BUX48/D [ETC]

SWITCHMODE II Series NPN Silicon Power Transistors ; SWITCHMODE II系列NPN硅功率晶体管\n
BUX48/D
型号: BUX48/D
厂家: ETC    ETC
描述:

SWITCHMODE II Series NPN Silicon Power Transistors
SWITCHMODE II系列NPN硅功率晶体管\n

晶体 晶体管
文件: 总8页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductort  
BUX48  
SWITCHMODEt II Series  
BUX48A  
NPN Silicon Power Transistors  
The BUX 48/BUX 48A transistors are designed for high–voltage,  
high–speed, power switching in inductive circuits where fall time is  
critical. They are particularly suited for line–operated  
SWITCHMODE applications such as:  
15 AMPERES  
NPN SILICON  
POWER TRANSISTORS  
400 AND 450 VOLTS  
V(BR)CEO  
Switching Regulators  
Inverters  
850–1000 VOLTS  
V(BR)CEX  
Solenoid and Relay Drivers  
Motor Controls  
175 WATTS  
Deflection Circuits  
Fast Turn–Off Times  
60 ns Inductive Fall Time — 25_C (Typ)  
120 ns Inductive Crossover Time — 25_C (Typ)  
Operating Temperature Range –65 to +200_C  
CASE 1–07  
TO–204AA  
(TO–3)  
100_C Performance Specified for:  
Reverse–Biased SOA with Inductive Loads  
Switching Times with Inductive Loads  
Saturation Voltage  
Leakage Currents (125_C)  
MAXIMUM RATINGS  
Rating  
Symbol  
BUX48  
400  
BUX48A  
450  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Voltage  
V
CEO(sus)  
Collector–Emitter Voltage (V = – 1.5 V)  
VCEX  
850  
1000  
BE  
Emitter Base Voltage  
V
EB  
7
Collector Current — Continuous  
— Peak (1)  
I
C
15  
30  
60  
I
CM  
— Overload  
I
OI  
Base Current — Continuous  
— Peak (1)  
I
5
20  
Adc  
B
I
BM  
Total Power Dissipation — T = 25_C  
P
175  
100  
1
Watts  
C
D
— T = 100_C  
C
Derate above 25_C  
Operating and Storage Junction Temperature Range  
W/_C  
_C  
T , T  
J
–65 to +200  
stg  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
1
Unit  
_C/W  
_C  
Thermal Resistance, Junction to Case  
R
θ
JC  
L
Maximum Lead Temperature for Soldering Purposes:  
1/8from Case for 5 Seconds  
T
275  
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2001 – Rev. 9  
BUX48/D  
BUX48 BUX48A  
ELECTRICAL CHARACTERISTICS (T = 25_C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (1)  
Collector–Emitter Sustaining Voltage (Table 1)  
(I = 200 mA, I = 0) L = 25 mH  
V
Vdc  
CEO(sus)  
BUX48  
BUX48A  
C
B
400  
450  
Collector Cutoff Current  
I
mAdc  
mAdc  
CEX  
CER  
EBO  
(V  
CEX  
(V  
CEX  
= Rated Value, V  
= Rated Value, V  
= 1.5 Vdc)  
= 1.5 Vdc, T = 125_C)  
BE(off)  
BE(off)  
0.2  
2
C
Collector Cutoff Current  
(V = Rated V , R = 10 )  
I
I
T
C
T
C
= 25_C  
CE  
CEX  
BE  
0.5  
3
= 125_C  
Emitter Cutoff Current  
(V = 5 Vdc, I = 0)  
0.1  
mAdc  
Vdc  
EB  
C
Emitter–Base Breakdown Voltage  
(I = 50 mA – I = 0)  
V
(BR)EBO  
7
E
C
SECOND BREAKDOWN  
Second Breakdown Collector Current with Base Forward Biased  
Clamped Inductive SOA with Base Reverse Biased  
I
See Figure 12  
See Figure 13  
S/b  
RBSOA  
ON CHARACTERISTICS (1)  
DC Current Gain  
h
FE  
(I = 10 Adc, V = 5 Vdc)  
BUX48  
BUX48A  
C
CE  
8
8
(I = 8 Adc, V = 5 Vdc)  
C
CE  
Collector–Emitter Saturation Voltage  
(I = 10 Adc, I = 2 Adc)  
V
Vdc  
Vdc  
CE(sat)  
C
B
1.5  
5
2
1.5  
5
2
(I = 15 Adc, I = 3 Adc)  
