M12S128324A-6TG [ESMT]

1M x 32 Bit x 4 Banks Synchronous DRAM; 1M ×32位×4银行同步DRAM
M12S128324A-6TG
型号: M12S128324A-6TG
厂家: ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.    ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.
描述:

1M x 32 Bit x 4 Banks Synchronous DRAM
1M ×32位×4银行同步DRAM

动态存储器
文件: 总46页 (文件大小:742K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESMT  
SDRAM  
M12S128324A  
1M x 32 Bit x 4 Banks  
Synchronous DRAM  
FEATURES  
y
y
y
y
JEDEC standard 2.5V power supply  
LVTTL compatible with multiplexed address  
Four banks operation  
MRS cycle with address key programs  
- CAS Latency (1, 2 & 3 )  
- Burst Length ( 1, 2, 4, 8 & full page )  
- Burst Type ( Sequential & Interleave )  
All inputs are sampled at the positive going edge of the  
system clock  
y
y
y
y
DQM for masking  
Auto & self refresh  
64ms refresh period (4K cycle)  
ORDERING INFORMATION  
MAX  
Product No.  
PACKAGE COMMENTS  
FREQ.  
M12S128324A-6TG 166MHz 86 TSOPII  
M12S128324A-6BG 166MHz 90 FBGA  
M12S128324A-7TG 143MHz 86 TSOPII  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
M12S128324A-7BG 143MHz  
90 FBGA  
GENERAL DESCRIPTION  
The M12S128324A is 134,217,728 bits synchronous high data rate Dynamic RAM organized as 4 x 1,048,576 words by 32 bits.  
Synchronous design allows precise cycle control with the use of system clock I/O transactions are possible on every clock cycle.  
Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a  
variety of high bandwidth, high performance memory system applications.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 1/46  
ESMT  
M12S128324A  
PIN ARRANGEMENT  
Top View  
V
DD  
1
V S S  
8 6  
8 5  
8 4  
8 3  
8 2  
8 1  
8 0  
7 9  
7 8  
7 7  
7 6  
7 5  
7 4  
7 3  
7 2  
7 1  
7 0  
6 9  
6 8  
6 7  
D Q 0  
V D DQ  
D Q 1  
D Q 2  
V S S Q  
D Q 3  
D Q 4  
V D DQ  
2
3
4
5
6
7
8
9
1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
D Q 15  
V S SQ  
D Q 14  
D Q 13  
V D D Q  
D Q 12  
D Q 11  
V S SQ  
D Q 10  
D Q 9  
D Q 5  
D Q 6  
V S S Q  
D Q 7  
N C  
V D D Q  
D Q 8  
N C  
V
DD  
V S S  
D Q M0  
W E  
D Q M 1  
N C  
C A S  
R A S  
C S  
N C  
C LK  
C K E  
A 9  
A 11  
21  
22  
23  
24  
25  
26  
27  
28  
29  
3 0  
3 1  
3 2  
3 3  
3 4  
3 5  
3 6  
3 7  
3 8  
3 9  
6 6  
6 5  
6 4  
6 3  
6 2  
6 1  
6 0  
5 9  
5 8  
5 7  
5 6  
5 5  
5 4  
5 3  
5 2  
5 1  
5 0  
4 9  
4 8  
4 7  
4 6  
4 5  
4 4  
A 8  
B A 0  
B A 1  
A 1 0/A P  
A 0  
A 7  
A 6  
A 5  
A 4  
A 1  
A 3  
A 2  
D Q M 3  
D Q M2  
V S  
S
V D  
D
N C  
D Q 16  
V S SQ  
N C  
D Q 3 1  
V D D Q  
D Q 3 0  
D Q 2 9  
V S SQ  
D Q 2 8  
D Q 2 7  
V D D Q  
D Q 2 6  
D Q 2 5  
V S SQ  
D Q 2 4  
D Q 17  
D Q 18  
V D D Q  
D Q 19  
D Q 20  
V S SQ  
D Q 21  
D Q 22  
V D D Q  
4 0  
4 1  
D Q 23 4 2  
86 P i n T S O P ( II)  
( 400 m il 8 75m i l)  
( 0.5 mm P in pi tc h)  
4 3  
V
D D  
V S  
S
x
90 Ball FBGA  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
DQ26 DQ24 VSS  
DQ28 VDDQ VSSQ  
VSSQ DQ27 DQ25  
VSSQ DQ29 DQ30  
VDDQ DQ31 NC  
VSS DQM3 A3  
VDD DQ23 DQ21  
VDDQ VSSQ DQ19  
DQ22 DQ20 VDDQ  
DQ17 DQ18 VDDQ  
NC DQ16 VSSQ  
A2 DQM2 VDD  
G
H
J
A4  
A7  
A5  
A8  
A6  
NC  
A9  
A10  
NC  
A0  
BA1  
CS  
A1  
A11  
CLK CKE  
DQM1 NC  
BA0  
CAS  
RAS  
DQM0  
K
L
NC  
WE  
VDDQ DQ8 VSS  
VSSQ DQ10 DQ9  
VSSQ DQ12 DQ14  
DQ11 VDDQ VSSQ  
DQ13 DQ15 VSS  
VDD DQ7 VSSQ  
DQ6 DQ5 VDDQ  
DQ1 DQ3 VDDQ  
VDDQ VSSQ DQ4  
VDD DQ0 DQ2  
M
N
P
R
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
2/46  
ESMT  
M12S128324A  
BLOCK DIAGRAM  
CLK  
Clock  
Generator  
Bank D  
Bank C  
Bank B  
CKE  
Row  
Address  
Buffer  
&
Refresh  
Counter  
Address  
Bank A  
Mode  
Register  
Sense Amplifier  
Column Decoder  
DQM0~3  
Column  
Address  
Buffer  
&
Refresh  
Counter  
CS  
RAS  
CAS  
WE  
Data Control Circuit  
DQ  
PIN DESCRIPTION  
PIN  
NAME  
INPUT FUNCTION  
CLK  
CS  
System Clock  
Active on the positive going edge to sample all inputs  
Disables or enables device operation by masking or enabling all  
inputs except CLK , CKE and DQM0-3.  
Chip Select  
Masks system clock to freeze operation from the next clock cycle.  
CKE should be enabled at least one cycle prior new command.  
Disable input buffers for power down in standby.  
CKE  
Clock Enable  
Address  
Row / column address are multiplexed on the same pins.  
Row address : RA0~RA11, column address : CA0~CA7  
A0 ~ A11  
Selects bank to be activated during row address latch time.  
Selects bank for read / write during column address latch time.  
BA0 , BA1  
Bank Select Address  
Row Address Strobe  
Latches row addresses on the positive going edge of the CLK with  
RAS low.  
RAS  
Enables row access & precharge.  
Latches column address on the positive going edge of the CLK with  
Column Address Strobe  
Write Enable  
CAS  
WE  
CAS low.  
Enables column access.  
Enables write operation and row precharge.  
Latches data in starting from CAS , WE active.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
3/46  
ESMT  
M12S128324A  
PIN  
NAME  
INPUT FUNCTION  
Makes data output Hi-Z, tSHZ after the clock and masks the output.  
Blocks data input when DQM active.  
DQM0~3  
Data Input / Output Mask  
DQ0 ~ DQ31  
Data Input / Output  
Data inputs / outputs are multiplexed on the same pins.  
Power and ground for the input buffers and the core logic.  
VDD / VSS  
Power Supply / Ground  
Isolated power supply and ground for the output buffers to provide  
improved noise immunity.  
VDDQ / VSSQ  
Data Output Power / Ground  
No Connection  
N.C  
This pin is recommended to be left No Connection on the device.  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
VIN, VOUT  
VDD, VDDQ  
TSTG  
Value  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VDD supply relative to VSS  
Storage temperature  
-1.0 ~ 3.6  
-1.0 ~ 3.6  
-55 ~ +150  
V
°C  
W
Power dissipation  
PD  
IOS  
1
Short circuit current  
50  
mA  
Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATING are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
DC OPERATING CONDITION  
Recommended operating conditions (Voltage referenced to VSS = 0V, TA = 0 to 70°C )  
Parameter  
Supply voltage  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
VDD, VDDQ  
2.375  
2.5  
2.625  
V
1
(for -6)  
V
DD, VDDQ  
2.3  
0.8xVDDQ  
-0.3  
2.5  
2.5  
0
2.7  
V
V
1
Input logic high voltage  
Input logic low voltage  
Output logic high voltage  
Output logic low voltage  
VIH  
VDDQ+0.3  
2
VIL  
0.3  
-
V
3
VOH  
VDDQ -0.2  
-
-
V
IOH = -0.1mA  
IOL = 0.1mA  
4
VOL  
-
0.2  
V
μ A  
Input leakage current  
ILI  
-2  
-
2
Note:  
1. Under all conditions, VDDQ must be less than or equal to VDD  
.
2. VIH(max) = 3.0V AC. The overshoot voltage duration is 3ns.  
3. VIL(min) = -1.0V AC. The undershoot voltage duration is 3ns.  
4. Any input 0V VIN VDDQ  
Input leakage currents include Hi-Z output leakage for all bi-directional buffers with tri-state outputs.  
5. Dout is disabled , 0V VOUT VDDQ.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 4/46  
ESMT  
M12S128324A  
CAPACITANCE (VDD = 2.5V, TA = 25°C, f = 1MHZ)  
Parameter  
Symbol  
Min  
Max  
Unit  
Input capacitance (A0 ~ A11, BA0 ~ BA1)  
CIN1  
2
4
4
5
pF  
Input capacitance  
CIN2  
2
2
pF  
pF  
(CLK, CKE, CS , RAS , CAS , WE & DQM)  
Data input/output capacitance (DQ0 ~ DQ31)  
COUT  
DC CHARACTERISTICS  
Recommended operating condition unless otherwise notedTA = 0 to 70°C  
Version  
Test Condition  
Parameter  
Symbol  
Unit Note  
-6  
-7  
Burst Length = 1  
tRC tRC(min)  
Operating Current  
(One Bank Active)  
ICC1  
mA  
mA  
1,2  
110  
90  
IOL = 0 mA  
ICC2P  
0.8  
0.6  
CKE VIL(max), tcc = 10ns  
Precharge Standby Current  
in power-down mode  
ICC2PS  
CKE & CLK VIL(max), tcc = ∞  
CKE VIH(min), CS VIH(min), tcc = 10ns  
ICC2N  
25  
7
Input signals are changed one time during 20ns  
Precharge Standby Current  
in non power-down mode  
mA  
CKE VIH(min), CLK VIL(max), tcc = ∞  
input signals are stable  
ICC2NS  
ICC3P  
3
3
CKE VIL(max), tcc = 10ns  
Active Standby Current  
in power-down mode  
mA  
mA  
ICC3PS  
CKE & CLK VIL(max), tcc = ∞  
ICC3N  
CKE VIH(min), CS VIH(min), tcc = 15ns  
Input signals are changed one time during 2clks  
Active Standby Current  
in non power-down mode  
(One Bank Active)  
30  
All other pins VDD-0.2V or 0.2V  
CKE VIH(min), CLK VIL(max), tcc = ∞  
ICC3NS  
10  
mA  
mA  
input signals are stable  
I
OL = 0 mA  
Operating Current  
(Burst Mode)  
Page Burst  
2 Banks activated  
tCK = tCK(min)  
ICC4  
180  
180  
160  
160  
1,2  
Refresh Current  
ICC5  
ICC6  
mA  
mA  
tRC tRC(min)  
Self Refresh Current  
2
CKE 0.2V  
Note : 1. Measured with outputs open. Addresses are changed only one time during tCC(min)  
.
2. Refresh period is 64ms. A maximum of eight consecutive AUTO REFRESH commands (with tRFCmin) can be posed to  
any given SDRAM, and the maximum absolute internal between any AUTO REFRSH command and the next AUTO  
REFRESH command is 8x15.6μm. Addresses are changed only one time during tCC(min)  
.
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 5/46  
ESMT  
M12S128324A  
AC OPERATING TEST CONDITIONS [VDD = 2.5V± 0.2V, VDD = 2.375V~2.625V (for -6), TA = 0 to 70°C]  
Parameter  
Input levels (Vih/Vil)  
Value  
0.9XVDDQ / 0.2  
0.5xVDDQ  
Unit  
V
Input timing measurement reference level  
