DM512K64DT6-12 [RAMTRON]

Cache DRAM Module, 512KX64, 30ns, MOS, DIMM-168;
DM512K64DT6-12
型号: DM512K64DT6-12
厂家: RAMTRON INTERNATIONAL CORPORATION    RAMTRON INTERNATIONAL CORPORATION
描述:

Cache DRAM Module, 512KX64, 30ns, MOS, DIMM-168

动态存储器 光电二极管 内存集成电路
文件: 总26页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DM512K64DT6/DM512K72DT6 Multibank EDO  
EDRAM  
512Kb x 64/512Kb x 72 Enhanced DRAM DIMM  
Enhanced  
Memory Systems Inc.  
Product Specification  
Features  
8Kbytes SRAM Cache Memory for 12ns Random Reads Within Four On-chip Cache Hit/Miss Comparators Automatically Maintain Cache  
Active Pages (Multibank Cache)  
Coherency on Writes  
Fast 4Mbyte DRAM Array for 30ns Access to Any New Page  
Write Posting Registers for 12ns Random Writes and Burst Writes  
Within a Page (Hit or Miss)  
Hidden Precharge & Refresh Cycles  
Extended 64ms Refresh Period for Low Standby Power  
CMOS/TTL Compatible I/O and +5 Volt Power Supply  
Output Latch Enable Allows Extended Data Output (EDO) for  
Faster System Operation  
2Kbyte Wide DRAM to SRAM Bus for 113.6 Gigabytes/Second  
Cache Fill Rate  
A Hit Pin Outputs Status on On-chip Page Hit/Miss Comparators to  
Simplify Control  
Description  
Architecture  
The DM512K72DT6 achieves  
512Kb x 72 density by mounting  
The Enhanced Memory Systems 4MB enhanced DRAM  
(EDRAM)DIMM module provides a single memory module solution  
for the main memory or local memory of fast 64-bit embedded  
computers, communications switches, and other high performance  
systems. Due to its fast non-interleave architecture, the EDRAM DIMM  
module supports zero-wait-state burst read or write operation to  
83MHz. The EDRAM outperforms conventional SRAM plus DRAM or  
synchronous DRAM memory systems by minimizing wait states on  
initial reads (hit or miss) and eliminating writeback delays.  
Each 4Mbyte DIMM module has 8Kbytes of SRAM cache  
organized as four 256 x 72 row registers with 12ns initial access  
time. On a cache miss, the fast DRAM array reloads an entire 2Kbyte  
row register over a 2Kbyte-wide bus in just 18ns for an effective cache  
fill rate of 113.6 Gbytes/second. During write cycles, a write posting  
register allows the initial write to be posted as early as 5ns after  
column address is available. EDRAM supports direct non-interleave  
page writes at up to 83MHz. An on-chip hit/miss comparator  
automatically maintains cache coherency during writes.  
nine 512Kx8 EDRAMs, packaged  
in low profile 44-pin TSOP-II  
packages on one side of the multi-  
layer substrate. Three high drive  
series terminated buffer chips  
buffer address and control lines.  
Twelve surface mount capacitors  
are used to decouple the power  
supply bus. The DM512K64DT  
contains eight 512Kx8 EDRAMs.  
The parity data component is not  
populated.  
The EDRAM memory module architecture is very similar to two  
standard 2MB DRAM SIMM modules configured in a 64-bit wide,  
non-interleave configuration. The EDRAM module adds an integrated  
cache and cache control logic which allow the cache to operate much  
like a page mode or static column DRAM.  
The EDRAM’s SRAM cache is  
integrated into the DRAM array as tightly  
coupled row registers. Memory reads  
always occur from the 256 x 72 cache  
row register associated with a 1MB  
Functional Diagram  
A
0-7  
Column  
Add  
Latch  
CAL  
0-8  
Column Decoder  
segment of DRAM. When the on-chip  
4- 256 X 72 Cache Pages  
(Row Register)  
comparator detects a page hit, only the  
4-Bit  
Comp  
/QLE  
SRAM is accessed and data is available  
Sense Amps  
& Column Write Select  
/G  
in 12ns from column address (the /HIT  
I/O  
Control  
and  
Data  
Latches  
4- Last  
Row  
Read  
Add  
Latches  
output is low to indicate a page hit).  
DQ  
When a page miss is detected, the entire  
new DRAM row is loaded into cache and  
data is available at the output within  
30ns from row enable (the /HIT output  
is high to indicate a page miss).  
0-71  
A
0-10  
/S  
Memory  
Array  
(4 Mbyte + Parity)  
Row  
Add  
Latch  
/WE  
Subsequent reads within a page (burst  
reads or random reads) will continue at  
12ns cycle time. Since reads occur from  
the SRAM cache, the DRAM precharge  
can occur simultaneously without  
degrading performance. The on-chip  
refresh counter with independent  
V
CC  
A
0-9  
C
1-12  
/F  
W/R  
/RE  
Row Add  
and  
Refresh  
Control  
V
SS  
Refresh  
Counter  
PD  
© 1996 Enhanced Memory Systems Inc. 1850 Ramtron Drive, Colorado Springs, CO  
Telephone (800) 545-DRAM; Fax (719) 488-9095; http://www.csn.net/ramtron/enhanced  
80921  
38-2123-000  
The information contained herein is subject to change without notice.  
Enhanced reserves the right to change or discontinue this product without notice.  
refresh bus allows the EDRAM to be refreshed during cache reads.  
Memory writes can be posted as early as 6.5ns after row  
EDRAM Basic Operating Modes  
The EDRAM operating modes are specified in the table.  
enable and are directed to the DRAM array. During a write hit, the  
on-chip address comparator activates a parallel write path to the  
SRAM cache to maintain coherency. Memory writes do not affect  
the contents of the cache row register except during write hits.  
By integrating the SRAM cache as row registers in the DRAM  
array and keeping the on-chip control simple, the EDRAM is able  
to provide superior system performance at less cost, power, and  
area than systems implemented with complex synchronous SRAM  
cache, cache controllers, and multilevel data busses.  
Hit and Miss Terminology  
In this datasheet, “hit” and “miss” always refer to a hit or miss  
to any of the four pages of data contained in the SRAM cache row  
registers. There are four cache row registers, one for each of the  
four banks of DRAM. These registers are specified by the bank  
select row address bits A and A . The contents of these cache row  
9
registers is always equal 8to the last row that was read from each of  
the four internal DRAM banks (as modified by any write hit data).  