BUX48  
C
B
(I = 10 Adc, I = 2 Adc, T = 100_C)  
C
B
C
(I = 8 Adc, I = 1.6 Adc)  
C
B
(I = 12 Adc, I = 2.4 Adc)  
BUX48A  
C
B
(I = 8 Adc, I = 1.6 Adc, T = 100_C)  
C
B
C
Base–Emitter Saturation Voltage  
(I = 10 Adc, I = 2 Adc)  
V
BE(sat)  
BUX48  
C
B
1.6  
1.6  
1.6  
1.6  
(I = 10 Adc, I = 2 Adc, T = 100_C)  
C
B
C
(I = 8 Adc, I = 1.6 Adc)  
C
B
(I = 8 Adc, I = 1.6 Adc, T = 100_C)  
BUX48A  
C
B
C
DYNAMIC CHARACTERISTICS  
Output Capacitance  
C
350  
pF  
ob  
d
(V = 10 Vdc, I = 0, f = 1 MHz)  
test  
CB  
E
SWITCHING CHARACTERISTICS Resistive Load (Table 1)  
Delay Time  
t
0.1  
0.4  
1.3  
0.2  
0.2  
0.7  
2
µs  
I
I
= 10 A, I = 2 A  
BUX48  
BUX48A  
C
B
Rise Time  
Storage Time  
Fall Time  
t
r
= 8 A, I = 1.6 A  
C
B
Duty Cycle = 2%, V  
T = 30 µs, V = 300 V  
= 5 V  
BE(off)  
t
s
p
CC  
t
0.4  
f
Inductive Load, Clamped (Table 1)  
Storage Time  
t
t
1.3  
0.06  
1.5  
µs  
sv  
I
I
= 10 A  
C
(T = 25_C)  
C
= 2 A  
BUX48  
BUX48  
B1  
Fall Time  
t
fi  
Storage Time  
Crossover Time  
Fall Time  
2.5  
0.6  
0.35  
sv  
I
I
= 8 A  
= 1.6 A  
A
C
t
0.3  
(T = 100_C)  
C
c
B1  
t
0.17  
fi  
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle v 2%.  
Vcl = 300 V, V  
= 5 V, Lc = 180µH  
BE(off)  
http://onsemi.com  
2
BUX48 BUX48A  
DC CHARACTERISTICS  
50  
30  
20  
10  
90%  
5
3
I = 5 A  
C
7.5 A  
10 A  
15 A  
10%  
10  
7
1
5
0.5  
0.3  
3
2
V
CE  
= 5 V  
2
T = 25°C  
C
0.1  
0.1  
1
1
3
5
8 10  
20  
30  
50  
0.3  
0.5  
1
2
3
4
I , COLLECTOR CURRENT (AMPS)  
C
I , BASE CURRENT (AMPS)  
B
Figure 1. DC Current Gain  
Figure 2. Collector Saturation Region  
5
β = 5  
f
3
2
90%  
2
10%  
T = 25°C  
J
1
1
0.7  
0.7  
T = 100°C  
J
0.5  
0.5  
0.3  
0.3  
0.2  
0.1  
1
2
3
5
7
10  
20  
30  
50  
0.1  
0.3  
1
3
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 3. Collector–Emitter Saturation Voltage  
Figure 4. Base–Emitter Voltage  
4
10  
10 k  
V
CE  
= 250 V  
C
ib  
3
10  
T = 150°C  
J
1 k  
2
1
0
10  
10  
10  
125°C  
100°C  
C
ob  
100  
10  
75°C  
REVERSE  
FORWARD  
0.2  
T = 25°C  
J
25°C  
-1  
10  
-ā0.4  
-ā0.2  
0
0.4  
0.6  
1
10  
100  
1000  
V
BE  
, BASE-EMITTER VOLTAGE (VOLTS)  
V , REVERSE VOLTAGE (VOLTS)  
R
Figure 6. Capacitance  
Figure 5. Collector Cutoff Region  
http://onsemi.com  
3
BUX48 BUX48A  
Table 1. Test Conditions for Dynamic Performance  
V
RBSOA AND INDUCTIVE SWITCHING  
RESISTIVE SWITCHING  
CEO(sus)  
+10 V  
22 µF  
TURN–ON TIME  
33  
2 W  
D1  
2N6438  
160  
1
D3  
+10 V  
0
1
2
MR854  
20  
220  
100  
2
MM3735  
I
B1  
22  
680 pF  
I
ADJUST  
I ADJUST  
b2  
b1  
D1ăD2ăD3ăD4 1N4934  
680 pF  
0.1 µF  
I
adjusted to  
B1  
PULSES  
δ = 3%  
dT ADJUST  
b
22  
obtain the forced  
desired  
2N3763  
h
FE  
D4  
100  
680 pF  
PW Varied to Attain  
= 200 mA  
MR854  
TURN–OFF TIME  
160  
I
C
33  
2 W  
Use inductive switching  
driver as the input to  
the resistive test circuit.  
2N6339  
D3  
0.22 µF  
V
CC  
L
R
V
= 180 µH  
= 0.05 Ω  
= 20 V  
V
R
= 300 V  
CC  
= 83 Ω  
L
coil  
L
R
= 25 mH, V = 10 V  
CC  
= 0.7 Ω  
V
R
= 300 V  
coil  
clamp  
coil  
CC  
ADJUSTED TO ATTAIN DESIRED I  
B B1  
coil  
Pulse Width = 10 µs  
INDUCTIVE TEST CIRCUIT  
