DM512K32ST6-12 [ETC]

Enhanced DRAM (EDRAM) Module ; 增强型DRAM ( EDRAM )模块
DM512K32ST6-12
型号: DM512K32ST6-12
厂家: ETC    ETC
描述:

Enhanced DRAM (EDRAM) Module
增强型DRAM ( EDRAM )模块

内存集成电路 动态存储器
文件: 总19页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DM512K32ST6/DM512K36ST6 Multibank EDO  
512Kb x 32/512Kb x 36 EDRAM SIMM  
Product Specification  
Enhanced  
Memory Systems Inc.  
Features  
Architecture  
The DM512K36ST6  
achieves 512K x 36 density by  
4KByte SRAM Cache Memory for 12ns Random Reads Within Four  
Actives Pages (Multibank Cache)  
Fast DRAM Array for 30ns Access to Any New Page  
Write Posting Register for 12ns Random Writes and Burst Writes  
Within a Page (Hit or Miss)  
1KByte Wide DRAM to SRAM Bus for 56.8 Gigabytes/Sec Cache Fill  
On-chip Cache Hit/Miss Comparators Maintain Cache Coherency  
on Writes  
EDO Mode for 83 MHz Non-Interleave Burst Rate  
Hidden Precharge and Refresh Cycles  
mounting five 512K x 8  
EDRAMs, packaged in 44-pin  
plastic TSOP-II packages, on a  
multi-layer substrate. Four  
2203 devices and one  
DM2213 device provide data  
and parity storage. The  
DM512K32 contains four  
Extended 64ms Refresh Period for Low Standby Power  
Standard CMOS/TTL Compatible I/O Levels and +5 Volt Supply  
Compatibility with JEDEC 512K x 32/36 DRAM SIMM Configuration  
Allows Performance Upgrade in System  
2203 devices for data only.  
The EDRAM memory  
module architecture is very  
similar to a standard 2MB  
Industrial Temperature Range Option  
DRAM module with the  
addition of an integrated  
Description  
cache and on-chip control which allows it to operate much like a  
page mode or static column DRAM.  
The Enhanced Memory Systems 2MB EDRAM SIMM module  
provides a single memory module solution for the main memory or  
local memory of fast embedded control, DSP, and other high  
performance systems. Due to its fast 12ns cache row register, the  
EDRAM memory module supports zero-wait-state burst read  
operations at up to 83MHz bus rates in a non-interleave configuration  
and >100MHz bus rates with a two-way interleave configuration.  
On-chip write posting and fast page mode operation supports  
12ns write and burst write operations. On a cache miss, the fast  
DRAM array reloads the entire 1KByte cache over a 1KByte-wide bus  
in 18ns for an effective bandwidth of 56.8 Gbytes/sec. This means  
very low latency and fewer wait states on a cache miss than a non-  
integrated cache/DRAM solution. The JEDEC compatible 72-bit SIMM  
configuration allows a single memory controller to be designed to  
support either JEDEC slow DRAMs or high speed EDRAMs to provide  
a simple upgrade path to higher system performance.  
The EDRAM’s SRAM cache is integrated into the DRAM array as  
tightly coupled row registers. The 512K x 32/36 EDRAM SIMM has a  
total of four independent DRAM memory banks each with its own 256  
x 32/36 SRAM row register. Memory reads always occur from the  
cache row register of one of these banks as specified by row address  
bits A and A (bank select). When the internal comparator detects  
8
9
that the row address matches the last row read from any of the four  
DRAM banks (page hit), the SRAM is accessed and data is available  
on the output pins in 12ns from column address input. Subsequent  
reads within the page (burst reads or random reads) can continue at  
12ns cycle time. When the row address does not match the last row  
read from any of the four DRAM banks (page miss), the new DRAM  
row is accessed and loaded into the appropriate SRAM row register  
and data is available on the output pins  
all within 30ns from row enable.  
Subsequent reads within the page (burst  
Functional Diagram  
reads or random reads) can continue at  
12ns cycle time. During either read hit or  
/CAL  
Column  
0-3, P  
A
- A  
7
Address  
Latch  
0
read miss operations, the EDO option  
Column Decoder  
extends data output time to allow use of  
4 - 256 X 36 Cache Pages  
(Row Registers)  
the full 83Mbyte/second bandwidth.  
4 - 9 Bit  
Comparators  
Since reads occur from the SRAM  
Sense Amps  
& Column Write Select  
cache, the DRAM precharge can occur  
/G  
A - A  
10  
I/O  
Control  
and  
Data  
Latches  
during burst reads. This eliminates the  
0
4 - Last Row  
Read Address  
Latches  
DQ  
0-35  
precharge time delay suffered by other  
DRAMs and SDRAMs when accessing a  
new page. The EDRAM has an  
/S  
Memory  
Array  
2Mbyte + Parity  
Row  
Address  
Latch  
/WE  
independent on-chip refresh counter and  
dedicated refresh control pin to allow the  
DRAM array to be refreshed concurrently  
with cache read operations (hidden  
refresh).  
V
CC  
C
1-5  
A
- A  
V
0
9
SS  
/F  
W/R  
/RE  
Row Adress  
and  
Refresh  
Control  
Refresh  
Counter  
0, 2  
The information contained herein is subject to change without notice. Enhanced reserves the  
right to change or discontinue this product without notice.  
© 1996 Enhanced Memory Sytems Inc, 1850 Ramtron Drive, Colorado Springs, CO  
Telephone (800) 545-DRAM; Fax (719) 488-9095; http://www.csn.net/ramtron/enhanced 38-2117-000  