Functional Description  
DRAM Read Hit  
The EDRAM is designed to provide optimum memory  
A DRAM read request is initiated by clocking /RE with W/R low  
and /F high. The EDRAM will compare the new row address to the  
last row read address latch for the bank specified by row address  
bits A (LRR: a 9-bit row address latch for each internal DRAM  
bank 8w-9hich is reloaded on each /RE active read miss cycle). If the  
row address matches the LRR, the requested data is already in the  
SRAM cache and no DRAM memory reference is initiated. The data  
specified by the row and column address is available at the output  
pins at the greater of times tAC or tGQV. The /HIT output is driven  
low at time tHV after /RE to indicate the shorter access time to the  
performance with high speed microprocessors. As a result, it is  
possible to perform simultaneous operations to the DRAM and  
SRAM cache sections of the EDRAM. This feature allows the EDRAM  
to hide precharge and refresh operation during reads and  
maximize hit rate by maintaining page cache contents during write  
operations even if data is written to another memory page. These  
capabilities, in conjunction with the faster basic DRAM and cache  
speeds of the EDRAM, minimize processor wait states.  
Four Bank Cache Architecture  
HIT0  
HIT1  
HIT2  
HIT3  
/HIT  
Bank 3  
Bank 2  
Bank 1  
Bank 0  
Last  
Row  
Read  
Address  
Latch  
+ 9-Bit  
Compare  
RA  
0-10  
CA  
0-7  
D0-71  
1M Array  
1M Array  
1M Array  
1M Array  
A
Data-In  
Latch  
0-10  
256 x 72  
Cache  
256 x 72  
Cache  
256 x 72  
Cache  
256 x 72  
Cache  
CA  
0-7  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
(0,0)  
(0,1)  
(1,0)  
(1,1)  
1 of 4 Selector  
RA , RA  
8
9
CAL  
QLE  
Data-Out  
Latch  
G
S
Q0-71  
2-138  
external control logic. Since no DRAM activity is initiated, /RE can by bringing /WE low (both /CAL and /WE must be high when  
initiating the write cycle with the falling edge of /RE). The write  
address and data can be latched very quickly after the fall of /RE  
(tRAH + tASC for the column address and tDS for the data). During a  
write burst sequence, the second write data can be posted at time  
be brought high after time tRE1, and a shorter precharge time, tRP1,  
is required. Additional locations within the currently active page  
may be accessed concurrently with precharge by providing new  
column addresses to the multiplex address inputs. New data is  
available at the output at time tAC after each column address change  
in static column mode. During any read cycle, it is possible to  
operate in either static column mode with /CAL=high or page  
mode with /CAL clocked to latch the column address. In page  
tRSW after /RE. Subsequent writes within a page can occur with write  
cycle time tPC. With /G enabled and /WE disabled, read operations  
may be performed while /RE is activated in write hit mode. This  
allows read-modify-write, write-verify, or random read-write  
sequences within the page with 12ns cycle times. During a write hit  
sequence, the /HIT output is driven low. At the end of any write  
sequence (after /CAL and /WE are brought high and tRE is satisfied),  
/RE can be brought high to precharge the memory. Cache reads can  
be performed concurrently with precharge (see “/RE Inactive  
Operation”). When /RE is inactive, the cache reads will occur from  
the page accessed during the last /RE active read cycle.  
mode, data valid time is determined by either tAC and tCQV  
.
DRAM Read Miss  
A DRAM read request is initiated by clocking /RE with W/R low  
and /F high. The EDRAM will compare the new row address to the  
LRR address latch for the bank specified by row address bits A  
8-9  
(LRR: a 9-bit row address latch for each internal DRAM bank  
which is reloaded on each /RE active read miss cycle). If the row  
address does not match the LRR, the requested data is not in SRAM  
cache and a new row is fetched from the DRAM. The EDRAM will  
load the new row data into the SRAM cache and update the LRR  
latch. The data at the specified column address is available at the  
output pins at the greater of times tRAC, tAC, and tGQV. The /HIT  
output is driven high at time tHV after /RE to indicate the longer  
access time to the external control logic. /RE may be brought high  
after time tRE since the new row data is safely latched into SRAM  
cache. This allows the EDRAM to precharge the DRAM array while  
data is accessed from SRAM cache. Additional locations within the  
currently active page may be accessed by providing new column  
addresses to the multiplex address inputs. New data is available at  
the output at time tAC after each column address change in static  
column mode. During any read cycle, it is possible to operate in  
either static column mode with /CAL=high or page mode with /CAL  
clocked to latch the column address. In page mode, data valid time  
DRAM Write Miss  
A DRAM write request is initiated by clocking /RE while W/R,  
/CAL, /WE, and /F are high. The EDRAM will compare the new row  
address to the LRR address latch for the bank specified for row  
address bits A (LRR: a 9-bit row address latch for each internal  
8-9  
DRAM bank which is reloaded on each /RE active read miss cycle).  
If the row address does not match any of the LRRs, the EDRAM will  
write data to the DRAM page in the appropriate bank and the  
contents of the current cache is not modified. The write address and  
data are posted to the DRAM as soon as the column address is  
latched by bringing /CAL low and the write data is latched by  
bringing /WE low (both /CAL and /WE must be high when initiating  
the write cycle with the falling edge of /RE). The write address and  
data can be latched very quickly after the fall of /RE (tRAH + tASC for  
the column address and tDS for the data). During a write burst  
sequence, the second write data can be posted at time tRSW after  
/RE. Subsequent writes within a page can occur with write cycle  