Input rise and fall-time  
V
tr/tf = 1/1  
ns  
V
Output timing measurement reference level  
Output load condition  
0.5xVDDQ  
See Fig. 2  
(Fig. 1) DC Output Load Circuit  
(Fig. 2) AC Output Load Circuit  
OPERATING AC PARAMETER  
(AC operating conditions unless otherwise noted)  
Version  
Parameter  
Symbol  
Unit  
Note  
-6  
-7  
Row active to row active delay  
RAS to CAS delay  
tRRD(min)  
12  
14  
ns  
ns  
1
1
tRCD(min)  
18  
18  
42  
18  
20  
42  
Row precharge time  
tRP(min)  
ns  
ns  
us  
ns  
1
1
tRAS(min)  
Row active time  
tRAS  
100  
(max)  
Row cycle time  
@ Operating  
tRC(min)  
60  
75  
70  
84  
1
@ Auto Refresh  
tRFC(min)  
tCDL(min)  
tRDL(min)  
tBDL(min)  
Last data in to col. address delay  
Last data in to row precharge  
Last data in to burst stop  
1
2
1
CLK  
CLK  
CLK  
2
2
2
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 6/46  
ESMT  
M12S128324A  
Version  
Parameter  
Symbol  
Unit  
Note  
-6  
-7  
Col. address to col. address delay  
tCCD(min)  
1
2
CLK  
ea  
3
4
CAS latency = 3  
Number of valid  
Output data  
CAS latency = 2  
CAS latency = 1  
1
0
Note : 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then  
rounding off to the next higher integer.  
2. Minimum delay is required to complete write.  
3. All parts allow every cycle column address change.  
4. In case of row precharge interrupt, auto precharge and read burst stop.  
AC CHARACTERISTICS (AC operating condition unless otherwise noted)  
-6  
-7  
Parameter  
Symbol  
Unit  
Note  
Min  
6
Max  
Min  
7
Max  
CAS latency = 3  
CLK cycle time  
tCC  
1000  
1000  
ns  
1
CAS latency = 2  
CAS latency = 1  
CAS latency = 3  
CAS latency = 2  
CAS latency = 1  
CAS latency = 3  
CAS latency = 2  
CAS latency = 1  
8
8.6  
20  
20  
5.8  
7
6
7
CLK to valid  
output delay  
tSAC  
ns  
ns  
1,2  
2
17  
18  
2
2
2
2
2
2
1
1
2
2
Output data  
hold time  
tOH  
2
CLK high pulsh width  
CLK low pulsh width  
Input setup time  
tCH  
tCL  
2.5  
2.5  
2
ns  
ns  
ns  
ns  
ns  
3
3
3
3
2
tSS  
tSH  
tSLZ  
Input hold time  
1
CLK to output in Low-Z  
1
CAS latency = 3  
CAS latency = 2  
CAS latency = 1  
5.8  
7
6
7
CLK to output  
in Hi-Z  
tSHZ  
ns  
-
17  
18  
Note : 1. Parameters depend on programmed CAS latency.  
2. If clock rising time is longer than 1ns. (tr/2 - 0.5) ns should be considered.  
3. Assumed input rise and fall time (tr & tf) =1ns.  
If tr & tf is longer than 1ns. transient time compensation should be considered.  
i.e., [(tr + tf)/2 – 1] ns should be added to the parameter.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 7/46  
ESMT  
M12S128324A  
SIMPLIFIED TRUTH TABLE  
A11,A9~A0  
COMMAND  
CKEn-1 CKEn  
DQM BA0,1 A10/AP  
Note  
1,2  
3
CS RAS CAS WE  
Register  
Refresh  
Mode Register set  
Auto Refresh  
H
X
H
L
L
L
L
L
X
OP CODE  
H
L
L
L
H
X
X
3
Entry  
Self  
3
Refresh  
L
H
L
H
X
L
H
X
H
H
X
H
X
X
X
Exit  
L
H
H
H
X
X
X
3
Bank Active & Row Addr.  
V
V
Row Address  
Auto Precharge Disable  
L
Column  
Address  
(A0~A7)  
4
Read &  
L
H
L
H
X
Column Address  
Auto Precharge Enable  
Auto Precharge Disable  
H
L
4,5  
4
Column  
Address  
(A0~A7)  
Write &  
H
H
H
X
X
X
L
L
L
H
H
L
L
H
H
L
L
L
X
X
X
V
Column Address  
Auto Precharge Enable  
H
4,5  
6
Burst Stop  
X
Bank Selection  
All Banks  
V
X
L
Precharge  
X
H
H
L
X
V
X
X
V
X
X
V
X
Clock Suspend or  
Active Power Down  
Entry  
Exit  
H
L
L
H
L
X
X
X
X
X
H
L
X
H
X
V
X
H
X
V
X
H
X
V
Entry  
H
X
Precharge Power Down Mode  
H
L
Exit  
L
H
X
X
DQM  
H
H
X
X
V
X
X
X
7
H
L
X
H
X
H
No Operating Command  
H
(V = Valid , X = Don’t Care. H = Logic High , L = Logic Low )  
Note : 1.OP Code : Operating Code  
A0~A11 & BA0~BA1 : Program keys. (@ MRS)  
2.MRS can be issued only at all banks precharge state.  
A new command can be issued after 2 CLK cycles of MRS.  
3.Auto refresh functions are as same as CBR refresh of DRAM.  
The automatical precharge without row precharge of command is meant by “Auto”.  
Auto/self refresh can be issued only at all banks idle state.  
4.BA0~BA1 : Bank select addresses.  
If both BA1 and BA0 are “Low” at read ,write , row active and precharge ,bank A is selected.  
If both BA1 is “Low” and BA0 is “High” at read ,write , row active and precharge ,bank B is selected.  
If both BA1 is “High” and BA0 is “Low” at read ,write , row active and precharge ,bank C is selected.  
If both BA1 and BA0 are “High” at read ,write , row active and precharge ,bank D is selected  
If A10/AP is “High” at row precharge , BA1 and BA0 is ignored and all banks are selected.  
5.During burst read or write with auto precharge. new read/write command can not be issued.  
Another bank read/write command can be issued after the end of burst.  
New row active of the associated bank can be issued at tRP after the end of burst.  
6.Burst stop command is valid at every burst length.  
7.DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (write DQM latency is 0), but  
makes Hi-Z state the data-out of 2 CLK cycles after.(Read DQM latency is 2)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 8/46  
ESMT  
M12S128324A  
MODE REGISTER FIELD TABLE TO PROGRAM MODES  
Register Programmed with MRS  
Address  
Function  
BA0~BA1  
RFU  
A11  
A10/AP  
RFU  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
RFU  
W.B.L  
TM  
CAS Latency  
Burst Length  
Test Mode  
CAS Latency  
Burst Type  
Burst Length  
A8  
0
A7  
Type  
A6  
0
A5  
0
A4  
0
Latency  
A3  
Type  
A2  
0
A1  
0
A0  
0
BT = 0  
BT = 1  
0
1
0
1
Mode Register Set  
Reserved  
Reserved  
1
0
1
Sequential  
Interleave  
1
2
4
8
1
2
4
8
0
0
0
1
0
0
1
1
Reserved  
0
1
0
2
0
1
0
1
Reserved  
0
1
1
3
0
1
1
Write Burst Length  
Length  
1
0
0
Reserved  
Reserved  
Reserved  
Reserved  
1
0
0
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Full Page Reserved  
A9  
0
1
0
1
1
0
1
Burst  
1
1
0
1
1
0
1
Single Bit  
1
1
1
1
1
1
Full Page Length : 256  
Note : 1. RFU(Reserved for future use) should stay “0” during MRS cycle.  
2. If A9 is high during MRS cycle, “ Burst Read single Bit Write” function will be enabled.  
3. The full column burst (256 bit) is available only at sequential mode of burst type.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 9/46  
ESMT  
M12S128324A  
BURST SEQUENCE (BURST LENGTH = 4)  
Initial Address  
Sequential  
Interleave  
A1  
0
A0  
0
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
0
1
1
0
1
1
BURST SEQUENCE (BURST LENGTH = 8)  
Initial  
Sequential  
Interleave  
A2  
A1  
A0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
6
0
1
0
3
2
5
4
7
6
2
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
6
5
4
3
2
1
0
7
0
1
2
3
4
5
1
2
3
4
5
6
7
3
0
1
6
7
4
5
7
4
5
2
3
0
1
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 10/46  
ESMT  
M12S128324A  
DEVICE OPERATIONS  
CLOCK (CLK)  
POWER-UP  
The clock input is used as the reference for all SDRAM  
operations.All operations are synchronized to the positive  
going edge of the clock. The clock transitions must be  
monotonic between VIL and VIH. During operation with CKE  
high all inputs are assumed to be in valid state (low or high) for  
the duration of setup and hold time around positive edge of the  
clock for proper functionality and Icc specifications.  
1.Apply power and start clock, Attempt to maintain CKE =  
“H”, DQM = “H” and the other pins are NOP condition at  
the inputs.  
2.Maintain stable power, stable clock and NOP input  
condition for minimum of 200us.  
3.Issue precharge commands for all banks of the devices.  
4.Issue 2 or more auto-refresh commands.  
5.Issue a mode register set command to initialize the  
mode register.  
CLOCK ENABLE(CKE)  
cf.) Sequence of 4 & 5 is regardless of the order.  
The clock enable (CKE) gates the clock onto SDRAM. If CKE  
goes low synchronously with clock (set-up and hold time same  
as other inputs), the internal clock suspended from the next  
clock cycle and the state of output and burst address is frozen  
as long as the CKE remains low. All other inputs are ignored  
from the next clock cycle after CKE goes low. When all banks  
are in the idle state and CKE goes low synchronously with  
clock, the SDRAM enters the power down mode from the next  
clock cycle. The SDRAM remains in the power down mode  
ignoring the other inputs as long as CKE remains low. The  
power down exit is synchronous as the internal clock is  
suspended. When CKE goes high at least “1CLK + tSS” before  
the high going edge of the clock, then the SDRAM becomes  
active from the same clock edge accepting all the input  
commands.  
The device is now ready for normal operation.  
MODE REGISTER SET (MRS)  
The mode register stores the data for controlling the  
various operating modes of SDRAM. It programs the  
CAS latency, burst type, burst length, test mode and  
various vendor specific options to make SDRAM useful  
for variety of different applications. The default value of  
the mode register is not defined, therefore the mode  
register must be written after power up to operate the  
SDRAM. The mode register is written by asserting low  
on CS , RAS , CAS and WE (The SDRAM should  
be in active mode with CKE already high prior to writing  
the mode register). The state of address pins A0~A11  
and BA0~BA1 in the same cycle as CS , RAS , CAS  
BANK ADDRESSES (BA0~BA1)  