80921  
During EDRAM read accesses, data is accessed in EDO mode. possible to perform simultaneous operations to the DRAM and  
SRAM cache sections of the EDRAM. This feature allows the EDRAM  
to hide precharge and refresh operation during reads and  
maximize hit rate by maintaining page cache contents during write  
operations even if data is written to another memory page. These  
capabilities, in conjunction with the faster basic DRAM and cache  
speeds of the EDRAM, minimize processor wait states.  
The column address is latched on the falling edge of /CAL while the  
output data latch is transparent. On the rising edge of /CAL the  
output data is latched while the column address latch is  
transparent. The EDO mode allows the output data valid time to be  
extended so that the next column address can be latched sooner. A  
dedicated output enable (/G) with 5ns access time allows high  
speed two-way interleave without an external multiplexer.  
Memory writes are posted to the input data latch and directed  
to the DRAM array. During a write hit, the on-chip address  
comparator activates a parallel write path to the SRAM cache to  
maintain coherency. Random or page mode writes can be posted  
5ns after column address and data are available. The EDRAM  
allows 12ns page mode cycle time for both write hits and write  
misses. Memory writes do not affect the contents of the cache row  
register except during a cache hit. Since the DRAM array can be  
written to at SRAM speeds, there is no need for complex writeback  
schemes.  
EDRAM Basic Operating Modes  
The EDRAM operating modes are specified in the table.  
Hit and Miss Terminology  
In this datasheet, “hit” and “miss” always refer to a hit or miss  
to any of the four pages of data contained in the SRAM cache row  
registers. There are four cache row registers, one for each of the  
four banks of DRAM. These registers are specified by the bank  
select row address bits A and A . The contents of these cache row  
9
registers is always equal 8to the last row that was read from each of  
the four internal DRAM banks (as modified by any write hit data).  
DRAM Read Hit  
By integrating the SRAM cache as row registers in the DRAM  
array and keeping the on-chip control simple, the EDRAM is able  
to provide superior performance over standard slow 4Mb DRAMs.  
By eliminating the need for SRAMs and cache controllers, system  
cost, board space, and power can all be reduced.  
A DRAM read request is initiated by clocking /RE with W/R low  
and /F high. The EDRAM will compare the new row address to the  
last row read address latch for the bank specified by row address  
bits A (LRR: a 9-bit row address latch for each internal DRAM  
bank 8w-9hich is reloaded on each /RE active read miss cycle). If the  
row address matches the LRR, the requested data is already in the  
SRAM cache and no DRAM memory reference is initiated. The data  
specified by the row and column address is available at the output  
Functional Description  
The EDRAM is designed to provide optimum memory  
performance with high speed microprocessors. As a result, it is  
Four Bank Cache Architecture  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Last  
Row  
Read  
Address  
Latch  
+ 9-Bit  
Compare  
RA  
0-10  
CA  
0-7  
D0-35  
512K Byte  
Array  
512K Byte  
Array  
512K Byte  
Array  
512K Byte  
Array  
A
Data-In  
Latch  
0-10  
256 x 36  
Cache  
256 x 36  
Cache  
256 x 36  
Cache  
256 x 36  
Cache  
CA  
0-7  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
(0,0)  
(0,1)  
(1,0)  
(1,1)  
1 of 4 Selector  
RA , RA  
8
9
Data-Out  
Latch  
CAL  
0-3, P  
G
S
Q 0-35  
2-58  
pins at the greater of times tRAC1, tAC, tGQV, and tASC + tCLV. Since no of any write sequence (after /CAL and /WE are brought high and tRE  
DRAM activity is initiated, /RE can be brought high after time tRE1, is satisfied), /RE can be brought high to precharge the memory.  
and a shorter precharge time, tRP1, is required. Additional locations Cache reads can be performed concurrently with precharge (see  
within the currently active page may be accessed concurrently with “/RE Inactive Operation”). When /RE is inactive, the cache reads  
precharge by providing new column addresses to the multiplex  
address inputs.  
will occur from the page accessed during the last /RE active read  
cycle. During write sequences, a write operation is not performed  
unless both /CAL and /WE are low. As a result, the /CAL input can  
be used as a byte write select in multi-chip systems.  
DRAM Read Miss  
A DRAM read request is initiated by clocking /RE with W/R low  
DRAM Write Miss  
and /F high. The EDRAM will compare the new row address to the  
A DRAM write request is initiated by clocking /RE while W/R,  
/WE, and /F are high. The EDRAM will compare the new row  
address to the LRR address latch for the bank specified for row  
LRR address latch for the bank specified by row address bits A  
8-9  
(LRR: a 9-bit row address latch for each internal DRAM bank  
