ADA4830-1BCPZ-R7 [ADI]

High Speed Difference Amplifier with Input; 高速差动放大器,具有输入
ADA4830-1BCPZ-R7
型号: ADA4830-1BCPZ-R7
厂家: ADI    ADI
描述:

High Speed Difference Amplifier with Input
高速差动放大器,具有输入

放大器
文件: 总22页 (文件大小:458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed Difference Amplifier with Input  
Short-to-Battery Protection  
Data Sheet  
ADA4830-1/ADA4830-2  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
ENA  
+VS  
STB  
Input overvoltage (short-to-battery) protection of up to 18 V  
Short-to-battery output flag for wire diagnostics  
Wide input common-mode range with single 5 V supply  
High performance video amplifier with 0.50 V/V gain  
−3 dB bandwidth of 84 MHz  
+VS  
ADA4830-1  
R/2  
VREF  
×1  
250 V/µs slew rate (2 V step)  
Excellent video specifications  
0.1 dB flatness to 28 MHz  
SNR of 73 dB to 15 MHz  
R
R
INP  
INN  
VOUT  
R/2  
Differential gain/phase of 0.1%/0.1°  
Wide supply range: 2.9 V to 5.5 V  
Enable/output disable mode  
Space saving 3 mm × 3 mm LFCSP package  
Wide operating temperature range: −40°C to +125°C  
Qualified for automotive applications  
GND  
Figure 1.  
ENA1  
×1  
+VS1  
STB1  
+VS  
ADA4830-2  
R/2  
VREF1  
INP1  
APPLICATIONS  
Automotive vision systems  
Automotive infotainment  
Surveillance systems  
R
R
VOUT1  
GND2  
INN1  
R/2  
R/2  
GENERAL DESCRIPTION  
GND1  
The ADA4830-1 (single) and ADA4830-2 (dual) are monolithic,  
high speed difference amplifiers that integrate input overvoltage  
(short-to-battery) protection of up to 18 V with a wide input  
common-mode voltage range and excellent ESD robustness.  
They are intended for use as receivers for differential or pseudo  
differential CVBS and other high speed video signals in harsh,  
noisy environments such as automotive infotainment and vision  
systems. The ADA4830-1 and ADA4830-2 combine high speed  
and precision, which allows for accurate reproduction of CVBS  
video signals, yet rejects unwanted common-mode error voltages.  
R
R
INN2  
INP2  
VOUT2  
+VS  
VREF2  
×1  
R/2  
ENA2  
+VS2  
STB2  
Figure 2.  
below ground rail and to 8.5 V above ground on a single 5 V  
supply. At the output, the amplifier can swing to within 250 mV  
of either supply rail into a 150 Ω load.  
The short-to-battery protection that is integrated into the  
ADA4830-1 and ADA4830-2 employs fast switching circuitry to  
clamp and hold internal voltage nodes at a safe level when an input  
overvoltage condition is detected. This protection allows the inputs  
of the ADA4830-1 and ADA4830-2 to be directly connected to a  
remote video source, such as a rearview camera, without the  
need for large expensive series capacitors. The ADA4830-1 and  
ADA4830-2 can withstand direct short-to-battery voltages as  
high as 18 V on their input pins.  
The ADA4830-1 and ADA4830-2 present a gain of 0.50 V/V at their  
output. This is designed to keep the video signal within the allowed  
range of the video decoder, which is typically 1 V p-p or less.  
The ADA4830-1W and ADA4830-2W are automotive grade  
version, qualified for automotive applications. See the  
Automotive Products section for more details.  
The ADA4830-1 and ADA4830-2 are designed to operate at supply  
voltages as low as 2.9 V and as high as 5.5 V, using only 6.8 mA  
of supply current per channel. These devices provide true single-  
supply capability, allowing the input signal to extend 8.5 V  
The ADA4830-1 and ADA4830-2 are available in 3 mm × 3 mm  
LFCSP packages, 8-lead and 16-lead, respectively, and are specified  
for operation over the automotive temperature range of −40°C  
to +125°C.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADA4830-1/ADA4830-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Power Supply Pins (ADA4830-2).............................................. 13  
Applications Information .............................................................. 14  
Methods of Transmission.......................................................... 14  
Voltage Reference (VREF Pin) ................................................. 14  
Input Common-Mode Range ................................................... 15  
Short-to-Battery Output Flag Pin ............................................ 15  
Enable/Disable Modes (ENA Pin) ........................................... 15  
PCB Layout ................................................................................. 15  
Exposed Paddle (EPAD) Connection...................................... 15  
Using the ADA4830-2 as a Low Cost Video Switch............... 16  
Driving Capacitive Loads.......................................................... 17  
Typical Applications Circuits........................................................ 18  
Fully DC-Coupled Transmission Line .................................... 20  
Packaging and Ordering Information ......................................... 21  
Outline Dimensions................................................................... 21  
Ordering Guide .......................................................................... 21  
Automotive Products................................................................. 22  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
5 V Operation ............................................................................... 3  
3.3 V Operation ............................................................................ 4  
Absolute Maximum Ratings ....................................................... 6  
Thermal Resistance ...................................................................... 6  
Maximum Power Dissipation ..................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 13  
Core Amplifier............................................................................ 13  
Overvoltage (Short-to-Battery) Protection............................. 13  
Short-to-Battery Output Flag ................................................... 13  
ESD Protection ........................................................................... 13  
REVISION HISTORY  
6/12—Rev. B to Rev. C  
Added Figure 5 and Table 6 .............................................................7  
Changes to Typical Performance Characteristics Section ...........8  
Added Figure 23 ............................................................................. 10  
Added Figure 24 to Figure 29 ....................................................... 11  
Changes to Pseudo Differential Mode (Unbalanced Source  
Termination) Section, Fully Differential Mode Section, and  
Voltage Reference (VREF Pin) Section ....................................... 13  
Changes to Input Common-Mode Range Section, Table 7,  
Short-to-Battery Output Flag Pin Section, and Table 9 ............ 14  
Added Figure 34 ............................................................................. 15  
Added Driving Capacitive Loads Section and Figure 35 to  
Figure 38 .......................................................................................... 16  
Changes to Figure 39 and Figure 40............................................. 17  
Changes Typical Application Circuits Section and Figure 41......... 18  
Added Fully DC-Coupled Transmission Line Section..................... 19  
Changes to Figure 42................................................................................. 19  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide.......................................................... 20  
Added ADA4830-2W.........................................................Universal  
Changes to Features..................................................................................... 1  
Changes to Ordering Guide.....................................................................21  
4/12—Rev. A to Rev. B  
Changes to Features Section and Generation Description Section . 1  
Changes to Table 1 ....................................................................................... 3  
Changes to Table 2 ....................................................................................... 4  
Changes to Table 4 ....................................................................................... 6  
Changes to Figure 28 .................................................................................12  
Changes to ESD Protection Section.......................................................13  
Changes to Ordering Guide.....................................................................21  
Added Automotive Products Section....................................................22  
1/12—Rev. 0 to Rev. A  
Added ADA4830-2.............................................................Universal  
Changes to Features Section and Figure 1..................................... 1  
Added Figure 2; Renumbered Sequentially .................................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Added Supply Voltage Delta Parameter, Table 3; Renumbered  
Sequentially ....................................................................................... 5  
10/11—Revision 0: Initial Version  
Rev. C | Page 2 of 22  
 
