ADA4830 [ETC]

High Speed Difference Amplifier with Input Short to Battery Protection; 高速差动放大器,具有输入电池短路保护
ADA4830
型号: ADA4830
厂家: ETC    ETC
描述:

High Speed Difference Amplifier with Input Short to Battery Protection
高速差动放大器,具有输入电池短路保护

电池 放大器
文件: 总16页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed Difference Amplifier with Input  
Short to Battery Protection  
Data Sheet  
ADA4830-1  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ENA  
+VS  
STB  
Input overvoltage (short to battery) protection of up to 18 V  
Short to battery output flag for wire diagnostics  
Wide input common-mode range with single 5 V supply  
High performance video amplifier with 0.5 V/V gain  
−3 dB bandwidth of 84 MHz  
+VS  
ADA4830-1  
VREF  
BUFFER  
R/2  
220 V/µs slew rate (2 V step)  
Excellent video specifications  
0.1 dB flatness to 20 MHz  
R
R
INP  
INN  
VOUT  
SNR of 73 dB to 15 MHz  
R/2  
Differential gain of 0.1%  
Differential phase of 0.1°  
GND  
Wide supply range: 2.9 V to 5.5 V  
Figure 1.  
Power-down mode  
Space saving 3 mm × 3 mm LFCSP package  
Wide operating temperature range: −40°C to +125°C  
APPLICATIONS  
Automotive vision systems  
Automotive infotainment  
Surveillance systems  
GENERAL DESCRIPTION  
The ADA4830-1 is a monolithic high speed difference amplifier  
that integrates input overvoltage (short to battery) protection of  
up to 18 V with a wide input common-mode voltage range and  
excellent ESD robustness. The ADA4830-1 is intended for use  
as a receiver for differential or pseudo differential CVBS and  
other high speed video signals in harsh, noisy environments  
such as automotive infotainment and vision systems. The  
ADA4830-1 combines the high speed and the precision that  
allow accurate reproduction of CVBS video signals, yet rejects  
unwanted common-mode error voltages.  
series capacitors. The ADA4830-1 can withstand direct short to  
battery voltages as high as 18 V on its input pins.  
The ADA4830-1 is designed to operate at supply voltages as low  
as 2.9 V and as high as 5.5 V, using only 6.8 mA of supply  
current per channel. The device provides true single-supply  
capability, allowing the input signal to extend 8.5 V below the  
negative rail and to 8.5 V above ground on a single 5 V supply.  
At the output, the amplifier can swing to within 250 mV of  
either supply rail into a 150 Ω load.  
The ADA4830-1 presents a gain of 0.5 V/V at its output. This is  
designed to keep the video signal within the allowed range of  
the video decoder, which is typically 1 V p-p or less.  
The short to battery protection that is integrated into the  
ADA4830-1 employs fast switching circuitry to clamp and hold  
internal voltage nodes at a safe level when an input overvoltage  
condition is detected. This protection allows the inputs of the  
ADA4830-1 to be directly connected to a remote video source,  
such as a rearview camera, without the need for large expensive  
The ADA4830-1 is available in a 3 mm × 3 mm, 8-lead LFCSP  
package and is specified for operation over the automotive  
temperature range of −40°C to +125°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADA4830-1  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Overvoltage (Short to Battery) Protection.............................. 10  
Short to Battery Output Flag .................................................... 10  
ESD Protection ........................................................................... 10  
Applications Information .............................................................. 11  
Methods of Transmission.......................................................... 11  
Voltage Reference (VREF Pin) ................................................. 11  
Input Common-Mode Range ................................................... 11  
Short to Battery Output Flag Pin ............................................. 12  
Enable/Disable Modes (ENA Pin) ........................................... 12  
PCB Layout ................................................................................. 12  
Exposed Paddle (EPAD) Connection...................................... 12  
Typical Applications Circuits........................................................ 13  
Packaging and Ordering Information ......................................... 16  
Outline Dimensions................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Operation ............................................................................... 3  
3.3 V Operation ............................................................................ 4  
Absolute Maximum Ratings ....................................................... 5  
Thermal Resistance ...................................................................... 5  
Maximum Power Dissipation ..................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 10  
Core Amplifier............................................................................ 10  
REVISION HISTORY  
10/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
Data Sheet  
ADA4830-1  
SPECIFICATIONS  
5 V OPERATION  
TA = 25°C, +VS = 5 V, RL = 1 kΩ, VREF = 2.5 V (floating), VINCM = +VS/2, RSTB = 5 kΩ to +VS, unless otherwise specified.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Large Signal Bandwidth  
VOUT = 0.5 V p-p, RL = 150 Ω  
VOUT = 0.1V p-p, RL = 1 kΩ  
VOUT = 0.1V p-p, RL = 150 Ω  
VOUT = 0.5 V p-p, RL = 150 Ω  
VOUT = 2 V step  
71  
84  
74  
28  
220  
25  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate (tR/tF)  
Settling Time to 0.1%  
VOUT = 2 V step  
NOISE/DISTORTION PERFORMANCE  
Output Voltage Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Signal-to-Noise Ratio  
f = 1 MHz  
28  
nV/√Hz  
%
Degrees  
dB  
RL = 150 Ω, VIN = 1 V p-p  
RL = 150 Ω, VIN = 1 V p-p  
f = 100 kHz to 15 MHz, VOUT = 0.5 V p-p  
0.1  
0.1  
73  
DC PERFORMANCE  
Nominal Gain  
Output Bias Voltage  
VIN to VOUT  
0.49 0.50  
2.45 2.50  
0.51  
2.55  
V/V  
V
INPUT CHARACTERISTICS  
Input Resistance (Differential Mode)  
Input Resistance (Common Mode)  
Input Common-Mode Voltage Range  
Common-Mode Rejection (CMR)  
SHORT TO BATTERY CHARACTERISTICS  
Input Current  
Protected Input Voltage Range  
Short to Battery Output Flag Trigger Level  
VOLTAGE REFERENCE INPUT  
Input Voltage Range  
7
2
kΩ  
kΩ  
V
8.5  
VIN = 5 V  
45  
65  
dB  
VIN = 18 V (short to battery)  
Signals an input fault condition  
4.1  
10.3  
mA  
V
V
−9  
9.8  
+20  
10.8  
0.2 to 3.9  
V
Input Resistance  
Gain  
20  
1
kΩ  
V/V  
VREF to VOUT  
LOGIC OUTPUT/INPUT CHARACTERISTICS  
STB VOH  
STB VOL  
ENA VIH  
ENA VIL  
Input voltage ≤ 9.75 V (normal operation)  
Input voltage ≥ 10.75 V (fault condition)  
Voltage to enable device  
5.0  
V
mV  
V
110  
≥3.0  
≤1.0  
Voltage to disable device  
V
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 150 Ω to GND  
0.01 to  
4.75  
V
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
125  
248/294  
47  
mA  
mA  
pF  
Sourcing/sinking  
Peaking ≤ 3 dB  
Operating Range  
Operation outside of this range results in performance  
degradation  
Enabled (ENA = 5 V), no load  
Disabled (ENA = 0 V)  
2.9  
5.5  
10  
V
Quiescent Current per Amplifier  
6.8  
90  
mA  
µA  
VIN = 18 V (short to battery)  
+VS = 4.5 V to 5.5 V, VREF is forced to 2.5 V  
5.3  
53  
mA  
dB  
Power Supply Rejection Ratio (PSRR)  
OPERATING TEMPERATURE RANGE  
−40  
+125 °C  
Rev. 0 | Page 3 of 16  
 