OUTPUT WAVEFORMS  
RESISTIVE TEST CIRCUIT  
t
1
Adjusted to  
Obtain I  
I
C
C
TUT  
L
(I  
C
)
)
R
L
TUT  
coil  
coil  
V
pk  
1
I
t Clamped  
f
C(pk)  
1N4937  
OR  
EQUIVALENT  
t
t
1
R
L
CC  
(I  
1
t
INPUT  
coil  
L
t
1
t
f
2
coil  
C
pk  
SEE ABOVE FOR  
V
CC  
2
V
clamp  
DETAILED CONDITIONS  
V
V
CC  
V
CE  
Clamp  
V
CE or  
RS =  
0.1 Ω  
2
Test Equipment  
Scope — Tektronix  
475 or Equivalent  
V
clamp  
t
TIME  
t
2
10  
I pk  
C
V
CE(pk)  
β = 5  
f
I = 10 A  
C
8
6
4
2
0
90% V  
90% I  
C(pk)  
CE(pk)  
I
C
t
sv  
t
rv  
t
fi  
t
ti  
t
c
V
I
10% V  
CE(pk)  
CE  
10%  
I pk  
2% I  
C
90% I  
C
B
B1  
0
1
2
3
4
5
6
TIME  
V
BE(off)  
, BASE-EMITTER VOLTAGE (VOLTS)  
Figure 7. Inductive Switching Measurements  
Figure 8. Peak–Reverse Current  
http://onsemi.com  
4
BUX48 BUX48A  
SWITCHING TIMES NOTE  
In resistive switching circuits, rise, fall, and storage times  
For the designer, there is minimal switching loss during  
storage time and the predominant switching power losses  
occur during the crossover interval and can be obtained  
using the standard equation from AN–222:  
have been defined and apply to both current and voltage  
waveforms since they are in phase. However, for inductive  
loads which are common to SWITCHMODE power  
supplies and hammer drivers, current and voltage  
waveforms are not in phase. Therefore, separate  
measurements must be made on each waveform to  
determine the total switching time. For this reason, the  
following new terms have been defined.  
PSWT = 1/2 VCCIC(tc)f  
In general, t + t ] t . However, at lower test currents  
rv  
fi  
c
this relationship may not be valid.  
As is common with most switching transistors, resistive  
switching is specified at 25_C and has become a benchmark  
for designers. However, for designers of high frequency  
converter circuits, the user oriented specifications which  
make this a “SWITCHMODE” transistor are the inductive  
switching speeds (t and t ) which are guaranteed at 100_C.  
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp  
trv = Voltage Rise Time, 10–90% Vclamp  
tfi = Current Fall Time, 90–10% IC  
tti = Current Tail, 10–2% IC  
tc = Crossover Time, 10% Vclamp to 10% IC  
c
sv  
An enlarged portion of the inductive switching  
waveforms is shown in Figure 7 to aid in the visual identity  
of these terms.  
INDUCTIVE SWITCHING  
1
5
3
2
0.5  
T = 100°C  
C
0.3  
0.2  
T = 100°C  
C
T = 100°C  
C
T = 25°C  
C
T = 25°C  
C
1
0.7  
0.1  
0.5  
T = 25°C  
C
0.05  
0.3  
0.2  
t
t
0.03  
0.02  
c
fi  
β = 5  
f
β = 5  
f
0.01  
0.1  
1
2
3
5
7
10  
20  
30  
50  
1
2
3
5
7
10  
20  
30  
50  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 9. Storage Time, tsv  
Figure 10. Crossover and Fall Times  
3
3
t
sv  
2
2
T = 25°C  
C
I = 10 A  
C
1
1
β = 5  
f
t
sv  
0.5  
0.5  
0.3  
0.2  
0.3  
0.2  
t
c
t
c
t
fi  
0.1  
0.1  
t
fi  
0.05  
0.05  
T = 25°C  
C
I = 10 A  
0.03  
0.02  
0.03  
0.02  
C
V
BE(off)  
= 5 V  
0.01  
0.01  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
β , FORCED GAIN  
f
Ib /Ib  
2
1
Figure 11. Turn–Off Times versus Forced Gain  
Figure 12. Turn–Off Times versus Ib2/Ib1  