Data Sheet  
ADA4830-1/ADA4830-2  
SPECIFICATIONS  
5 V OPERATION  
TA = 25°C, +VS = 5 V, RL = 1 kΩ, VREF = 2.5 V (floating), VINCM = +VS/2, RSTB = 5 kΩ to +VS, unless otherwise specified.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Large Signal Bandwidth  
VOUT = 0.5 V p-p, RL = 150 Ω  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
VOUT = 0.1 V p-p, RL = 1 kΩ  
VOUT = 0.1 V p-p, RL = 150 Ω  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
VOUT = 0.5 V p-p, RL = 150 Ω  
VOUT = 2 V step  
64  
56  
71  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
84  
74  
65  
60  
Bandwidth for 0.1 dB Flatness  
Slew Rate (tR/tF)  
28  
196/200 250/300  
164/220  
25  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
VOUT = 2 V step  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Output Voltage Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Signal-to-Noise Ratio  
f = 1 MHz  
28  
nV/√Hz  
%
Degrees  
dB  
RL = 150 Ω, VIN = 1 V p-p  
RL = 150 Ω, VIN = 1 V p-p  
f = 100 kHz to 15 MHz, VOUT = 0.5 V p-p  
0.1  
0.1  
73  
DC PERFORMANCE  
Nominal Gain  
VIN to VOUT  
0.49  
0.49  
2.45  
2.44  
0.50  
2.50  
0.51  
0.51  
2.55  
2.56  
V/V  
V/V  
V
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
Output Bias Voltage  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
V
INPUT CHARACTERISTICS  
Input Resistance (Differential Mode)  
Input Resistance (Common Mode)  
Input Common-Mode Voltage Range  
6.7  
2
kΩ  
kΩ  
V
V
dB  
dB  
VREF voltage adjusted to optimized range  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
−10  
−10  
42  
+9.5  
+9.5  
Common-Mode Rejection (CMR)  
VIN  
=
5 V  
65  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
42  
SHORT-TO-BATTERY CHARACTERISTICS  
Input Current  
Protected Input Voltage Range  
VIN = 18 V (short-to-battery)  
4.1  
10.3  
mA  
V
V
−9  
−9  
9.8  
+20  
+20  
10.8  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
Minimum VIN needed to signal an input fault  
condition  
Short-to-Battery Output Flag Trigger  
Level  
V
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
9.8  
10.8  
V
VOLTAGE REFERENCE INPUT  
Input Voltage Range  
0.2 to 3.9  
V
Input Resistance  
Gain  
20  
1
kΩ  
V/V  
VREF to VOUT  
LOGIC OUTPUT/INPUT CHARACTERISTICS  
STB VOH  
STB VOL  
ENA VIH  
ENA VIL  
VIN ≤ 9.8 V (normal operation)  
VIN ≥ 10.8 V (fault condition), ADA4830-1/ADA4830-2  
Voltage to enable device  
5.0  
110/253  
≥3.0  
V
mV  
V
Voltage to disable device  
≤1.0  
V
Rev. C | Page 3 of 22  
 
 
ADA4830-1/ADA4830-2  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
RL = 150 Ω to ground  
<1% THD at 100 kHz  
Sourcing/sinking  
Peaking ≤ 3 dB  
0.01 to 4.75  
125  
248/294  
47  
V
mA  
mA  
pF  
Operating Range  
Operation outside of this range results in  
performance degradation  
2.9  
5.5  
V
Quiescent Current per Amplifier  
Enabled (ENA = 5 V), no load  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
Disabled (ENA = 0 V), no load  
VIN = 18 V (short-to-battery), no load  
+VS = 4.5 V to 5.5 V, VREF is forced to 2.5 V  
6.8  
10  
10.4  
mA  
mA  
µA  
mA  
dB  
90  
5.3  
53  
Power Supply Rejection Ratio (PSRR)  
OPERATING TEMPERATURE RANGE  
−40  
+125 °C  
3.3 V OPERATION  
TA = 25°C, +VS = 3.3 V, RL = 1 kΩ, VREF = 1.65 V (floating), VINCM = +VS/2, RSTB = 5 kΩ to +Vs, unless otherwise specified.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Large Signal Bandwidth  
VOUT = 0.5 V p-p, RL = 150 Ω  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
VOUT = 0.1 V p-p, RL = 1 kΩ  
VOUT = 0.1 V p-p, RL = 150 Ω  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
VOUT = 0.5 V p-p, RL = 150 Ω  
VOUT = 1 V step  
63  
58  
73  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
89  
78  
64  
59  
Bandwidth for 0.1 dB Flatness  
Slew Rate (tR/tF)  
20  
147/155 165/180  
136/145  
25  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
VOUT = 1 V step  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Output Voltage Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Signal-to-Noise Ratio  
f = 1 MHz  
28  
nV/√Hz  
%
Degrees  
dB  
RL = 150 Ω, VIN = 1 V p-p  
RL = 150 Ω, VIN = 1 V p-p  
f = 100 kHz to 15 MHz, VOUT = 0.5 V p-p  
0.1  
0.1  
73  
DC PERFORMANCE  
Nominal Gain  
VIN to VOUT  
0.49  
0.49  
1.60  
1.59  
0.50  
1.65  
0.51  
0.51  
1.70  
1.71  
V/V  
V/V  
V
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
Output Bias Voltage  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
V
INPUT CHARACTERISTICS  
Input Resistance (Differential Mode)  
Input Resistance (Common Mode)  
Input Common-Mode Voltage Range  
6.7  
2
kΩ  
kΩ  
V
V
dB  
dB  
VREF voltage adjusted to optimized range  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
−8  
−8  
41  
40  
+6  
+6  
Common-Mode Rejection (CMR)  
VIN  
=
3.3 V  
54  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
SHORT-TO-BATTERY CHARACTERISTICS  
Input Current  
Protected Input Voltage Range  
VIN = 18 V (short-to-battery)  
4.4  
7.8  
mA  
V
V
−9  
−9  
7.4  
+20  
+20  
8.2  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
Minimum VIN needed to signal an input fault  
condition  
Short-to-Battery Output Flag Trigger  
Level  
V
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
Rev. C | Page 4 of 22  
7.4  
8.2  
V
 