which is reloaded on each /RE active read miss cycle). If the row  
address does not match the LRR, the requested data is not in SRAM address bits A (LRR: a 9-bit row address latch for each internal  
8-9  
cache and a new row is fetched from the DRAM. The EDRAM will  
load the new row data into the SRAM cache and update the LRR  
latch. The data at the specified column address is available at the  
output pins at the greater of times tRAC1, tAC, tGQV, and tASC + tCLV.  
/RE may be brought high after time tRE since the new row data is  
safely latched into SRAM cache. This allows the EDRAM to  
precharge the DRAM array while data is accessed from SRAM  
cache. Additional locations within the currently active page may be  
accessed by providing new column addresses to the multiplex  
address inputs.  
DRAM bank which is reloaded on each /RE active read miss cycle).  
If the row address does not match any of the LRRs, the EDRAM will  
write data to the DRAM page in the appropriate bank and the  
contents of the current cache is not modified. The write address  
and data are posted to the DRAM as soon as the column address is  
latched by bringing /CAL low and the write data is latched by  
bringing /WE low (both /CAL and /WE must be high when initiating  
the write cycle with the falling edge of /RE). The write address and  
data can be latched very quickly after the fall of /RE (tRAH + tASC for  
the column address and tDS for the data). During a write burst  
sequence, the second write data can be posted at time tRSW after  
/RE. Subsequent writes within a page can occur with write cycle  
time tPC. During a write miss sequence cache reads are inhibited  
and the output buffers are disabled (independently of /G) until  
time tWRR after /RE goes high. At the end of a write sequence (after  
/CAL and /WE are brought high and tRE is satisfied), /RE can be  
brought high to precharge the memory. Cache reads can be  
performed concurrently with the precharge (see “/RE Inactive  
Operation”). When /RE is inactive, the cache reads will occur from  
the page accessed during the last /RE active read cycle. During  
write sequences, a write operation is not performed unless both  
/CAL and /WE are low. As a result, /CAL can be used as a byte write  
select in multi-chip systems.  
DRAM Write Hit  
A DRAM write request is initiated by clocking /RE while W/R,  
/WE, and /F are high. The EDRAM will compare the new row  
address to the LRR address latch for the bank specified by row  
address bits A (LRR: a 9-bit row address latch for each internal  
8-9  
DRAM bank which is reloaded on each /RE active read miss cycle).  
If the row address matches the LRR, the EDRAM will write data to  
both the DRAM page in the appropriate bank and its corresponding  
SRAM cache simultaneously to maintain coherency. The write  
address and data are posted to the DRAM as soon as the column  
address is latched by bringing /CAL low and the write data is  
latched by bringing /WE low (both /CAL and /WE must be high  
when initiating the write cycle with the falling edge of /RE). The  
write address and data can be latched very quickly after the fall of  
/RE (tRAH + tASC for the column address and tDS for the data).  
During a write burst sequence, the second write data can be posted  
at time tRSW after /RE. Subsequent writes within a page can occur  
with write cycle time tPC. With /G enabled and /WE disabled, read  
operations may be performed while /RE is activated in write hit  
mode. This allows read-modify-write, write-verify, or random read-  
write sequences within the page with 12ns cycle times. At the end  
/RE Inactive Operation  
Data may be read from the SRAM cache without clocking /RE.  
This capability allows the EDRAM to perform cache read  
operations during precharge and refresh cycles to minimize wait  
states. It is only necessary to select /S and /G and provide the  
appropriate column address to read data. In this mode of  
operation, the cache reads will occur from the page accessed  
EDRAM Basic Operating Modes  
Function  
/S  
L
/RE  
W/R  
L
/F  
H
H
H
H
L
A
Comment  
No DRAM Reference, Data in Cache  
DRAM Row to Cache  
0-10  
Read Hit  
Row = LRR  
Read Miss  
L
L
Row LRR  
Write Hit  
L
H
Row = LRR  
Write to DRAM and Cache, Reads Enabled  
Write to DRAM, Cache Not Updated, Reads Disabled  
Cache Reads Enabled  
Write Miss  
L
H
Row LRR  
Internal Refresh  
Low Power Standby  
Unallowed Mode  
X
H
H
X
X
X
X
Standby Current  
H
L
X
X
H
X
H = High; L = Low; X = Don’t Care; = High-to-Low Transition; LRR = Last Row Read  
2-59  
during the last /RE active read cycle. /CAL is clocked to latch the  
column address and data.  
This option is desirable when the external control logic is  
capable of fast hit/miss comparison. In this case, the controller  
can avoid the time required to perform row/column multiplexing  
on hit cycles.  
Initialization Cycles  
A minimum of eight /RE active initialization cycles (read,  
write, or refresh) are required before normal operation is  
guaranteed. Following these start-up cycles, two read cycles to  