and WE going low is the data written in the mode  
register. Two clock cycles is required to complete the  
write in the mode register. The mode register contents  
can be changed using the same command and clock  
cycle requirements during operation as long as all  
banks are in the idle state. The mode register is divided  
into various fields into depending on functionality. The  
burst length field uses A0~A2, burst type uses A3, CAS  
latency (read latency from column address) use A4~A6,  
vendor specific options or test mode use A7~A8,  
A10/AP~A11 and BA0~BA1. The write burst length is  
programmed using A9. A7~A9, A10/AP~A11 and  
BA0~BA1 must be set to low for normal SDRAM  
operation. Refer to the table for specific codes for  
various burst length, burst type and CAS latencies.  
This SDRAM is organized as four independent banks of  
524,288 words x 32 bits memory arrays. The BA0~BA1 inputs  
are latched at the time of assertion of RAS and CAS to  
select the bank to be used for the operation. The banks  
addressed BA0~BA1 are latched at bank active, read, write,  
mode register set and precharge operations.  
ADDRESS INPUTS (A0~A11)  
The 20 address bits are required to decode the 524,288 word  
locations are multiplexed into 12 address input pins (A0~A11).  
The 12 row addresses are latched along with RAS and  
BA0~BA1 during bank active command. The 8 bit column  
addresses are latched along with CAS , WE and BA0~BA1  
during read or with command.  
BANK ACTIVATE  
The bank activate command is used to select a random  
row in an idle bank. By asserting low on RAS and  
NOP and DEVICE DESELECT  
When RAS  
, CAS and WE are high , The SDRAM  
CS with desired row and bank address, a row access  
is initiated. The read or write operation can occur after a  
time delay of tRCD (min) from the time of bank activation.  
tRCD is the internal timing parameter of SDRAM,  
therefore it is dependent on operating clock frequency.  
The minimum number of clock cycles required between  
bank activate and read or write command should be  
calculated by dividing tRCD (min) with cycle time of the  
clock and then rounding of the result to the next higher  
integer.  
performs no operation (NOP). NOP does not initiate any new  
operation, but is needed to complete operations which require  
more than single clock cycle like bank activate, burst read,  
auto refresh, etc. The device deselect is also a NOP and is  
entered by asserting CS high. CS high disables the  
command decoder so that RAS , CAS , WE and all the  
address inputs are ignored.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
11/46  
ESMT  
M12S128324A  
DEVICE OPERATIONS (Continued)  
The SDRAM has four internal banks in the same chip and  
shares part of the internal circuitry to reduce chip area,  
therefore it restricts the activation of four banks  
simultaneously. Also the noise generated during sensing of  
each bank of SDRAM is high requiring some time for power  
supplies to recover before another bank can be sensed  
reliably. tRRD (min) specifies the minimum time required between  
activating different bank. The number of clock cycles required  
between different bank activation must be calculated similar to  
tRCD (min) specification. The minimum time required for the bank  
to be active to initiate sensing and restoring the complete row  
of dynamic cells is determined by tRAS (min). Every SDRAM bank  
activate command must satisfy tRAS (min) specification before a  
precharge command to that active bank can be asserted. The  
maximum time any bank can be in the active state is  
determined by tRAS (max) and tRAS (max) can be calculated  
similar to tRCD specification.  
DQM OPERATION  
The DQM is used mask input and output operations. It  
works similar to OE during operation and inhibits writing  
during write operation. The read latency is two cycles from  
DQM and zero cycle for write, which means DQM masking  
occurs two cycles later in read cycle and occurs in the  
same cycle during write cycle. DQM operation is  
synchronous with the clock. The DQM signal is important  
during burst interrupts of write with read or precharge in  
the SDRAM. Due to asynchronous nature of the internal  
write, the DQM operation is critical to avoid unwanted or  
incomplete writes when the complete burst write is  
required. Please refer to DQM timing diagram also.  
PRECHARGE  
The precharge is performed on an active bank by  
asserting low on clock cycles required between bank  
activate and clock cycles required between bank activate  
BURST READ  
The burst read command is used to access burst of data on  
consecutive clock cycles from an active row in an active bank.  
and CS , RAS , WE and A10/AP with valid BA0~BA1  
of the bank to be procharged. The precharge command  
can be asserted anytime after tRAS (min) is satisfy from the  
bank active command in the desired bank. tRP is defined  
as the minimum number of clock cycles required to  
complete row precharge is calculated by dividing tRP with  
clock cycle time and rounding up to the next higher  
integer. Care should be taken to make sure that burst  
write is completed or DQM is used to inhibit writing before  
precharge command is asserted. The maximum time any  
bank can be active is specified by tRAS (max). Therefore,  
each bank activate command. At the end of precharge,  
the bank enters the idle state and is ready to be activated  
again. Entry to power-down, Auto refresh, Self refresh and  
Mode register set etc. is possible only when all banks are  
in idle state.  
The burst read command is issued by asserting low on CS  
and RAS with WE being high on the positive edge of the  
clock. The bank must be active for at least tRCD (min) before the  
burst read command is issued. The first output appears in CAS  
latency number of clock cycles after the issue of burst read  
command. The burst length, burst sequence and latency from  
the burst read command is determined by the mode register  
which is already programmed. The burst read can be initiated  
on any column address of the active row. The address wraps  
around if the initial address does not start from a boundary  
such that number of outputs from each I/O are equal to the  
burst length programmed in the mode register. The output  
goes into high-impedance at the end of burst, unless a new  
burst read was initiated to keep the data output gapless. The  
burst read can be terminated by issuing another burst read or  
burst write in the same bank or the other active bank or a  
precharge command to the same bank. The burst stop  
command is valid at every page burst length.  
AUTO PRECHARGE  
The precharge operation can also be performed by using  
auto precharge. The SDRAM internally generates the  
timing to satisfy tRAS (min) and “tRP” for the programmed  
burst length and CAS latency. The auto precharge  
command is issued at the same time as burst write by  
asserting high on A10/AP, the bank is precharge command  
is asserted. Once auto precharge command is given, no  
new commands are possible to that particular bank until  
the bank achieves idle state.  
BURST WRITE  
The burst write command is similar to burst read command  
and is used to write data into the SDRAM on consecutive clock  
cycles in adjacent addresses depending on burst length and  
burst sequence. By asserting low on CS , CAS and WE  
with valid column address, a write burst is initiated. The data  
inputs are provided for the initial address in the same clock  
cycle as the burst write command. The input buffer is  
deselected at the end of the burst length, even though the  
internal writing can be completed yet. The writing can be  
complete by issuing a burst read and DQM for blocking data  
inputs or burst write in the same or another active bank. The  
burst stop command is valid at every burst length. The write  
burst can also be terminated by using DQM for blocking data  
and procreating the bank tRDL after the last data input to be  
written into the active row. See DQM OPERATION also.  
ALL BANKS PRECHARGE  
Four banks can be precharged at the same time by using  
Precharge all command. Asserting low on CS , RAS ,  
and WE with high on A10/AP after all banks have  
satisfied tRAS (min) requirement, performs precharge on all  
banks. At the end of tRP after performing precharge all, all  
banks are in idle state.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
12/46  
ESMT  
M12S128324A  
DEVICE OPERATIONS (Continued)  
AUTO REFRESH  
SELF REFRESH  
The storage cells of SDRAM need to be refreshed every 64ms  
to maintain data. An auto refresh cycle accomplishes refresh of  
a single row of storage cells. The internal counter increments  
automatically on every auto refresh cycle to refresh all the  
rows. An auto refresh command is issued by asserting low on  
The self refresh is another refresh mode available in the  
SDRAM. The self refresh is the preferred refresh mode for  
data retention and low power operation of SDRAM. In self  
refresh mode, the SDRAM disables the internal clock and  
all the input buffers except CKE. The refresh addressing  
and timing is internally generated to reduce power  
consumption.  
CS , RAS and CAS with high on CKE and WE . The auto  