Data Sheet  
ADA4830-1/ADA4830-2  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
VOLTAGE REFERENCE INPUT  
Input Voltage Range  
Input Resistance  
Gain  
0.2 to 2.2  
20  
1
V
kΩ  
V/V  
VREF to VOUT  
LOGIC OUTPUT/INPUT CHARACTERISTICS  
STB VOH  
STB VOL  
ENA VIH  
ENA VIL  
VIN ≤ 7.4 V (normal operation)  
VIN ≥ 8.2 V (fault condition), ADA4830-1/ADA4830-2  
Voltage to enable device  
3.3  
V
mV  
V
85/178  
≥1.8  
≤0.8  
Voltage to disable device  
V
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Linear Output Current  
Short-Circuit Current  
Capacitive Load Drive  
POWER SUPPLY  
RL = 150 Ω to ground  
<1% THD at 100 kHz  
Sourcing/sinking  
Peaking ≤ 4 dB  
0.01 to 3.08  
50  
85/180  
47  
V
mA  
mA  
pF  
Operating Range  
Operation outside of this range results in  
performance degradation  
2.9  
5.5  
V
Quiescent Current per Amplifier  
Enabled (ENA = 3.3 V), no load  
ADA4830-1W/ADA4830-2W only TMIN to TMAX  
Disabled (ENA = 0 V), no load  
VIN = 18 V (short-to-battery), no load  
+VS = 3.0 V to 3.6 V, VREF forced to 1.65 V  
5.5  
8.0  
8.4  
mA  
mA  
µA  
mA  
dB  
60  
4.3  
42  
Power Supply Rejection Ratio (PSRR)  
OPERATING TEMPERATURE RANGE  
−40  
+125 °C  
Rev. C | Page 5 of 22  
ADA4830-1/ADA4830-2  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
The power dissipated in the package (PD) is the sum of the  
Table 3.  
Parameter  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the supply voltage (+VS) times the quiescent current (IS).  
The power dissipated due to load drive depends on the particular  
application. The power due to load drive is calculated by  
multiplying the load current by the associated voltage drop  
across the device. RMS voltages and currents must be used  
in these calculations.  
Rating  
Supply Voltage (+VS Pin)  
Supply Voltage Delta  
+VS1 to +VS2, ADA4830-2 Only  
Input Voltage Positive Direction (INNx, INPx)  
Input Voltage Negative Direction (INNx, INPx) −10 V  
Reference Voltage (VREFx Pin)  
Power Dissipation  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
6 V  
0.5 V  
22 V  
+VS + 0.3 V  
See Figure 3  
−65°C to +150°C  
−40°C to +125°C  
260°C  
Airflow increases heat dissipation, effectively reducing θJA.  
Figure 3 shows the maximum power dissipation in the package vs.  
the ambient temperature for the 8-lead LFCSP (116°C/W) and  
the 16-lead LFCSP (54°C/W) on a JEDEC standard 4-layer board.  
150°C  
θ
JA values are approximate.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
3.0  
2.5  
2.0  
1.5  
16-LEAD LFCSP  
THERMAL RESISTANCE  
8-LEAD LFCSP  
1.0  
0.5  
0
θJA is specified for the device and its exposed paddle is soldered  
to a high thermal conductivity, 4-layer (2s2p) circuit board, as  
described in EIA/JESD 51-7.  
Table 4.  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Package Type  
8-Lead LFCSP  
16-Lead LFCSP  
θJA  
50  
54  
θJC  
5
6
Unit  
°C/W  
°C/W  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs.  
Ambient Temperature for a 4-Layer Board  
ESD CAUTION  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the ADA4830-1 and  
ADA4830-2 packages is limited by the associated rise in  
junction temperature (TJ) on the die. At approximately 150°C,  
which is the glass transition temperature, the plastic changes its  
properties. Exceeding a junction temperature of 150°C for an  
extended time can result in changes in the silicon devices,  
potentially causing failure.  
Rev. C | Page 6 of 22  
 
 
 
 
 
Data Sheet  
ADA4830-1/ADA4830-2  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VREF 1  
INP 2  
8
7
6
5
+VS  
ENA  
VOUT  
STB  
ADA4830-1  
TOP VIEW  
INN 3  
(Not to Scale)  
GND 4  
NOTES  
1. EXPOSED PAD ON BOTTOM SIDE  
OF PACKAGE. NOT CONNECTED  
ELECTRICALLY, BUT SHOULD BE  
SOLDERED TO A METALIZED AREA  
ON THE PCB TO MINIMIZE THERMAL  
RESISTANCE.  
Figure 4. ADA4830-1 Pin Configuration  
Table 5. ADA4830-1 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VREF  
Voltage Reference Input. Sets the output dc bias voltage. Internally biased to +VS/2 when left floating. See the  
Applications Information section.  
2
3
4
5
INP  
Positive Input.  
Negative Input.  
Power Supply Ground Pin.  
INN  
GND  
STB  
Short-to-Battery Indicator Output Pin. A logic low indicates an overvoltage condition (short-to-battery), whereas a  
logic high indicates normal operation. An open-drain configuration requires external pull-up resistor.  
6
7
8
VOUT  
ENA  
+VS  
Amplifier Output.  
Enable Pin. Connect to +VS or float for normal operation. Connect to ground for device disable.  
Positive Power Supply Pin. Bypass this pin with a 0.1 µF capacitor to ground.  
EPAD  
Exposed Pad. The exposed pad is located on the bottom side of the package. The pad is not connected electrically  
but should be soldered to a metalized area on the printed circuit board (PCB) to minimize thermal resistance.  
Rev. C | Page 7 of 22  
 