different row addresses must be performed for each of the four  
internal banks of DRAM to initialize the internal cache logic. Row  
address bits A and A define the four internal DRAM banks.  
8
9
EDO Mode Operation  
Unallowed Mode  
The EDRAM SIMM has an on-board data latch to latch output  
data from the SRAM cache while a new cache address is being  
specified. EDO mode pipelines the fetching of new data from the  
cache with the transfer of the previous data to the bus. EDO allows  
non-interleave data transfers at up to a 83 MHz data rate. In this  
mode, static column and page mode read operations are not  
supported. All read operations require /CAL to be clocked to latch  
the input address and enable the output data to propagate through  
the output latch to the output pins.  
Read, write, or /RE only refresh operations must not be  
initiated to unselected memory banks by clocking /RE when /S is  
high.  
Reduced Pin Count Operation  
It is possible to simplify the interface to the 2MByte SIMM to  
reduce the number of control lines. /RE and /RE could be tied  
together externally to provide a single ro0w enable.2 W/R and /G can  
be tied together if reads are not performed during write hit cycles.  
This external wiring simplifies the interface without any  
performance impact.  
Write-Per-Bit Operation  
The DM512K36ST6 SIMM provides a write-per-bit capability  
to selectively modify individual parity bits (DQ8, 17, 26, 35) for byte  
write operations. The parity device (DM2213) is selected via  
/CAL . Byte write selection to non-parity bits is accomplished via  
CAL P . The bits to be written are determined by a bit mask data  
wor0d-3which is placed on the parity I/O data pins prior to clocking  
/RE. The logic one bits in the mask data select the bits to be  
written. As soon as the mask is latched by /RE, the mask data is  
removed and write data can be placed on the databus. The mask  
is only specified on the /RE transition. During page mode write  
operations, the same mask is used for all write operations.  
Pin Descriptions  
/RE0,2 Row Enable  
These inputs are used to initiate DRAM read and write  
operations and latch a row address and the states of W/R and /F. It  
is not necessary to clock /RE to read data from the EDRAM SRAM  
row registers. On read operations, /RE can be brought high as  
soon as data is loaded into cache to allow early precharge.  
/CAL 0-3, P Column Address Latch  
These inputs are used to latch the column address and in  
combination with /WE to trigger write operations. When /CAL is  
high, the column address latch is transparent. When /CAL is low,  
the column address is closed and the output of the latch contains  
the address present while /CAL was high. /CAL can be toggled  
when /RE is low or high. However, /CAL must be high during the  
high-to-low transition of /RE except for /F refresh cycles. The  
output data is latched when /CAL is high.  
Internal Refresh  
If /F is active (low) on the assertion of /RE, an internal refresh  
cycle is executed. This cycle refreshes the row address supplied by  
an internal refresh counter. This counter is incremented at the end  
of the cycle in preparation for the next /F refresh cycle. At least  
1,024 /F cycles must be executed every 64ms. /F refresh cycles can  
be hidden because cache memory can be read under column  
address control throughout the entire /F cycle. /F cycles are the  
only active cycles where /S can be disabled.  
W/R — Write/Read  
This input along with /F specifies the type of DRAM operation  
initiated on the low going edge of /RE. When /F is high, W/R  
specifies either a write (logic high) or read operation (logic low).  
/RE Only Refresh Operation  
Although /F refresh using the internal refresh counter is the  
recommended method of EDRAM refresh, it is possible to perform  
an /RE only refresh using an externally supplied row address. /RE  
refresh is performed by executing a write cycle (W/R and /F are  
high) where /CAL is not clocked. This is necessary so that the  
current cache contents and LRR are not modified by the refresh  
/F — Refresh  
This input will initiate a DRAM refresh operation using the  
internal refresh counter as an address source when /F is low on  
the low going edge of /RE.  
/WE — Write Enable  
operation. All combinations of addresses A must be sequenced  
0-9  
This input controls the latching of write data on the input data  
pins. A write operation is initiated when both /CAL and /WE are  
low.  
every 64ms refresh period. A does not need to be cycled. Read  
10  
refresh cycles are not allowed because a DRAM refresh cycle does  
not occur when a read refresh address matches the LRR address  
latch.  
/G — Output Enable  
This input controls the gating of read data to the output data  
pins during read operations.  
Low Power Mode  
The EDRAM enters its low power mode when /S is high. In  
this mode, the internal DRAM circuitry is powered down to reduce  
standby current.  
/S — Chip Select  
This input is used to power up the I/O and clock circuitry.  