 
ADA4830-1  
Data Sheet  
3.3 V OPERATION  
TA = 25°C, +VS = 3.3 V, RL = 1 kΩ, VREF = 2.5 V (floating), VINCM = +VS/2, RSTB = 5 kΩ to +Vs, unless otherwise specified.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Large Signal Bandwidth  
VOUT = 0.5 V p-p, RL = 150 Ω  
VOUT = 0.1V p-p, RL = 1 k Ω  
VOUT = 0.1V p-p, RL = 150 Ω  
VOUT = 0.5 V p-p, RL = 150 Ω  
VOUT = 1 V step  
73  
89  
76  
25  
220  
25  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate (tR/tF)  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Output Voltage Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Signal-to-Noise Ratio  
DC PERFORMANCE  
VOUT = 1 V step  
f = 1 MHz  
28  
nV/√Hz  
%
Degrees  
dB  
RL = 150 Ω, VIN = 1 V p-p  
RL = 150 Ω, VIN = 1 V p-p  
f = 100 kHz to 15 MHz, VOUT = 0.5 V p-p  
0.1  
0.1  
73  
Nominal Gain  
Output Bias Voltage  
VIN to VOUT  
0.49  
1.60  
0.50  
1.65  
0.51  
1.70  
V/V  
V
INPUT CHARACTERISTICS  
Input Resistance (Differential Mode)  
Input Resistance (Common Mode)  
Input Common-Mode Voltage Range  
Common-Mode Rejection (CMR)  
SHORT TO BATTERY CHARACTERISTICS  
Input Current  
Protected Input Voltage Range  
Short to Battery Output Flag Trigger Level  
VOLTAGE REFERENCE INPUT  
Input Voltage Range  
7
2
5.5  
54  
kΩ  
kΩ  
V
VIN = 3.3 V  
43  
dB  
VIN = 18 V (short to battery)  
Signals an input short to battery event  
4.4  
7.8  
mA  
V
V
−9  
7.4  
+20  
8.2  
0.2 to 2.2  
V
Input Resistance  
Gain  
20  
1
kΩ  
V/V  
VREF to VOUT  
LOGIC OUTPUT/INPUT CHARACTERISTICS  
STB VOH  
STB VOL  
ENA VIH  
ENA VIL  
Input voltage ≤ 7.25 V (normal operation)  
Input voltage ≥ 8.25 V (fault condition)  
Voltage to enable device  
3.3  
85  
≥1.8  
≤0.8  
V
mV  
V
Voltage to disable device  
V
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
RL = 150 Ω to GND  
0.01 to 3.08  
50  
85/180  
47  
V
mA  
mA  
pF  
Sourcing/sinking  
Peaking ≤ 4 dB  
Operating Range  
Operation outside of this range results in  
performance degradation  
Enabled (ENA = 3.3 V), no load  
Disabled (ENA = 0 V)  
2.9  
5.5  
8.0  
V
Quiescent Current per Amplifier  
5.5  
60  
mA  
µA  
VIN = 18 V (short to battery)  
+VS = 3.0 V to 3.6 V, VREF forced to 1.65 V  
4.3  
42  
mA  
dB  
Power Supply Rejection Ratio (PSRR)  
OPERATING TEMPERATURE RANGE  
−40  
+125 °C  
Rev. 0 | Page 4 of 16  
 