ADA4830-1/ADA4830-2  
Data Sheet  
INP1  
INN1  
INN2  
INP2  
1
2
3
4
12 VOUT1  
11 STB1  
10 STB2  
ADA4830-2  
TOP  
VIEW  
9
VOUT2  
NOTES  
1. EXPOSED PAD ON BOTTOM SIDE  
OF PACKAGE. NOT CONNECTED  
ELECTRICALLY, BUT SHOULD BE  
SOLDERED TO A METALIZED AREA  
ON THE PCB TO MINIMIZE THERMAL  
RESISTANCE.  
Figure 5. ADA4830-2 Pin Configuration  
Table 6. ADA4830-2 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 4  
2, 3  
5, 16  
INP1, INP2  
INN1, INN2  
VREF2, VREF1  
Positive Inputs.  
Negative Inputs.  
Voltage Reference Inputs. Sets the output dc bias voltage. Internally biased to +VS/2 when left floating. See  
the Applications Information section.  
6, 15  
7, 14  
GND2, GND1  
+VS2, +VS1  
Power Supply Ground Pins.  
Positive Power Supply Pins. These pins must be connected together, to the same voltage. Bypass these pins  
with a 0.1 µF capacitor to ground.  
8, 13  
9, 12  
10, 11  
ENA2, ENA1  
VOUT2, VOUT1  
STB2, STB1  
Enable Pins. Connect to +VS or float for normal operation and to ground for device disable.  
Amplifier Outputs.  
Short-to-Battery Indicator Output Pins. A logic low indicates an overvoltage condition (short-to-battery), whereas a  
logic high indicates normal operation. An open-drain configuration requires an external pull-up resistor.  
EPAD  
Exposed Pad. The exposed pad is located on the bottom side of the package. The pad is not connected  
electrically, but should be soldered to a metalized area on the PCB to minimize thermal resistance.  
Rev. C | Page 8 of 22  
Data Sheet  
ADA4830-1/ADA4830-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, +VS = 5 V, RL = 1 kΩ, VREF = 2.5 V (floating), VINCM = +VS/2, RSTB = 5 kΩ to +VS, unless otherwise specified.  
3
0
3
0
R
= 1kΩ  
L
R
= 1kΩ  
L
R
= 150Ω  
L
R
= 150Ω  
L
–3  
–6  
–9  
–12  
–3  
–6  
–9  
–12  
–15  
–18  
–15  
–18  
V
= 200mV p-p  
1
V
= 1V p-p  
IN  
IN  
0.1  
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response for Various Loads  
Figure 9. Large Signal Frequency Response for Various Loads  
3
3
+V = 3.3V  
S
+V = 3.3V  
S
0
–3  
0
–3  
+V = 5V  
S
+V = 5V  
S
–6  
–6  
–9  
–9  
–12  
–12  
–15  
–18  
–15  
–18  
V
= 200mV p-p  
V
= 1V p-p  
IN  
IN  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 7. Small Signal Frequency Response for Various Supply Voltages  
Figure 10. Large Signal Frequency Response for Various Supply Voltages  
3
0
3
0
–3  
–6  
–3  
–40°C  
–6  
–40°C  
–9  
–9  
+125°C  
–12  
–12  
–15  
–15  
+25°C  
+25°C  
–18  
–18  
+V = 3.3V  
S
–21  
–21  
–24  
+125°C  
V
= 1V p-p  
IN  
V
= 200mV p-p  
R
= 150Ω  
IN  
L
–24  
1
10  
100  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Small Signal Frequency Response for Various Temperatures  
Figure 11. Large Signal Frequency Response for Various Temperatures  
Rev. C | Page 9 of 22  
 
ADA4830-1/ADA4830-2  
Data Sheet  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
7
V
= 200mV p-p  
NO SERIES OUTPUT RESISTOR  
IN  
f = 5MHz  
6
5
C
C
= 68pF  
= 47pF  
L
4
3
L
+V = 3.3V  
+V = 5.0V  
S
2
1
S
C
= 22pF  
L
0
–1  
C
= 10pF  
L
V
= 1V p-p  
–2  
–3  
C
= 0pF  
IN  
L
R
= 150Ω  
L
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
0.1  
1
10  
FREQUENCY (MHz)  
100  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 12. Large Signal Frequency Response for Various Capacitor Loads  
Figure 15. Small Signal CMR vs. VINCM for Various Supply Voltages  
0.1  
0
0
V
= 1V p-p  
IN  
ENA = 0V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–0.1  
–0.2  
–0.3  
–0.4  
V
R
= 1V p-p  
= 150Ω  
IN  
L
–0.5  
0.1  
0.1  
1
10  
100  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 13. 0.1 dB Flatness  
Figure 16. Input-to-Output Isolation with Device Disabled  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
6
V
= 1V p-p  
IN  
+V = 3.3V  
+V = 5.0V  
S
S
R
= 1kΩ  
R = 1kΩ  
L
L
V
= +8V  
INCM  
3
0
+V = 5.0V  
S
R
= 150Ω  
L
–3  
–6  
–9  
V
= 0V  
INCM  
+V = 3.3V  
S
V
= −8V  
INCM  
R
= 150Ω  
L
–12  
–15  
V
= 200mV p-p  
1
REF  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
10  
FREQUENCY (MHz)  
100  
Figure 17. VREF to VOUT Frequency Response  
Figure 14. CMR Frequency Response for Various Input Common-Mode  
Voltages  
Rev. C | Page 10 of 22  
 
 
 
Data Sheet  
ADA4830-1/ADA4830-2  
2.9  
40  
30  
+V = 3.3V  
OUT  
S
V
= 1V p-p  
R
= 1kΩ  
L
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
R
= 150Ω  
L
20  
10  
+V = 3.3V  
S
0
+V = 5V  
S
–10  
–20  
0
10  
20  
30  
40  
50  
60  
70  
80  
–12 –10 –8 –6 –4 –2  
0
2
4
6
8
10 12 14  
TIME (ns)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 18. Pulse Response at +VS = 3.3 V  
Figure 21. Output Offset Voltage (VOUT − VREF) vs.  
Input Common-Mode Voltage  
16  
14  
12  
10  
8
10  
9
8
7
6
5
4
3
2
1
0
C
= 11pF  
STB  
INP  
+V = 3.3V  
S
R
= 500Ω  
STB  
6
+V = 5V  
S
4
R
= 5kΩ  
STB  
2
R
= 1kΩ  
STB  
0
V
V
= FLOATING  
INP, INN  
–2  
0
50  
100 150 200 250 300 350 400 450 500  
TIME (ns)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
ENABLE VOLTAGE (V)  
Figure 19. Short-to-Battery Output Flag Response for Various RSTB, ADA4830-1  
Figure 22. Supply Current vs. Enable Voltage  
6
140  
120  
100  
80  
5
ENA  
4
3
V
OUT  
2
1
60  
40  
0
20  
–1  
0
0
100  
200  
300  
400  
500  
600  
46  
51  
56  
61  
66  
71  
76  
81  
86  
91  
TIME (ns)  
CMR (dB)  
Figure 23. Typical Distribution of Common-Mode Rejection  
Figure 20. Enable Turn-on/Turn-off Time  
Rev. C | Page 11 of 22  
ADA4830-1/ADA4830-2  
Data Sheet  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
–45  
V
= 2V p-p  
IN  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0.1  
1
10  
FREQUENCY (MHz)  
100  
TEMPERATURE (°C)  
Figure 27. Supply Current vs. Temperature  
Figure 24. Crosstalk (Output-to-Output) vs. Frequency, ADA4830-2  
–40  
4.0  
V
= 4V p-p  
V
= 1V p-p  
IN  
OUT  
C
= 10pF  
L
–50  
–60  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
SINGLE-ENDED INPUT  
C
= 0pF  
L
HD2  
C
= 22pF  
L
SINGLE-ENDED INPUT  
HD3  
–70  
DIFFERENTIAL INPUT  
HD2  
–80  
DIFFERENTIAL INPUT  
HD3  
–90  
–100  
–110  
0.01  
0.1  
1
10  
0
10  
20  
30  
40  
50  
TIME (ns)  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
Figure 28. Harmonic Distortion Vs Frequency  
Figure 25. Pulse Response for Various Capacitor Loads  
10  
0
10k  
1k  
+V RIPPLE = 100mV p-p  
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
C
= 0.1µF  
VREF  
C
= 4.7µF  
VREF  
100  
C
= 10µF  
100  
VREF  
10  
10  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. PSR vs. Frequency for Various VREF Bypass Capacitors  
Figure 26. Total Output Voltage Noise vs. Frequency  
Rev. C | Page 12 of 22  
 
