M12L2561616A-6BIG [ESMT]

4M x 16 Bit x 4 Banks Synchronous DRAM; 4M ×16位×4银行同步DRAM
M12L2561616A-6BIG
型号: M12L2561616A-6BIG
厂家: ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.    ELITE SEMICONDUCTOR MEMORY TECHNOLOGY INC.
描述:

4M x 16 Bit x 4 Banks Synchronous DRAM
4M ×16位×4银行同步DRAM

存储 内存集成电路 动态存储器
文件: 总45页 (文件大小:921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
SDRAM  
4M x 16 Bit x 4 Banks  
Synchronous DRAM  
FEATURES  
ORDERING INFORMATION  
y
y
y
y
JEDEC standard 3.3V power supply  
LVTTL compatible with multiplexed address  
Four banks operation  
MRS cycle with address key programs  
- CAS Latency ( 2 & 3 )  
- Burst Length ( 1, 2, 4, 8 & full page )  
- Burst Type ( Sequential & Interleave )  
All inputs are sampled at the positive going edge of the  
system clock  
PRODUCT NO.  
MAX FREQ. PACKAGE COMMENTS  
M12L2561616A-6TIG 166MHz  
M12L2561616A-6BIG 166MHz  
M12L2561616A-7TIG 143MHz  
M12L2561616A-7BIG 143MHz  
TSOP II  
BGA  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
TSOP II  
BGA  
y
y
y
y
y
Burst Read single write operation  
DQM for masking  
Auto & self refresh  
64ms refresh period (8K cycle)  
GENERAL DESCRIPTION  
The M12L2561616A is 268,435,456 bits synchronous high data rate Dynamic RAM organized as 4 x 4,194,304 words by 16 bits.  
Synchronous design allows precise cycle control with the use of system clock I/O transactions are possible on every clock cycle.  
Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a  
variety of high bandwidth, high performance memory system applications.  
Pin Arrangement  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
V
SS  
1
V
DD  
1
2
3
4
5
6
7
8
9
DQ15  
2
DQ0  
V
SSQ  
3
V
DDQ  
DQ1  
DQ2  
VSSQ  
VDDQ  
DQ0  
VDD  
A
B
C
D
E
F
VSS  
DQ15  
DQ14  
DQ13  
4
5
VDDQ  
VSSQ  
VSSQ  
VDDQ  
DQ2  
DQ4  
DQ1  
DQ3  
DQ14  
DQ12  
DQ13  
DQ11  
V
DDQ  
6
V
SSQ  
DQ3  
DQ4  
DQ12  
DQ11  
7
8
V
SSQ  
9
V
DDQ  
DQ5  
DQ6  
DQ10  
DQ9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
VSSQ  
VDD  
DQ6  
DQ10  
DQ8  
DQ9  
NC  
VDDQ  
VSS  
DQ5  
DQ7  
V
DDQ  
V
SSQ  
LDQM  
DQ8  
DQ7  
V
SS  
V
DD  
UDQM  
A12  
CLK  
A11  
CKE  
A9  
NC  
CAS  
BA0  
LDQM  
WE  
RAS  
BA1  
WE  
CS  
UDQM  
CLK  
CKE  
CAS  
RAS  
CS  
G
H
J
A
A
A
A
A
A
A
A
V
12  
11  
9
A8  
A0  
A3  
A10  
A7  
A5  
A6  
A4  
A1  
A2  
BA0  
BA1  
VSS  
VDD  
8
A
10/AP  
7
A
A
A
A
0
1
2
3
6
5
4
SS  
V
DD  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 1/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
BLOCK DIAGRAM  
CLK  
Clock  
Generator  
Bank D  
Bank C  
Bank B  
CKE  
Row  
Address  
Address  
Buffer  
&
Refresh  
Counter  
Bank A  
Mode  
Register  
Sense Amplifier  
Column Decoder  
L(U)DQM  
Column  
Address  
Buffer  
&
CS  
RAS  
CAS  
WE  
Data Control Circuit  
Counter  
DQ  
PIN DESCRIPTION  
PIN  
NAME  
INPUT FUNCTION  
Active on the positive going edge to sample all inputs  
CLK  
System Clock  
Disables or enables device operation by masking or enabling all  
inputs except CLK , CKE and L(U)DQM  
Chip Select  
CS  
Masks system clock to freeze operation from the next clock cycle.  