time tPC. During a write miss sequence, the /HIT output is driven  
high, cache reads are inhibited, and the output buffers are disabled  
(independently of /G) until time tWRR after /RE goes high. At the end  
of a write sequence (after /CAL and /WE are brought high and tRE is  
satisfied), /RE can be brought high to precharge the memory. Cache  
reads can be performed concurrently with the precharge (see “/RE  
Inactive Operation”). When /RE is inactive, the cache reads will  
occur from the page accessed during the last /RE active read cycle.  
is determined by either tAC and tCQV  
DRAM Write Hit  
A DRAM write request is initiated by clocking /RE while W/R,  
.
/CAL, /WE, and /F are high. The EDRAM will compare the new row  
address to the LRR address latch for the bank specified by row  
address bits A (LRR: a 9-bit row address latch for each internal  
8-9  
DRAM bank which is reloaded on each /RE active read miss cycle).  
If the row address matches the LRR, the EDRAM will write data to  
both the DRAM page in the appropriate bank and its corresponding  
SRAM cache simultaneously to maintain coherency. The write  
address and data are posted to the DRAM as soon as the column  
address is latched by bringing /CAL low and the write data is latched  
/RE Inactive Operation  
Data may be read from the SRAM cache without clocking /RE.  
This capability allows the EDRAM to perform cache read  
EDRAM Basic Operating Modes  
A
Function  
/S  
L
/RE  
W/R  
L
/F  
H
H
H
H
L
Comment  
0-10  
Read Hit  
Row = LRR  
No DRAM Reference, Data in Cache  
DRAM Row to Cache  
Read Miss  
L
L
Row LRR  
Write Hit  
L
H
Row = LRR  
Write to DRAM and Cache, Reads Enabled  
Write to DRAM, Cache Not Updated, Reads Disabled  
Write Miss  
L
H
Row LRR  
Internal Refresh  
Low Power Standby  
Unallowed Mode  
X
H
H
X
X
X
X
H
L
X
X
H
Standby Current  
X
H = High ; L = Low; X = Don t Care; = High -to-Low Tran sition ; LRR = Last Row Read  
2-139  
operations during precharge and refresh cycles to minimize wait  
states. It is only necessary to select /S and /G and provide the  
appropriate column address to read data as shown in the table  
below. In this mode of operation, the cache reads will occur from  
the page and bank accessed during the last /RE active read cycle.  
To perform a cache read in static column mode, /CAL is held high,  
and the cache contents at the specified column address will be  
valid at time tAC after address is stable. To perform a cache read in  
page mode, /CAL is clocked to latch the column address. When /RE  
is inactive, the hit pin is not driven and is in a high impedance  
state.  
Internal Refresh  
If /F is active (low) on the assertion of /RE, an internal refresh  
cycle is executed. This cycle refreshes the row address supplied by  
an internal refresh counter. This counter is incremented at the end  
of the cycle in preparation for the next /F refresh cycle. At least  
1,024 /F cycles must be executed every 64ms. /F refresh cycles can  
be hidden because cache memory can be read under column  
address control throughout the entire /F cycle. /F cycles are the  
only active cycles where /S can be disabled.  
/RE Only Refresh Operation  
Although /F refresh using the internal refresh counter is the  
recommended method of EDRAM refresh, an /RE only refresh may  
be performed using an externally supplied row address. /RE  
refresh is performed by executing a write cycle (W/R, /G, and /F  
are high) where /CAL is not clocked. This is necessary so that the  
current cache contents and LRR are not modified by the refresh  
This option is desirable when the external control logic is  
capable of fast hit/miss comparison. In this case, the controller can  
avoid the time required to perform row/column multiplexing on hit  
cycles.  
Function  
/S  
L
/G  
L
/CAL  
H
A
0-7  
operation. All combinations of addresses A must be sequenced  
0-9  
every 64ms refresh period. A does not need to be cycled. Read  
Cache Read (Static Column)  
Cache Read (Page Mode)  
Col Adr  
Col Adr  
10  
refresh cycles are not allowed because a DRAM refresh cycle does  
not occur when a read refresh address matches the LRR address  
latch.  
L
L
EDO Mode and Output Latch Enable Operation  
Low Power Mode  
The QLE and /CAL inputs can be used to create extended data  
output (EDO) mode timings in either static column or page modes.  
The DM512K32DT6 has an output latch enable (QLE) that can be  
used to extend the data output valid time. The output latch enable  
operates as shown in the following table.  
The EDRAM enters its low power mode when /S is high. In this  
mode, the internal DRAM circuitry is powered down to reduce  
standby current.  
Initialization Cycles  
When QLE is low, the latch is transparent and the EDRAM  
operates identically to the standard EDRAMs. When /CAL is high  
during a static column mode read, the QLE input can be used to  
latch the output to extend the data output valid time. QLE can be  
held high during page mode reads. In this case, the data outputs  
are latched while /CAL is high and open when /CAL is not high.  
A minimum of eight /RE active initialization cycles (read,  
write, or refresh) are required before normal operation is  
guaranteed. Following these start-up cycles, two read cycles to  
different row addresses must be performed for each of the four  
internal banks of DRAM to initialize the internal cache logic. Row  
address bits A and A define the four internal DRAM banks.  
8
9
Unallowed Mode  
QLE  
L
/CAL  
X
Comments  
Read, write, or /RE only refresh operations must not be  
performed to unselected memory banks by clocking /RE when /S is  
high.  
Output Transparent  
H
Output Latched When QLE=H (Static Column EDO)  
Output Latched When /CAL=H (Page Mode EDO)  
Reduced Pin Count Operation  
Although it is desirable to use all EDRAM control pins to  
H
optimize system performance, the interface to the EDRAM may be  
simplified to reduce the number of control lines by either tying pins  