Data Sheet  
ADA4830-1  
ABSOLUTE MAXIMUM RATINGS  
The power dissipated in the package (PD) is the sum of the  
Table 3.  
Parameter  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). The power dissipated due to load drive  
depends on the particular application. The power due to load  
drive is calculated by multiplying the load current by the  
associated voltage drop across the device. RMS voltages and  
currents must be used in these calculations.  
Rating  
Supply Voltage (+VS pin)  
Input Voltage Positive Direction (INN, INP)  
Input Voltage Negative Direction (INN, INP)  
Reference Voltage (VREF pin)  
Power Dissipation  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
6 V  
22 V  
−10 V  
+VS + 0.3 V  
See Figure 2  
−65°C to +125°C  
−40°C to +125°C  
260°C  
Airflow increases heat dissipation, effectively reducing θJA.  
Figure 2 shows the maximum power dissipation in the package  
vs. the ambient temperature for the 8-lead LFCSP (116°C/W) on  
a JEDEC standard 4-layer board. θJA values are approximate.  
1.8  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
THERMAL RESISTANCE  
θJA is specified for the device soldered to a high thermal  
conductivity, 4-layer (2s2p) circuit board, as described in  
EIA/JESD 51-7.  
Table 4.  
Package Type  
8-Lead LFCSP  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
θJA  
Unit  
AMBIENT TEMPERATURE (°C)  
116  
°C/W  
Figure 2. Maximum Power Dissipation vs.  
Ambient Temperature for a 4-Layer Board  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the ADA4830-1  
package is limited by the associated rise in junction temperature  
(TJ) on the die. At approximately 150°C, which is the glass  
transition temperature, the plastic changes its properties.  
Exceeding a junction temperature of 150°C for an extended  
time can result in changes in the silicon devices, potentially  
causing failure.  
ESD CAUTION  
Rev. 0 | Page 5 of 16  
 
 
 
 
 
ADA4830-1  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VREF 1  
INP 2  
8
7
6
5
+VS  
ENA  
VOUT  
STB  
ADA4830-1  
TOP VIEW  
INN 3  
(Not to Scale)  
GND 4  
NOTES  
1. EXPOSED PAD ON BOTTOM SIDE  
OF PACKAGE. NOT CONNECTED  
ELECTRICALLY, BUT SHOULD BE  
SOLDERED TO A METALIZED AREA  
ON THE PCB TO MINIMIZE THERMAL  
RESISTANCE.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VREF  
Voltage Reference Input. Sets the output dc bias voltage. Internally biased to +Vs/2 when left floating. See the  
Applications Information section.  
2
3
4
5
INP  
Positive Input.  
Negative Input.  
Power Supply Ground Pin.  
INN  
GND  
STB  
Short to Battery Indicator Pin. A logic low indicates an overvoltage condition (short to battery), whereas a logic  
high indicates normal operation. An open-drain configuration requires external pull-up resistor.  
6
7
8
VOUT  
ENA  
+VS  
Video Amplifier Output.  
Enable. Connect to +VS or float for normal operation. Connect to GND for device disable.  
Positive Power Supply. Bypass this pin with a 0.1 µF capacitor to GND.  
EPAD  
Exposed Pad. The exposed pad is located on bottom side of package. The pad is not connected electrically but  
should be soldered to a metalized area on the PCB to minimize thermal resistance.  
Rev. 0 | Page 6 of 16  
 