CKE should be enabled at least one cycle prior new command.  
Disable input buffers for power down in standby.  
CKE  
Clock Enable  
Address  
Row / column address are multiplexed on the same pins.  
Row address : RA0~RA12, column address : CA0~CA8  
A0 ~ A12  
Selects bank to be activated during row address latch time.  
Selects bank for read / write during column address latch time.  
BA1, BA0  
RAS  
Bank Select Address  
Row Address Strobe  
Latches row addresses on the positive going edge of the CLK with  
RAS low. (Enables row access & precharge.)  
Latches column address on the positive going edge of the CLK with  
CAS low. (Enables column access.)  
Column Address Strobe  
Write Enable  
CAS  
WE  
Enables write operation and row precharge.  
Latches data in starting from CAS , WE active.  
Makes data output Hi-Z, tSHZ after the clock and masks the output.  
Blocks data input when L(U)DQM active.  
L(U)DQM  
Data Input / Output Mask  
DQ0 ~ DQ15  
VDD / VSS  
Data Input / Output  
Data inputs / outputs are multiplexed on the same pins.  
Power and ground for the input buffers and the core logic.  
Power Supply / Ground  
Isolated power supply and ground for the output buffers to provide  
improved noise immunity.  
VDDQ / VSSQ  
N.C  
Data Output Power / Ground  
No Connection  
This pin is recommended to be left No Connection on the device.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 2/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
VIN, VOUT  
VDD, VDDQ  
TSTG  
Value  
Unit  
V
Voltage on any pin relative to VSS  
Voltage on VDD supply relative to VSS  
Storage temperature  
-1.0 ~ 4.6  
-1.0 ~ 4.6  
-55 ~ +150  
V
°C  
W
Power dissipation  
PD  
IOS  
1
Short circuit current  
50  
mA  
Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATING are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
DC OPERATING CONDITION  
Recommended operating conditions (Voltage referenced to VSS = 0V, TA = -40 to 85 °C )  
Parameter  
Supply voltage  
Symbol  
VDD, VDDQ  
VIH  
Min  
3.0  
2.0  
-0.3  
2.4  
-
Typ  
3.3  
3.0  
0
Max  
Unit  
V
Note  
3.6  
Input logic high voltage  
Input logic low voltage  
Output logic high voltage  
Output logic low voltage  
Input leakage current  
VDD+0.3  
V
1
VIL  
0.8  
-
V
2
VOH  
-
V
IOH = -2mA  
IOL = 2mA  
3
VOL  
-
0.4  
5
V
IIL  
-5  
-
μ A  
Output leakage current  
IOL  
-5  
-
5
μ A  
4
Note: 1. VIH(max) = 4.6V AC for pulse width 10ns acceptable.  
2. VIL(min) = -1.5V AC for pulse width 10ns acceptable.  
3. Any input 0V VIN VDD + 0.3V, all other pins are not under test = 0V.  
VDD  
4. Dout is disabled , 0V   
.