refresh command can only be asserted with all banks being in  
idle state and the device is not in power down mode (CKE is  
high in the previous cycle). The time required to complete the  
auto refresh operation is specified by tRC (min). The minimum  
number of clock cycles required can be calculated by driving  
tRC with clock cycle time and them rounding up to the next  
higher integer. The auto refresh command must be followed by  
NOP’s until the auto refresh operation is completed. The auto  
refresh is the preferred refresh mode when the SDRAM is  
being used for normal data transactions. The auto refresh  
cycle can be performed once in 15.6us or the burst of 4096  
auto refresh cycles in 40ms.  
The self refresh mode is entered from all banks idle state  
by asserting low on CS , RAS , CAS and CKE with  
high on WE . Once the self refresh mode is entered, only  
CKE state being low matters, all the other inputs including  
clock are ignored to remain in the refresh.  
The self refresh is exited by restarting the external clock  
and then asserting high on CKE. This must be followed by  
NOP’s for a minimum time of tRC before the SDRAM  
reaches idle state to begin normal operation. 4K cycles of  
burst auto refresh is required immediately before self  
refresh entry and immediately after self refresh exit.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
13/46  
ESMT  
M12S128324A  
COMMANDS  
CLK  
Mode register set command  
H
CKE  
( CS ,RAS , CAS , WE = Low)  
CS  
RAS  
CAS  
The device has a mode register that defines how the device operates. In this  
command, A0 through A11 and BA0~BA1 are the data input pins. After power on, the  
mode register set command must be executed to initialize the device.  
The mode register can be set only when all banks are in idle state.  
During 2CLK following this command, the device cannot accept any other  
commands.  
WE  
BA0, BA1  
(Bank select)  
A10  
Add  
Fig. 1 Mode register set  
command  
Activate command  
CLK  
( CS ,RAS = Low, CAS , WE = High)  
H
CKE  
The device has four banks, each with 2,048 rows.  
This command activates the bank selected by BA1 and BA0 and a row address  
selected by A0 through A11.  
CS  
RAS  
CAS  
This command corresponds to a conventional DRAM’s RAS falling.  
WE  
BA0, BA1  
(Bank select)  
Row  
Row  
A10  
Add  
Fig. 2 Row address stroble and  
bank active command  
CLK  
Precharge command  
H
CKE  
( CS ,RAS , WE = Low, CAS = High )  
CS  
RAS  
CAS  
WE  
This command begins precharge operation of the bank selected by BA1 and BA0.  
When A10 is High, all banks are precharged, regardless of BA1 and BA0. When A10  
is Low, only the bank selected by BA1 and BA0 is precharged.  
After this command, the device can’t accept the activate command to the  
precharging bank during tRP (precharge to activate command period).  
This command corresponds to a conventional DRAM’s RAS rising.  
BA0, BA1  
(Bank select)  
A10  
(Precharge select)  
Add  
Fig. 3 Precharge command  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
14/46  
ESMT  
M12S128324A  
Write command  
CLK  
( CS , CAS , WE = Low, RAS = High)  
H
CKE  
CS  
If the mode register is in the burst write mode, this command sets the burst start  
address given by the column address to begin the burst write operation. The first  
write data in burst can be input with this command with subsequent data on following  
clocks.  
RAS  
CAS  
WE  
BA0, BA1  
(Bank select)  
A10  
Add  
Col.  
Fig. 4 Column address and  
write command  
Read command  
CLK  
H
( CS , CAS = Low, RAS , WE = High)  
CKE  
CS  
Read data is available after CAS latency requirements have been met.  
This command sets the burst start address given by the column address.  
RAS  
CAS  
WE  
BA0, BA1  
(Bank select)  
A10  
Add  
Col.  
Fig. 5 Column address and  
read command  
CLK  
CBR (auto) refresh command  
H
CKE  
( CS , RAS , CAS = Low, WE , CKE = High)  
CS  
RAS  
CAS  
WE  
This command is a request to begin the CBR refresh operation. The refresh  
address is generated internally.  
Before executing CBR refresh, all banks must be precharged.  
After this cycle, all banks will be in the idle (precharged) state and ready for a  
row activate command.  
BA0, BA1  
During tRC period (from refresh command to refresh or activate command), the  
device cannot accept any other command.  
(Bank select)  
A10  
Add  
Fig. 6 Auto refresh command  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
15/46  
ESMT  
M12S128324A  
Self refresh entry command  
CLK  
CKE  
( CS ,RAS , CAS , CKE = Low , WE = High)  
CS  
After the command execution, self refresh operation continues while CKE  
remains low. When CKE goes to high, the device exits the self refresh mode.  
During self refresh mode, refresh interval and refresh operation are performed  
internally, so there is no need for external control.  
RAS  
CAS  
Before executing self refresh, all banks must be precharged.  
WE  
BA0, BA1  
(Bank select)  
A10  
Add  
Fig. 7 Self refresh entry  
command  
Burst stop command  
CLK  
CKE  
H
( CS , WE = Low, RAS , CAS = High)  
CS  
This command terminates the current burst operation.  
Burst stop is valid at every burst length.  
RAS  
CAS  
WE  
BA0, BA1  
(Bank select)  
A10  
Add  
Fig. 8 Burst stop command  
CLK  
No operation  
CKE  
H
CS  
RAS  
CAS  
WE  
( CS = Low ,RAS , CAS , WE = High)  
This command is not a execution command. No operations begin or terminate by  
this command.  
BA0, BA1  
(Bank select)  
A10  
Add  
Fig. 9 No operation  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 16/46  
ESMT  
M12S128324A  
BASIC FEATURE AND FUNCTION DESCRIPTIONS  
1. CLOCK Suspend  
1 ) C l o c k S u s p e n d e d D u r i n g W r i t e ( B L = 4 )  
2 ) C l o c k S u s p e n d e d D u r i n g R e a d ( B L = 4 )  
CLK  
C M D  
CK E  
W R  
R D  
Mask ed by C K E  
Inter nal  
CLK  
D3  
D3  
DQ ( C L 2 )  
DQ ( C L 3 )  
D2  
D2  
Q2  
Q3  
D0  
D0  
Q0  
Q1  
Q0  
D1  
D1  
Q3  
Q2  
Q1  
Not W r it ten  
Suspended Dout  
2. DQM Operation  
2 ) R e a d M a s k ( B L = 4 )  
1 ) W r i t e M a s k ( B L = 4 )  
CLK  
C M D  
W R  
R D  
D Q M  
DQ ( C L 2 )  
DQ ( C L 3 )  
M a s k e d b y D Q M  
M a s k e d b y D Q M  
H i - Z  
D0  
D1  
Q3  
Q0  
D3  
Q2  
H i - Z  
D3  
D1  
D0  
Q1  
Q3  
Q2  
DQ M t o D at a- i n M a sk = 0  
DQ M to D at a- ou t Ma sk = 2  
* N o t e 2  
3 ) D Q M w i t h c l c o k s u s p e n d e d ( F u l l P a g e R e a d )  
CLK  
C M D  
CK E  
R D  
Inter nal  
CLK  
D Q M  
H i - Z  
H i - Z  
H i - Z  
H i - Z  
H i - Z  
Q6  
Q5  
Q7  
Q6  
Q4  
Q3  
Q8  
Q7  
Q0  
Q2  
Q1  
DQ ( C L 2 )  
DQ ( C L 3 )  
H i - Z  
*Note : 1. CKE to CLK disable/enable = 1CLK.  
2. DQM masks data out Hi-Z after 2CLKs which should masked by CKE ”L”.  
3. DQM masks both data-in and data-out.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 17/46  
ESMT  
M12S128324A  
3. CAS Interrupt (I)  
* N o t e 1  
1 ) R e a d i n t e r r u p t e d b y R e a d ( B L = 4 )  
CL K  
C M D  
A D D  
R D  
B
R D  
A
DQ ( C L 2 )  
DQ ( C L 3 )  
QB1 QB2 QB3  
QB0 QB1 QB2  
QB0  
QA0  
QA0  
QB3  
tC C D  
* N o t e  
2
2 ) W r i t e i n t e r r u p t e d b y W r i t e ( B L = 2 )  
3 ) W r i t e i n t e r r u p t e d b y R e a d ( B L = 2 )  
CLK  
C M D  
W R  
R D  
W R  
W R  
tC C D * N o t e  
B
A
2
tC C D * N o t e  
2
A D D  
D Q  
A
B
DQ ( C L 2 )  
DQ ( C L 3 )  
DB1  
DA0 DB0  
tC D L  
DQ0  
DA0  
DA0  
DQ1  
DQ0  
* N o t e  
3
DQ1  
tC D L  
* N o t e  
3
*Note : 1. By “interrupt” is meant to stop burst read/write by external before the end of burst.  
By ” CAS interrupt ”, to stop burst read/write by CAS access ; read and write.  
2. tCCD : CAS to CAS delay. (=1CLK)  
3. tCDL : Last data in to new column address delay. (=1CLK)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 18/46  
ESMT  
M12S128324A  
4. CAS Interrupt (II) : Read Interrupted by Write & DQM  
( a) CL =2 , B L= 4  
CLK  
i ) C M D  
R D  
R D  
R D  
W R  
D0  
D Q M  
D Q  
D2  
D1  
D3  
i i ) C M D  
W R  
D Q M  
D Q  
H i - Z  
D2  
D3  
D2  
D1  
D0  
D1  
i i i ) C M D  
W R  
D Q M  
D Q  
H i - Z  
D0  
D3  
D1  
i v ) C M D  
W R  
R D  
D Q M  
D Q  
H i - Z  
D2  
D3  
Q0  
D0  
* N o t e 1  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
19/46  
ESMT  
M12S128324A  
(b) CL = 3 , B L= 4  
CLK  
R D  
W R  
D0  
i ) C M D  
D Q M  
D Q  
D2  
D1  
D3  
W R  
i i ) C M D  
R D  
D Q M  
D Q  
D2  
D3  
D0  
D1  
i i i ) C M D  
W R  
R D  
D Q M  
D Q  
D2  
D0  
D1  
D3  
i v ) C M D  
W R  
R D  
D Q M  
D Q  
H i - Z  
D2  
D3  
D0  
D1  
v ) C M D  
R D  
W R  
D Q M  
D Q  
H i - Z  
Q0  
D0  
D1  
D2  
D3  
* N o t e 1  
*Note : 1. To prevent bus contention, there should be at least one gap between data in and data out.  
5. Write Interrupted by Precharge & DQM  
1 ) N o r m a l W r i t e ( B L = 4 )  
CLK  
* N o t e 3  
C M D  
D Q M  
D Q  
W R  
D0  
PR E  
* N o t e 2  
D3  
D1  
D2  
Ma s k e d b y D Q M  
tRDL(min)  
*Note : 1. To prevent bus contention, DQM should be issued which makes at least one gap between data in and data out.  
2. To inhibit invalid write, DQM should be issued.  
3. This precharge command and burst write command should be of the same bank, otherwise it is not precharge interrupt  
but only another bank precharge of four banks operation.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 20/46  
