020GR-7-B

2.5 V 184-pin Registered DDR-I SDRAM Modules
INFINEON

HYS72D64020GR-8-A

2.5 V 184-pin Registered DDR-I SDRAM Modules
INFINEON

HYS72D64020GR-8-B

2.5 V 184-pin Registered DDR-I SDRAM Modules
INFINEON

HYS72D64020GU-7-A

?512MB (64Mx72) PC2100 2-bank?
ETC

HYS72D64020GU-7-B

184-Pin Unbuffered Dual-In-Line Memory Modules
INFINEON