When /S is high, the EDRAM remains in its low power mode. /S  
2-60  
Interconnect Diagram  
Edge  
Connecter  
J1  
DQ0  
2
4
6
8
DQ1  
DQ2  
DQ3  
DQ4  
20  
22  
24  
26  
36  
49  
51  
53  
55  
57  
61  
63  
65  
37  
3
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
DQ32  
DQ33  
DQ34  
DQ35  
+5V  
100KΩ  
5
7
9
21  
23  
25  
27  
35  
50  
52  
54  
56  
58  
60  
62  
64  
38  
+5V  
U3  
Parity*  
U5  
1
5
11  
17  
22  
31  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
U4  
U2  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
27  
28  
29  
30  
35  
36  
37  
38  
39  
40  
41  
3
8
12  
13  
14  
15  
16  
17  
18  
28  
31  
32  
19  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
U1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DM2213T  
512K x 8  
EDRAM  
14  
19  
23  
34  
44  
DM2203T  
512K x 8  
EDRAM  
DM2203T  
512K x 8  
EDRAM  
DM2203T  
512K x 8  
EDRAM  
W/R  
/WE  
/F  
/S  
/G  
43  
26  
2
42  
12  
10  
24  
W/R  
/WE  
/F  
/S  
/G  
QLE  
/HIT  
48  
47  
68  
69  
67  
DM2203T  
512K x 8  
EDRAM  
+5V  
100KΩ  
R6 - R10  
/CAL0  
/CAL0  
/CAL1  
/CAL2  
/CAL3  
/CALP  
/RE0  
40  
43  
41  
42  
46  
44  
34  
/CAL1  
/CAL2  
/CAL3  
/CALP  
/RE0  
/RE2  
/RE2  
VCC  
VCC  
VCC  
VCC  
VCC  
10  
11  
30  
59  
66  
C1  
C2  
C3  
C4  
C5  
VSS  
VSS  
VSS  
VSS  
VSS  
1
29  
39  
71  
72  
PD  
70  
*DM2213 and R1-4 are not present on the DM512K32ST6.  
2-61  
Pinout  
Interconnect  
Interconnect  
Pin No. Function (Component Pin)  
Organization  
Ground  
Pin No. Function (Component Pin)  
Organization  
Parity I/O for Byte 2  
Parity I/O for Byte 4  
Ground  
C (3, 8, 14, 19,  
1
2
GND  
DQ0  
DQ18  
DQ1  
DQ19  
DQ2  
DQ20  
DQ3  
DQ21  
+5 Volts  
+5 Volts  
A0  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
DQ17*  
DQ35*  
GND  
/CAL0  
/CAL2  
/CAL3  
/CAL1  
/RE0  
U3 (6)  
23, 34, 44)  
U1 (4)  
Byte 1 I/O 1  
Byte 3 I/O 1  
Byte 1 I/O 2  
Byte 3 I/O 2  
Byte 1 I/O 3  
Byte 3 I/O 3  
Byte 1 I/O 4  
Byte 3 I/O 4  
U3 (9)  
C (3, 8, 14, 19,  
23, 34, 44)  
3
U4 (4)  
U1 (6)  
U4 (6)  
U1 (7)  
U4 (7)  
U1 (9)  
U4 (9)  
4
U1 (32)  
U4 (32)  
U5 (32)  
U2 (32)  
U1, 2 (33)  
Byte 1 Column Address Latch  
Byte 3 Column Address Latch  
Byte 4 Column Address Latch  
Byte 2 Column Address Latch  
Row Enable (Bytes 1,2)  
Reserved for 2Mb x 36  
Parity Column Address Latch  
Write Enable  
5
6
7
8
9
NC  
C (1, 5,11, 17,  
22, 31)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
V
/CALP*  
/WE  
U3 (32)  
C (26)  
C (43)  
U2 (4)  
U5 (4)  
U2 (6)  
U5 (6)  
U2 (7)  
U5 (7)  
U2 (9)  
U5 (9)  
U2 (13)  
U5 (13)  
CC  
C (1, 5, 11, 17,  
V
CC  
22, 31)  
C (27)  
Address  
W/R  
W/R Mode Control  
Byte 2 I/O 1  
A1  
C (28)  
Address  
DQ9  
A2  
C (29)  
Address  
DQ27  
DQ10  
DQ28  
DQ11  
DQ29  
DQ12  
DQ30  
DQ13  
DQ31  
+5 Volts  
DQ32  
DQ14  
DQ33  
DQ15  
DQ34  
DQ16  
+5 Volts  
/G  
Byte 4 I/O 1  
A3  
C (30)  
Address  
Byte 2 I/O 2  
A4  
C (35)  
Address  
Byte 4 I/O 2  
A5  
C (36)  
Address  
Byte 2 I/O 3  
A6  
C (37)  
Address  
Byte 4 I/O 3  
A10  
C (41)  
Address  
Byte 2 I/O 4  
DQ4  
DQ22  
DQ5  
DQ23  
DQ6  
DQ24  
DQ7  
DQ25  
A7  
U1 (13)  
U4 (13)  
U1 (15)  
U4 (15)  
U1 (16)  
U4 (164  
U1 (18)  
U4 (18)  
C (38)  
Byte 1 I/O 5  
Byte 3 I/O 5  
Byte 1 I/O 6  
Byte 3 I/O 6  
Byte 1 I/O 7  
Byte 3 I/O 7  
Byte 1 I/O 8  
Byte 3 I/O 8  
Address  
Byte 4 I/O 4  
Byte 2 I/O 5  
Byte 4 I/O 5  
C (1, 5, 11, 17,  
22, 31)  
V
CC  
U5 (15)  
U2 (15)  
U5 (16)  
U2 (16)  
U5 (18)  
U2 (18)  
Byte 4 I/O 6  
Byte 2 I/O 6  
Byte 4 I/O 7  
Byte 2 I/O 7  
Byte 4 I/O 8  
Byte 2 I/O 8  
C (3, 8, 14, 19,  
23, 34, 44)  
C (1, 5, 11, 17,  
22, 31)  
GND  
+5 Volts  
A8  
Ground  
C (1, 5, 11, 17,  
22, 31)  
V
V
CC  
CC  
C (39)  
C (40)  
Address  
C (12)  
Output Enable  
Refresh Mode Control  
Chip Select  
A9  
Address  
/F  
C (2)  
NC  
Reserved for 2Mb x 36  
Row Enable (Bytes 3,4, Parity)  
Parity I/O for Byte 3  
Parity I/O for Byte 1  
/S  
C (42)  
/RE2  
DQ26*  
DQ8*  
U3, 4, 5 (33)  
U3 (7)  
PD  
Signal GND  
C (3, 8, 14, 19,  
23, 34, 44)  
C (3, 8, 14, 19  
33, 34, 44)  
Presence Detect  
Ground  
GND  
GND  
U3 (4)  
Ground  
C = Common to All Memory Chips, U1 = Chip 1, etc.  
*No Connect for DM512K32ST6  
2-62  
must remain active throughout any read or write operation. With  
the exception of /F refresh cycles, /RE should never be clocked  
when /S is inactive.  
V Power Supply  
CC These inputs are connected to the +5 volt power supply.  
V Ground  
SS  
These inputs are connected to the power supply ground  
DQ0-35 Data Input/Output  
connection.  
These bidirectional data pins are used to read and write data  
to the EDRAM. On the DM512K36 SIMM, the parity pins are also  
used to specify the bit mask used during parity write operations.  
A
0-10 Multiplex Address  
These inputs are used to specify the row and column  
addresses of the EDRAM data. The 11-bit row address is latched on  
the falling edge of /RE. The 8-bit column address can be specified  
at any other time to select read data from the SRAM cache or to  