ESMT  
M12S128324A  
6. Precharge  
2 ) N o r m a l R e a d ( B L = 4 )  
1 ) N o r m a l W r i t e ( B L = 4 )  
CLK  
CLK  
D Q  
C M D  
CL= 2  
Q3  
PR E  
Q2  
PR E  
R D  
W R  
D0  
1 * N o t e 2  
DQ ( C L 2 )  
D1  
Q0  
D2  
D3  
Q1  
Q0  
tR D L  
C M D  
PR E  
CL= 3  
Q2  
* N o t e 1  
2 * N o t e 2  
DQ ( C L 3 )  
Q3  
Q1  
.
7. Auto Precharge  
1 ) N o r m a l W r i t e ( B L = 4 )  
2 ) N o r m a l R e a d ( B L = 4 )  
CLK  
CLK  
C M D  
R D  
C M D  
D Q  
W R  
Q1  
Q0  
Q2  
Q0  
D0  
Q3  
Q2  
D1  
D2  
D3  
DQ ( C L 2 )  
DQ ( C L 3 )  
tR D L  
Q1  
Q3  
* N o t e 3  
Auto Pr ech ar ge st art s  
* N o t e 3  
Auto Pr ech arge st art s  
*Note : 1. tRDL : Last data in to row precharge delay.  
2. Number of valid output data after row precharge : 1,2 for CAS Latency = 2,3 respectively.  
3. The row active command of the precharge bank can be issued after tRP from this point.  
The new read/write command of other activated bank can be issued from this point.  
At burst read/write with auto precharge, CAS interrupt of the same/another bank is illegal.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 21/46  
ESMT  
M12S128324A  
8. Burst Stop & Interrupted by Precharge  
1 ) W r i t e B u r s t S t o p ( B L = 8 )  
1 ) W r i t e i n t e r r u p t e d b y p r e c h a r g e ( B L = 4 )  
C L K  
C L K  
C M D  
C M D  
W R  
P R E  
W R  
S T O P  
t R D L  
* N o t e 1  
D Q M  
D Q  
D Q M  
D Q  
D 2  
M a s k  
D 3  
D 0  
D 0  
D 1  
D 4  
D 5  
D 1  
D 2  
* N o t e 2  
t B D L  
2 ) R e a d B u r s t S t o p ( B L = 4 )  
2 ) R e a d i n t e r r u p t e d b y p r e c h a r g e ( B L = 4 )  
C L K  
C L K  
* N o t e 3  
C M D  
C M D  
S T O P  
Q 0  
R D  
P R E  
Q 0  
R D  
* N o t e 3  
D Q ( C L 2 )  
D Q ( C L 3 )  
Q 1  
Q 0  
D Q ( C L 3 )  
D Q ( C L 2 )  
Q 1  
Q 0  
Q 1  
Q 1  
9. MRS  
1 ) Mo d e R e g i s t e r S e t  
CLK  
* N o t e 4  
C M D  
A C T  
PRE  
M R S  
tR P  
2 C L K  
*Note: 1. tRDL : 2 CLK; Last data in to Row Precharge.  
2. tBDL : 1 CLK ; Last data in to burst stop delay.  
3. Number of valid output data after burst stop : 1,2 for CAS latency = 2,3 respectiviely.  
4. PRE : All banks precharge, if necessary.  
MRS can be issued only at all banks precharge state.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 22/46  
ESMT  
M12S128324A  
10. Clock Suspend Exit & Power Down Exit  
1 ) C l o c k S u s p e n d ( = Ac t i v e P o w e r D o w n ) E x i t  
2 ) P o w e r D o w n ( = P r e c h a r g e P o w e r D o w n )  
CLK  
CK E  
CLK  
CK E  
tS S  
tS S  
Inter nal  
Internal  
CLK  
* N o t e 1  
* N o t e 2  
CLK  
C M D  
R D  
C M D  
A C T  
NO P  
11. Auto Refresh & Self Refresh  
* N o t e 3  
1 ) A u t o R e f r e s h  
&
S e l f R e f r e s h  
C L K  
* N o t e 4  
* N o t e 5  
C M D  
C M D  
P R E  
A R  
C K E  
t R P  
t R C  
* N o t e 8  
2 ) S e l f R e f r e s h  
C L K  
* N o t e 4  
C M D  
P R E  
S R  
C M D  
C K E  
t R P  
t R C  
*Note : 1. Active power down : one or more banks active state.  
2. Precharge power down : all banks precharge state.  
3. The auto refresh is the same as CBR refresh of conventional DRAM.  
No precharge commands are required after auto refresh command.  
During tRC from auto refresh command, any other command can not be accepted.  
4. Before executing auto/self refresh command, all banks must be idle state.  
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.  
6. During self refresh entry, refresh interval and refresh operation are performed internally.  
After self refresh entry, self refresh mode is kept while CKE is low.  
During self refresh entry, all inputs expect CKE will be don’t cared, and outputs will be in Hi-Z state.  
For the time interval of tRC from self refresh exit command, any other command can not be accepted.  
4K cycles of burst auto refresh is required immediately before self refresh entry and immediately after self refresh exit.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 23/46  
ESMT  
M12S128324A  
12. About Burst Type Control  
At MRS A3 = “0”. See the BURST SEQUENCE TABLE. (BL = 4,8)  
BL = 1, 2, 4, 8 and full page.  
Sequential Counting  
Basic  
MODE  
At MRS A3 = “1”. See the BURST SEQUENCE TABLE. (BL = 4,8)  
BL = 4, 8 At BL =1, 2 interleave Counting = Sequential Counting  
Interleave Counting  
Every cycle Read/Write Command with random column address can realize Random  
Column Access.  
That is similar to Extended Data Out (EDO) Operation of conventional DRAM.  
Random Random Column Access  
MODE tCCD = 1 CLK  
13. About Burst Length Control  
At MRS A210 = “000”  
At auto precharge . tRAS should not be violated.  
1
At MRS A210 = “001”  
At auto precharge . tRAS should not be violated.  
2
Basic  
MODE  
4
At MRS A210 = “010”  
At MRS A210 = “011”  
8
At MRS A210 = “111”  
At the end of the burst length , burst is warp-around.  
Full Page  
tBDL = 1, Valid DQ after burst stop is 1, 2 for CAS latency 2, 3 respectively.  
Using burst stop command, any burst length control is possible.  
Random  
MODE  
Burst Stop  
Before the end of burst. Row precharge command of the same bank stops read /write burst  
with auto precharge.  
tRDL = 1 with DQM , Valid DQ after burst stop is 1, 2 for CAS latency 2, 3 respectively.  
RAS Interrupt  
(Interrupted by  
Precharge)  
During read/write burst with auto precharge, RAS interrupt can not be issued.  
Interrupt  
MODE  
Before the end of burst, new read/write stops read/write burst and starts new read/write  
burst.  
CAS Interrupt  
During read/write burst with auto precharge, CAS interrupt can not be issued.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 24/46  
ESMT  
M12S128324A  
FUNCTION TURTH TABLE (TABLE 1)  
Current  
State  
CS RAS CAS WE  
BA  
ADDR  
ACTION  
Note  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
X
H
H
H
L
L
L
L
X
H
H
H
H
L
X
H
H
L
H
H
L
X
H
L
X
H
L
H
L
X
H
L
H
L
H
L
X
X
H
L
H
L
H
L
X
X
H
L
H
L
H
L
X
X
H
L
X
X
X
X
H
L
X
X
X
BA  
BA  
BA  
X
X
X
X
NOP  
NOP  
ILLEGAL  
2
2
IDLE  
CA, A10/AP ILLEGAL  
RA  
A10/AP  
Row (&Bank) Active ; Latch RA  
NOP  
Auto Refresh or Self Refresh  
Mode Register Access  
NOP  
NOP  
ILLEGAL  
4
5
5
X
L
OP code  
X
OP code  
X
H
H
L
X
X
X
X
X
2
2
Row  
Active  
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
X
X
X
CA, A10/AP Begin Read ; latch CA ; determine AP  
CA, A10/AP Begin Write ; latch CA ; determine AP  
RA  
A10/AP  
L
H
H
L
X
H
H
L
ILLEGAL  
Precharge  
ILLEGAL  
L
L
X
X
X
X
X
H
H
H
H
L
NOP (Continue Burst to End Æ Row Active)  
NOP (Continue Burst to End Æ Row Active)  
Term burst Æ Row active  
Read  
Write  
CA, A10/AP Term burst, New Read, Determine AP  
CA, A10/AP Term burst, New Write, Determine AP  
RA  
A10/AP  
L
3
2
H
H
L
X
H
H
L
ILLEGAL  
L
L
Term burst, Precharge timing for Reads  
ILLEGAL  
NOP (Continue Burst to End Æ Row Active)  
NOP (Continue Burst to End Æ Row Active)  
Term burst Æ Row active  
X
X
X
X
X
H
H
H
H
L
CA, A10/AP Term burst, New Read, Determine AP  
CA, A10/AP Term burst, New Write, Determine AP  
RA  
A10/AP  
3
3
2
3
L
H
H
L
X
H
H
L
H
L
X
H
H
L
ILLEGAL  
L
L
Term burst, Precharge timing for Writes  
ILLEGAL  
NOP (Continue Burst to End Æ Precharge)  
NOP (Continue Burst to End Æ Precharge)  
ILLEGAL  
X
X
X
X
X
H
H
H
L
Read with  
Auto  
Precharge  
CA, A10/AP ILLEGAL  
RA, RA10  
ILLEGAL  
ILLEGAL  
2
2
L
X
X
X
X
X
H
H
H
L
NOP (Continue Burst to End Æ Precharge)  
NOP (Continue Burst to End Æ Precharge)  
ILLEGAL  
Write with  
Auto  
Precharge  
X
X
X
X
BA  
BA  
X
CA, A10/AP ILLEGAL  
RA, RA10  
X
H
L
ILLEGAL  
ILLEGAL  
L
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
25/46  
ESMT  
M12S128324A  
Current  
State  
CS RAS CAS WE  
BA  
ADDR  
ACTION  
Note  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
X
H
H
H
L
X
H
H
L
H
H
L
X
H
H
L
H
H
L
X
H
L
H
L
X
H
H
L
X
H
L
X
H
L
X
X
H
L
X
H
L
X
X
X
X
X
X
X
H
L
X
X
X
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
X
X
X
X
X
X
X
X
X
X
CA  
RA  
A10/AP  
NOP Æ Idle after tRP  
NOP Æ Idle after tRP  
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP Æ Idle after tRDL  
ILLEGAL  
NOP Æ Row Active after tRCD  
NOP Æ Row Active after tRCD  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP Æ Idle after tRC  
NOP Æ Idle after tRC  
ILLEGAL  
ILLEGAL  
ILLEGAL  
Precharging  
2
2
2
4
L
L
X
X
X
X
X
H
H
H
L
L
L
X
H
H
L
Row  
Activating  
2
2
2
2
CA  
RA  
A10/AP  
X
X
X
X
X
X
X
X
X
X
X
Refreshing  
L
X
H
H
H
L
NOP Æ Idle after 2clocks  
NOP Æ Idle after 2clocks  
ILLEGAL  
ILLEGAL  
ILLEGAL  
Mode  
Register  
Accessing  
X
X
X
X
X
X
X
Abbreviations :  
RA = Row Address  
NOP = No Operation Command  
BA = Bank Address  
CA = Column Address  
AP = Auto Precharge  
*Note : 1. All entries assume the CKE was active (High) during the precharge clock and the current clock cycle.  
2. Illegal to bank in specified state ; Function may be legal in the bank indicated by BA, depending on the state of the  
bank.  
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
4. NOP to bank precharge or in idle state. May precharge bank indicated by BA (and A10/AP).  
5. Illegal if any bank is not idle.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 26/46  
ESMT  
M12S128324A  
FUNCTION TRUTH TABLE (TABLE2)  
Current  
State  
CKE  
CKE  
n
CS RAS CAS WE  
ADDR  