Data Sheet  
ADA4830-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, +VS = 5 V, RL = 1 kΩ, VREF = 2.5 V (floating), VINCM = +VS/2, RSTB = 5 kΩ to +VS unless otherwise specified.  
3
0
3
0
R
= 1kΩ  
LOAD  
R
= 1kΩ  
LOAD  
R
= 150Ω  
LOAD  
R
= 150Ω  
LOAD  
–3  
–6  
–9  
–12  
–3  
–6  
–9  
–12  
+V = 5V  
S
GAIN = 0.5V/V  
–15  
–18  
–15  
–18  
V
= 200mV p-p  
V
= 1V p-p  
IN  
IN  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 4. Small Signal Frequency Response vs. Load  
Figure 7. Large Signal Frequency Response vs. Load  
3
0
3
0
+V = 3.3V  
S
+V = 3.3V  
S
+V = 5V  
S
–3  
–6  
–9  
–12  
–3  
–6  
–9  
–12  
+V = 5V  
S
–15  
–18  
–15  
–18  
V
= 200mV p-p  
V
= 1V p-p  
IN  
IN  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 5. Small Signal Frequency Response vs. Supply Voltage  
Figure 8. Large Signal Frequency Response vs. Supply Voltage  
3
0
3
0
–3  
–6  
–3  
–45°C  
–6  
–45°C  
–9  
–9  
+125°C  
–12  
–12  
–15  
–15  
+25°C  
+25°C  
–18  
–18  
–21  
–21  
+125°C  
V
R
= 1V p-p  
IN  
V
= 200mV p-p  
= 150Ω  
IN  
LOAD  
–24  
–24  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response for Various Temperatures,  
+VS = 5 V  
Figure 9. Large Signal Frequency Response for Various Temperatures,  
+VS = 3.3 V  
Rev. 0 | Page 7 of 16  
 
