HGTD2N120CNS9A [RENESAS]

13A, 1200V, N-CHANNEL IGBT, TO-252AA;
HGTD2N120CNS9A
型号: HGTD2N120CNS9A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

13A, 1200V, N-CHANNEL IGBT, TO-252AA

局域网 电动机控制 栅 瞄准线 双极性晶体管
文件: 总7页 (文件大小:89K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTD2N120CNS, HGTP2N120CN,  
HGT1S2N120CNS  
Data Sheet  
January 2000  
File Number 4680.2  
13A, 1200V, NPT Series N-Channel IGBT  
Features  
o
The HGTD2N120CNS, HGTP2N120CN, and  
• 13A, 1200V, T = 25 C  
C
HGT1S2N120CNS are Non-Punch Through (NPT) IGBT  
designs. They are new members of the MOS gated high  
voltage switching IGBT family. IGBTs combine the best  
features of MOSFETs and bipolar transistors. This device  
has the high input impedance of a MOSFET and the low  
on-state conduction loss of a bipolar transistor.  
• 1200V Switching SOA Capability  
o
Typical Fall Time. . . . . . . . . . . . . . . . 360ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
• Avalanche Rated  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
Temperature Compensating SABER™ Model  
Thermal Impedance SPICE Model  
www.intersil.com  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly Developmental Type TA49313.  
Ordering Information  
Packaging  
PART NUMBER  
PACKAGE  
BRAND  
2N120CN  
JEDEC TO-220AB  
HGTP2N120CN  
TO-220AB  
E
C
HGTD2N120CNS  
HGT1S2N120CNS  
TO-252AA  
TO-263AB  
2N120C  
COLLECTOR  
G
(FLANGE)  
2N120CN  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB and TO-252AA variant in Tape and Reel,  
e.g., HGT1S2N120CNS9A.  
Symbol  
C
JEDEC TO-252AA  
COLLECTOR  
(FLANGE)  
G
G
E
E
JEDEC TO-263AB  
COLLECTOR  
(FLANGE)  
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
SABER™ is a trademark of Analogy, Inc.  
1
HGTD2N120CNS, HGTP2N120CN, HGT1S2N120CNS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTD2N120CNS  
HGTP2N120CN,  
HGT1S2N120CNS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
1200  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
13  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
7
20  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
13A at 1200V  
104  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.83  
W/ C  
C
Forward Voltage Avalanche Energy (Note 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
18  
mJ  
AV  
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
o
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
300  
260  
8
C
L
o
Package Body for 10s, see Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
C
pkg  
Short Circuit Withstand Time (Note 3) at V  
GE  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
µs  
SC  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
2. I  
= 3A, L = 4mH.  
CE  
3. V  
o
= 840V, T = 125 C, R = 51.  
CE(PK)  
J
G
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
BV  
I
I
= 250µA, V  
= 0V  
1200  
-
-
-
CES  
ECS  
C
GE  
= 10mA, V  
= BV  
= 0V  
15  
-
V
C
GE  
o
I
V
T
= 25 C  
-
-
-
100  
-
100  
-
µA  
µA  
mA  
V
CES  
CE  
CES  
C
C
C
C
C
o
T
T
T
T
= 125 C  
o
= 150 C  
-
1.0  
2.40  
3.50  
-
o
Collector to Emitter Saturation Voltage  
V
I
= 2.6A,  
= 25 C  
-
2.05  
2.75  
6.7  
-
CE(SAT)  
C
V
= 15V  
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 45µA, V = V  
CE GE  
6.4  
-
V
GE(TH)  
C
I
V
= ±20V  
±250  
-
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 51Ω, V  
= 15V,  
13  
-
J
G
GE  
= 1200V  
L = 5mH, V  
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 2.6A, V = 0.5 BV  
CE CES  
-
-
-
10.2  
30  
-
V
GEP  
C
Q
= 2.6A,  
= 0.5 BV  
V
= 15V  
36  
43  
nC  
nC  
G(ON)  
C
GE  
V
CE  
CES  
V
= 20V  
36  
GE  
2
HGTD2N120CNS, HGTP2N120CN, HGT1S2N120CNS  
o
Electrical Specifications  
PARAMETER  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
25  
MAX  
30  
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= 2.6A  
CE  
t
11  
15  
ns  
rI  
d(OFF)I  
V
= 0.8 BV  
= 15V  
CE  
CES  
V
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
205  
260  
96  
220  
320  
-
ns  
R
= 51Ω  
G
t
ns  
fI  
L = 5mH  
Test Circuit (Figure 18)  
Turn-On Energy (Note 4)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
Current Turn-On Delay Time  
Current Rise Time  
E
E
E
µJ  
ON1  
ON2  
OFF  
425  
355  
21  
590  
390  
25  
µJ  
µJ  
o
t
IGBT and Diode at T = 150 C,  
ns  
d(ON)I  
J
I
= 2.6A,  
CE  
t
11  
15  
ns  
rI  
d(OFF)I  
V
= 0.8 BV  
= 15V,  
,
CES  
CE  
V
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
225  
360  
96  
240  
420  
-
ns  
R
= 51Ω,  
G
t
ns  
fI  
L = 5mH,  
Test Circuit (Figure 18)  
Turn-On Energy (Note 4)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
E
E
E
µJ  
ON1  
ON2  
OFF  
800  
530  
-
1100  
580  
1.20  
µJ  
µJ  
o
Thermal Resistance Junction To Case  
NOTES:  
R
C/W  
θJC  
4. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E  
is the turn-on loss of the IGBT only. E  
ON2  
ON1  
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T as the IGBT. The diode type is specified in  
J
Figure 18.  
5. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves Unless Otherwise Specified  
14  
12  
10  
8
16  
14  
12  
10  
8
o
T
= 150 C, R = 51, V = 15V, L = 5mH  
GE  
V
= 15V  
J
G
GE  
6
6
4
4
2
2
0
0
0
200  
400  
600  
800  
1000  
1200  
1400  
25  
50  
75  
100  
125  
150  
o
T
, CASE TEMPERATURE ( C)  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
3