to ground or by tying one or more control inputs together. The /S  
input can be tied to ground if the low power standby mode is not  
required. The QLE input can be tied low if output latching is not  
required, or it can be tied high if “extended data out” (hyper page  
mode) is required. The /HIT output pin is not necessary for device  
operation. The W/R and /G inputs can be tied together if reads are  
not required during a write hit cycle. The simplified control interface  
still allows the fast page read/write cycle times, fast random read/  
write times, and hidden precharge functions available with the EDRAM.  
Write-Per-Bit Operation  
The DM512K72 DIMM offers a write-per-bit capability to  
selectively modify individual parity bits (DQ  
)
for byte write operations. The parity device 8(,D1M7, 2262,1353,)44i,s5s3e, 6le2c, 7te1d  
via /CAL . Byte write selection to non-parity bits is accomplished via  
/CAL .8The bits to be written are determined by a bit mask data  
0-7  
word which is placed on the parity I/O data pins prior to clocking  
/RE. The logic one bits in the mask data select the bits to be  
written. As soon as the mask is latched by /RE, the mask data is  
removed and write data can be placed on the data bus. The mask is  
only specified on the /RE transition. During page mode burst write  
operations, the same mask is used for all write operations.  
Pin Descriptions  
/RE — Row Enable  
These inputs are used to initiate DRAM read and write  
operations and latch a row address. It is not necessary to clock /RE  
to read data from the EDRAM SRAM row register. On read  
operations, /RE can be brought high as soon as data is loaded into  
cache to allow early precharge.  
ECC Operation  
The DM512K72DT6-xxN supports error correction coding  
(ECC) by replacing the parity chip with a normal DM2203 device.  
This version does not support write-per-bit parity operation.  
2-140  
these pins are also used to specify the bit mask used during write  
operations.  
/CAL — Column Address Latch  
0-8  
These inputs are used to latch the column address and in  
combination with /WE to trigger write operations. When /CAL is  
high, the column address latch is transparent. When /CAL is low,  
the column address latch contains the address present at the time  
/CAL went low. Individual /CAL inputs are provided for each byte of  
EDRAM to allow byte write capability.  
A
0-10 Multiplex Address  
These inputs are used to specify the row and column  
addresses of the EDRAM data. The 11-bit row address is latched on  
the falling edge of /RE. The 8-bit column address can be specified  
at any other time to select read data from the SRAM cache or to  
specify the write column address during write cycles.  
W/R — Write/Read  
This input along with /F input specifies the type of DRAM  
operation initiated on the low going edge of /RE. When /F is high,  
W/R specifies either a write (logic high) or read operation (logic  
low).  
QLE — Output Latch Enable  
This input enables the EDRAM output latches. When QLE is  
low, the output latch is transparent. Data is latched when both /CAL  
and QLE are high. This allows output data to be extended during  
either static column or page mode read cycles.  
/F — Refresh  
This input will initiate a DRAM refresh operation using the  
internal refresh counter as an address source when it is low on the  
low going edge of /RE.  
/HIT — Hit Pin  
This output pin will be driven during /RE active read or write  
cycles to indicate the hit/miss status of the cycle.  
/WE — Write Enable  
PD — Presence Detect  
This input controls the latching of write data on the input data  
pins. A write operation is initiated when both the /CAL for the  
specified byte and /WE are low.  
This output will indicate if the DIMM module is inserted in a  
socket. When a DIMM is inserted, this pin is grounded. When no  
DIMM is present, the pin is open.  
/G — Output Enable  
This input controls the gating of read data to the output data  
pins during read operations.  
V Power Supply  
CC These inputs are connected to the +5 volt power supply.  
V Ground  
SS  
/S — Chip Select  
These inputs are connected to the power supply ground  
connection.  
This input is used to power up the I/O and clock circuitry.  
When /S is high, the EDRAM remains in a powered-down condition.  
Read or write cycles must not be executed when /S is high. /S must  
remain low throughout any read or write operation. Only /F refresh  
operation can be executed when, /S is not enabled.  
DQ0-71 Data Input/Output  
These CMOS/TTL bidirectional data pins are used to read and  
write data to the EDRAM. On the DM2213 write-per-bit memory,  
2-141  
Pinout  
Interconnect  
Interconnect  
Pin No. Function (Component Pin)  
Organization  
Ground  
Pin No. Function (Component Pin)  
Organization  
Ground  
1
2
Vss  
85  
86  
87  
88  
VSS  
U1-4  
U1-6  
U1-7  
U1-9  
Byte 0, I/O 0  
Byte 0, I/O 1  
Byte 0, I/O 2  
Byte 0, I/O 3  
+5 Volts  
DQ36  
U2-4  
U2-6  
U2-7  
Byte 4, I/O 0  
Byte 4, I/O 1  
Byte 4, I/O 2  
DQ0  
DQ1  
DQ2  
DQ3  
DQ  
3
37  
DQ38  
4
5
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
DQ39  
VDD  
U2-9  
Byte 4 I/O 3  
+5 Volts  
6
V
DD  
7
DQ4  
U1-13  
U1-15  
U1-16  
U1-18  
U5-4  
Byte 0, I/O 4  
Byte 0, I/O 5  
Byte 0, I/O 6  
Byte 0, I/O 7  
Parity, I/O 0  
Ground  
DQ40  
DQ41  
DQ42  
DQ 43  
DQ 44  
VSS  
U2-13  
U2-15  
U2-16  
U2-18  
Byte 4 I/O 4  
Byte 4 I/O 5  
Byte 4, I/O 6  
Byte 4, I/O 7  
Parity, I/O 4  
Ground  
8
DQ5  
9
DQ6  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
DQ7  
U5-13  
DQ8  
VSS  
DQ 45  
DQ 46  
DQ47  
DQ48  
U4-4  
U4-6  
U4-7  
U4-9  
Byte 5, I/O 0  
Byte 5, I/O 1  
DQ9  
DQ10  
DQ11  
DQ12  
DQ13  
VDD  
DQ14  
DQ15  
DQ16  
DQ17  
U3-4  
U3-6  
U3-7  
U3-9  
U3-13  
Byte 1, I/O 0  
Byte 1, I/O 1  
Byte 1, I/O 2  
Byte 1, I/O 3  
Byte 1, I/O 4  
+5 Volts  
Byte 5, I/O 2  
Byte 5, I/O 3  
101  
102  
103  
DQ49  
U4-13  
Byte 5, I/O 4  
VDD  
+5 Volts  
DQ50  
U4-15  
U4-16  
U4-18  