VOUT  
CAPACITANCE (VDD = 3.3V, TA = 25°C , f = 1MHZ)  
Parameter  
Symbol  
Min  
Max  
Unit  
Input capacitance (A0 ~ A12, BA0 ~ BA1)  
CIN1  
1.5  
3
3
pF  
Input capacitance (CLK)  
CCLK  
CIN2  
2
pF  
pF  
Input capacitance  
1.5  
4.5  
(CKE, CS , RAS , CAS , WE & L(U)DQM)  
Data input/output capacitance (DQ0 ~ DQ15)  
COUT  
2
4.5  
pF  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 3/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
DC CHARACTERISTICS  
Recommended operating condition unless otherwise notedTA = -40 to 85 °C  
Version  
CAS  
Latency  
Parameter  
Symbol  
Test Condition  
Unit Note  
-6  
-7  
Operating Current  
(One Bank Active)  
ICC1  
Burst Length = 2, tRC = tRC(min), IOL = 0 mA  
CKE = VIL(max), tcc = 10ns  
170  
150  
mA  
mA  
1,2  
ICC2P  
4
4
Precharge Standby Current  
in power-down mode  
ICC2PS  
ICC2N  
CKE & CLK=VIL (max), tCC = ∞  
CKE=VIH(min), CS = VIH(min), tCC = 10ns  
Input signals are changed one time during 2tck  
50  
30  
Precharge Standby Current  
in non power-down mode  
mA  
CKE=VIH(min), CLK=VIL(max), tcc =   
input signals are stable  
ICC2NS  
ICC3P  
CKE=VIL(max), tCC =10ns  
20  
20  
Active Standby Current  
in power-down mode  
mA  
mA  
ICC3PS  
CKE & CLK=VIL(max), tCC = ∞  
CKE VIH(min), CS VIH(min), tCC = 15ns  
Input signals are changed one time during 2clks  
55  
ICC3N  
Active Standby Current  
in non power-down mode  
(One Bank Active)  
All other pins VDD-0.2V or 0.2V  
CKE=VIH(min), CLK=VIL(max), tCC = ∞  
input signals are stable  
ICC3NS  
ICC4  
45  
mA  
mA  
Operating Current  
(Burst Mode)  
IOL = 0 mA, Page Burst, 4 Banks activated,  
1,2  
210  
210  
180  
180  
tCCD = 2 CLKs  
Refresh Current  
ICC5  
ICC6  
mA  
mA  
tRFC tRFC(min)  
Self Refresh Current  
CKE=0.2V  
5
Note : 1. Measured with outputs open.  
2. Input signals are changed one time during 2 CLKS.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 4/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
AC OPERATING TEST CONDITIONS (VDD = 3.3V ± 0.3V TA = -40 to 85°C )  
Parameter  
Input levels (Vih/Vil)  
Value  
2.4/0.4  
1.4  
Unit  
V
Input timing measurement reference level  
Input rise and fall-time  
V
tr/tf = 1/1  
1.4  
ns  
V
Output timing measurement reference level  
Output load condition  
See Fig. 2  
(Fig. 1) DC Output Load Circuit  
(Fig. 2) AC Output Load Circuit  
OPERATING AC PARAMETER  
(AC operating conditions unless otherwise noted)  
Version  
Parameter  
Symbol  
Unit  
Note  
-6  
12  
18  
18  
-7  
14  
20  
20  
Row active to row active delay  
tRRD(min)  
tRCD(min)  
ns  
ns  
1
1
RAS to CAS delay  
Row precharge time  
tRP(min)  
ns  
ns  
1
1
tRAS(min)  
42  
45  
Row active time  
tRAS(max)  
tRC(min)  
100  
us  
ns  
@ Operating  
1
60  
60  
63  
70  
Row cycle time  
@ Auto refresh tRFC(min)  
ns  
tCK  
tCK  
tCK  
ms  
1,5  
2
Last data in to col. address delay  
Last data in to row precharge  
Last data in to burst stop  
tCDL(min)  
tRDL(min)  
tBDL(min)  
tREF(max)  
1
2
2
1
2
Refresh period (8,192 rows)  
64  
6
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 5/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Version  
Parameter  
Col. address to col. address delay  
Symbol  
Unit  
tCK  
Note  
-6  
-7  
tCCD(min)  
1
2
3
4
CAS latency = 3  
CAS latency = 2  
Number of valid  
Output data  
ea  
1
Note : 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then  
rounding off to the next higher integer.  
2. Minimum delay is required to complete write.  
3. All parts allow every cycle column address change.  
4. In case of row precharge interrupt, auto precharge and read burst stop.  
5. A new command may be given tRFC after self refresh exit.  
6. A maximum of eight consecutive AUTO REFRESH commands (with tRFCmin) can be posted to any given SDRAM, and the  
maximum absolute interval between any AUTO REFRESH command and the next AUTO REFRESH command is  
8x7.8μ s.)  