specify the write column address during write cycles.  
Absolute Maximum Ratings  
(Beyond Which Permanent Damage Could Result)  
Capacitance  
Description  
Ratings  
- 1 ~ 7v  
Description  
Max*  
22/24pf  
16pf  
Pins  
Input Voltage (V )  
Input Capacitance  
Input Capacitance  
Input Capacitance  
Input Capacitance  
A
0-10  
IN  
Output Voltage (VOUT  
)
- 1 ~ 7v  
/RE  
0
Power Supply Voltage (V  
)
- 1 ~ 7v  
CC  
14/18pf  
17pf  
/RE  
2
Ambient Operating Temperature (T )  
-40 ~ 85°C  
-55 ~ 150°C  
A
/G  
Storage Temperature (T )  
S
DQ  
I/O Capacitance  
Input Capacitance  
Input Capacitance  
9pf  
0-35  
Static Discharge Voltage  
(Per MIL-STD-883 Method 3015)  
Class 1  
50mA*  
10pf  
24pf  
/CAL  
0-3, P  
W/R, /WE, /F, /S  
Short Circuit O/P Current (IOUT  
)
* One output at a time per device; short duration  
* DM512K32ST6/DM512K36ST6, respectively  
V Timing Reference Point at V and V  
IH  
AC Test Load and Waveforms  
IN  
IL  
V
OUT Timing Referenced to 1.5 Volts V  
IH  
Load Circuit  
5.0V  
R1= 828Ω  
Input Waveforms  
V
IH  
V
IH  
Output  
R2 = 295Ω  
V
IL  
V
IL  
C L = 50pf  
GND  
5ns  
5ns  
2-63  
Electrical Characteristics  
(T = 0 to 70°C, Commercial; -40 to 85°C, Industrial)  
A
Symbol  
Parameters  
Supply Voltage  
Max  
Min  
Test Conditions  
All Voltages Referenced to V  
V
4.75V  
5.25V  
SS  
CC  
V
Input High Voltage  
Input Low Voltage  
Output High Level  
Output Low Level  
2.4V  
-1.0V  
2.4V  
6.5V  
0.8V  
IH  
V
IL  
V
I
= - 5mA  
= 4.2mA  
OUT  
OH  
V
0.4V  
-50µA  
-50µA  
I
OUT  
OL  
I
I
Input Leakage Current  
Output Leakage Current  
-50µA  
-50µA  
OV V 6.5V, All Other Pins Not Under Test = 0V  
IN  
i(L)  
OV  
V
, OV  
V 5.5V  
OUT  
IN  
O(L)  
Operating Current — DM512K32ST6  
33MHz Typ(1)  
440mA  
Symbol  
Operating Current  
Random Read  
-15 Max  
720mA /RE, /CAL, /G and Addresses Cycling: t = t Minimum  
-12 Max  
Test Condition  
Notes  
I
900mA  
580mA  
440mA  
760mA  
540mA  
4mA  
2, 3  
CC1  
C
C
I
Fast Page Mode Read  
Static Column Read  
Random Write  
260mA  
460mA /CAL, /G and Addresses Cycling: t = t Minimum  
2, 4  
2, 4  
2, 3  
2, 4  
PC PC  
CC2  
I
220mA  
540mA  
200mA  
4mA  
360mA  
600mA  
420mA  
4mA  
/G and Addresses Cycling: t = t Minimum  
SC SC  
CC3  
I
/RE, /CAL, /WE and Addresses Cycling: t = t Minimum  
C
C
CC4  
I
Fast Page Mode Write  
/CAL, /WE and Addresses Cycling: t = t Minimum  
PC PC  
CC5  
I
Standby  
All Control Inputs Stable V - 0.2V, Outputs Driven  
CC6  
CC  
I
1
Average Typical  
120mA  
See "Estimating EDRAM Operating Power" Application Note  
CCT  
Operating Current  
Operating Current — DM512K36ST6  
33MHz Typ(1)  
550mA  
-15 Max  
Symbol  
Operating Current  
Random Read  
-12 Max  
Test Condition  
Notes  
I
1125mA  
900mA /RE, /CAL, /G and Addresses Cycling: t = t Minimum  
2, 3  
CC1  
C
C
I
Fast Page Mode Read  
Static Column Read  
Random Write  
325mA  
725mA  
550mA  
950mA  
675mA  
5mA  
575mA /CAL, /G and Addresses Cycling: t = t Minimum  
2, 4  
2, 4  
2, 3  
2, 4  
PC PC  
CC2  
I
275mA  
675mA  
250mA  
5mA  
450mA  
750mA  
525mA  
5mA  
/G and Addresses Cycling: t = t Minimum  
SC SC  
CC3  
I
/RE, /CAL, /WE and Addresses Cycling: t = t Minimum  
C
C
CC4  
I
Fast Page Mode Write  
/CAL, /WE and Addresses Cycling: t = t Minimum  
PC PC  
CC5  
I
Standby  
All Control Inputs Stable V - 0.2V, Outputs Driven  
CC6  
CC  
I
1
Average Typical  
150mA  
See "Estimating EDRAM Operating Power" Application Note  
CCT  
Operating Current  
(1) “33MHz Typ” refers to worst case I expected in a system operating with a 33MHz memory bus. See power applications note for further details. This parameter is not 100% tested  
CC  
or guaranteed.  
(2) I is dependent on cycle rates and is measured with CMOS levels and the outputs open.  
CC  
(3) I is measured with a maximum of one address change while /RE = V .  
CC  
IL  
(4) I is measured with a maximum of one address change while /CAL = V .  
CC  
IH  
2-64  
Switching Characteristics (V = 5V ± 5%, T = 0 to 70°C, Commercial; -40 to 85°C, Industrial)  
CC  
A
-12  
Min  
-15  
Symbol  
Description  
Units  
Max  
Min  
Max  
(1)  
t
t
Column Address Access Time  
12  
15  
ns  
ns  
AC  
Column Address Valid to /CAL Inactive (Write Cycle)  
Address Valid to /CAL Inactive  
12  
15  
15  
ACH  
t
12  
5
ns  
ACI  
AQX  
ASC  
ASR  
C
t
t
t
t
t
t
t
t
t
Column Address Change to Output Data Invalid  
Column Address Setup Time  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
Row Address Setup Time  
5
5
55  
65  
25  
6
Row Enable Cycle Time  
Row Enable Cycle Time, Cache Hit (Row=LRR), Read Cycle Only  
Column Address Latch Active Time  
20  
5
C1  
CAE  
CAH  
CH  
Column Address Hold Time  
0
0
5
5
Column Address Latch High Time (Latch Transparent)  
/CAL Inactive Lead Time to /RE Inactive (Write Cycles Only)  
-2  
-2  
CHR  
t
t
t
0
0
Column Address Latch High to Write Enable Low (Multiple Writes)  
Column Address Latch Low to Data Valid  
ns  
ns  
ns  
CHW  
CLV  
7
7
5
5
Column Address Latch Low to Data Invalid  
CQH  
t
t
t
t
t
t
t
t