U5-15  
Byte 5, I/O 5  
U3-15  
U3-16  
U3-18  
U5-6  
Byte 1, I/O 5  
Byte 1 I/O 6  
Byte 1 I/O 7  
Parity, I/O 1  
Ground  
DQ51  
DQ52  
DQ53  
Byte 5, I/O 6  
Byte 5, I/O 7  
Parity, I/O 5  
Ground  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
V
V
SS  
SS  
V
Ground  
V
Ground  
SS  
SS  
VDD  
VDD  
/F  
+5 Volts  
V
+5 Volts  
DD  
+5 Volts  
VDD  
/WE  
/CAL0  
/CAL2  
/S  
+5 Volts  
U10D-49  
U3-32  
Refresh Pin  
Byte 1 /CAL  
Byte 3 /CAL  
U10A-8  
U1-32  
Write Enable  
Byte 0 /CAL  
Byte 2 /CAL  
Chip Select  
Output Enable  
Ground  
/CAL1  
/CAL3  
N.C.  
W/R  
U8-32  
U6-32  
N.C.  
U10A-14  
U10B-15  
U10D-43  
Write/Read Mode  
Ground  
/G  
V
VSS  
A0  
SS  
A1  
A3  
A5  
A7  
A9  
U10C-42  
U10C-36  
U11D-49  
U11D-43  
U11C-42  
Address 1  
Address 3  
Address 5  
Address 7  
Address 9  
U10B-21  
U11A-8  
Address 0  
Address 2  
A2  
A4  
U11A-14  
U11B-15  
U11B-21  
U11C-36  
Address 4  
Address 6  
Address 8  
Address 10  
A6  
A8  
N.C.  
N.C.  
VDD  
N.C.  
N.C.  
A10  
N.C.  
+5 Volts  
VDD  
VDD  
+5 Volts  
N.C.  
N.C.  
+5 Volts  
QLE  
U12A-8  
Output Latch Enable  
2-142  
Pinout  
Interconnect  
Interconnect  
Pin No. Function (Component Pin)  
Organization  
Ground  
Pin No. Function (Component Pin)  
Organization  
V
43  
127  
VSS  
Ground  
Ground  
SS  
44  
45  
N.C.  
128  
129  
130  
VSS  
N.C.  
/RE  
U12A-14  
Row Enable  
Byte 4 /CAL  
Byte 6 /CAL  
N.C.  
N.C.  
Byte 5  
Byte 7  
/CAL5  
/CAL7  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
/CAL4  
/CAL6  
N.C.  
U2-32  
U7-32  
N.C.  
U4-32  
U9-32  
131  
/CAL8  
VDD  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
U5-32  
Parity  
V
+5 Volts  
+5 Volts  
DD  
V
+5 Volts  
VDD  
+5 Volts  
DD  
V
Ground  
V
Ground  
SS  
SS  
DQ54  
DQ 55  
VSS  
U7-4  
U7-6  
Byte 6, I/O 0  
Byte 6, I/O 1  
Ground  
DQ18  
DQ19  
U6-4  
U6-6  
Byte 2, I/O 0  
Byte 2, I/O 1  
Ground  
V
SS  
DQ56  
U7-7  
Byte 6, I/O 2  
Byte 6, I/O 3  
Byte 6, I/O 4  
DQ20  
DQ21  
DQ22  
DQ23  
VDD  
U6-7  
Byte 2, I/O 2  
Byte 2, I/O 3  
Byte 2, I/O 4  
Byte 2, I/O 5  
+5 Volts  
DQ 57  
DQ 58  
DQ59  
VDD  
U7-9  
U6-9  
U7-13  
U7-15  
U6-13  
U6-15  
Byte 6, I/O 5  
+5 Volts  
DQ24  
PD  
U6-16  
Byte 2, I/O 6  
Ground  
144  
145  
146  
DQ60  
U7-16  
Byte 6, I/O 6  
Hit Output  
/Hit  
U12C-36  
U12C-42  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
U12B-15  
U12B-21  
147  
148  
V
Ground  
V
Ground  
SS  
SS  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
DQ61  
U7-18  
Byte 6, I/O 7  
Parity, I/O 6  
Byte 7, I/O 0  
DQ25  
DQ26  
DQ27  
U6-18  
U5-7  
U8-4  
Byte 2, I/O 7  
Parity, I/O 2  
Byte 3, I/O 0  
Ground  
DQ62  
DQ63  
U5-16  
U9-4  
V
Ground  
V
SS  
SS  
DQ  
Byte 7, I/O 1  
Byte 7, I/O 2  
Byte 7, I/O 3  
Byte 7, I/O 4  
+5 Volts  
DQ28  
DQ29  
DQ30  
DQ31  
U8-6  
U8-7  
U8-9  
U8-13  
Byte 3, I/O 1  
Byte 3, I/O 2  
Byte 3, I/O 3  
Byte 3, I/O 4  
+5 Volts  
U9-6  
U9-7  
U9-9  
U9-13  
64  
DQ65  
DQ66  
DQ67  
V
VDD  
SS  
U9-15  
Byte 7, I/O 5  
Byte 7, I/O 6  
DQ68  
DQ69  
DQ70  
DQ32  
DQ33  
U8-15  
U8-16  
U8-18  
U5-9  
Byte 3, I/O 5  
Byte 3, I/O 6  
Byte 3, I/O 7  
Parity, I/O 3  
Ground  
U9-16  
U9-18  
U5-18  
Byte 7, I/O 7  
Parity, I/O 7  
Ground  
DQ34  
DQ35  
VSS  
DQ71  
V
SS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
V
+5 Volts  
+5 Volts  
VDD  
VDD  
+5 Volts  
DD  
V
+5 Volts  
DD  
2-143  
Buffer Diagrams  
DIMM Edge  
Connector  
U12A  
U12D  
2
3
5
48  
47  
45  
QLE Bank0A  
QLE Bank0B  
QLE Bank0C  
N.C.  
N.C.  
N.C.  
QLE 8  
43  
42  
6
44  
QLE Bank0D  
N.C.  
9
55  
54  
52  
/RE Bank0A  
/RE Bank0B  
/RE Bank0C  
N.C.  
N.C.  
N.C.  
10  
12  
/RE 14  
49  
45  
13  
51  
/RE Bank0D  
N.C.  
1
58  
U12B  
U11A  
16  
17  
19  
2
3
5
BMO Bank0A  
BMO Bank0B  
BMO Bank0C  
A2 Bank0A  
A2 Bank0B  
A2 Bank0C  
15  
A2 8  
147  
34  
35  
20  
6
BMO Bank0D  
A2 Bank0D  
23  
24  
26  
9
BE Bank0A  
BE Bank0B  
BE Bank0C  
A4 Bank0A  
A4 Bank0B  
A4 Bank0C  
10  
12  
21  
A4 14  
63  
27  
13  
BE Bank0D  
A4 BankOD  
VDD  
28  
1
U12C  
U11B  
34  
33  
31  
BM2 Bank0A  
BM2 Bank0B  
BM2 Bank0C  
16  
17  
19  
A6 Bank0A  
A6 Bank0B  
A6 Bank0C  
36  
A6 15  
145  
146  
36  
37  
30  
BM2 Bank0d  
20  
A6 Bank0D  
41  
40  
38  
BM1 Bank0A  
BM1 Bank0B  
BM1 Bank0C  
23  
24  
26  
A8 Bank0A  
A8 Bank0B  
A8 Bank0C  
42  
A8 21  
37  
BM1 Bank0D  
27  
A8 BankOD  
VDD  
29  
28  
Note: Address and control buffers add a minimum of 1.5ns and a maximum of 3.8ns delay to each signal path.  
2-144  
Buffer Diagrams  
DIMM Edge  
Connector  
U11C  
U10B  
34  
33  
31  
16  
17  
19  
A10 Bank0A  
A10 Bank0B  
A10 Bank0C  
/G Bank0A  
/G Bank0B  
/G Bank0C  
A10 36  
/G 15  
38  
31  
30  
20  
A10 Bank0D  
/G Bank0D  
41  
40  
38  
23  
24  
26  
A9 Bank0A  
A9 Bank0B  
A9 Bank0C  
A0 Bank0A  
A0 Bank0B  
A0 Bank0C  
A9 42  
A0 21  
121  
33  
37  
27  
A9 Bank0D  
A0 Bank0D  
29  
28  
U11D  
U10C  
48  
47  
45  
34  
33  
31  
A7 Bank0A  
A7 Bank0B  
A7 Bank0C  
A3 Bank0A  
A3 Bank0B  
A3 Bank0C  
A7 43  
A3 36  
120  
119  
118  
117  
44  
30  
A7 Bank0D  
A3 Bank0D  
55  
54  
52  
41  
40  
38  
A5 Bank0A  
A5 Bank0B  
A5 Bank0C  
A1 Bank0A  
A1 Bank0B  
A1 Bank0C  
A5 49  
A1 42  
51  
37  
A5 Bank0D  
A1 Bank0D  
58  
29  
IDT74FCT162344ETPA  
U10D  
U10A  
48  
47  
45  
2
3
5
VDD  
W/R Bank0A  
W/R Bank0B  
W/R Bank0C  
/WE Bank0A  
/WE Bank0B  
/WE Bank0C  
4
11  
18  
Vcc  
Vcc  
7
W/R 43  
/WE 8  
115  
111  
27  
30  
22  
44  
6
W/R Bank0D  
/WE Bank0D  
25  
35 Vcc  
50 Vcc  
55  
54  
52  
9
/F Bank0A  
/F Bank0B  
/F Bank0C  
/S Bank0A  
/S Bank0B  
/S Bank0C  
32  
39  
46  
10  
12  
/F 49  
/S 14  
.22µf  
51  
13  
/F BankOD  
/S Bank0D  
53  
58  
1
Note: Address and control buffers add a minimum of 1.5ns and a maximum of 3.8ns delay to each signal path.  
2-145  
Interconnect Diagram  
DQ0-71  
U9  
U8  
Byte 7  
*
U5*  
Bank 0D  
Byte 3  
U7  
Bank 0D  
Parity  
U6  
DM2203T  
Bank 0C  
Byte 6  
DM2203T  
U4  
Byte 2  
Bank 0C  
U3  
DM2213T  