AC CHARACTERISTICS (AC operating condition unless otherwise noted)  
-6  
-7  
Parameter  
Symbol  
Unit  
Note  
MIN  
MAX MIN  
MAX  
CAS latency = 3  
6
10  
-
7
1000  
CLK cycle time  
tCC  
ns  
1
1000  
CAS latency = 2  
CAS latency = 3  
CAS latency = 2  
CAS latency = 3  
CAS latency = 2  
10  
5.4  
-
-
5.4  
CLK to valid  
output delay  
tSAC  
ns  
ns  
1,2  
2
-
5.4  
5.4  
2.5  
-
-
3
-
Output data  
hold time  
tOH  
-
3
-
CLK high pulsh width  
CLK low pulsh width  
Input setup time  
tCH  
tCL  
2.5  
2.5  
1.5  
1
-
2.5  
2.5  
1.5  
1
-
ns  
ns  
ns  
ns  
ns  
3
3
3
3
2
-
-
-
-
tSS  
tSH  
tSLZ  
Input hold time  
-
-
CLK to output in Low-Z  
1
-
1
-
CAS latency = 3  
CAS latency = 2  
-
5.4  
-
5.4  
CLK to output  
in Hi-Z  
tSHZ  
ns  
-
-
6
-
6
Note : 1. Parameters depend on programmed CAS latency.  
2. If clock rising time is longer than 1ns. (tr/2 - 0.5) ns should be considered.  
3. Assumed input rise and fall time (tr & tf) =1ns.  
If tr & tf is longer than 1ns. transient time compensation should be considered.  
i.e., [(tr + tf)/2 – 1] ns should be added to the parameter.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
6/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
SIMPLIFIED TRUTH TABLE  
A12, A11  
A9~A0  
BA0,  
BA1  
COMMAND  
CKEn-1 CKEn  
DQM  
X
A10/AP  
Note  
CS RAS CAS  
WE  
L
Register  
Refresh  
Mode Register set  
Auto Refresh  
H
H
X
H
L
L
L
L
L
L
L
OP CODE  
X
1,2  
3
H
X
Entry  
3
Self  
L
H
L
H
X
L
H
X
H
H
X
H
X
X
X
3
Refresh  
Exit  
L
H
X
X
3
Bank Active & Row Addr.  
H
V
V
Row Address  
Column  
Auto Precharge Disable  
Auto Precharge Enable  
Auto Precharge Disable  
Auto Precharge Enable  
L
4
4,5  
4
Read &  
H
X
L
H
L
H
X
Address  
(A0~A8)  
Column Address  
H
Column  
Address  
L
Write &  
H
H
H
X
X
X
L
L
L
H
H
L
L
H
H
L
L
L
X
X
X
V
H
4,5  
6
Column Address  
(A0~A8)  
Burst Stop  
X
Bank Selection  
All Banks  
V
X
L
Precharge  
X
H
H
L
X
V
X
X
H
X
X
V
X
X
H
X
V
X
V
X
X
H
X
V
Entry  
Exit  
H
L
L
H
L
X
X
X
Clock Suspend or  
Active Power Down  
X
X
H
L
Entry  
H
Precharge Power Down Mode  
X
H
L
Exit  
L
H
H
H
X
X
V
X
V
X
DQM  
X
X
7
H
L
X
H
X
H
X
H
No Operating Command  
(V = Valid , X = Don’t Care. H = Logic High , L = Logic Low )  
Note : 1.OP Code : Operating Code  
A0~A12 & BA0~BA1 : Program keys. (@ MRS)  
2.MRS can be issued only at all banks precharge state.  
A new command can be issued after 2 CLK cycles of MRS.  
3.Auto refresh functions are as same as CBR refresh of DRAM.  
The automatical precharge without row precharge of command is meant by “Auto”.  
Auto/self refresh can be issued only at all banks idle state.  
4.BA0~BA1 : Bank select addresses.  