http://onsemi.com  
5
BUX48 BUX48A  
The Safe Operating Area figures shown in Figures 12 and 13  
are specified for these devices under the test conditions  
SAFE OPERATING AREA INFORMATION  
shown.  
30  
FORWARD BIAS  
There are two limitations on the power handling ability of  
a transistor: average junction temperature and second  
10  
5
breakdown. Safe operating area curves indicate I – V  
C
CE  
1 ms  
DC  
limits of the transistor that must be observed for reliable  
operation; i.e., the transistor must not be subjected to greater  
dissipation than the curves indicate.  
2
1
0.5  
LIMIT ONLY  
FOR TURN ON  
The data of Figure 13 is based on T = 25_C; T  
is  
C
J(pk)  
0.2  
0.1  
T = 25°C  
variable depending on power level. Second breakdown  
pulse limits are valid for duty cycles to 10% but must be  
C
t 0.7 µs  
r
0.05  
derated when T w 25_C. Second breakdown limitations do  
C
not derate the same as thermal limitations. Allowable  
current at the voltages shown on Figure 13 may be found at  
any case temperature by using the appropriate curve on  
Figure 15.  
0.02  
0.01  
1
2
5
10  
20  
50  
100 200  
500 1000  
V
CE  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
T
may be calculated from the data in Figure 13. At  
J(pk)  
Figure 13. Forward Bias Safe Operating Area  
high case temperatures, thermal limitations will reduce the  
power that can be handled to values less than the limitations  
imposed by second breakdown.  
50  
40  
30  
REVERSE BIAS  
For inductive loads, high voltage and high current must be  
sustained simultaneously during turn–off, in most cases,  
with the base to emitter junction reverse biased. Under these  
conditions the collector voltage must be held to a safe level  
at or below a specific value of collector current. This can be  
accomplished by several means such as active clamping, RC  
snubbing, load line shaping, etc. The safe level for these  
devices is specified as Reverse Bias Safe Operating Area  
and represents the voltage–current conditions during  
reverse biased turn–off. This rating is verified under  
clamped conditions so that the device is never subjected to  
an avalanche mode. Figure 14 gives RBSOA characteristics.  
BUX48A  
BUX48  
20  
10  
V
= 5 V  
BE(off)  
T = 100°C  
I /I 5  
C B1  
C
0
0
200  
400  
600  
800  
1000  
V
CE  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
Figure 14. Reverse Bias Safe Operating Area  
100  
SECOND BREAKDOWN  
DERATING  
80  
60  
40  
20  
0
THERMAL  
DERATING  
0
40  
80  
120  
160  
200  
T , CASE TEMPERATURE (°C)  
C
Figure 15. Power Derating  
http://onsemi.com  
6
BUX48 BUX48A  
1
D = 0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
P
(pk)  
R
(t) = r(t) R  
θ
JC  
= 1°C/W MAX  
θ
JC  
0.05  
0.02  
θ
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.05  
t
1
SINGLE  
PULSE  
0.01  
READ TIME AT t  
t
2
1
SINGLE PULSE  
T
- T = P  
C
R (t)  
θ
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
0.02  
0.01  
1 2  
0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500  
1000 2000  
t, TIME (ms)  
Figure 16. Thermal Response  
OVERLOAD CHARACTERISTICS  
100  
OLSOA  
T = 25°C  
C