ADA4830-1  
Data Sheet  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
7
6
V
= 200mV p-p  
IN  
f = 5MHz  
5
4
3
C
C
= 68pF  
= 47pF  
L
+V = 3.0V  
S
L
+V = 3.3V  
+V = 5.0V  
S
2
1
S
C
= 22pF  
L
0
–1  
C
= 10pF  
L
V
R
= 1V p-p  
–2  
–3  
C
= 0pF  
IN  
L
+V = 5.5V  
S
= 150Ω  
LOAD  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
0.1  
1
10  
FREQUENCY (MHz)  
100  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 10. Large Signal Frequency Response for Various Capacitor Loads  
Figure 13. Small Signal CMR vs. VINCM and Supply Voltage  
0
0.1  
0
V
= 1V p-p  
INP  
ENA = 0V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–0.1  
–0.2  
–0.3  
–0.4  
V
R
= 1V p-p  
IN  
= 150Ω  
LOAD  
–0.5  
0.1  
0.1  
1
10  
100  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 11. 0.1 dB Flatness  
Figure 14. Disabled Response: Input to Output  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
6
3
+V = 5V  
+V = 3.3V  
+V = 5.0V  
S
S
S
V
= 1V p-p  
IN  
LOAD  
R
= 1kΩ  
R
= 1kΩ  
LOAD  
LOAD  
R
= 1kΩ  
V
= +8V  
INCM  
0
+V = 5.0V  
S
R
= 150Ω  
LOAD  
–3  
–6  
–9  
V
= 0V  
INCM  
+V = 3.3V  
S
V
= −8V  
INCM  
R
= 150Ω  
LOAD  
–12  
–15  
V
= 200mV p-p AT +V /2  
S
REF  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 12. CM Frequency Response vs. Input Common-Mode Voltage  
Figure 15. Small Signal Response: VREF to VOUT  
Rev. 0 | Page 8 of 16  
Data Sheet  
ADA4830-1  
2.9  
40  
30  
+V = 3.3V  
OUT  
R
= 1kΩ  
S
LOAD  
V
= 1V p-p  
R
= 1kΩ  
LOAD  
VREF PIN BYPASSED TO GND  
THROUGH 4.7µF CAPACITOR  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
R
= 150Ω  
LOAD  
20  
V
= 3.3V  
DD  
10  
0
V
= 5V  
DD  
–10  
–20  
10  
20  
30  
40  
50  
TIME (ns)  
60  
70  
80  
90  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 16. Pulse Response at +VS = 3.3 V  
Figure 19. Output Offset Voltage : VOUT − VREF  
10  
9
8
7
6
5
4
3
2
1
0
16  
14  
12  
10  
8
V
= 14V, 150ns PULSE  
INP  
+V = 5V  
S
+V  
INP  
6
+V  
STB  
+V = 3.3V  
S
4
2
0
V
V
= FLOATING  
INP, INN  
–2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
50  
100  
150  
200  
250  
300  
350  
400  
ENABLE VOLTAGE (V)  
TIME (ns)  
Figure 20. Supply Current vs. Enable Voltage  
Figure 17. STB Flag Response  
6
5
4
3
2
1
ENA  
V
OUT  
0
–1  
0
100  
200  
300  
400  
500  
600  
TIME (ns)  
Figure 18. Enable Pin Turn-on/Turn-off Time  
Rev. 0 | Page 9 of 16  
ADA4830-1  
Data Sheet  
THEORY OF OPERATION  
CORE AMPLIFIER  
SHORT TO BATTERY OUTPUT FLAG  
At the core of the ADA4830-1 is a high speed, rail-to-rail op  
amp that is built on a 0.35 μm CMOS process. Together with the  
core amplifier, the ADA4830-1 combines four highly matched  
on-chip resistors into a difference amplifier function. Common-  
mode range extension at its inputs is achieved by employing a  
resistive attenuator. The closed-loop differential to single-ended  
gain of the video channel is internally fixed at 0.5 V/V (−6 dB)  
to ensure compatibility with video decoders whose input range  
is constrained to 1 V p-p or less. The transfer function of the  
ADA4830-1 is  
The short to battery output flag (STB pin) is functionally  
independent of the short to battery protection. Its purpose is  
to indicate an overvoltage condition on either input. Because  
protection is provided passively, it is always available; the flag  
merely indicates the presence or absence of a fault condition.  
ESD PROTECTION  
All pins on the ADA4830-1 are protected with internal ESD  
protection structures connected to the power supply pins (+VS  
and GND). These structures provide protection during the  
handling and manufacturing process.  
ꢅꢆꢇ  
ꢈ ꢀ  
ꢅꢆꢉ  
ꢁꢂꢃ  
where:  
ꢋꢌꢍ  
The inputs (INN and INP) of the ADA4830-1 can be exposed  
to dc voltages well above the supply voltage; therefore, conven-  
tional ESD structure protection cannot be used.  
2
V
V
OUT is the voltage at the output pin, VOUT.  
IN+ and VIN− are the input voltages at Pin INP and Pin INN,  
The ADA4830-1 employs Analog Devices, Inc., proprietary  
ESD devices at the input pins (INN, INP) to allow for a wide  
common-mode voltage range and ESD protection well beyond  
the handling and manufacturing requirements.  
respectively.  
REF is the voltage at the VREF pin.  
V
OVERVOLTAGE (SHORT TO BATTERY)  
PROTECTION  
Robust inputs guarantee that sensitive internal circuitry is not  
subjected to extreme voltages or currents during a stressful  
event. A short to battery condition usually consists of a voltage  
on either input (or both inputs) that is significantly higher than  
the power supply voltage of the amplifier. Duration may vary  
from a short transient to a continuous fault.  
The ADA4830-1 can withstand voltages of up to 18 V on the  
inputs. Critical internal nodes are protected from exposure to  
high voltages by circuitry that clamps the inputs at a safe level  
and limits internal currents. This protection is available whether  
the device is enabled or disabled, even when the supply voltage  
is removed.  
Rev. 0 | Page 10 of 16  
 
 
 
 
 