Column Address Latch High to Data Valid  
Column Address Latch Setup Time to Row Enable  
/WE Low to /CAL Inactive  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CQV  
CRP  
CWL  
DH  
5
5
0
1
5
5
5
5
0
Data Input Hold Time  
1.5  
5
Mask Hold Time From Row Enable (Write-Per-Bit)  
Mask Setup Time to Row Enable (Write-Per-Bit)  
Data Input Setup Time  
DMH  
DMS  
DS  
5
(1)  
GQV  
Output Enable Access Time  
5
5
5
5
5
5
(2,3)  
GQX  
t
t
t
t
t
t
t
t
t
Output Enable to Output Drive Time  
Output Turn-Off Delay From Output Disabled (/G)  
/F and W/R Mode Select Hold Time  
0
0
0
0
ns  
ns  
(4,5)  
GQZ  
0
0
ns  
ns  
ns  
ns  
ns  
MH  
/F and W/R Mode Select Setup Time  
/CAL, /G, and /WE Hold Time For /RE-Only Refresh  
/CAL, /G, and /WE Setup Time For /RE-Only Refresh  
Column Address Latch Cycle Time  
5
5
MSU  
NRH  
NRS  
PC  
0
0
5
5
12  
15  
(1)  
RAC  
Row Enable Access Time, On a Cache Miss  
30  
15  
35  
17  
ns  
ns  
(1)  
Row Enable Access Time, On a Cache Hit (Limit Becomes t  
Row Enable Access Time for a Cache Write Hit  
Row Address Hold Time  
)
RAC1  
AC  
(1,6)  
t
t
t
30  
35  
ns  
ns  
ns  
RAC2  
RAH  
RE  
1
1.5  
35  
Row Enable Active Time  
30  
100000  
100000  
2-65  
Switching Characteristics (continued)  
(V = 5V ± 5%, (T = 0 to 70°C, Commercial; -40 to 85°C, Industrial; C = 50pF)  
CC  
A
L
-12  
-15  
Symbol  
Description  
Units  
Min  
Max  
64  
Min  
Max  
64  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Row Enable Active Time, Cache Hit (Row=LRR) Read Cycle  
Refresh Period  
8
10  
ns  
ms  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RE1  
REF  
Output Enable Don't Care From Row Enable (Write, Cache Miss), O/P Hi Z  
Row Enable High to Output Turn-On After Write Miss  
Row Precharge Time  
9
0
10  
0
RGX  
RQX1  
(2,6)  
12  
15  
(7)  
RP  
20  
8
25  
10  
0
Row Precharge Time, Cache Hit (Row=LRR) Read Cycle  
Read Hold Time From Row Enable (Write Only)  
Last Write Address Latch to End of Write  
Row Enable to Column Address Latch Low For Second Write  
Last Write Enable to End of Write  
RP1  
RRH  
RSH  
RSW  
RWL  
SC  
0
12  
35  
12  
12  
0
15  
40  
15  
15  
0
Column Address Cycle Time  
Select Hold From Row Enable  
SHR  
(1)  
Chip Select Access Time  
12  
12  
8
15  
15  
10  
SQV  
(2,3)  
0
0
Output Turn-On From Select Low  
0
0
SQX  
(4,5)  
Output Turn-Off From Chip Select  
SQZ  
SSR  
T
5
Select Setup Time to Row Enable  
5
1
Transition Time (Rise and Fall)  
10  
1
10  
12  
5
Write Enable Cycle Time  
15  
5
WC  
WCH  
WHR  
WI  
Column Address Latch Low to Write Enable Inactive Time  
Write Enable Hold After /RE  
(7)  
0
0
5
Write Enable Inactive Time  
5
5
5
Write Enable Active Time  
WP  
(1)  
12  
12  
12  
15  
15  
15  
Data Valid From Write Enable High  
WQV  
(2,5)  
Data Output Turn-On From Write Enable High  
Data Turn-Off From Write Enable Low  
Write Enable Setup Time to Row Enable  
Write to Read Recovery (Following Write Miss)  
0
0
5
0
0
5
WQX  
(3,4)  
WQZ  
WRP  
WRR  
12  
15  
(1) V Timing Reference Point at 1.5V  
OUT  
(2) Parameter Defines Time When Output is Enabled (Sourcing or Sinking Current) and is Not Referenced to V or V  
OH  
OL  
(3) Minimum Specification is Referenced from V and Maximum Specification is Referenced from V on Input Control Signal  
IH  
IL  
(4) Parameter Defines Time When Output Achieves Open-Circuit Condition and is Not Referenced to V or V  
OH  
OL  
(5) Minimum Specification is Referenced from V and Maximum Specification is Referenced from V on Input Control Signal  
IL  
IH  
(6) Access Parameter Applies When /CAL Has Not Been Asserted Prior to t  
RAC2  
(7) For Write-Per-Bit Devices, t  
is Limited By Data Input Setup Time, t  
WHR  
DS  
2-66  
/RE Inactive Cache Read Hit (EDO Mode)  
/RE  
0, 2  
/F  
W/R  
tACI  
tCAH  
A
A
0-10  
0-7  
A
Column 1  
tASC  
Column 2  
tASC  
Row  
0-10  
tCAH  
tCH  
tCAE  
/CAL  
0-3, P  
tPC  
tCQV  
tCLV  
tCQH  
/WE  
tAC  
tCLV  
Open  
Data 1  
Data 2  
DQ  
0-35  
tAC  
tGQX  
tGQZ  
tGQV  
/G  
tSQX  
tSQV  
tSQZ  
/S  
Dont Care or Indeterminate  
NOTES: 1. Data accessed during /RE inactive read is from the row address specified during the last /RE active read cycle.  
2. Latched data becomes invalid when /S is inactive.  
2-67  
/RE Active Cache Read Hit (EDO Mode)  
tC1  
tRE1  
/RE  
0,2  
tRP1  
tMSU  
tMH  
/F  
tMSU  
tMH  
W/R  
tACI  
tASR  
tRAH  
tCAH  
A
Row  
Column 1  
Column 2  
tASC  
Row  
0-10  
tASC  
tCAH  
tCRP  
tCH  
tCAE  
/CAL  
tPC  
0-3, P  
tCQV  
/WE  
tCLV  
tCLV  
tCQH  
tAC  
tRAC1  
Open  
Data 1  
Data 2  
DQ  
0-35  
tAC  
tGQX  
tGQZ  
tGQV  
/G  
/S  
tSHR  
tSQZ  
tSSR  
Dont Care or Indeterminate  
NOTES: 1. Latched data becomes invalid when /S is inactive.  
2-68  
/RE Active Cache Read Miss (EDO Mode)  
tC  
tRE  
/RE  
tRP  
0, 2  
tMSU  
tMH  
/F  
tMSU  
tMH  
W/R  
tACI  
tASR  
tRAH  
tCAH  
A0-10  
A0-7  
A0-7  
Row  
Column 1  
tASC  
Column 2  
Row  
A
0-10  
tASC  
tCRP  
tCAH  
tCH  
tCAE  
/CAL  
0-3, P  
tPC  
tCQV  
tCLV  
/WE  
tCLV  
tAC  
tRAC  
tCQH  
Open  
Data 1  
Data 2  
DQ  