Bank 0C  
Byte 5  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
27  
28  
29  
30  
35  
36  
37  
38  
39  
40  
41  
U2  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
DM2203T  
Byte 1  
U1  
Bank 0B  
DM2203T  
Byte 4  
Bank 0B  
Byte 0  
Bank 0A  
Bank 0A  
DM2203T  
DM2203T  
W/R  
/WE  
/F  
43  
26  
2
42  
12  
10  
33  
W/R  
/WE  
/F  
/S  
/G  
QLE  
/RE  
DM2203T  
/S  
DM2203T  
/G  
QLE  
/RE  
HIT  
/CAL0  
/CAL4  
/CAL1  
/CAL5  
/CAL2  
/CAL6  
/CAL8  
/CAL3  
/CAL 7  
Note: For reference to buffer connection, append bank name to address or clock name, i.e., A10 + Bank 0A = A10BANK0A. Refer to Buffer Interconnect Diagram for  
detailed buffer connections. DQ0-71 and /CAL0-8 are directly connected to pins.  
* Not Present on DM512K64  
2-146  
Pin Names  
Pin Names  
Function  
Pin Names  
/WE  
Function  
A
Address Inputs  
Row Enable  
Write Enable  
Output Enable  
Refresh Control  
Chip Select  
0-10  
/G  
/RE  
DQ0-71  
/CAL0-8  
W/R  
Data In/Data Out  
Column Address Latch  
Write/Read Control  
Power (+5V)  
/F  
/S  
/HIT  
QLE  
NC  
Hit Output  
V
Output Latch Enable  
Not Connected  
CC  
V
Ground  
SS  
Absolute Maximum Ratings  
Capacitance  
(Beyon d Wh ich Perm an en t Dam age Cou ld Resu lt)  
Description  
Ratings  
Description  
Max  
Pins  
Input Voltage (V )  
- 1 ~ V +1  
Input Capacitance  
Input Capacitance  
Input Capacitance  
Input Capacitance  
I/O Capacitance  
14pf  
14pf  
10pf  
14pf  
15pf  
A
0-10  
IN  
CC  
Output Voltage (VOUT  
)
- 1 ~ V +1  
CC  
/CAL0-8  
/G, QLE  
W/R, /F  
DQ0-71  
Power Supply Voltage (V )  
- 1 ~ 7v  
CC  
Ambient Operating Temperature (TA)  
Storage Temperature (TS)  
-40 ~ +70°C  
-55 ~ 150°C  
Static Discharge Voltage  
(Per MIL-STD-883 Method 3015)  
Class 1  
50mA*  
/RE, /S  
/HIT  
Input Capacitance  
Input Capacitance  
12pf  
12pf  
Short Circuit O/P Current (IOUT  
)
*On e ou tpu t at a tim e; sh ort du ration .  
AC Test Load and Waveforms  
VIN Tim in g Referen ce Poin t at VIL an d VIH  
V
Tim in g Referen ced to 1.5 Volts  
OUT  
5.0V  
R1 = 828Ω  
V
V
IH  
IH  
Output  
V
V
IL  
IL  
GND  
R2 = 295Ω  
CL = 50pf  
5ns  
5ns  
Load Circuit  
Input Waveforms  
2-147  
Electrical Characteristics  
TA = 0 - 70°C (Com m ercial)  
Symbol  
Parameters  
Max  
Min  
Test Conditions  
All Voltages Referenced to V  
V
Supply Voltage  
4.75V  
5.25V  
CC  
SS  
V
Input High Voltage  
Input Low Voltage  
Output High Level  
Output Low Level  
Input Leakage Current  
Output Leakage Current  
2.4V  
-1.0V  
2.4V  
V +1  
IH  
CC  
V
0.8V  
IL  
VOH  
VOL  
IOUT = - 5mA  
IOUT = 4.2mA  
0.4V  
90µA  
90µA  
V
-90µA  
-90µA  
0V V 6.5V, All Other Pins Not Under Test = 0V  
i(L)  
IN  
V
0V V , 0V VOUT 5.5V  
0(L)  
IN  
DM512K72DT6  
33MHz Typ(1)  
1166mA  
-15 Max  
Symbol  
Operating Current  
-12 Max  
Test Condition  
Notes  
ICC1  
Random Read  
2465mA 1970mA /RE, /CAL, /G and Addresses Cycling: tC = tC Minimum  
1745mA 1385mA /CAL, /G and Addresses Cycling: tPC = tPC Minimum  
1430mA 1160mA /G and Addresses Cycling: tAC = tAC Minimum  
2, 3  
ICC2  
ICC3  
ICC4  
ICC5  
ICC6  
ICCT  
Fast Page Mode Read  
Static Column Read  
Random Write  
761mA  
2, 4  
2, 4  
2, 3  
2, 4  
671mA  
1391mA  
626mA  
11mA  
2150mA  
/RE, /CAL, /WE and Addresses Cycling: tC = tC Minimum  
1700mA  
Fast Page Mode Write  
Standby  
1655mA 1295mA /CAL, /WE and Addresses Cycling: tPC = tPC Minimum  
11mA  
11mA  
All Control Inputs Stable VCC - 0.2V, Outputs Driven  
1
Average Typical  
446mA  
See "Estimating EDRAM Operating Power" Application Note  
Operating Current  
DM512K64DT6  
33MHz Typ(1)  
1056mA  
-15 Max  
Symbol  
Operating Current  
-12 Max  
Test Condition  
Notes  
ICC1  
Random Read  
2240mA 1790mA /RE, /CAL, /G and Addresses Cycling: tC = tC Minimum  
1600mA 1270mA /CAL, /G and Addresses Cycling: tPC = tPC Minimum  
1320mA 1070mA /G and Addresses Cycling: tAC = tAC Minimum  
2, 3  
ICC2  
ICC3  
ICC4  
ICC5  
ICC6  
ICCT  
Fast Page Mode Read  
Static Column Read  
Random Write  
696mA  
2, 4  
2, 4  
2, 3  
2, 4  
616mA  
1256mA  
576mA  
10mA  
1960mA  
/RE, /CAL, /WE and Addresses Cycling: tC = tC Minimum  
1550mA  
Fast Page Mode Write  
Standby  
1520mA 1190mA /CAL, /WE and Addresses Cycling: tPC = tPC Minimum  
10mA  
10mA  
All Control Inputs Stable VCC - 0.2V, Outputs Driven  
1
Average Typical  
416mA  
See "Estimating EDRAM Operating Power" Application Note  
Operating Current  
(1) “33MHz Typ” refers to worst case ICC expected in a system operating with a 33MHz memory bus. See power applications note for further details. This parameter is not 100% tested  
or guaranteed.  
(2) ICC is dependent on cycle rates and is measured with CMOS levels and the outputs open.  
(3) ICC is measured with a maximum of one address change while /RE = V  
IL  
(4) ICC is measured with a maximum of one address change while /CAL = V  
IH  
2-148  
Switching Characteristics Note: These parameters do not include buffer delays. See pages 2-144-5 for derating factors.VCC = 5V ± 5%, TA = 0 to 70°C, CL = 50pf  
-12  
-15  
Symbol  
Description  
Units  
Min  
Max  
Min  
Max  
(1)  
t
Column Address Access Time  
12  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AC  
t
t
t
t
t
t
t
t
t
t
t
t
Column Address Valid to /CAL Inactive (Write Cycle)  
Address Valid to /CAL Inactive (QLE High)  
Column Address Hold From QLE High (/CAL=H)  
Address Valid to QLE High  
12  
12  
0
15  
15  
0
ACH  
ACI  
AHQ  
AQH  
AQX  
ASC  
ASR  
C
12  
5
15  
5
Column Address Change to Output Data Invalid  
Column Address Setup Time  
5
5
Row Address Setup Time  
5
5
65  
25  
6
55  
20  
5
Row Enable Cycle Time  
Row Enable Cycle Time, Cache Hit (Row=LRR), Read Cycle Only  
Column Address Latch Active Time  
C1  
CAE  
CAH  
CH  
Column Address Hold Time  
0
0
5
5
Column Address Latch High Time (Latch Transparent)  
/CAL Inactive Lead Time to /RE Inactive (Write Cycles Only)  
t
-2  
-2  
CHR  
t
0
0
Column Address Latch High to Write Enable Low (Multiple Writes)  