Data Sheet  
ADA4830-1/ADA4830-2  
THEORY OF OPERATION  
CORE AMPLIFIER  
SHORT-TO-BATTERY OUTPUT FLAG  
At the core of the ADA4830-1 and ADA4830-2 are high speed,  
rail-to-rail op amps that are built on a 0.35 µm CMOS process.  
Together with the core amplifier, the ADA4830-1 and ADA4830-2  
combine four highly matched on-chip resistors into a difference  
amplifier function. Common-mode range extension at its inputs  
is achieved by employing a resistive attenuator. The closed-loop  
differential to single-ended gain of the video channel is internally  
fixed at 0.50 V/V (−6 dB) to ensure compatibility with video  
decoders whose input range is constrained to 1 V p-p or less.  
The transfer function of the ADA4830-1 and ADA4830-2 is  
The short-to-battery output flag (STB pin) is functionally  
independent of the short-to-battery protection. Its purpose is  
to indicate an overvoltage condition on either input. Because  
protection is provided passively, it is always available; the flag  
merely indicates the presence or absence of a fault condition.  
ESD PROTECTION  
All pins on the ADA4830-1 and ADA4830-2 are protected with  
internal ESD protection structures connected to the power supply  
pins (+VS and GND). These structures provide protection during  
the handling and manufacturing process.  
VINP VINN  
VOUT  
=
+VREF  
The inputs (INN and INP) of the ADA4830-1 and ADA4830-2  
can be exposed to dc voltages well above the supply voltage;  
therefore, conventional ESD structure protection cannot be used.  
2
where:  
V
V
OUT is the voltage at the output pin, VOUT.  
INP and VINN are the input voltages at the INP and INN pins,  
The ADA4830-1 and ADA4830-2 employ Analog Devices, Inc.,  
proprietary ESD devices at the input pins (INN, INP) to allow  
for a wide common-mode voltage range and ESD protection  
well beyond the handling and manufacturing requirements.  
respectively.  
VREF is the voltage at the VREF pin.  
OVERVOLTAGE (SHORT-TO-BATTERY)  
PROTECTION  
The inputs of the ADA4830-1 and ADA4830-2 are ESD protected  
to survive 8 kV human body model (HBM)  
Robust inputs guarantee that sensitive internal circuitry is not  
subjected to extreme voltages or currents during a stressful event. A  
short-to-battery condition usually consists of a voltage on either  
input (or both inputs) that is significantly higher than the power  
supply voltage of the amplifier. Duration may vary from a short  
transient to a continuous fault.  
POWER SUPPLY PINS (ADA4830-2)  
As indicated in the Absolute Maximum Ratings section, the voltage  
difference between the +VS1 and +VS2 pins of the ADA4830-2  
cannot exceed 0.5 V. To ensure compliance with the Absolute  
Maximum Ratings, it is recommended that these supply pins be  
connected together to the same power supply source.  
The ADA4830-1 and ADA4830-2 can withstand voltages of up  
to 18 V on the inputs. Critical internal nodes are protected from  
exposure to high voltages by circuitry that clamps the inputs at a  
safe level and limits internal currents. This protection is available  
whether the device is enabled or disabled, even when the supply  
voltage is removed.  
Rev. C | Page 13 of 22  
 
 
 
 
 
 
ADA4830-1/ADA4830-2  
Data Sheet  
APPLICATIONS INFORMATION  
METHODS OF TRANSMISSION  
Fully Differential Mode  
The differential inputs of the ADA4830-1 and ADA4830-2 allow  
full balanced transmission using a differential source. In this  
configuration, the differential input termination is equal to twice  
the source impedance of each output. For example, a source  
with 37.5 Ω back termination resistors in each leg should be  
terminated with a differential resistance of 75 Ω. An illustration  
of this arrangement is shown in Figure 32.  
Pseudo Differential Mode (Unbalanced Source  
Termination)  
The ADA4830-1 and ADA4830-2 can be operated in a pseudo  
differential configuration with an unbalanced input signal. This  
allows the receiver to be driven by a single-ended source. Pseudo  
differential mode uses a single conductor to carry an unbalanced  
signal and connects the negative input terminal to the ground  
reference of the source.  
DRIVER PCB  
Use the positive wire or coaxial center conductor to connect the  
source output to the positive input (INP) of the ADA4830-1 or  
ADA4830-2. Next, connect the negative wire or coaxial shield from  
the negative input (INN) back to a ground reference on the source  
printed circuit board (PCB). The input termination should match  
the source impedance and be referenced to the remote ground.  
An example of this configuration is shown in Figure 30.  
POSITIVE WIRE  
37.5Ω  
37.5Ω  
INP  
75Ω  
INN  
+
DIFFERENTIAL  
AMPLIFIER  
ADA4830-1  
NEGATIVE WIRE  
Figure 32. Fully Differential Mode  
VOLTAGE REFERENCE (VREF PIN)  
DRIVER PCB  
An internal reference level (VREF) determines the output voltage  
when the differential input voltage is zero. A resistor divider  
connected between the supply rails sets the VREF voltage. Built  
with a pair of matched 40 kΩ resistors, the divider sets this  
voltage to +VS/2.  
POSITIVE WIRE  
75Ω  
INP  
75Ω  
INN  
+
SINGLE-ENDED  
AMPLIFIER  
ADA4830-1  
NEGATIVE WIRE  
The voltage reference pin (VREF) normally floats at its default  
value of +VS/2. However, it can be used to vary the output  
reference level from this default value. A voltage applied to VREF  
appears at the output with unity gain, within the bandwidth limit  
of the internal reference buffer. Figure 17 shows the frequency  
response of the VREF input.  
Figure 30. Pseudo Differential Mode  
Pseudo Differential Mode (Balanced Source Impedance)  
Pseudo differential signaling is typically implemented using  
unbalanced source termination, as shown in Figure 30. With  
this arrangement, however, common-mode signals on the  
positive and negative inputs receive different attenuation due to  
unbalanced termination at the source. This effectively converts  
some of the common-mode signal into differential mode signal,  
degrading the overall common-mode rejection of the system.  
System common-mode rejection can be improved by balancing  
the output impedance of the driver, as shown in Figure 31.  
Splitting the source termination resistance evenly between the  
hot and cold conductors results in matched attenuation of the  
common-mode signals, ensuring maximum rejection.  
Any noise on the +VS supply rail appears at the output with only  
6 dB of attenuation (the divide-by-two provided by the reference  
divider). Even when this pin is floating, it is recommended that  
an external capacitor be connected from the reference node to  
ground to provide further attenuation of noise on the power supply  
line. A 4.7 µF capacitor combined with the internal 40 kΩ resistor  
sets the low-pass corner at under 1 Hz and results in better than  
40 dB of supply noise attenuation at 100 Hz.  
DRIVER PCB  
POSITIVE WIRE  
37.5Ω  
37.5Ω  
INP  
75Ω  
INN  
+
SINGLE-ENDED  
AMPLIFIER  
ADA4830-1  
NEGATIVE WIRE  
Figure 31. Pseudo Differential Mode with Balanced Source Impedance  
Rev. C | Page 14 of 22  
 