0-35  
tAC  
tGQZ  
/G  
/S  
tGQX  
tSHR  
tSSR  
tGQV  
tSQZ  
Dont Care or Indeterminate  
NOTES: 1. Latched data becomes invalid when /S is inactive.  
2-69  
Burst Write (Hit or Miss) Followed By /RE Inactive Cache Reads  
tRE  
/RE  
0,2  
tMSU  
tRP  
tCHR  
tMH  
/F  
tMSU  
tMH  
W/R  
tASR  
tCAH  
tRAH  
Column 1  
tASC  
tRSW  
A
A
A
0-7  
0-7  
0-7  
A
Row  
Column 2  
tACH  
Column n  
tCAH  
0-10  
tACH  
A
0-10  
tASC  
tCAH  
tRSH  
tCRP  
tCWL  
tCWL  
tCAE  
tCAE  
tCH  
tCHW  
/CAL  
0-3, P  
tCAE  
tRRH  
tWCH  
tWP  
tPC  
tWCH  
tWP  
tWRP  
/WE  
tWI  
tWRR  
tWHR  
tWC  
tDS  
tCLV  
tAC  
tRWL  
tDH  
tDS  
tDH  
DQ  
Open  
Data 1  
Data 2  
Cache (Column n)  
0-35  
tRQX1  
tGQX  
/G  
tGQV  
tSSR  
/S  
Dont Care or Indeterminate  
NOTES: 1. /G becomes a don’t care after t during a write miss.  
RGX  
2-70  
Read/Write During Write Hit Cycle (Can Include Read-Modify-Write)  
tC  
tRE  
/RE  
0,2  
tRP  
tMSU  
tMH  
/F  
tMSU  
tMH  
W/R  
tCHR  
tASR  
tAC  
tASC  
tRAH  
A
0-7  
A
Row  
Column 1  
Column 2  
tACH  
Column 3  
0-10  
tASC  
tRSH  
tASC  
tCAH  
tCRP  
tCAE  
tWCH  
tCAE  
/CAL  
0-3,P  
tCLV  
tPC  
tCQV  
tCWL  
tWP  
tWRP  
tRRH  
/WE  
tWHR  
tRAC2  
tRWL  
tWQV  
tCLV  
tDS  
tAC  
DQ  
Read Data  
Write Data  
tDH  
tGQZ  
Read Data  
0-35  
tGQZ  
tGQX  
tGQV  
tWQX  
tGQV  
/G  
tSSR  
/S  
Dont Care or Indeterminate  
NOTES: 1. If column address one equals column address two, then a read-modify-write cycle is performed.  
2-71  
Write-Per-Bit Cycle (/G=High)  
tRE  
tRP  
/RE  
0, 2  
tRSH  
tCAE  
tCHR  
tACH  
/CAL  
0-3,P  
tRAH  
tASC  
tASR  
tCAH  
A0-7  
A
Row  
Column  
0-10  
tMSU  
tMH  
tCWL  
W/R  
tRWL  
tWCH  
tDMH  
tDMS  
DQ  
Mask  
Data  
0-35  
tDS  
tRRH  
tWRP  
tDH  
tWP  
/WE  
tWHR  
tMSU  
/F  
/S  
tMH  
tSSR  
tSHR  
Dont Care or Indeterminate  
NOTES: 1. Data mask bit high (1) enables bit write; data mask bit low (0) inhibits bit write.  
2. Write-per-bit cycle valid only for DM512K36 ST6.  
3. Write-per-bit waveform applies to parity bits only (DQ 8, 17, 26, 35).  
2-72  
/F Refresh Cycle  
tRE  
/RE  
0, 2  
tMSU  
tRP  
tMH  
/F  
Dont Care or Indeterminate  
NOTES: 1. During /F refresh cycles, the status of W/R, /WE, A0-10, /CAL, /S, and /G is a don’t care.  
2. /RE inactive cache reads may be performed in parallel with /F refresh cycles.  
/RE-Only Refresh  
tC  
tRE  
/RE  
tRP  
0,2  
tASR  
tRAH  
A0-10  
Row  
tNRS  
tNRH  
,/WE, /G  
/CAL  
0-3,P  
tMSU  
tMH  
W/R, /F  
/S  
tSSR  
tSHR  
Dont Care or Indeterminate  
NOTES: 1. All binary combinations of A must be refreshed every 64ms interval. A does not have to be cycled, but must remain valid  
0-9  
10  
during row address setup and hold times.  
2. /RE refresh is write cycle with no /CAL active cycle.  
2-73  
Mechanical Data  
72 Pin SIMM Module  
4.245 (107.82)  
4.255 (108.08)  
Inches (mm)  
3.984 (101.19)  
0.133 (3.38)  
0.123 (3.12)  
0.127 (3.22)  
0.400  
(10.16)  
R4 R3 C3 R1 R2  
C1  
C2  
R8  
C4  
R9  
C5  
R7  
0.225  
U1  
U4  
U3  
U5  
U2  
0.945 (24.00)  
0.955 (24.26)  
(5.72)  
0.010  
(.254)  
R6  
R10  
1
72  
0.050 (1.27)  
0.040 (1.02)  
0.042 (1.07)  
0.047 (1.19)  
0.054 (1.37)  
0.100  
(2.54)  
0.245 (6.22)  
0.255 (6.48)  
0.060 (1.52)  
0.075 (1.90)  
0.085 (2.16)  
0.104 (2.65)  
RAD.  
0.064 (1.63)  
0.062 (1.57) RAD.  
0.250 (6.35)  
1.750 (44.45)  
0.250 (6.35)  
3.750 (95.25)  
2.125 (53.98)  
U1-2, U4-5 — Enhanced DM2203T-XX, 512K x 8 EDRAMs, 300 Mil TSOP  
U5 — Enhanced DM2213T-XX, 512K x 8 EDRAM with write-per-bit (not present on DM512K32ST6)  
C1-C5 — 0.22µF Chip Capacitors  
R1-R4, R6-R10 — 100KChip Resistors  
Socket — AMP 822030-3 or Equivalent  
Part Numbering System  
DM512K36ST6 - 12I  
Special Configurations  
No Designator = 00 to 700C Commerical Temperature  
I = 400 to 850C Industrial Temperature  
Access Time from Cache in Nanoseconds  
12ns  
15ns  
Configuration  
6 = +5 Volt, Multibank EDO  
Packaging System  
T = 300 Mil, Plastic TSOP-II  
Memory Module Configuration  
S = SIMM  
I/O Width  
32 = 32 Bits  
36 = 36 Bits  
Memory Depth (Kilobits)  
Dynamic Memory  
The information contained herein is subject to change without notice. Enhanced Memory Systems Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in  
an Enhanced product, nor does it convey or imply any license under patent or other rights.  
2-74  

相关型号:

DM512K32ST6-12I

Enhanced DRAM (EDRAM) Module
ETC

DM512K32ST6-15

Enhanced DRAM (EDRAM) Module
ETC

DM512K32ST6-15I

Enhanced DRAM (EDRAM) Module
ETC

DM512K36ST-12

Cache DRAM Module, 512KX36, 12ns, CMOS, PSMA72,
CYPRESS

DM512K36ST-12I

Cache DRAM Module, 512KX36, 12ns, CMOS, PSMA72,
CYPRESS

DM512K36ST-15

Cache DRAM Module, 512KX36, 15ns, CMOS, PSMA72,
CYPRESS

DM512K36ST-15I

Cache DRAM Module, 512KX36, 15ns, CMOS, PSMA72,
CYPRESS

DM512K36ST6-12

Enhanced DRAM (EDRAM) Module
ETC

DM512K36ST6-12I

Enhanced DRAM (EDRAM) Module
ETC

DM512K36ST6-15

Enhanced DRAM (EDRAM) Module
ETC

DM512K36ST6-15I

Enhanced DRAM (EDRAM) Module
ETC

DM512K64DT6-12

Cache DRAM Module, 512KX64, 30ns, MOS, DIMM-168
RAMTRON