If BA0 and BA1 are “Low” at read ,write , row active and precharge ,bank A is selected.  
If BA0 is “Low” and BA1 is “High” at read ,write , row active and precharge ,bank B is selected.  
If BA0 is “High” and BA1 is “Low” at read ,write , row active and precharge ,bank C is selected.  
If BA0 and BA1 are “High” at read ,write , row active and precharge ,bank D is selected  
If A10/AP is “High” at row precharge , BA0 and BA1 is ignored and all banks are selected.  
5.During burst read or write with auto precharge. new read/write command can not be issued.  
Another bank read/write command can be issued after the end of burst.  
New row active of the associated bank can be issued at tRP after the end of burst.  
6.Burst stop command is valid at every burst length.  
7.DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (write DQM latency is 0), but  
makes Hi-Z state the data-out of 2 CLK cycles after.(Read DQM latency is 2)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 7/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
MODE REGISTER FIELD TABLE TO PROGRAM MODES  
Register Programmed with MRS  
Address  
Function  
BA0~BA1  
RFU  
A12~A10/AP  
RFU  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
W.B.L.  
TM  
CAS Latency  
Burst Length  
Test Mode  
CAS Latency  
Burst Type  
Burst Length  
A8  
0
A7  
Type  
A6  
A5  
0
A4  
0
Latency  
Reserved  
Reserved  
2
A3  
Type  
A2  
0
A1  
0
A0  
0
BT = 0  
BT = 1  
0
1
0
1
Mode Register Set  
Reserved  
0
0
0
0
1
1
1
1
0
1
Sequential  
Interleave  
1
2
4
8
1
2
4
8
0
0
1
0
0
1
1
Reserved  
1
0
0
1
0
1
Reserved  
1
1
3
0
1
1
0
0
Reserved  
Reserved  
Reserved  
Reserved  
1
0
0
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Full Page Reserved  
0
1
1
0
1
1
0
1
1
0
1
1
1
1
1
Full Page Length : 512  
POWER UP SEQUENCE  
1.Apply power and start clock, Attempt to maintain CKE = ”H”, DQM = ”H” and the other pin are NOP condition at the inputs.  
2. Maintain stable power , stable clock and NOP input condition for a minimum of 200us.  
3. Issue precharge commands for all banks of the devices.  
4. Issue 2 or more auto-refresh commands.  
5. Issue mode register set command to initialize the mode register.  
cf.) Sequence of 4 & 5 is regardless of the order.  
The device is now ready for normal operation.  
Note : 1. RFU(Reserved for future use) should stay “0” during MRS cycle.  
2. If A9 is high during MRS cycle, “ Burst Read single write” function will be enabled.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 8/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
BURST SEQUENCE (BURST LENGTH = 4)  
Initial Adrress  
Sequential  
Interleave  
A1  
0
A0  
0
0
1
2
3
1
2
3
0
2
3
0
1
3
0
1
2
0
1
2
3
1
0
3
2
2
3
0
1
3
2
1
0
0
1
1
0
1
1
BURST SEQUENCE (BURST LENGTH = 8)  
Initial  
Sequential  
Interleave  
A2  
A1  
A0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
1
2
3
4
5
6
7
0
2
3
4
5
6
7
0
1
3
4
5
6
7
0
1
2
4
5
6
7
0
1
2
3
5
6
7
0
1
2
3
4
6
7
0
1
2
3
4
5
6
0
1
0
3
2
5
4
7
6
2
3
2
1
0
7
6
5
4
4
5
6
7
0
1
2
3
5
4
7
6
1
0
3
2
6
7
6
5
4
3
2
1
0
7
0
1
2
3
4
5
1
2
3
4
5
6
7
3
0
1
6
7
4
5
7
4
5
2
3
0
1
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 9/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
DEVICE OPERATIONS  
CLOCK (CLK)  
POWER-UP  
The clock input is used as the reference for all SDRAM  
operations. All operations are synchronized to the positive  
going edge of the clock. The clock transitions must be  
monotonic between VIL and VIH. During operation with CKE  
high all inputs are assumed to be in valid state (low or high) for  
the duration of setup and hold time around positive edge of the  
clock for proper functionality and Icc specifications.  