ACTION  
Note  
( n-1 )  
H
L
L
L
L
L
L
H
L
X
H
H
H
H
H
L
X
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
X
H
L
L
L
X
X
H
H
H
L
X
X
X
H
H
H
L
X
X
X
H
H
H
L
X
X
H
H
L
X
X
X
X
H
H
L
X
X
X
X
H
H
L
X
X
H
L
X
X
X
X
X
H
L
X
X
X
X
X
H
L
X
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
Exit Self Refresh Æ Idle after tRC (ABI)  
Exit Self Refresh Æ Idle after tRC (ABI)  
ILLEGAL  
6
6
Self  
Refresh  
ILLEGAL  
ILLEGAL  
L
X
X
H
L
L
L
NOP (Maintain Self Refresh)  
INVALID  
Exit Self Refresh Æ ABI  
Exit Self Refresh Æ ABI  
ILLEGAL  
All  
Banks  
Precharge  
Power  
7
7
L
L
L
L
ILLEGAL  
ILLEGAL  
Down  
L
L
X
X
H
L
L
L
L
L
L
NOP (Maintain Low Power Mode)  
Refer to Table1  
H
H
H
H
H
H
H
H
L
Enter Power Down  
Enter Power Down  
ILLEGAL  
8
8
X
X
X
RA  
All  
Banks  
Idle  
ILLEGAL  
H
L
L
Row (& Bank) Active  
Enter Self Refresh  
Mode Register Access  
NOP  
Refer to Operations in Table 1  
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain Clock Suspend  
L
L
X
8
OP Code  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Any State  
other than  
Listed  
H
H
L
H
L
H
L
9
9
above  
L
Abbreviations : ABI = All Banks Idle, RA = Row Address  
*Note : 6.CKE low to high transition is asynchronous.  
7.CKE low to high transition is asynchronous if restart internal clock.  
A minimum setup time 1CLK + tSS must be satisfy before any command other than exit.  
8.Power down and self refresh can be entered only from the all banks idle state.  
9.Must be a legal command.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 27/46  
ESMT  
M12S128324A  
Single Bit Read-Write-Read Cycle(Same Page) @ CAS Latency = 3,Burst Length = 1  
tC H  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
C K E  
tC L  
tC C  
H I G H  
tR A S  
tR C  
tS H  
* N o t e 1  
C S  
tR C D  
tR P  
tS S  
tS H  
tS S  
R A S  
C A S  
tC C D  
tS H  
tS S  
tS H  
A D D R  
R b  
C c  
R a  
C a  
C b  
tS S  
* N o t e 2 , 3  
* N o t e 4  
* N o t e 2 , 3  
* N o t e 2  
* N o t e 2  
* N o t e 2 , 3  
B S  
BS  
BS  
BS  
BS  
BA0, BA1  
A10/AP  
D Q  
BS  
* N o t e 3  
* N o t e 3  
* N o t e 4  
* N o t e 3  
R b  
R a  
tS H  
tS A C  
Qc  
Qa  
D b  
tS L Z  
tS S  
tO H  
tS H  
W E  
tS S  
tS S  
tS H  
D Q M  
Ro w A c t i ve  
Rea d  
Read  
Row A c t i ve  
W r i t e  
Precha rge  
: D o n ' t C a r e  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 28/46  
ESMT  
M12S128324A  
Note : 1. All input expect CKE & DQM can be don’t care when CS is high at the CLK high going edge.  
2. Bank active @ read/write are controlled by BA0~BA1.  
BA1  
BA0  
Active & Read/Write  
Bank A  
0
0
1
1
0
1
0
1
Bank B  
Bank C  
Bank D  
3. Enable and disable auto precharge function are controlled by A10/AP in read/write command  
A10/AP  
BA1  
0
BA0  
0
Operating  
Disable auto precharge, leave A bank active at end of burst.  
Disable auto precharge, leave B bank active at end of burst.  
Disable auto precharge, leave C bank active at end of burst.  
Disable auto precharge, leave D bank active at end of burst.  
Enable auto precharge , precharge bank A at end of burst.  
Enable auto precharge , precharge bank B at end of burst.  
Enable auto precharge , precharge bank C at end of burst.  
Enable auto precharge , precharge bank D at end of burst.  
0
1
0
1
0
1
1
0
0
0
1
1
1
0
1
1
4. A10/AP and BA0~BA1 control bank precharge when precharge is asserted.  
A10/AP  
BA1  
0
BA0  
0
Precharge  
Bank A  
0
0
0
0
1
0
1
Bank B  
1
0
Bank C  
1
1
Bank D  
X
X
All Banks  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 29/46  
ESMT  
M12S128324A  
Power Up Sequence  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
C K E  
H i g h l e v e l i s n e c e s s a r y  
C S  
t R C  
t R C  
t R P  
R A S  
C A S  
A D D R  
K e y  
R A a  
B A 1  
B A 0  
R A a  
A10/AP  
H i g h - Z  
D Q  
W E  
D Q M  
H i g h l e v e l i s n e c e s s a r y  
M o d e R e g i s t e r S e t  
A u t o R e f r e s h  
A u t o R e f r e s h  
P r e c h a r g e  
( A l l B a n k s )  
R o w A c t i v e  
( A - B a n k )  
:
D o n ' t c a r e  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 30/46  
ESMT  
M12S128324A  
Read & Write Cycle at Same Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLOCK  
HIGH  
CKE  
CS  
*Note1  
tRC  
tRCD  
RAS  
*Note2  
CAS  
ADDR  
Rb  
Cb  
Ra  
Ca  
BA1  
BA0  
Rb  
`
A10/AP  
CL=2  
Ra  
tOH  
Qa2  
Qa3  
Db2  
Qa0  
Db1  
Db3  
Qa1  
Db0  
Db0  
tSAC  
tSHZ  
*Note3  
tSHZ  
tRDL  
tRDL  
DQ  
tOH  
CL=3  
Qa1  
Qa2  
Db1  
Qa0  
Qa3  
Db2  
Db3  
tSAC  
*Note3  
WE  
DQM  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(A-Bank)  
Read  
Write  
(A-Bank)  
(A-Bank)  
: Don't care  
*Note :  
1. Minimum row cycle times is required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. [CAS Latency-1] number of valid output data is available after Row  
precharge. Last valid output will be Hi-Z (tSHZ) after the clock.  
3. Output will be Hi-Z after the end of burst. (1,2,4,8 & Full page bit burst)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 31/46  
ESMT  
M12S128324A  
Page Read & Write Cycle at Same Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
H I G H  
C K E  
C S  
tR C D  
R A S  
* N o t e 2  
C A S  
A D D R  
R a  
C a  
C d  
C b  
C c  
BA1  
BA0  
A10 /AP  
R a  
tR D L  
Qa0  
Qa1 Qb0  
Dd0 Dd1  
Qb2  
Qb1  
Dc 1  
Qb1  
CL = 2  
Dc 0  
Dc 0  
D Q  
CL = 3  
Dc 1  
Qa1  
Qa0  
Qb0  
Dd0  
Dd1  
tC D L  
W E  
* N o t e 1  
* N o t e 3  
D Q M  
Read  
( A - Bank )  
Read  
( A - Bank )  
Write  
( A - Bank )  
Write  
( A - Bank )  
Row Active  
( A - Bank )  
Prechar ge  
(A - B an k )  
: D o n ' t C a r e  
Note : 1. To Write data before burst read ends. DQM should be asserted three cycle prior to write command to avoid bus  
contention.  
2. Row precharge will interrupt writing. Last data input , tRDL before row precharge , will be written.  
3. DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input  
data after Row precharge cycle will be masked internally.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 32/46  
ESMT  
M12S128324A  
Page Read Cycle at Different Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
C K E  
H I G H  
* N o t e 1  
C S  
R A S  
* N o t e 2  
C A S  
A D D R  
BA1  
R A a  
R C c  
R B b C A a  
C B b  
R D d C C c  
C D d  
BA0  
A10/AP  
CL= 2  
R A a  
R B b  
R C c  
R D d  
QAa0  
QDd0  
QCc2  
QCc1  
QAa1  
QAa0  
QDd2  
QDd1  
QAa2  
QBb1 QBb2  
QBb0  
QCc0  
QBb2  
D Q  
CL= 3  
QBb1  
QDd1  
QDd2  
QAa1 QAa2 QBb0  
QCc2 QDd0  
QCc0 QCc1  
W E  
D Q M  
P r e c h a r g e  
( D - B a n k )  
R e a d  
( B - B a n k )  
R e a d  
( A - B a n k )  
R e a d  
( C - B a n k )  
R e a d  
( D - B a n k )  
R o w A c t i v e  
( A - B a n k )  
R o w A c t i v e  
( D - B a n k )  
P r e c h a r g e  
( C - B a n k )  
R o w A c t i v e  
( B - B a n k )  
R o w A c t i v e  
( C - B a n k )  
P r e c h a r g e  
( A - B a n k )  
P r e c h a r g e  
( B - B a n k )  
: D o n ' t C a r e  
Note: 1. CS can be don’t cared when RAS , CAS and WE are high at the clock high going edge.  
2. To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 33/46  
ESMT  
M12S128324A  
Page Write Cycle at Different Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
C K E  
H I G H  
C S  
R A S  
* N o t e 2  
C A S  
A D D R  
R C c  
CA a  
R D d C C c  
C D d  
RA a  
RB b  
CB b  
B A 1  
B A 0  
RB b  
RA a  
R D d  
R C c  
A10/AP  
D Q  
DBb3  
D C c 0  
DAa2  
DAa0 DAa1  
DBb2  
CD d2  
DAa3 DBb0 DBb1  
tC D L  
D C c 1 DD d0 DD d1  
tR D L  
W E  
* N o t e 1  
D Q M  
W r i t e  
( D - B a n k )  
R o w A c t i v e  
( D - B a n k )  
W r i t e  
( A - B a n k )  
W r i t e  
( B - B a n k )  
R o w A c t i v e  
( A - Bank )  
P r e c h a r g e  
( A l l B a n k s )  
R o w A c t i v e  
( B - B a n k )  
W r i t e  
( C - B a n k )  
R o w A c t i v e  
( C - B a n k )  
:
D o n ' t c a r e  
*Note : 1. To interrupt burst write by Row precharge , DQM should be asserted to mask invalid input data.  
2. To interrupt burst write by Row precharge , both the write and the precharge banks must be the same.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 34/46  
ESMT  
M12S128324A  
Read & Write Cycle at Different Bank @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
18  
15  
16  
17  
19  
C L O C K  
C K E  
H I G H  
C S  
R A S  
C A S  
A D D R  
RA a  
C B c  
C D b R B c  
CA a  
R D b  
BA1  
BA0  
A10/AP  
CL = 2  
R A c  
RA a  
RB b  
QAa1  
QAa0  
* N o t e 2  
* N o t e 1  
tC D L  
DD d3  
tR C D  
DD b0  
DD b2  
QBc0  
QBc2  
QBc1  
QAa3  
Ddb1  
QAa0  
QAa2  
D Q  
CL = 3  
QBc0 QBc1  
QAa1 QAa2  
QAa3  
DD d3  
DD b0 Ddb1 DD b2  
W E  
D Q M  
Read  
( B - Ban k )  
W r i t e  
( D - B an k )  
Row Active  
(A-Bank)  
Read  
(A-Bank)  
Precharge  
(A-Bank)  
Row Active  
(D-Bank)  
Row Active  
(B-Bank)  
: D o n ' t C a r e  
*Note : 1. tCDL should be met to complete write.  
2. tRCD should be met.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 35/46  
ESMT  
M12S128324A  
Read & Write cycle with Auto Precharge @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
C K E  
H I G H  
C S  
R A S  
C A S  
A D D R  
R b  
C a  
C b  
R a  
BA0  
BA1  
R a  
R b  
A10/AP  
QAa2  
CL = 2  
D Q  
QAa0 QAa1  
QAa3  
QAa2  
DD d3  
DD d3  
DD b0 Ddb1  
DD b2  
DD b2  
CL = 3  