OLSOA applies when maximum collector current is  
limited and known. A good example is a circuit where an  
inductor is inserted between the transistor and the bus, which  
limits the rate of rise of collector current to a known value.  
If the transistor is then turned off within a specified amount  
of time, the magnitude of collector current is also known.  
Maximum allowable collector–emitter voltage versus  
collector current is plotted for several pulse widths. (Pulse  
width is defined as the time lag between the fault condition  
and the removal of base drive.) Storage time of the transistor  
has been factored into the curve. Therefore, with bus voltage  
and maximum collector current known, Figure 17 defines  
the maximum time which can be allowed for fault detection  
and shutdown of base drive.  
80  
60  
40  
20  
BUX48A  
t = 10 µs  
p
BUX48  
0
100  
200  
300  
400 450 500  
V
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
CE  
Figure 17. Rated Overload Safe Operating Area  
(OLSOA)  
OLSOA is measured in a common–base circuit (Figure  
19) which allows precise definition of collector–emitter  
voltage and collector current. This is the same circuit that is  
used to measure forward–bias safe operating area.  
5
4
3
2
1
R
= 100 Ω  
BE  
500 µF  
500 V  
R
= 10 Ω  
BE  
R
BE  
= 2.2 Ω  
V
CC  
Notes:  
V
= V + V  
CE CC BE  
R
= 0  
BE  
Adjust pulsed current source  
for desired I , t  
C
p
V
EE  
0
2
4
6
8
10  
dV/dt (KV/µs)  
Figure 19. Overload SOA Test Circuit  
Figure 18. IC = f(dV/dt)  
http://onsemi.com  
7
BUX48 BUX48A  
PACKAGE DIMENSIONS  
TO–204AA (TO–3)  
CASE 1–07  
ISSUE Z  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
N
2. CONTROLLING DIMENSION: INCH.  
3. ALL RULES AND NOTES ASSOCIATED WITH  
REFERENCED TO-204AA OUTLINE SHALL APPLY.  
C
SEATING  
PLANE  
–T–  
E
INCHES  
DIM MIN MAX  
1.550 REF  
MILLIMETERS  
K
D 2 PL  
MIN  
MAX  
A
B
C
D
E
G
H
K
L
39.37 REF  
M
M
M
Y
0.13 (0.005)  
T Q  
---  
0.250  
0.038  
0.055  
1.050  
---  
6.35  
0.97  
1.40  
26.67  
8.51  
1.09  
1.77  
0.335  
0.043  
0.070  
U
–Y–  
L
V
H
0.430 BSC  
0.215 BSC  
0.440 0.480  
0.665 BSC  
10.92 BSC  
5.46 BSC  
11.18 12.19  
16.89 BSC  
2
1
B
G
N
Q
U
V
---  
0.151  
0.830  
---  
3.84  
21.08  
0.165  
0.188  
4.19  
4.77  
1.187 BSC  
30.15 BSC  
0.131  
3.33  
–Q–  
0.13 (0.005)  
M
M
T Y  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC (SCILLC)  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
BUX48/D  

相关型号:

BUX48A

HIGH POWER NPN SILICON TRANSISTORS
STMICROELECTR

BUX48A

SWITCHMODE II Series NPN Silicon Power Transistors
MOTOROLA

BUX48A

SITCHMODE II Series NPN Silicon Power Transistors
ONSEMI

BUX48A

POWER TRANSISTORS(15A,400-450V,175W)
MOSPEC

BUX48A

Silicon NPN Power Transistors
SAVANTIC

BUX48A

isc Silicon NPN Power Transistor
ISC

BUX48A

Bipolar NPN Device in a Hermetically sealed TO3
SEME-LAB

BUX48A

HIGH VOLTAGE FAST-SWITCHING POWER TRANSISTOR
COMSET

BUX48B

isc Silicon NPN Power Transistor
ISC

BUX48B

Silicon NPN Power Transistors
SAVANTIC

BUX48C

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTORS
STMICROELECTR

BUX48C

Silicon NPN Power Transistors
SAVANTIC