Data Sheet  
ADA4830-1  
APPLICATIONS INFORMATION  
METHODS OF TRANSMISSION  
Fully Differential Mode  
The differential inputs of the ADA4830-1 allow full balanced  
transmission using any differential source. In this configuration,  
the differential input termination is equal to twice the source  
impedance of each output. For example, a source with 37.5 Ω  
back termination resistors in each leg should be terminated  
with a differential resistance of 75 Ω. An illustration of this  
arrangement is shown in Figure 23.  
Pseudo Differential Mode (Unbalanced Source  
Termination)  
The ADA4830-1 can be operated in a pseudo differential  
configuration with an unbalanced input signal. This allows  
the receiver to be driven by any single-ended source. Pseudo  
differential mode uses a single conductor to carry an unbalanced  
signal, and connects the negative input terminal to the ground  
reference of the source.  
DRIVER PCB  
Use the positive wire or coaxial center conductor to connect the  
source output to the positive input (INP) of the ADA4830-1.  
Next, connect the negative wire or coaxial shield from the  
negative input (INN) back to a ground reference on the source  
printed circuit board (PCB). The input termination should  
match the source impedance and be referenced to the remote  
ground. An example of this configuration is shown in Figure 21.  
POSITIVE WIRE  
37.5Ω  
37.5Ω  
INP  
75Ω  
INN  
+
DIFFERENTIAL  
AMPLIFIER  
ADA4830-1  
NEGATIVE WIRE  
Figure 23. Fully Differential Mode  
VOLTAGE REFERENCE (VREF PIN)  
DRIVER PCB  
An internal reference level determines the output voltage when  
the differential input voltage is zero. This is set by a resistor  
divider connected between the supply rails. Built with a matched  
pair of 40 kΩ resistors, the divider sets this voltage to +VS/2.  
POSITIVE WIRE  
75Ω  
INP  
75Ω  
INN  
+
SINGLE ENDED  
AMPLIFIER  
ADA4830-1  
NEGATIVE WIRE  
The voltage reference pin (VREF) normally floats at its default  
value of +VS/2. However, it can be used to vary the output  
reference level from this default value. A voltage applied to  
VREF appears at the output with unity gain, within the  
bandwidth limit of the internal reference buffer.  
Figure 21. Pseudo Differential Mode  
Pseudo Differential Mode (Balanced Source Impedance)  
Pseudo differential signaling is typically implemented using  
unbalanced source termination as shown in Figure 21. With this  
arrangement, however, common-mode signals on the positive  
and negative inputs receive different attenuation due to unbalanced  
termination at the source. This effectively converts some of the  
common-mode signal into differential mode signal, degrading  
the overall common-mode rejection of the system. System  
common-mode rejection can be improved by balancing the  
output impedance of the driver as shown in Figure 22. Splitting  
the source termination resistance evenly between the hot and  
cold conductors results in matched attenuation of the common-  
mode signals, ensuring maximum rejection.  
Any noise on the +VS supply rail appears at the output with only  
6 dB of attenuation (the divide-by-two provided by the reference  
divider). Even when this pin is floating, it is recommended that  
an external capacitor be connected from the reference node to  
ground to provide further attenuation of noise on the power supply  
line. A 4.7 µF capacitor combined with the internal 40 kΩ resistor  
sets the low-pass corner at under 1 Hz and results in better than  
40 dB of supply noise attenuation at 100 Hz.  
INPUT COMMON-MODE RANGE  
In a standard four resistor difference amplifier with 0.5 V/V  
gain, the input common-mode (CM) range is three times the  
CM range of the core amplifier. In the ADA4830-1, however,  
the input CM has been extended to more than 17 V (with a 5 V  
supply). The input CM range can be approximated by using the  
following formulas:  
DRIVER PCB  
POSITIVE WIRE  
37.5Ω  
37.5Ω  
INP  
75Ω  
INN  
+
SINGLE ENDED  
AMPLIFIER  
ADA4830-1  
NEGATIVE WIRE  
Maximum CM voltage  
5(+VS − 1.25) − 4VREF VINCM(MAX) ≤ 9.5 V  
Figure 22. Pseudo Differential Mode with Balanced Source Impedance  
Minimum CM voltage  
−10 V ≤ VINCM(MIN) ≈ − (1 + 4VREF  
)
Rev. 0 | Page 11 of 16  
 
 
 
 
 
 
 