HGTD2N120CNS, HGTP2N120CN, HGT1S2N120CNS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
200  
100  
50  
o
T
= 150 C, R = 51, V  
= 15V, L = 5mH  
o
J
G
GE  
V
= 840V, R = 51, T = 125 C  
G J  
CE  
T
V
C
GE  
o
o
T
= 75 C,V  
= 15V  
C
GE  
75 C 15V  
o
IDEAL DIODE  
12V  
75 C  
f
f
P
= 0.05 / (t  
d(OFF)I  
+ t  
d(ON)I  
)
MAX1  
I
t
SC  
SC  
= (P - P ) / (E  
+ E  
)
MAX2  
D
C
ON2  
OFF  
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
C
10  
T
V
15V  
12V  
C
GE  
o
o
110 C  
110 C  
R
= 1.2 C/W, SEE NOTES  
o
ØJC  
10  
11  
12  
13  
14  
15  
1
2
3
4
5
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
GE  
, GATE TO EMITTER VOLTAGE (V)  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
10  
10  
8
DUTY CYCLE <0.5%, V = 15V  
GE  
250µs PULSE TEST  
8
o
o
T
= -55 C  
T
= 25 C  
C
o
C
T
= 25 C  
C
6
4
2
0
6
o
T
= -55 C  
C
o
T
= 150 C  
C
4
o
T
= 150 C  
C
2
DUTY CYCLE <0.5%, V  
250µS PULSE TEST  
= 12V  
GE  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
900  
2000  
R
T
= 51, L = 5mH, V  
= 960V  
CE  
G
R
= 51, L = 5mH, V  
= 960V  
CE  
G
800  
700  
600  
500  
400  
300  
200  
100  
1500  
1000  
500  
0
o
o
T
= 150 C, V  
= 12V, V  
= 15V  
= 150 C, V  
= 12V OR 15V  
J
GE  
GE  
J
GE  
o
T
= 25 C, V = 12V OR 15V  
GE  
J
o
T
= 25 C, V  
GE  
= 12V, V  
4.0  
= 15V  
J
GE  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTD2N120CNS, HGTP2N120CN, HGT1S2N120CNS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
R
= 51, L = 5mH, V  
= 960V  
CE  
G
R
= 51, L = 5mH, V  
= 960V  
CE  
G
o
o
T
= 25 C, T = 150 C, V  
= 12V  
GE  
J
J
o
o
T
= 25 C, T = 150 C, V = 12V  
J
J
GE  
o
o
T
= 25 C, T = 150 C, V  
= 15V  
4.0  
J
J
GE  
o
o
T
= 25 C, T = 150 C, V = 15V  
GE  
J
J
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.5  
5.0  
5.0  
30  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
700  
400  
R
= 51, L = 5mH, V  
= 960V  
CE  
R
= 51, L = 5mH, V  
= 960V  
CE  
G
G
600  
500  
400  
300  
200  
100  
350  
300  
250  
200  
150  
100  
o
V
= 12V, V = 15V, T = 150 C  
GE J  
GE  
o
T
= 150 C, V = 12V OR 15V  
GE  
J
o
= 25 C, V  
o
T
= 12V OR 15V  
GE  
V
= 12V, V = 15V, T = 25 C  
GE J  
J
GE  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
16  
40  
o
I
= 1mA, R = 260, T = 25 C  
G(REF)  
L
C
DUTY CYCLE <0.5%, V  
= 20V  
CE  
14  
12  
10  
8
35  
30  
25  
20  
15  
10  
5
250µS PULSE TEST  
V
= 1200V  
CE  
V
= 400V  
V
= 800V  
CE  
CE  
6
o
T
= -55 C  
C
4
o
T
= 25 C  
2
C
o
T
= 150 C  
C
0
0
0
5
10  
Q , GATE CHARGE (nC)  
G
15  
20  
25  
7
8
9
10  
11  
12  
13  
14  
15  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
5
HGTD2N120CNS, HGTP2N120CN, HGT1S2N120CNS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
o
DUTY CYCLE <0.5%, T = 110 C  
C
250µs PULSE TEST  
FREQUENCY = 1MHz  
V
= 15V  
GE  
C
IES  
V
= 10V  
GE  
C
OES  
C
RES  
0
0.5  
V
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0
10  
0.5  
0.2  
0.1  
-1  
10  
t
1
0.05  
P
D
0.02  
t
2
DUTY FACTOR, D = t / t  
1
2
0.01  
PEAK T = (P X Z  
X R  
) + T  
J
D
θJC  
θJC C  
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
10  
-2  
10  
-1  
0
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
Test Circuit and Waveforms  
RHRD4120  
90%  
OFF  
10%  
ON2  
V
GE  
E
L = 5mH  
E
V
CE  
R
= 51Ω  
G
90%  
+
10%  
d(OFF)I  
I
CE  
V
= 960V  
DD  
t
t
-
rI  
t
fI  
t
d(ON)I  
FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 19. SWITCHING TEST WAVEFORMS  
6
HGTD2N120CNS, HGTP2N120CN, HGT1S2N120CNS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device (Figure  
3) is presented as a guide for estimating device performance  
for a specific application. Other typical frequency vs collector  
current (I ) plots are possible using the information shown  
CE  
for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating  
frequency plot (Figure 3) of a typical device shows f  
or  
; whichever is smaller at each point. The information is  
MAX1  
f
MAX2  
based on measurements of a typical device and is bounded  
by the maximum rated junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t  
are defined in Figure 19.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
is important when controlling output ripple under a lightly  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON2  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T - T )/Rθ .  
The sum of device switching and conduction losses must  
D
D
JM JC  
C
3. Tips of soldering irons should be grounded.  
4. Devices should never be inserted into or removed from  
circuits with power on.  
not exceed P . A 50% duty factor was used (Figure 3) and  
D
the conduction losses (P ) are approximated by  
C
5. Gate Voltage Rating - Never exceed the gate-voltage  
P
= (V  
x I )/2.  
CE  
C
CE  
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
E
and E  
are defined in the switching waveforms  
OFF  
ON2  
shown in Figure 19. E  
is the integral of the  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
ON2  
instantaneous power loss (I  
x V ) during turn-on and  
CE  
CE  
E
is the integral of the instantaneous power loss  
OFF  
(I  
x V ) during turn-off. All tail losses are included in  
CE  
CE  
the calculation for E  
; i.e., the collector current equals  
OFF  
zero (I  
= 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required, an external Zener is  
recommended.  
ECCOSORBD™ is a trademark of Emerson and Cumming, Inc.  
7