 
 
 
 
 
Data Sheet  
ADA4830-1/ADA4830-2  
In the falling direction, the speed with which the flag output  
responds primarily depends on the external capacitance attached to  
this node and the sink current that can be provided. For example, if  
the load is 10 pF, and the external pull-up voltage is 3.3 V, the fall  
time is a few nanoseconds. In the rising direction, the speed is  
determined by external capacitance and the magnitude of the  
pull-up resistor. For the case of 10 pF of external capacitance  
and a pull-up of 5 kΩ, the time constant of the rising edge is  
approximately 50 ns.  
INPUT COMMON-MODE RANGE  
In a standard four resistor difference amplifier with 0.50 V/V  
gain, the input common-mode (CM) range is three times the CM  
range of the core amplifier. In the ADA4830-1 and ADA4830-2,  
however, the input CM range has been extended to more than 18 V  
(with a 5 V supply). The input CM range can be approximated  
by using the following formulas:  
For the maximum CM voltage,  
5(+VS − 1.25) − 4VREF VINCM(MAX) ≤ 9.5 V  
Table 8. STB Pin Function  
For the minimum CM voltage,  
STB Pin Output  
High (Logic 1)  
Low (Logic 0)  
Device State  
Normal operation  
STB fault condition  
−10 V ≤ VINCM(MIN) ≈ − (1 + 4VREF  
)
Approximate minimum and maximum CM voltages are shown  
in Table 7 for several common supply voltages.  
ENABLE/DISABLE MODES (ENA PIN)  
The power-down, or enable/disable (ENA) pin, is internally pulled  
up to +VS through a 250 kΩ resistor. When the voltage on this  
pin is high, the amplifier is enabled; pulling ENA low disables  
the channel. With no external connection, this pin floats high,  
enabling the amplifier channel.  
Table 7. Input Common-Mode Range Examples  
+VS (V)  
VREF (V)  
1.51  
VINCM(MIN) (V)  
VINCM(MAX) (V)  
3.0  
–7.0  
2.8  
4.9  
3.6  
5.6  
4.5  
6.4  
8.7  
9.5  
3.0  
3.3  
3.3  
3.6  
0.97  
1.651  
1.15  
1.81  
–4.9  
–7.6  
–5.6  
–8.2  
Table 9. ENA Pin Function  
ENA Pin Input  
High (Logic 1)  
Low (Logic 0)  
Device State  
Enabled  
Disabled  
3.6  
5.0  
1.34  
2.51  
–6.4  
–10  
5.0  
2.22  
–9.9  
High-Z (Floating)  
Normal operation  
1 Floating (default condition).  
PCB LAYOUT  
15  
As with all high speed applications, attention to PCB layout is of  
paramount importance. Adhere to standard high speed layout  
practices in designs using the ADA4830-1 and ADA4830-2. A  
solid ground plane is recommended, and placing a 0.1 µF surface-  
mount, ceramic power supply, decoupling capacitor as close as  
possible to the supply pin(s) is recommended.  
VREF PIN FLOATING  
10  
V
INCM (MAX)  
5
0
Connect the GND pin(s) to the ground plane with a trace that is as  
short as possible. In cases where the ADA4830-1 and ADA4830-2  
drive transmission lines, series terminate the outputs and use  
controlled impedance traces of the shortest length possible to  
connect to the signal I/O pins, which should not pass over any  
voids in the ground plane.  
–5  
–10  
–15  
V
INCM (MIN)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
S
UPPLY VOLTAGE (V)  
EXPOSED PADDLE (EPAD) CONNECTION  
Figure 33. Input Common-Mode Range vs. Supply Voltage  
The ADA4830-1 and ADA4830-2 have an exposed thermal pad  
(EPAD) on the bottom of the package. This pad is not electrically  
connected to the die and can be left floating or connected to the  
ground plane. Should heat dissipation be a concern, thermal  
resistance can be minimized by soldering the EPAD to a  
metalized pad on the PCB. Connect this pad to the ground  
plane with multiple vias. Note that the thermal resistance (θJA)  
of the device is specified with the EPAD soldered to the PCB.  
SHORT-TO-BATTERY OUTPUT FLAG PIN  
The flag output (STB) is an active low, open-drain logic  
configuration. A low level on this output indicates that an  
overvoltage event has been detected on either the positive or  
the negative input or both. Flags from multiple chips can be  
wire-OR'ed to form a single fault detection signal. The output is  
driven by a grounded source NMOS device, capable of sinking  
approximately 10 mA while pulling within a few hundred millivolts  
above ground. The output high level is set with an external pull-up  
resistor connected to the supply voltage of the logic family that is  
used to monitor the state of the flag.  
Rev. C | Page 15 of 22  
 
 
 
 
 