ADA4830-1  
Data Sheet  
Approximate minimum and maximum CM voltages are shown  
in Table 6 for several common supply voltages.  
the speed is determined by external capacitance and the  
magnitude of the pull-up resistor. For the case of 10 pF of  
external capacitance and a pull-up of 5 kΩ, the time constant  
of the rising edge is approximately 50 ns.  
Table 6.  
+VS (V)  
VREF (V)  
1.51  
0.97  
1.671  
1.15  
1.81  
1.34  
2.51  
2.22  
VINCM(MIN) (V)  
–7.0  
–4.9  
–7.6  
–5.6  
–8.2  
–6.4  
–10  
–9.9  
VINCM(MAX) (V)  
Table 7. STB Pin Function  
3.0  
3.0  
3.3  
3.3  
3.6  
3.6  
5.0  
5.0  
2.8  
4.9  
3.6  
5.6  
4.5  
6.4  
8.7  
9.9  
STB Pin Output  
High (Logic 1)  
Low (Logic 0)  
Device State  
Normal operation  
STB fault condition  
ENABLE/DISABLE MODES (ENA PIN)  
The power-down, or enable/disable (ENA) pin, is internally  
pulled up to +VS through a 250 kΩ resistor. When the voltage  
on this pin is high, the amplifier is enabled; pulling ENA low  
disables the channel. With no external connection, this pin  
floats high, enabling the amplifier channel.  
1 Floating (default condition).  
15  
VREF PIN FLOATING  
Table 8. ENA Pin Function  
10  
ENA Pin Input  
High (Logic 1)  
Low (Logic 0)  
Device State  
Enabled  
Disabled  
V
INCM (MAX)  
5
0
PCB LAYOUT  
As with all high speed applications, attention to PCB layout is of  
paramount importance. Adhere to standard high speed layout  
practices in designs using the ADA4830-1. A solid ground plane  
is recommended, and placing a 0.1 µF surface-mount, ceramic  
power supply, decoupling capacitor as close as possible to the  
supply pin is recommended.  
–5  
–10  
V
INCM (MIN)  
–15  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGE (V)  
Connect the GND pin(s) to the ground plane with a trace that is  
as short as possible. In cases where the ADA4830-1 drives trans-  
mission lines, series terminate the outputs and use controlled  
impedance traces of the shortest length possible to connect to  
the signal I/O pins, which should not pass over any voids in the  
ground plane.  
Figure 24. Input Common-Mode Range vs. Supply Voltage  
SHORT TO BATTERY OUTPUT FLAG PIN  
The flag output (STB pin) is of an active low, open-drain logic  
style. A low level on this output indicates that more than 11 V  
has been detected on either the positive or the negative input.  
Flags from multiple chips may be wire-or'ed to form a single  
fault detection signal. The output is driven by a grounded source  
NMOS device, capable of sinking approximately 10 mA while  
pulling within 100 mV of ground. The output high level is set  
with an external pull-up resistor connected to the supply voltage  
of the logic family that is used to monitor the state of the flag.  
EXPOSED PADDLE (EPAD) CONNECTION  
The ADA4830-1 has an exposed thermal pad (EPAD) on the  
bottom of the package. This pad is not electrically connected  
to the die and can be left floating or connected to the ground  
plane. Should heat dissipation be a concern, thermal resistance  
can be minimized by soldering the EPAD to a metalized pad on  
the PCB. Connect this pad to the ground plane with multiple  
The speed with which the flag output responds primarily  
depends, in the falling direction, on the external capacitance  
attached to this node and the sink current that can be provided.  
For example, if the load is 10 pF, and the external pull-up voltage is  
3.3 V, the fall time is a few nanoseconds. In the rising direction,  
vias. Note that the thermal resistance (θ ) of the device is  
JA  
specified with the EPAD soldered to the PCB.  
Rev. 0 | Page 12 of 16  
 
 
 
 
 
 
Data Sheet  
ADA4830-1  
TYPICAL APPLICATIONS CIRCUITS  
+VS  
STB FLAG  
(2.9V TO 5.5V) (OUTPUT)  
ENABLE  
(INPUT)  
4.7kΩ  
+
2.2µF  
0.1µF  
ENA  
+VS  
STB  
+VS  
VREF  
4.7µF  
DRIVER PCB  
POSITIVE WIRE  
75Ω  
INP  
+
SINGLE ENDED  
AMPLIFIER  
TO VIDEO  
DECODER  
VOUT  
0.1µF  
75Ω  
INN  
NEGATIVE WIRE  
ADA4830-1  
GND  
Figure 25. Typical Application with Pseudo Differential Input  
STB FLAG  
(OUTPUT)  
+VS  
(2.9V TO 5.5V)  
ENABLE  
(INPUT)  
4.7kΩ  
+
2.2µF  
0.1µF  
ENA  
+VS  
STB  
+VS  
VREF  
4.7µF  
DRIVER PCB  
37.5Ω  
37.5Ω  
INP  
+
TO VIDEO  
DECODER  
VOUT  
0.1µF  
DIFFERENTIAL  
AMPLIFIER  
75Ω  
INN  
ADA4830-1  
GND  
Figure 26. Typical Application with Fully Differential Input  
Rev. 0 | Page 13 of 16  
 