1.Apply power and start clock, Attempt to maintain CKE =  
“H”, DQM = “H” and the other pins are NOP condition at  
the inputs.  
2.Maintain stable power, stable clock and NOP input  
condition for minimum of 200us.  
3.Issue precharge commands for both banks of the  
devices.  
4.Issue 2 or more auto-refresh commands.  
5.Issue a mode register set command to initialize the  
mode register.  
CLOCK ENABLE(CKE)  
cf.) Sequence of 4 & 5 is regardless of the order.  
The clock enable (CKE) gates the clock onto SDRAM. If CKE  
goes low synchronously with clock (set-up and hold time same  
as other inputs), the internal clock suspended from the next  
clock cycle and the state of output and burst address is frozen  
as long as the CKE remains low. All other inputs are ignored  
from the next clock cycle after CKE goes low. When all banks  
are in the idle state and CKE goes low synchronously with  
clock, the SDRAM enters the power down mode from the next  
clock cycle. The SDRAM remains in the power down mode  
ignoring the other inputs as long as CKE remains low. The  
power down exit is synchronous as the internal clock is  
suspended. When CKE goes high at least “1CLK + tSS” before  
the high going edge of the clock, then the SDRAM becomes  
active from the same clock edge accepting all the input  
commands.  
The device is now ready for normal operation.  
MODE REGISTER SET (MRS)  
The mode register stores the data for controlling the  
various operating modes of SDRAM. It programs the CAS  
latency, burst type, burst length, test mode and various  
vendor specific options to make SDRAM useful for variety  
of different applications. The default value of the mode  
register is not defined, therefore the mode register must  
be written after power up to operate the SDRAM. The  
mode register is written by asserting low on CS , RAS ,  
CAS and WE (The SDRAM should be in active mode  
with CKE already high prior to writing the mode register).  
The state of address pins A0~A12 and BA0~BA1 in the  
BANK ADDRESSES (BA0~BA1)  
same cycle as CS , RAS , CAS and WE going low is  
the data written in the mode register. Two clock cycles is  
required to complete the write in the mode register. The  
mode register contents can be changed using the same  
command and clock cycle requirements during operation  
as long as all banks are in the idle state. The mode  
register is divided into various fields into depending on  
functionality. The burst length field uses A0~A2, burst type  
uses A3, CAS latency (read latency from column address)  
use A4~A6, vendor specific options or test mode use  
A7~A8, A10/AP~A12 and BA0~BA1. The write burst  
length is programmed using A9. A7~A8, A10/AP~A12 and  
BA0~BA1 must be set to low for normal SDRAM  
operation. Refer to the table for specific codes for various  
burst length, burst type and CAS latencies.  
This SDRAM is organized as four independent banks of  
4,194,304 words x 16 bits memory arrays. The BA0~BA1  
inputs are latched at the time of assertion of RAS and CAS  
to select the bank to be used for the operation. The banks  
addressed BA0~BA1 are latched at bank active, read, write,  
mode register set and precharge operations.  
ADDRESS INPUTS (A0~A12)  
The 13 address bits are required to decode the 4,194,304  
word locations are multiplexed into 13 address input pins  
(A0~A12). The 13 row addresses are latched along with RAS  
and BA0~BA1 during bank active command. The 9 bit column  
addresses are latched along with CAS , WE and BA0~BA1  
during read or with command.  
