HGTD1N120CNS9A [ETC]

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 6.2A I(C) | TO-252AA ; 晶体管| IGBT | N -CHAN | 1.2KV V( BR ) CES | 6.2AI ( C) | TO- 252AA\n
HGTD1N120CNS9A
型号: HGTD1N120CNS9A
厂家: ETC    ETC
描述:

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 6.2A I(C) | TO-252AA
晶体管| IGBT | N -CHAN | 1.2KV V( BR ) CES | 6.2AI ( C) | TO- 252AA\n

晶体 晶体管 双极性晶体管
文件: 总8页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTD1N120CNS, HGTP1N120CN  
Data Sheet  
December 2001  
6.2A, 1200V, NPT Series N-Channel IGBT  
Features  
o
The HGTD1N120CNS, and the HGTP1N120CN are  
Non-Punch Through (NPT) IGBT designs. They are new  
members of the MOS gated high voltage switching IGBT  
family. IGBTs combine the best features of MOSFETs and  
bipolar transistors. These devices have the high input  
impedance of a MOSFET and the low on-state conduction  
loss of a bipolar transistor.  
• 6.2A, 1200V, T = 25 C  
C
• 1200V Switching SOA Capability  
o
Typical E  
OFF  
. . . . . . . . . . . . . . . . . . 200µJ at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Avalanche Rated  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
Temperature Compensating SABER™ Model  
Thermal Impedance SPICE Model  
www.fairchildsemi.com  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly Developmental Type TA49317.  
Ordering Information  
Packaging  
PART NUMBER  
HGTD1N120CNS  
HGTP1N120CN  
PACKAGE  
TO-252AA  
TO-220AB  
BRAND  
1N120C  
1N120CN  
JEDEC TO-220AB  
E
C
G
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-252AA in tape and reel, i.e. HGTD1N120CNS9A  
COLLECTOR  
(FLANGE)  
Symbol  
C
JEDEC TO-252AA  
COLLECTOR  
G
(FLANGE)  
G
E
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
©2001 Fairchild Semiconductor Corporation  
HGTD1N120CNS, HGTP1N120CN Rev. B  
HGTD1N120CNS, HGTP1N120CN  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTD1N120CNS,  
HGTP1N120CN  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
1200  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
6.2  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I
3.2  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
6
20  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
6A at 1200V  
60  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C
P
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.476  
10  
W/ C  
C
Forward Voltage Avalanche Energy (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
mJ  
AV  
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
o
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
300  
260  
8
C
L
o
Package Body for 10s, see Tech Brief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
pkg  
Short Circuit Withstand Time (Note 3) at V  
Short Circuit Withstand Time (Note 3) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
µs  
µs  
GE  
GE  
SC  
SC  
= 13V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
11  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Single Pulse; V  
GE  
= 15V; Pulse width limited by maximum junction temperature.  
o
2. I  
CE  
= 7A, L = 400µH, V = 15V, T = 25 C.  
GE J  
o
3. V  
CE(PK)  
= 840V, T = 125 C, R = 82.  
J G  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
1200  
-
-
-
CES  
ECS  
C
GE  
= 10mA, V  
= 0V  
15  
-
V
C
GE  
o
I
V
= 1200V  
T
= 25 C  
-
-
-
20  
-
250  
-
µA  
µA  
mA  
V
CES  
CE  
C
C
C
C
C
o
T
T
T
T
= 125 C  
o
= 150 C  
-
1.0  
2.4  
3.2  
-
o
Collector to Emitter Saturation Voltage  
V
I
= 1.0A,  
= 15V  
= 25 C  
-
2.05  
2.75  
7.1  
-
CE(SAT)  
C
V
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 50µA, V  
= V  
GE  
6.0  
-
V
GE(TH)  
C CE  
I
V
=
20V  
o
250  
-
nA  
A
GES  
GE  
SSOA  
T = 150 C, R = 82Ω, V  
= 15V,  
6
-
J
G
GE  
= 1200V  
L = 2mH, V  
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 1.0A, V  
CE  
= 600V  
-
-
-
9.7  
13  
16  
-
V
GEP  
C
Q
= 1.0A,  
= 600V  
V
V
= 15V  
= 20V  
19  
28  
nC  
nC  
G(ON)  
C
GE  
GE  
V
CE  
©2001 Fairchild Semiconductor Corporation  
HGTD1N120CNS, HGTP1N120CN Rev. B  
HGTD1N120CNS, HGTP1N120CN  
o
Electrical Specifications  
PARAMETER  
T = 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
15  
MAX  
21  