ADA4830-1  
Data Sheet  
STB FLAG  
(OUTPUT)  
+VS  
(2.9V TO 5.5V)  
ENABLE  
(INPUT)  
4.7kΩ  
D
_1.8V  
D
A
_1.8V  
VDD  
VDD  
VDDIO  
+
2.2µF  
ENA  
+VS  
0.1µF  
0.1µF  
10nF 0.1µF  
10nF 0.1µF  
10nF  
+VS  
STB  
P
_1.8V  
VDD  
D
_3.3V  
VDD  
VREF  
4.7µF  
D
_1.8V  
VDD  
A
_1.8V  
0.1µF  
10nF  
VDD  
+
INP  
VOUT  
P[0:7]  
19  
A
1
75Ω  
INN  
IN  
IN  
IN  
0.1µF  
23  
24  
25  
A
A
2
3
16  
15  
10  
9
P0  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
ADA4830-1  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
YCrCb  
8-BIT  
656 DATA  
RESET  
RESET  
GND  
KEEP VREFN AND VREFP CAPACITORS AS CLOSE AS  
POSSIBLE TO THE ADV7180 AND ON THE SAME SIDE  
OF THE PCB AS THE ADV7180.  
8
7
6
21  
5
VREFN  
VREFP  
0.1µF  
20  
0.1µF  
LOCATE CLOSE TO, AND  
ON THE SAME SIDE AS,  
THE ADV7180  
ADV7180  
13  
XTAL  
11  
32  
4
LLC  
INTRQ  
SFL  
LLC  
47pF  
28.63636MHz  
1MΩ  
INTRQ  
SFL  
12  
26  
XTAL1  
31  
1
47pF  
VS/FIELD  
HS  
VS/FIELD  
HS  
D
VDDIO  
4kΩ  
P
_1.8V  
VDD  
ALSB  
EXTERNAL  
LOOP FILTER  
2
ALSB TIED HI ≥ I C ADDRESS = 42h  
ALSB TIED LOW ≥ I C ADDRESS = 40h  
2
10nF  
17  
ELPF  
82nF  
28  
27  
SCLK  
SDA  
SCLK  
1.69kΩ  
SDATA  
KEEP CLOSE TO THE ADV7180 AND ON  
THE SAME SIDE OF PCB AS THE ADV7180.  
Figure 27. ADA4830-1 Driving an ADV7180 Video Decoder  
Rev. 0 | Page 14 of 16  
Data Sheet  
ADA4830-1  
STB FLAG  
(OUTPUT)  
+VS  
(2.9V TO 5.5V)  
ENABLE  
(INPUT)  
+VS  
STB FLAG  
ENABLE  
(INPUT)  
(2.7V TO 3.6V) (OUTPUT)  
4.7kΩ  
+
+
2.2µF  
ENA  
0.1µF  
2.2µF  
ENA  
+VS  
0.1µF  
+VS  
STB  
+VS  
STB  
FROM  
IMAGER  
OR VIDEO  
VREF  
4.7µF  
ENCODER  
75Ω  
TWISTED  
PAIR  
+IN  
LPF  
–OUT  
+OUT  
37.5Ω  
37.5Ω  
INP  
+
R
TO VIDEO  
T
DECODER  
VOUT  
75Ω  
INN  
0.1µF  
+
+VS  
–IN  
ADA4830-1  
LPF  
GND  
GND  
Figure 28. Differential Video Filter Driver and ADA4830-1 Difference Amplifier  
Rev. 0 | Page 15 of 16  
ADA4830-1  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TOJEDEC STANDARDS MO-229-WEED  
Figure 29.8-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-8-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Branding Ordering Quantity  
ADA4830-1BCPZ-R7  
−40°C to +125°C  
8-Lead Lead Frame Chip CP-8-11  
Scale Package [LFCSP]  
H30  
1,500  
ADA4830-1BCPZ-R2  
−40°C to +125°C  
8-Lead Lead Frame Chip CP-8-11  
Scale Package [LFCSP]  
H30  
250  
ADA4830-1BCP-EBZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10020-0-10/11(0)  
www.analog.com/ADA4830-1  
Rev. 0 | Page 16 of 16  
 
 
 
 

相关型号:

ADA4830-1

High Speed Difference Amplifier with Input
ADI

ADA4830-1BCP-EBZ

High Speed Difference Amplifier with Input
ADI

ADA4830-1BCPZ-R2

High Speed Difference Amplifier with Input
ADI

ADA4830-1BCPZ-R7

High Speed Difference Amplifier with Input
ADI

ADA4830-1WBCPZ-R7

High Speed Difference Amplifier with Input
ADI

ADA4830-2

High Speed Difference Amplifier with Input
ADI

ADA4830-2BCPZ-R2

High Speed Difference Amplifier with Input
ADI

ADA4830-2BCPZ-R7

High Speed Difference Amplifier with Input
ADI

ADA4830-2WBCPZ-R7

High Speed Difference Amplifier with Input
ADI

ADA484

16-Bit, 1 MSPS PulSAR ADC in MSOP QFN
ADI

ADA4841

14-Bit, 500 kSPS PulSAR ADC in MSOP
ADI

ADA4841-1

Low Power, Low Noise and Distortion, Rail-to-Rail Output Amplifier
ADI