Column Address Latch Low to Data Valid (QLE High)  
Column Address Latch Low to Data Invalid (QLE High)  
Column Address Latch High to Data Valid  
Column Address Latch Inactive to Data Invalid  
Column Address Latch Setup Time to Row Enable  
/WE Low to /CAL Inactive  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CHW  
CLV  
CQH  
CQV  
CQX  
CRP  
CWL  
DH  
t
7
7
t
t
t
t
t
t
t
t
t
0
0
15  
15  
5
5
5
0
1
5
5
5
5
5
0
Data Input Hold Time  
1.5  
5
Mask Hold Time From Row Enable (Write-Per-Bit)  
Mask Setup Time to Row Enable (Write-Per-Bit)  
Data Input Setup Time  
DMH  
DMS  
DS  
5
(1)  
GQV  
t
t
t
t
t
t
t
t
t
t
t
Output Enable Access Time  
5
5
5
5
5
5
5
5
(2,3)  
GQX  
Output Enable to Output Drive Time  
0
0
0
0
(4,5)  
GQZ  
Output Turn-Off Delay From Output Disabled (/G)  
Hit Valid From Row Enable  
HV  
Hit Turn-Off From Row Enable Going High  
/F and W/R Mode Select Hold Time  
0
0
0
0
HZ  
MH  
MSU  
/F and W/R Mode Select Setup Time  
/CAL, /G, and /WE Hold Time For /RE-Only Refresh  
/CAL, /G, and /WE Setup Time For /RE-Only Refresh  
Column Address Latch Cycle Time  
5
5
0
0
NRH  
NRS  
5
5
12  
0
15  
0
PC  
QLE High to /CAL Inactive  
QCI  
QH  
t
QLE High Time  
5
5
2-149  
Switching Characteristics Note: These parameters do not include buffer delays. See pages 2-144-5 for derating factors.VCC = 5V ± 5%, TA = 0 to 70°C, CL = 50pf  
-12  
-15  
Symbol  
Description  
Units  
Min  
5
Max  
Min  
5
Max  
t
QLE Low Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
QL  
t
t
t
t
t
Data Hold From QLE Inactive  
Data Valid From QLE Low  
2
2
QQH  
QQV  
7.5  
30  
15  
7.5  
35  
17  
(1)  
RAC  
Row Enable Access Time, On a Cache Miss  
Row Enable Access Time, On a Cache Hit (Limit Becomes t  
Row Address Hold Time  
(1)  
)
RAC1  
AC  
1
30  
8
1.5  
35  
10  
RAH  
RE  
t
t
t
t
t
t
t
Row Enable Active Time  
100000  
100000  
Row Enable Active Time, Cache Hit (Row=LRR) Read Cycle  
Refresh Period  
ns  
ms  
ns  
ns  
ns  
ns  
RE1  
REF  
RGX  
RQX1  
RP  
64  
12  
64  
15  
Output Enable Don't Care From Row Enable (Write, Cache Miss), DQ = Hi-Z  
Row Enable High to Output Turn-On After Write Miss  
Row Precharge Time  
9
0
10  
(2,5)  
20  
8
25  
10  
Row Precharge Time, Cache Hit (Row=LRR) Read Cycle  
RP1  
t
t
0
0
15  
40  
15  
Write Enable Dont Care From Row Enable (Write Only)  
Last Write Address Latch to End of Write  
ns  
ns  
RRH  
RSH  
12  
t
t
t
t
Row Enable to Column Address Latch Low For Second Write  
Last Write Enable to End of Write  
Column Address Cycle Time  
35  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RSW  
RWL  
15  
0
SC  
Select Hold From Row Enable  
SHR  
(1)  
SQV  
t
t
t
t
t
t
t
t
t
t
t
t
Chip Select Access Time  
12  
12  
8
15  
15  
10  
(2,3)  
SQX  
0
0
Output Turn-On From Select Low  
Output Turn-Off From Chip Select  
Select Setup Time to Row Enable  
Transition Time (Rise and Fall)  
0
0
(4,5)  
SQZ  
SSR  
T
5
5
1
10  
1
10  
12  
5
Write Enable Cycle Time  
15  
5
WC  
WCH  
WHR  
WI  
Column Address Latch Low to Write Enable Inactive Time  
Write Enable Hold After /RE  
(6)  
0
0
5
Write Enable Inactive Time  
5
5
5
Write Enable Active Time  
WP  
(1)  
12  
12  
12  
15  
15  
15  
Data Valid From Write Enable High  
Data Output Turn-On From Write Enable High  
WQV  
(2,5)  
0
0
5
0
0
5
WQX  
(3,4)  
WQZ  
t
t
t
Data Turn-Off From Write Enable Low  
ns  
ns  
ns  
Write Enable Setup Time to Row Enable  
WRP  
WRR  
Write to Read Recovery (Following Write Miss)  
12  
15  
(1) V Timing Reference Point at 1.5V; (2) Parameter Defines Time When Output is Enabled (Sourcing or Sinking Current) and is Not Referenced to V or V ; (3) Minimum Specification is Referenced from V and Maximum  
OUT OH OL IH  
Specification is Referenced from V on Input Control Signal; (4) Parameter Defines Time When Output Achieves Open-Circuit Condition and is Not Referenced to V or V ; (5) Minimum Specification is Referenced from V and  
IL  
OH OL  
IL  
Maximum Specification is Referenced from V on Input Control Signal; (6) On DM2213, t  
Minimum is t  
IH  
WHR  
DS  
2-150  
/RE Inactive Cache Read Hit (Static Column Mode)  
/RE  
/F  
W/R  
A
0-7  
A
Column 1  
tSC  
Column 2  
tSC  
Column 3  
tSC  
Column 4  
0-10  
/CAL  
0-8  
/WE  
tAC  
tAC  
tAC  
tAC  
tAQX  
tAQX  
tAQX  
Open  
tGQX  
Data 1  
Data 2  
Data 3  
Data 4  
tGQZ  
DQ  
0-71  
tGQV  
/G  
tSQX  
tSQV  
tSQZ  
/S  
/HIT  
Open  
Dont Care or Indeterminate  
NOTES: 1. Data accessed during /RE inactive read is from the row address specified during the last /RE active read cycle.  
2-151  
/RE Inactive Cache Read Hit (Page Mode)  
/RE  
/F  
W/R  
tCAH  
A
0-7  
A
Column 1  
tASC  
Column 2  
tASC  
Row  
0-10  
tCAH  
tCAE  
tPC  
tCH  
/CAL  
0-8  
tCQV  
/WE  
tAC  
tCQX  
Data 1  
Data 2  
DQ  
0-71  
tAC  
tGQX  
tGQZ  
tGQV  
/G  
tSQX  
tSQV  
tSQZ  
/S  
Open  
/HIT  
Dont Care or Indeterminate  
NOTES: 1. Data accessed during /RE inactive read is from the row address specified during the last /RE active read cycle.  
2-152  
/RE Active Cache Read Hit (Static Column Mode)  
tC1  
tRE1  
tMSU  
/RE  
tRP1  
tMH  
/F  
tMSU  
tMH  
W/R  
tASR  
tRAH  
A
0-7  
A
Row  
Column 1  
tSC  
Column 2  
tSC  
Column 3  
tSC  
Column 4  
0-10  
tCRP  
/CAL  
0-8  
/WE  
tAC  
tAC  
tAC  
tAC  
tRAC1  
tAQX  
tAQX  
tAQX  
Open  
tGQX  
Data 1  
Data 2  
Data 3  
Data 4  
tGQZ  
DQ  
0-71  
tGQV  
/G  
tSHR  
tSQZ  
tSSR  
/S  
tHV  
Open  
tHZ  
Open  
/HIT  
Dont Care or Indeterminate  
2-153  
/RE Active Cache Read Hit (Page Mode)  
tC1  
tRE1  
tMSU  
/RE  
tRP1  
tMH  
/F  
tMSU  
tMH  
W/R  
tASR  
tRAH  
A
tCAH  
0-7  
A
Row  
Column 1  
tASC  
Column 2  
tASC  
Row  
0-10  
tCRP  
tCAH  
tCAE  
tPC  
tCH  
/CAL  
0-8  
tCQV  
/WE  
tAC  
tCQX  
tRAC1  
Open  
Data 1  
Data 2  
DQ  
0-71  
tAC  
tGQX  
tGQZ  
tGQV  
/G  
tSHR  
tSQZ  
tSSR  
/S  
t HV  
Open  
tHZ  
Open  
/HIT  
Dont Care or Indeterminate  
2-154  
/RE Active Cache Read Miss (Static Column Mode)  
tC  
tRE  
/RE  
/F  
tRP  
tMSU  
tMSU  
tASR  
tMH  
tMH  
tRAH  