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= 1.0A  
CE  
t
11  
15  
ns  
rI  
d(OFF)I  
V
= 960V  
= 15V  
CE  
V
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
65  
95  
ns  
R
= 82Ω  
G
t
365  
78  
450  
-
ns  
fI  
L = 4mH  
Test Circuit (Figure 18)  
Turn-On Energy (Note 5)  
Turn-On Energy (Note 5)  
Turn-Off Energy (Note 4)  
Current Turn-On Delay Time  
Current Rise Time  
E
E
E
µJ  
ON1  
ON2  
OFF  
175  
140  
13  
195  
155  
20  
µJ  
µJ  
o
t
IGBT and Diode at T = 150 C  
ns  
d(ON)I  
J
I
= 1.0 A  
CE  
t
11  
18  
ns  
rI  
V
= 960V  
= 15V  
CE  
V
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
75  
100  
625  
-
ns  
d(OFF)I  
R
= 82Ω  
G
t
465  
83  
ns  
fI  
L = 4mH  
Test Circuit (Figure 18)  
Turn-On Energy (Note 5)  
Turn-On Energy (Note 5)  
Turn-Off Energy (Note 4)  
E
E
E
µJ  
ON1  
ON2  
OFF  
385  
200  
-
460  
225  
2.1  
µJ  
µJ  
o
Thermal Resistance Junction To Case  
NOTES:  
R
C/W  
θJC  
4. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
5. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
ON2  
ON1  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 18.  
Typical Performance Curves Unless Otherwise Specified  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
o
V
= 15V  
T
= 150 C, R = 82, V = 15V, L = 2mH  
GE  
GE  
J
G
25  
50  
75  
100  
125  
150  
0
200  
400  
600  
800  
1000  
1200  
1400  
o
T
, CASE TEMPERATURE ( C)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
©2001 Fairchild Semiconductor Corporation  
HGTD1N120CNS, HGTP1N120CN Rev. B  
HGTD1N120CNS, HGTP1N120CN  
Typical Performance Curves Unless Otherwise Specified (Continued)  
20  
18  
16  
14  
12  
10  
20  
18  
16  
14  
12  
10  
300  
200  
o
o
T
V
T
= 150 C, R = 82, L = 4mH  
G
C
o
GE  
V
= 840V, R = 82, T = 125 C  
J
CE G J  
V
= 960V  
15V  
13V  
15V  
13V  
75 C  
CE  
o
IDEAL DIODE  
o
75 C  
o
o
T
= 75 C, V  
= 15V  
110 C  
C
GE  
t
SC  
110 C  
100  
f
f
= 0.05 / (t  
+ t  
d(ON)I  
)
MAX1  
d(OFF)I  
I
SC  
= (P - P ) / (E  
+ E  
)
MAX2  
D
C
ON2  
OFF  
P
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
= 2.1 C/W, SEE NOTES  
1.0  
C
10  
5
o
R
ØJC  
13  
14  
, GATE TO EMITTER VOLTAGE (V)  
15  
0.5  
2.0  
3.0  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
GE  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTORTO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
6
5
4
3
2
1
0
6
o
= 25 C  
o
T
C
T
= 25 C  
C
5
4
3
2
1
0
o
T
= -55 C  
C
o
o
T
= -55 C  
T
C
= 150 C  
C
o
T
= 150 C  
C
DUTY CYCLE < 0.5%, V = 15V  
PULSE DURATION = 250µs  
GE  
DUTY CYCLE < 0.5%, V = 13V  
PULSE DURATION = 250µs  
GE  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
1200  
500  
R
= 82, L = 4mH, V  
= 960V  
R
= 82, L = 4mH, V  
= 960V  
G
CE  
G
CE  
1000  
800  
600  
400  
400  
300  
200  
100  
0
o
T
= 150 C, V  
= 13V OR 15V  
J
GE  
o
T
T
= 150 C, V  
= 13V  
J
GE  
o
= 150 C, V  
= 15V  
J
GE  
o
= 25 C, V  
T
= 13V OR 15V  
GE  
J
200  
0
o
T
T
= 25 C, V  
= 13V  
= 15V  
J
J
GE  
GE  
o
= 25 C, V  
0.5  
1
1.5  
2
2.5  
3
0.5  
1
1.5  
2
2.5  
3
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTORTO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTORTO  
EMITTER CURRENT  
©2001 Fairchild Semiconductor Corporation  
HGTD1N120CNS, HGTP1N120CN Rev. B  
HGTD1N120CNS, HGTP1N120CN  
Typical Performance Curves Unless Otherwise Specified (Continued)  
24  
20  
16  
28  
24  
20  
16  
12  
8
R
= 82, L = 4mH, V = 960V  
CE  
R
= 82, L = 4mH, V  
= 960V  
G
G
CE  
o
T
= 25 C, V  
= 13V  
J
GE  
o
o
T
= 25 C,T = 150 C, V  
= 13V  
GE  
J
J
o
T
= 150 C, V  
= 13V  
J
GE  
o
o
o
T
= 25 C,T = 150 C, V  
= 15V  
T
= 25 C, V  
= 15V  
= 15V  
J
J
GE  
J
GE  
12  
8
o
T
= 150 C, V  
GE  
J
4
0.5  
1
1.5  
2
2.5  
3
0.5  
1
1.5  
2
2.5  
3
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON DELAYTIME vs COLLECTORTO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISETIME vs COLLECTORTO  
EMITTER CURRENT  
560  
84  
R
= 82, L = 4mH, V  
= 960V  
R
= 82, L = 4mH, V  
CE  
= 960V  
G
CE  
G
520  
480  
440  
400  
360  
320  
280  
240  
80  
76  
72  
68  
64  
o
o
T
= 150 C, V  
= 15V  
= 13V  
J
GE  
T
= 150 C, V = 13V OR 15V  
GE  
J