 
ADA4830-1/ADA4830-2  
Data Sheet  
wired together. High speed video op amps have all the key features  
required to make them ideal for this function. Their high input  
impedance does not affect the characteristic impedance of the  
transmission line, thus allowing back termination. They also have  
inherently good video specifications, including differential gain and  
phase, slew rate, bandwidth, and 0.1 dB flatness.  
USING THE ADA4830-2 AS A LOW COST VIDEO  
SWITCH  
Figure 34 shows a video multiplexer/switch using the ADA4830-2,  
dual, high speed difference amplifier. This circuit allows the user  
to input two remote video sources into a single channel of a video  
decoder, such as the ADV7180.  
Each channel of the ADA4830-2 is a high speed difference  
amplifier circuit that eliminates common-mode noise and phase  
noise caused by ground potential differences between the incoming  
video signal and the receiver. The ADA4830-2 also offers integrated  
short-to-battery protection and heightened ESD tolerance in a  
small foot print. The fault detection output (the STB pins) of the  
ADA4830-2 allows for proactive wire diagnostics when connected  
to a microcontroller or video decoder and are used to generate  
an interrupt during a fault condition.  
Traditional CMOS multiplexers and switches suffer several  
disadvantages at video frequencies where their on-resistance  
introduces distortion, degrades differential gain and phase  
performance, and interacts with the termination resistor to  
attenuate the incoming video signal and affect the luminance.  
System designers generally address these issues by adding  
external buffers to add gain and increase drive capability.  
Video multiplexing can be simplified by using high speed video  
amplifiers with a disable/enable function (sometimes called power-  
down). When the amplifier is disabled, its output stage goes into  
a high impedance state, allowing several amplifier outputs to be  
+V  
S
ENABLE1  
(INPUT)  
+
0.1µF  
2.2µF  
+V  
S
4.7µF  
16  
15  
14  
13  
5kΩ  
5kΩ  
75Ω  
12  
11  
10  
9
1
INP1  
VOUT1  
STB1  
75Ω  
DIFFERENTIAL  
INPUT 1  
75Ω  
2
3
4
INN1  
INN2  
INP2  
CONNECT  
TO VIDEO  
DECODER  
ADA4830-2  
STB FLAGS  
(OUTPUTS)  
STB2  
75Ω  
DIFFERENTIAL  
INPUT 2  
75Ω  
75Ω  
VOUT2  
5
6
7
8
4.7µF  
0.1µF  
ENABLE2  
(INPUT)  
+V  
S
Figure 34. Low Cost Video Switch Using the ADA4830-2  
Rev. C | Page 16 of 22  
 
 
Data Sheet  
ADA4830-1/ADA4830-2  
Another method of reducing the resonant peaking caused by  
driving large capacitive loads at the output of the ADA4830-1  
and ADA4830-2 is with the use of a R-C shunt circuit or a snubber  
circuit. This method acts to resistively load the amplifier output,  
thus reducing frequency response peaking. One drawback to this  
approach is a slight loss of signal bandwidth. Figure 37 shows a  
simple circuit representation of the implementation of the R-C  
snubber circuit with RSNT and CSNT. Figure 38 shows the effects of  
a R-C snubber circuit driving 47 pF, where RSNT = 73.2 Ω and CSNT  
= 0.1 µF.  
DRIVING CAPACITIVE LOADS  
The ADA4830-1 and ADA4830-2 are capable of driving large  
capacitive loads while maintaining its rated performance.  
Several performance curves vs. capacitive load are shown in  
Figure 12 and Figure 25. Capacitive loads interact with an op amps  
output impedance to create an extra delay in the feedback path.  
This reduces circuit stability and can cause unwanted ringing  
and oscillation.  
The capacitive load drive of the ADA4830-1and ADA4830-2 can  
be increased by adding a low valued resistor, RS, in series with the  
capacitive load. Figure 35 shows the test circuit.  
ADA4830-1  
R
= 49.9Ω  
S
+
C
= 47pF  
R
= 1kΩ  
R
= 73.2Ω  
L
L
SNT  
ADA4830-1  
C
= 0.1uF  
SNT  
+
C = 47pF  
L
R
= 1kΩ  
L
Figure 37. R-C Test Circuit  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
+V = 5V  
NO SNUBBER  
CIRCUIT  
S
Figure 35. RS Test Circuit  
R
C
= 1kΩ  
L
L
= 47pF  
Introducing a series resistor tends to isolate the capacitive load  
from the feedback loop, thereby diminishing its influence. One  
drawback to this approach is a slight loss of signal amplitude.  
Figure 36 shows the effects of a series resistor on the capacitive  
drive. For very large capacitive loads, the frequency response of  
the amplifier is dominated by the roll-off of the series resistor  
and capacitive load.  
R
C
= 73.2Ω  
= 0.1µF  
SNT  
SNT  
4.0  
+V = 5V  
S
NO R  
S
R
C
= 1kΩ  
L
L
= 47pF  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0
50  
100  
150  
200  
250  
R
= 49.9Ω  
S
TIME (ns)  
Figure 38. Pulse Response With and Without R-C Snubber Circuit  
0
50  
100  
150  
200  
250  
TIME (ns)  
Figure 36. Pulse Response With and Without Series Resistor  
Rev. C | Page 17 of 22  
 
 
 
 
 
ADA4830-1/ADA4830-2  
Data Sheet  
TYPICAL APPLICATIONS CIRCUITS  
+V  
STB FLAG  
(OUTPUT)  
S
(2.9V TO 5.5V)  
ENABLE  
(INPUT)  
5kΩ  
+
2.2µF  
0.1µF  
ENA  
+VS  
+VS  
STB  
VREF  
4.7µF  
×1  
DRIVER PCB  
POSITIVE WIRE  
75Ω  
INP  
+
SINGLE ENDED  
AMPLIFIER  
TO VIDEO  
DECODER  
VOUT  
0.1µF  
75Ω  
INN  
NEGATIVE WIRE  
ADA4830-1  
GND  
Figure 39. Typical Application with Pseudo Differential Input  
STB FLAG  
(OUTPUT)  
+V  
S
(2.9V TO 5.5V)  
ENABLE  
(INPUT)  
5kΩ  
+
2.2µF  
0.1µF  
ENA  
+VS  
+VS  
STB  
VREF  
4.7µF  
×1  
DRIVER PCB  
37.5Ω  
37.5Ω  
INP  
+
TO VIDEO  
DECODER  
VOUT  
0.1µF  
DIFFERENTIAL  
AMPLIFIER  
75Ω  
INN  
ADA4830-1  
GND  
Figure 40. Typical Application with Fully Differential Input  
Rev. C | Page 18 of 22  
 