QAa0 QAa1  
DD b0  
QAa3  
Ddb1  
W E  
D Q M  
W r i t e wi t h  
Auto Pr echar ge  
( D- B an k )  
Auto Pr echar ge  
Star t Poin t  
(D - Ban k )  
Read with  
Auto Precharge  
( A - Bank )  
Auto Pr echar ge  
Star t Poin t  
Row Active  
( A - Bank )  
Row Active  
( D - Bank )  
: D o n ' t C a r e  
*Note : 1. tCDL should be controlled to meet minimum tRAS before internal precharge start.  
(In the case of Burst Length = 1 & 2)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 36/46  
ESMT  
M12S128324A  
Clock Suspension & DQM Operation Cycle @ CAS Letency = 2 , Burst Length = 4  
16  
17  
18  
0
1
2
5
9
10  
11  
12  
13  
14  
15  
19  
3
4
6
7
8
C L O C K  
C K E  
C S  
R A S  
C A S  
A D D R  
R a  
C a  
C c  
C b  
BA1  
BA0  
R a  
A10 /AP  
* N o t e 2  
tR C D  
D Q  
Qb0 Qb1  
tS H Z  
Qa0  
Qa1  
Qa3  
tS H Z  
Dc 2  
Qa2  
Dc 0  
W E  
* N o t e 1  
D Q M  
W r i t e  
D Q M  
Cl oc k  
Su pen sion  
Read  
W r i t e  
D Q M  
Ro w A c t i ve  
Read  
Rea d D Q M  
W r i t e  
Cl oc k  
Suspension  
:D on ' t C ar e  
*Note : 1. DQM is needed to prevent bus contention.  
2. tRCD should be met.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 37/46  
ESMT  
M12S128324A  
Read interrupted by Precharge Command & Read Burst Stop Cycle @ Burst Length = Full page  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
H I G H  
C K E  
C S  
R A S  
C A S  
A D D R  
CA a  
CA b  
RA a  
BA1  
BA0  
* N o t e 1  
* N o t e 1  
A10/AP  
CL= 2  
RA a  
* N o t e 2  
1
1
QAb3 QAb4  
QAb1 QAb2  
QAb5  
QAa0  
QAa2 QAa3 QAa4  
QAb0  
QAa1  
QAa0  
D Q  
2
2
CL= 3  
QAa2 QAa3 QAa4  
QAa1  
QAb0  
QAb3 QAb4  
QAb5  
QAb1 QAb2  
W E  
D Q M  
Read  
(A - Ban k )  
Burst Stop  
Read  
(A - Ban k )  
Precharge  
( A- B an k )  
Row A c t i ve  
( A- B an k )  
:D on ' t C ar e  
*Note : 1. About the valid DQs after burst stop, it is same as the case of RAS interrupt.  
Both cases are illustrated above timing diagram. See the lable 1,2 on them.  
But at burst write, Burst stop and RAS interrupt should be compared carefully.  
Refer the timing diagram of “Full page write burst stop cycles”.  
2. Burst stop is valid at every burst length.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 38/46  
ESMT  
M12S128324A  
Write interrupted by Precharge Command & Write Burst Stop Cycle @ Burst Length = Full page  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
C K E  
H I G H  
C S  
R A S  
C A S  
A D D R  
CA b  
CA a  
RA a  
BA1  
BA0  
RA a  
A10/AP  
tR D L  
* N o t e 1  
tB D L  
DAa4  
DAa2 DAa3  
DAa0  
DAa1  
DAb3 DAb4 DAb5  
DAb0 DAb1 DAb2  
D Q  
W E  
D Q M  
W ri t e  
(A - Ban k )  
Burst Stop  
W r i t e  
( A - Ban k )  
Row A c t i ve  
( A- B an k )  
Precharge  
( A- B an k )  
:D on' t C ar e  
*Note : 1. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by  
AC parameter of tRDL.  
DQM at write interrupted by precharge command is needed to prevent invalid write.  
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input  
data after Row precharge cycle will be masked internally.  
2. Burst stop is valid at every burst length.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 39/46  
ESMT  
M12S128324A  
Active/Precharge Power Down Mode @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
* N o t e 2  
tS S  
tS S  
tS S  
* N o t e 1  
C K E  
* N o t e 3  
C S  
R A S  
C A S  
A D D R  
R a  
C a  
B A 1  
B A 0  
A10/AP  
R a  
tS H Z  
D Q  
Qa1 Qa2  
Qa0  
W E  
D Q M  
Read  
P r e c h a r g e  
Pr ech ar ge  
Row A c t i ve  
Pow er - D ow n  
E ntr y  
Pr ech arge  
Pow er - D ow n  
Exi t  
A c t i v e  
P o w e r - d o w n  
E x i t  
A ct ive  
Pow er - dow n  
E ntr y  
:
D o n ' t c a r e  
*Note: 1. All banks should be in idle state prior to entering precharge power down mode.  
2. CKE should be set high at least 1CLK + tSS prior to Row active command.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 40/46  
ESMT  
M12S128324A  
Self Refresh Entry & Exit Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
1 9  
C L O C K  
C K E  
* N o t e 4  
* N o t e 2  
t R C m i n  
* N o t e 1  
* N o t e 6  
* N o t e 3  
tS S  
* N o t e 5  
C S  
R A S  
* N o t e 7  
C A S  
A D D R  
B A 0 , B A 1  
A10/AP  
D Q  
H i - Z  
H i - Z  
W E  
D Q M  
S e l f R e f r e s h E xi t  
S e l f R e f r e s h E n t r y  
A u t o R e f r e s h  
:
D o n ' t c a r e  
*Note : TO ENTER SELF REFRESH MODE  
1. CS , RAS & CAS with CKE should be low at the same clock cycle.  
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.  
3. The device remains in self refresh mode as long as CKE stays “Low”.  
cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.  
TO EXIT SELF REFRESH MODE  
4. System clock restart and be stable before returning CKE high.  
5. CS starts from high.  
6. Minimum tRC is required after CKE going high to complete self refresh exit.  
7. 4K cycles of burst auto refresh is required immediately before self refresh entry and immediately after self refresh exit.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 41/46  
ESMT  
M12S128324A  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
C L O C K  
C K E  
H I G H  
H I G H  
C S  
* N o t e 2  
tR C  
R A S  
* N o t e 1  
* N o t e 3  
C A S  
A D D R  
R a  
Key  
H I - Z  
H I - Z  
D Q  
W E  
D Q M  
New  
Com man d  
M R S  
New C om m an d  
:D on' t C ar e  
Auto Ref res h  
All banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.  
MODE REGISTER SET CYCLE  
*Note : 1. CS , RAS , CAS , & WE activation at the same clock cycle with address key will set internal mode register.  
2. Minimum 2 clock cycles should be met before new RAS activation.  
3. Please refer to Mode Register Set table.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 42/46  
ESMT  
M12S128324A  
PACKING  
86 - LEAD  
DIMENSIONS  
TSOP(II)  
DRAM(400mil)  
Symbol  
Dimension in mm  
Dimension in inch  
Min  
Norm  
Max  
1.20  
0.15  
1.05  
0.27  
0.23  
0.21  
0.16  
Min  
Norm  
Max  
A
A1  
A2  
b
0.047  
0.006  
0.011  
0.018  
0.009  
0.008  
0.006  
0.05  
0.95  
0.17  
0.17  
0.12  
0.10  
0.10  
1.00  
0.002  
0.037  
0.007  
0.007  
0.005  
0.004  
0.004  
0.039  
b1  
c
0.20  
0.008  
c1  
D
0.127  
0.005  
22.22 BSC  
0.61 REF  
11.76 BSC  
10.16 BSC  
0.50  
0.875 BSC  
0.024 REF  
0.463 BSC  
0.400 BSC  
0.020  
ZD  
E
E1  
L
0.40  
0.60  
0.016  
0.024  
L1  
e
0.80 REF  
0.50 BSC  
0.031 REF  
0.020 BSC  
R1  
R2  
θ
0.12  
0.12  
0°  
0.005  
0.005  
0°  
0.25  
0.010  
8°  
8°  
0°  
0°  
θ 1  
θ 2  
θ 3  
10°  
10°  
15°  
15°  
20°  
20°  
10°  
10°  
15°  
15°  
20°  
20°  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 43/46  
ESMT  
M12S128324A  
PACKING  
DIMENSIONS  
90-BALL  
SDRAM ( 8x13 mm )  
Symbol  
Dimension in mm  
Dimension in inch  
Min  
Norm  
Max  
Min  
Norm  
Max  
0.055  
A
A1  
A2  
øb  
D
1.40  
0.40  
0.94  
0.50  
8.10  
13.10  
0.30  
0.84  
0.40  
7.90  
12.90  
0.012  
0.033  
0.016  
0.311  
0.508  
0.016  
0.037  
0.020  
0.319  
0.516  
0.89  
0.035  
8.00  
13.00  
6.40  
11.20  
0.80  
0.315  
0.512  
0.252  
0.441  
0.031  
E
D1  
E1  
e
Controlling dimension : Millimeter.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4  
44/46  
ESMT  
M12S128324A  
Revision History  
Revision  
Date  
Description  
1.0  
2008.07.07  
Original  
1. Modify ICC3N  
1.1  
2008.07.16  
2. Modify the figure of DC output load circuit  
Modify ICC4 and ICC5  
1.2  
1.3  
2008.07.16  
2008.08.07  
Modify ICC4 and ICC5 for -7  
1. Modify the description about self refresh operation  
2. Correct type error  
1.4  
2009.03.27  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 45/46  
ESMT  
M12S128324A  
Important Notice  
All rights reserved.  
No part of this document may be reproduced or duplicated in any form or by any  
means without the prior permission of ESMT.  
The contents contained in this document are believed to be accurate at the time of  
publication. ESMT assumes no responsibility for any error in this document, and  
reserves the right to change the products or specification in this document without  
notice.  
The information contained herein is presented only as a guide or examples for the  
application of our products. No responsibility is assumed by ESMT for any  
infringement of patents, copyrights, or other intellectual property rights of third  
parties which may result from its use. No license, either express , implied or  
otherwise, is granted under any patents, copyrights or other intellectual property  
rights of ESMT or others.  
Any semiconductor devices may have inherently a certain rate of failure. To minimize  
risks associated with customer's application, adequate design and operating  
safeguards against injury, damage, or loss from such failure, should be provided by  
the customer when making application designs.  
ESMT's products are not authorized for use in critical applications such as, but not  
limited to, life support devices or system, where failure or abnormal operation may  
directly affect human lives or cause physical injury or property damage. If products  
described here are to be used for such kinds of application, purchaser must do its  
own quality assurance testing appropriate to such applications.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: Mar. 2009  
Revision: 1.4 46/46  