BANK ACTIVATE  
NOP and DEVICE DESELECT  
The bank activate command is used to select a random  
When RAS , CAS and WE are high , The SDRAM  
performs no operation (NOP). NOP does not initiate any new  
operation, but is needed to complete operations which require  
more than single clock cycle like bank activate, burst read,  
auto refresh, etc. The device deselect is also a NOP and is  
row in an idle bank. By asserting low on RAS and CS  
with desired row and bank address, a row access is  
initiated. The read or write operation can occur after a  
time delay of tRCD(min) from the time of bank activation. tRCD  
is the internal timing parameter of SDRAM, therefore it is  
dependent on operating clock frequency. The minimum  
number of clock cycles required between bank activate  
and read or write command should be calculated by  
entered by asserting CS high. CS high disables the  
command decoder so that RAS , CAS , WE and all the  
address inputs are ignored.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
10/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
DEVICE OPERATIONS (Continued)  
dividing tRCD(min) with cycle time of the clock and then rounding  
of the result to the next higher integer. The SDRAM has four  
internal banks in the same chip and shares part of the internal  
circuitry to reduce chip area, therefore it restricts the activation  
of four banks simultaneously. Also the noise generated during  
sensing of each bank of SDRAM is high requiring some time  
for power supplies to recover before another bank can be  
sensed reliably. tRRD(min) specifies the minimum time required  
between activating different bank. The number of clock cycles  
required between different bank activation must be calculated  
similar to tRCD specification. The minimum time required for the  
bank to be active to initiate sensing and restoring the complete  
row of dynamic cells is determined by tRAS(min). Every SDRAM  
bank activate command must satisfy tRAS(min) specification  
before a precharge command to that active bank can be  
asserted. The maximum time any bank can be in the active  
state is determined by tRAS (max) and tRAS(max) can be  
calculated similar to tRCD specification.  
DQM OPERATION  
The DQM is used mask input and output operations. It  
works similar to OE during operation and inhibits writing  
during write operation. The read latency is two cycles from  
DQM and zero cycle for write, which means DQM masking  
occurs two cycles later in read cycle and occurs in the  
same cycle during write cycle. DQM operation is  
synchronous with the clock. The DQM signal is important  
during burst interrupts of write with read or precharge in  
the SDRAM. Due to asynchronous nature of the internal  
write, the DQM operation is critical to avoid unwanted or  
incomplete writes when the complete burst write is  
required. Please refer to DQM timing diagram also.  
PRECHARGE  
The precharge is performed on an active bank by  
asserting low on clock cycles required between bank  
activate and clock cycles required between bank activate  
BURST READ  
and CS , RAS , WE and A10/AP with valid BA0~BA1  
of the bank to be procharged. The precharge command  
can be asserted anytime after tRAS(min) is satisfy from the  
bank active command in the desired bank. tRP is defined  
as the minimum number of clock cycles required to  
complete row precharge is calculated by dividing tRP with  
clock cycle time and rounding up to the next higher  
integer. Care should be taken to make sure that burst  
write is completed or DQM is used to inhibit writing before  
precharge command is asserted. The maximum time any  
bank can be active is specified by tRAS(max). Therefore,  
each bank has to be precharge with tRAS(max) from the  
bank activate command. At the end of precharge, the  
bank enters the idle state and is ready to be activated  
again. Entry to power-down, Auto refresh, Self refresh and  
Mode register set etc. is possible only when all banks are  
in idle state.  
The burst read command is used to access burst of data on  
consecutive clock cycles from an active row in an active bank.  
The burst read command is issued by asserting low on CS  
and RAS with WE being high on the positive edge of the  
clock. The bank must be active for at least tRCD(min) before the  
burst read command is issued. The first output appears in CAS  
latency number of clock cycles after the issue of burst read  
command. The burst length, burst sequence and latency from  
the burst read command is determined by the mode register  
which is already programmed. The burst read can be initiated  
on any column address of the active row. The address wraps  
around if the initial address does not start from a boundary  
such that number of outputs from each I/O are equal to the  
burst length programmed in the mode register. The output  
goes into high-impedance at the end of burst, unless a new  
burst read was initiated to keep the data output gapless. The  
burst read can be terminated by issuing another burst read or  
burst write in the same bank or the other active bank or a  
precharge command to the same bank. The burst stop  
command is valid at every page burst length.  
AUTO PRECHARGE  
The precharge operation can also be performed by using  
auto precharge. The SDRAM internally generates the  
timing to satisfy tRAS(min) and “tRP” for the programmed burst  
length and CAS latency. The auto precharge command is  
issued at the same time as burst write by asserting high on  
A10/AP, the bank is precharge command is asserted.  