o
T
= 150 C, V  
J
GE  
= 15V  
GE  
o
T
= 25 C, V  
J
o
T
= 25 C, V  
= 13V  
GE  
J
60  
56  
o
T
= 25 C, V  
= 13V OR 15V  
2
J
GE  
0.5  
1
1.5  
2.5  
3
0.5  
1
1.5  
2
2.5  
3
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAYTIME vs COLLECTORTO  
EMITTER CURRENT  
FIGURE 12. FALLTIME vs COLLECTORTO EMITTER  
CURRENT  
16  
15  
DUTY CYCLE < 0.5%, V  
PULSE DURATION = 250µs  
= 10V  
CE  
V
= 800V  
CE  
14  
12  
10  
8
12  
9
o
T
= -55 C  
V
= 1200V  
C
V
= 400V  
CE  
CE  
6
o
6
T
= 25 C  
C
4
3
o
T
= 150 C  
C
2
o
I
= 1mA, R = 600, T = 25 C  
G(REF)  
L
C
0
0
0
4
8
12  
16  
20  
6
9
12  
15  
V
, GATE TO EMITTER VOLTAGE (V)  
Q
, GATE CHARGE (nC)  
GE  
G
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
HGTD1N120CNS, HGTP1N120CN Rev. B  
HGTD1N120CNS, HGTP1N120CN  
Typical Performance Curves Unless Otherwise Specified (Continued)  
350  
12  
FREQUENCY = 1MHz  
PULSE DURATION = 250µs  
DUTY CYCLE < 0.5%,T = 110 C  
o
V
= 15V  
300  
250  
200  
150  
100  
50  
GE  
C
10  
8
C
IES  
6
V
= 14V  
GE  
4
V
= 13V  
GE  
C
OES  
2
C
RES  
0
0
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 15. CAPACITANCE vs COLLECTORTO EMITTER  
VOLTAGE  
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
2.0  
1.0  
0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
t
1
0.01  
P
D
SINGLE PULSE  
DUTY FACTOR, D = t / t  
1
2
0.01  
t
PEAK T = (P X Z  
X R ) + T  
2
J
D
θJC  
θJC C  
0.005  
-5  
-4  
10  
-3  
10  
-2  
10  
-1  
10  
0
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
V
GE  
90%  
RHRD4120  
10%  
E
ON2  
E
OFF  
L = 4mH  
I
I
CE  
CE  
R
= 82Ω  
G
90%  
10%  
V
CE  
+
t
V
= 960V  
d(ON)I  
DD  
t
-
fI  
t
rI  
t
d(OFF)I  
FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 19. SWITCHING TEST WAVEFORMS  
©2001 Fairchild Semiconductor Corporation  
HGTD1N120CNS, HGTP1N120CN Rev. B  
HGTD1N120CNS, HGTP1N120CN  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to gate-  
insulation damage by the electrostatic discharge of energy  
through the devices. When handling these devices, care  
should be exercised to assure that the static charge built in  
the handler’s body capacitance is not discharged through the  
device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f ; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
of the on-state time for a 50% duty factor. Other definitions  
are possible. t  
d(OFF)I  
and t are defined in Figure 19.  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON2  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
5. GateVoltage Rating - Never exceed the gate-voltage  
the conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P
= (V  
x I )/2.  
CE  
C
CE  
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
6. GateTermination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
ON2  
shown in Figure 19. E  
power loss (I  
CE  
integral of the instantaneous power loss (I  
is the integral of the instantaneous  
ON2  
x V ) during turn-on and E  
CE OFF  
is the  
x V ) during  
CE CE  
turn-off. All tail losses are included in the calculation for  
; i.e., the collector current equals zero (I = 0).  
E
OFF CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
©2001 Fairchild Semiconductor Corporation  
HGTD1N120CNS, HGTP1N120CN Rev. B  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

HGTD2N120BNS

12A, 1200V, NPT Series N-Channel IGBT
INTERSIL

HGTD2N120BNS9A

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 12A I(C) | TO-252AA
ETC

HGTD2N120CNS

13A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD

HGTD2N120CNS

13A, 1200V, NPT Series N-Channel IGBT
INTERSIL

HGTD2N120CNS9A

13A, 1200V, N-CHANNEL IGBT, TO-252AA
RENESAS

HGTD3N60A4

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTD3N60A4S

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTD3N60A4S

600V, SMPS Series N-Channel IGBT
INTERSIL

HGTD3N60A4S

17A, 600V, N-CHANNEL IGBT, TO-252AA, TO-252AA, 3 PIN
ROCHESTER

HGTD3N60A4S9A

Insulated Gate Bipolar Transistor, 17A I(C), 600V V(BR)CES, N-Channel, TO-252AA
FAIRCHILD

HGTD3N60B3

7A, 600V, N-CHANNEL IGBT, PLASTIC PACKAGE-3
ROCHESTER

HGTD3N60B3S

7A, 600V, UFS Series N-Channel IGBTs
INTERSIL