相关型号:

HGTD3N60A4

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTD3N60A4S

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTD3N60A4S

600V, SMPS Series N-Channel IGBT
INTERSIL

HGTD3N60A4S

17A, 600V, N-CHANNEL IGBT, TO-252AA, TO-252AA, 3 PIN
ROCHESTER

HGTD3N60A4S9A

Insulated Gate Bipolar Transistor, 17A I(C), 600V V(BR)CES, N-Channel, TO-252AA
FAIRCHILD

HGTD3N60B3

7A, 600V, N-CHANNEL IGBT, PLASTIC PACKAGE-3
ROCHESTER

HGTD3N60B3S

7A, 600V, UFS Series N-Channel IGBTs
INTERSIL

HGTD3N60B3S

7A, 600V, N-CHANNEL IGBT, PLASTIC PACKAGE-4
ROCHESTER

HGTD3N60B3S9A

7A, 600V, N-CHANNEL IGBT, TO-252AA
RENESAS

HGTD3N60B3S9A

7A, 600V, N-CHANNEL IGBT, PLASTIC PACKAGE-4
ROCHESTER

HGTD3N60C3

6A, 600V, UFS Series N-Channel IGBTs
HARRIS

HGTD3N60C3S

6A, 600V, UFS Series N-Channel IGBTs
INTERSIL