W/R  
tSC  
Column 1  
A
A
0-7  
A
A
0-10  
0-10  
0-7  
Row  
Column 2  
Row  
A
0-10  
tCRP  
/CAL  
0-8  
tAQX  
/WE  
tAC  
tAC  
tRAC  
tAQX  
Open  
Data 1  
Data 2  
DQ  
0-71  
tGQX  
tGQV  
tGQZ  
/G  
tSHR  
tSSR  
tSQZ  
/S  
tHV  
Open  
tHZ  
/HIT  
Open  
Dont Care or Indeterminate  
2-155  
/RE Active Cache Read Miss (Page Mode)  
tC  
tRE  
/RE  
tRP  
tMSU  
tMH  
/F  
tMSU  
tMH  
W/R  
tASR  
tRAH  
tCAH  
A
A
A
A
0-10  
0-10  
0-7  
0-7  
Row  
Column 1  
Column 2  
tASC  
Row  
A
0-10  
tASC  
tCRP  
tCAH  
tCAE  
tCH  
/CAL  
/WE  
tPC  
tCQV  
tAC  
tCQX  
tRAC  
Open  
Data 1  
Data 2  
DQ  
0-71  
tAC  
tGQZ  
/G  
tGQX  
tSHR  
tSSR  
tGQV  
tSQZ  
/S  
tHV  
Open  
tHZ  
/HIT  
Open  
Dont Care or Indeterminate  
2-156  
Output Latch Enable Operation (Static Column EDO Mode Read)  
/CAL  
0-8  
tAC  
tAC  
A
Column 1  
Column 2  
0-7  
tAQX  
tAHQ  
tQQH  
DQ  
Data 1  
Data 2  
0-71  
tAQH  
tQQV  
tQL  
QLE  
tQH  
Output Latch Enable Operation (Page Mode EDO Read)  
tPC  
tQCI  
tCAE  
/CAL  
0-8  
tACI  
tCLV  
tCH  
tAC  
tAC  
A
Column 1  
Column 2  
0-7  
tAQX  
tCQH  
DQ  
Data 1  
Data 2  
0-71  
tCQV  
QLE  
Output Latch Enable Operation (Asynchronous Access)  
tPC  
tCAE  
tCH  
/CAL  
0-8  
tQCI  
tACI  
tACI  
tACI  
A
Column 1  
tAC  
Column 2  
tCQV  
Column 3  
tCQV  
0-7  
tAC  
tAC  
DQ  
Data 1  
tQQH  
Data 2  
Data 3  
0-71  
tQQV  
tQQV  
tQQV  
QLE  
tQQH  
tQL  
tQH  
2-157  
Burst Write (Hit or Miss) Followed By /RE Inactive Cache Reads  
tRE  
/RE  
tMSU  
tRP  
tMH  
/F  
tMSU  
tMH  
W/R  
tASR  
tCAH  
A
tRAH  
tRSW  
A
A
0-7  
0-7  
0-7  
A
Row  
Column 1  
Column 2  
tACH  
Column n  
0-10  
tACH  
A
0-10  
tASC  
tCAH  
tRSH  
tCRP  
tCWL  
tCWL  
tCHR  
tCAE  
tCAE  
/CAL  
tCH  
tCHW  
0-8  
tWCH  
tWP  
tPC  
tWCH  
tWP  
tWRP  
tRRH  
/WE  
tWI  
tWRR  
tWHR  
tWC  
tDS  
tRWL  
tDH  
tDS  
tDH  
tAC  
DQ  
Open  
Data 1  
Data 2  
Cache (Column n)  
0-71  
tGQX  
/G  
tGQV  
tSSR  
/S  
tHV  
Open  
tHZ  
/HIT  
Open  
Dont Care or Indeterminate  
NOTES: 1. /G becomes a don’t care after t during a write miss.  
RGX  
2-158  
Read/Write During Write Hit Cycle (Can Include Read-Modify-Write)  
tC  
tRE  
/RE  
tRP  
tMSU  
tMH  
/F  
tMSU  
tMH  
W/R  
tASR  
tAC  
tRAH  
tCAH  
A
0-7  
A
Row  
Column 1  
Column 2  
Column 3  
0-10  
tACH  
tRSH  
tCRP  
tASC  
tCAE  
tWCH  
tCHR  
/CAL  
0-8  
tCQV  
tCWL  
tWP  
tWRP  
tRRH  
/WE  
tWHR  
tAQX  
tDS  
tRWL  
tAC  
tWQV  
DQ  
Read Data  
Write Data  
tDH  
tGQZ  
Read Data  
0-71  
tGQX  
tGQV  
tGQZ  
tWQX  
tGQV  
/G  
tSSR  
/S  
tHV  
Open  
tHZ  
Open  
/HIT  
Dont Care or Indeterminate  
NOTES: 1. If column address one equals column address two, then a read-modify-write cycle is performed.  
2-159  
Write-Per-Bit Cycle (/G=High)  
tRE  
tRP  
/RE  
tCHR  
tRSH  
tCAE  
tACH  
/CAL  
0-8  
tRAH  
tASC  
tASR  
tCAH  
A
0-7  
A
Row  
Column  
0-10  
tMH  
tMSU  
tCWL  
W/R  
tRWL  
tWCH  
tDMH  
tDMS  
DQ  
Mask  
Data  
0-71  
tDS  
tRRH  
tWRP  
tDH  
tWP  
/WE  
tWHR  
tMSU  
/F  
/S  
tMH  
tSSR  
tSHR  
tHV  
Open  
tHZ  
/HIT  
Open  
Dont Care or Indeterminate  
NOTES: 1. Data mask bit high (1) enables bit write; data mask bit low (0) inhibits bit write.  
2. Write-per-bit cycle valid only for DM512K72DT6.  
2-160  
/F Refresh Cycle  
tRE  
/RE  
/F  
tMSU  
tRP  
tMH  
Dont Care or Indeterminate  
NOTES: 1. During /F refresh cycles, the status of W/R, /WE, A0-10, /CAL, /S, and /G is a don’t care.  
2. /RE inactive cache reads may be performed in parallel with /F refresh cycles.  
/RE-Only Refresh  
tC  
tRE  
/RE  
tRP  
tASR  
tRAH  
A
ROW  
0-10  
tNRS  
tNRH  
/CAL , /WE, /G  
0-8  
tMSU  
W/R, /F  
tMH  
tSSR  
tSHR  
/S  
tHV  
tHZ  
/HIT  
Open  
Open  
Dont Care or Indeterminate  
NOTES: 1. All binary combinations of A must be refreshed every 64ms interval. A does not have to be cycled, but must remain valid  
0-9  
10  
during row address setup and hold times.  
2. /RE refresh is write cycle with no /CAL active cycle.  
2-161  
Mechancial Data  
168 Pin DIMM Module Configuration  
Inches (mm)  
5.250(133.35)  
U1  
C1  
U2  
C2 U3  
C3  
U4  
C4 U5  
C5  
U6  
C6  
U77  
C7  
U8  
C8  
U9  
C9  
.104 (2.64)  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
U8  
U9  
1.500  
R1  
R2  
R3  
0.700  
U10  
U11  
U12  
.050 (1.27)  
2.585 (65.66)  
0.050 (1.27)  
0.040 (1.04)  
Enhanced DM2203T-xx, 512Kx8 EDRAM, 300 Mil TSOP  
U1-4, U6-9 —  
U5 —  
Enhanced DM2213T-xx, 512Kx8 EDRAM with Write-per-bit (not present on DM512K64DT)  
U10-12 —  
IDT 74FCT162344ETPA Address/Clock Driver or Equivalent  
0.22µF Chip Capacitor  
Robinson Nugent DIMS - 168BD5-TR or Equivalent  
C1-12 —  
Socket —  
Part Numbering System  
DM512K72DT 6- 12 N  
Error Check Mode (72-bit Only)  
Blank - Write-per-bit Parity  
N - ECC (No Write-per-bit)  
Access Time from Cache in Nanoseconds  
12ns  
15ns  
Packaging System  
T = 300 Mil, Plastic TSOP - II  
Memory Module Configuration  
D= DIMM  
I/O Width  
64 = 64 Bits  
72 = 72 Bits  
Memory Depth  
512K  
1M  
Dynamic Memory  
The information contained herein is subject to change without notice. Enhanced Memory Systems Inc. assumes no responsibility for the use of any circuitry other than circuitry embodied in  
an Enhanced product, nor does it convey or imply any license under patent or other rights.  
2-162  

相关型号:

RAMTRON

DM512K64DT6-15

Cache DRAM Module, 512KX64, 35ns, MOS, DIMM-168
RAMTRON

DM512K64DTE-12

Enhanced DRAM (EDRAM) Module
ETC

DM512K64DTE-15

Enhanced DRAM (EDRAM) Module
ETC

DM512K72DT6-12

Cache DRAM Module, 512KX72, 30ns, MOS, DIMM-168
RAMTRON

DM512K72DT6-12N

Cache DRAM Module, 512KX72, 30ns, MOS, DIMM-168
RAMTRON

DM512K72DT6-15

EDO DRAM Module, 512KX72, 15ns, CMOS, PDMA168
RAMTRON

DM512K72DT6-15N

Cache DRAM Module, 512KX72, 35ns, MOS, DIMM-168
RAMTRON

DM512K72DTE-12

Enhanced DRAM (EDRAM) Module
ETC

DM512K72DTE-12N

Enhanced DRAM (EDRAM) Module
ETC

DM512K72DTE-15

Enhanced DRAM (EDRAM) Module
ETC

DM512K72DTE-15N

Enhanced DRAM (EDRAM) Module
ETC