Data Sheet  
ADA4830-1/ADA4830-2  
STB FLAG  
(OUTPUT)  
+V  
S
(2.9V TO 5.5V)  
ENABLE  
(INPUT)  
5kΩ  
D
_1.8V  
D
A
_1.8V  
VDD  
VDD  
VDDIO  
+
2.2µF  
0.1µF  
0.1µF  
10nF 0.1µF  
10nF 0.1µF  
10nF  
ENA  
+VS  
+VS  
STB  
P
_1.8V  
VDD  
D
_3.3V  
VDD  
VREF  
×1  
D
_1.8V  
A
VDD  
_1.8V  
0.1µF  
10nF  
VDD  
4.7µF  
+
INP  
75Ω  
INN  
VOUT  
P[0:7]  
19  
A
1
IN  
IN  
IN  
0.1µF  
23  
24  
25  
A
A
2
3
16  
15  
10  
9
P0  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
ADA4830-1  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
YCrCb  
8-BIT  
656 DATA  
RESET  
RESET  
GND  
KEEP VREFN AND VREFP CAPACITORS AS CLOSE AS  
POSSIBLE TO THE ADV7180 AND ON THE SAME SIDE  
OF THE PCB AS THE ADV7180.  
8
7
6
21  
5
VREFN  
VREFP  
0.1µF  
20  
0.1µF  
LOCATE CLOSE TO, AND  
ON THE SAME SIDE AS,  
THE ADV7180  
ADV7180  
13  
XTAL  
11  
32  
4
LLC  
INTRQ  
SFL  
LLC  
47pF  
28.63636MHz  
1MΩ  
INTRQ  
SFL  
12  
26  
XTAL1  
31  
1
47pF  
VS/FIELD  
HS  
VS/FIELD  
HS  
D
VDDIO  
4kΩ  
P
_1.8V  
VDD  
ALSB  
EXTERNAL  
LOOP FILTER  
2
2
ALSB TIED HI ≥ I C ADDRESS = 0x42  
ALSB TIED LOW ≥ I C ADDRESS = 0x40  
10nF  
17  
ELPF  
82nF  
28  
27  
SCLK  
SDA  
SCLK  
1.69kΩ  
SDATA  
KEEP CLOSE TO THE ADV7180 AND ON  
THE SAME SIDE OF PCB AS THE ADV7180.  
Figure 41. ADA4830-1 Driving an ADV7180 Video Decoder  
The common-mode rejection vs. frequency, shown in Figure 14,  
typically 65 dB at low frequencies, enables the recovery of video  
signals in the presence of large common-mode noise. The high  
input impedance permits the ADA4830-1 and ADA4830-2 to  
operate as a bridging amplifier across low impedance terminations  
with negligible loading.  
The ADA4830-1 and ADA4830-2 are differential receivers whose  
overall performance is independent of the transmitter IC used  
and whether the transmission line is ac-coupled or dc-coupled.  
The ADA4830-1 and ADA4830-2 are specifically designed to  
perform as differential line receivers. The circuit in Figure 41  
shows a detailed schematic of the ADA4830-1 and the ADV7180  
configured for this function. The signal is received differentially  
relative to the common of the source circuitry, and that voltage  
is exactly reproduced with an attenuating gain of 0.50 V/V. This  
is designed to keep the video signal within the allowed range of  
the video decoder, which is typically 1 V p-p or less.  
Rev. C | Page 19 of 22  
 
ADA4830-1/ADA4830-2  
Data Sheet  
reference levels at the transmitter and receiver is within the  
common-mode range of the receiver, very little current flow  
results, and no image degradation should be anticipated.  
FULLY DC-COUPLED TRANSMISSION LINE  
The wide input common-mode range and high input impedance of  
the ADA4830-1 and ADA4830-2 allow them to be used in fully  
dc-coupled transmission line applications in which there may be a  
significant discrepancy between voltage levels at the ground pins of  
the driver and receiver. As long as the voltage difference between  
Figure 42 shows an example configuration of a completely dc-  
coupled transmission using a low impedance differential driver.  
STB FLAG  
(OUTPUT)  
+V  
S
(2.9V TO 5.5V)  
ENABLE  
(INPUT)  
+V  
STB FLAG  
(OUTPUT)  
ENABLE  
(INPUT)  
S
(2.7V TO 3.6V)  
5kΩ  
+
+
2.2µF  
ENA  
0.1µF  
2.2µF  
ENA  
+VS  
0.1µF  
+VS  
STB  
+VS  
STB  
FROM  
IMAGER  
VREF  
4.7µF  
×1  
OR VIDEO  
ENCODER  
75Ω  
TWISTED  
PAIR  
+IN  
LPF  
LPF  
–OUT  
+OUT  
37.5Ω  
37.5Ω  
INP  
+
R
TO VIDEO  
DECODER  
T
VOUT  
0.1µF  
75Ω  
INN  
+
+V  
S
–IN  
ADA4830-1  
GND  
GND  
Figure 42. Differential Video Filter Driver and ADA4830-1 Difference Amplifier  
Rev. C | Page 20 of 22  
 
 
Data Sheet  
ADA4830-1/ADA4830-2  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TOJEDEC STANDARDS MO-229-WEED  
Figure 43. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.45  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.  
Figure 44. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
3 mm × 3 mm Body, Very Very Thin Quad  
(CP-16-22)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Ordering  
Branding Quantity  
Model1, 2  
Temperature Range Package Description  
ADA4830-1BCP-EBZ  
ADA4830-1BCPZ-R7  
ADA4830-1WBCPZ-R7 −40°C to +125°C  
ADA4830-1BCPZ-R2  
ADA4830-2BCPZ-R7  
ADA4830-2BCPZ-R2  
Evaluation Board  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
−40°C to +125°C  
CP-8-11  
CP-8-11  
CP-8-11  
H30  
4H1  
H30  
1500  
1500  
250  
1500  
250  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-16-22 H31  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-16-22 H31  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] CP-16-22 4H2  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
ADA4830-2WBCPZ-R7 −40°C to +125°C  
1500  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
Rev. C | Page 21 of 22  
 
 
 
 
 
ADA4830-1/ADA4830-2  
Data Sheet  
AUTOMOTIVE PRODUCTS  
The ADA4830-1W and ADA4830-2W models are available with controlled manufacturing to support the quality and reliability  
requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial  
model; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products  
shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product  
ordering information and to obtain the specific Automotive Reliability reports for these models.  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
www.analog.com/ADA4830-1/ADA4830-2  
D10020-0-6/12(C)  
Rev. C | Page 22 of 22  
 

相关型号:

ADA4830-1WBCPZ-R7

High Speed Difference Amplifier with Input
ADI

ADA4830-2

High Speed Difference Amplifier with Input
ADI

ADA4830-2BCPZ-R2

High Speed Difference Amplifier with Input
ADI

ADA4830-2BCPZ-R7

High Speed Difference Amplifier with Input
ADI

ADA4830-2WBCPZ-R7

High Speed Difference Amplifier with Input
ADI

ADA484

16-Bit, 1 MSPS PulSAR ADC in MSOP QFN
ADI

ADA4841

14-Bit, 500 kSPS PulSAR ADC in MSOP
ADI

ADA4841-1

Low Power, Low Noise and Distortion, Rail-to-Rail Output Amplifier
ADI

ADA4841-1YR-EBZ

Low Power, Low Noise and Distortion ail-to-Rail Output Amplifiers
ADI

ADA4841-1YRJ-EBZ

Low Power, Low Noise and Distortion ail-to-Rail Output Amplifiers
ADI

ADA4841-1YRJZ-R2

Low Power, Low Noise and Distortion, Rail-to-Rail Output Amplifier
ADI

ADA4841-1YRJZ-R2

OP-AMP, 300 uV OFFSET-MAX, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
ROCHESTER