相关型号:

M12S128324A-7BG

1M x 32 Bit x 4 Banks Synchronous DRAM
ESMT

M12S128324A-7TG

1M x 32 Bit x 4 Banks Synchronous DRAM
ESMT

M12S15/670X

Analog IC
ETC

M12S16161A

512K x 16Bit x 2Banks Synchronous DRAM
ESMT

M12S16161A-10T

512K x 16Bit x 2Banks Synchronous DRAM
ESMT

M12S16161A-10TG

512K x 16Bit x 2Banks Synchronous DRAM
ESMT

M12S16161A-15T

512K x 16Bit x 2Banks Synchronous DRAM
ESMT

M12S16161A-15TG

512K x 16Bit x 2Banks Synchronous DRAM
ESMT

M12S16161A-5TG2Q

Synchronous DRAM, 1MX16, 4.5ns, CMOS, PDSO50, 0.400 X 0.825 INCH, 0.80 MM PITCH, LEAD FREE, TSOP2-50
ESMT

M12S16161A-6BG

512K x 16Bit x 2Banks Synchronous DRAM
ESMT

M12S16161A-6BIG

512K x 16Bit x 2Banks Synchronous DRAM
ESMT

M12S16161A-6TG

512K x 16Bit x 2Banks Synchronous DRAM
ESMT