Once auto precharge command is given, no new  
commands are possible to that particular bank until the  
bank achieves idle state.  
BURST WRITE  
The burst write command is similar to burst read command  
and is used to write data into the SDRAM on consecutive clock  
cycles in adjacent addresses depending on burst length and  
burst sequence. By asserting low on CS , CAS and WE  
with valid column address, a write burst is initiated. The data  
inputs are provided for the initial address in the same clock  
cycle as the burst write command. The input buffer is  
deselected at the end of the burst length, even though the  
internal writing can be completed yet. The writing can be  
complete by issuing a burst read and DQM for blocking data  
inputs or burst write in the same or another active bank. The  
burst stop command is valid at every burst length. The write  
burst can also be terminated by using DQM for blocking data  
and precharge the bank tRDL after the last data input to be  
written into the active row. See DQM OPERATION also.  
FOUR BANKS PRECHARGE  
Four banks can be precharged at the same time by using  
Precharge all command. Asserting low on CS , RAS ,  
and WE with high on A10/AP after all banks have  
satisfied tRAS(min) requirement, performs precharge on all  
banks. At the end of tRP after performing precharge all, all  
banks are in idle state.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
11/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
DEVICE OPERATIONS (Continued)  
AUTO REFRESH  
SELF REFRESH  
The storage cells of SDRAM need to be refreshed every 64ms  
to maintain data. An auto refresh cycle accomplishes refresh of  
a single row of storage cells. The internal counter increments  
automatically on every auto refresh cycle to refresh all the  
rows. An auto refresh command is issued by asserting low on  
The self refresh is another refresh mode available in the  
SDRAM. The self refresh is the preferred refresh mode for  
data retention and low power operation of SDRAM. In self  
refresh mode, the SDRAM disables the internal clock and  
all the input buffers except CKE. The refresh addressing  
and timing is internally generated to reduce power  
consumption.  
CS , RAS and CAS with high on CKE and WE . The auto  
refresh command can only be asserted with all banks being in  
idle state and the device is not in power down mode (CKE is  
high in the previous cycle). The time required to complete the  
auto refresh operation is specified by tRFC(min). The minimum  
number of clock cycles required can be calculated by driving  
tRFC with clock cycle time and them rounding up to the next  
higher integer. The auto refresh command must be followed by  
NOP’s until the auto refresh operation is completed. The auto  
refresh is the preferred refresh mode when the SDRAM is  
being used for normal data transactions. The auto refresh  
cycle can be performed once in 7.8us.  
The self refresh mode is entered from all banks idle state  
by asserting low on CS , RAS , CAS and CKE with  
high on WE . Once the self refresh mode is entered, only  
CKE state being low matters, all the other inputs including  
clock are ignored to remain in the refresh.  
The self refresh is exited by restarting the external clock  
and then asserting high on CKE. This must be followed by  
NOP’s for a minimum time of tRFC before the SDRAM  
reaches idle state to begin normal operation. It is  
recommended to use burst 8192 auto refresh cycles  
immediately before and after self refresh.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
12/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
CLK  
COMMANDS  
H
CKE  
Mode register set command  
CS  
RAS  
( CS ,RAS , CAS , WE = Low)  
CAS  
The M12L2561616A has a mode register that defines how the device operates.  
In this command, A0~A12, BA0 and BA1 are the data input pins. After power on, the  
mode register set command must be executed to initialize the device.  
The mode register can be set only when all banks are in idle state.  
During 2CLK following this command, the M12L2561616A cannot accept any  
other commands.  
WE  
BA0, BA1  
A10  
Add  
Fig. 1 Mode register set  
command  
CLK  
Activate command  
H
CKE  
CS  
( CS ,RAS = Low, CAS , WE = High)  
RAS  
The M12L2561616A has four banks, each with 4,096 rows.  
This command activates the bank selected by BA1 and BA0 (BS) and a row  
address selected by A0 through A12.  
CAS  
WE  
This command corresponds to a conventional DRAM’s RAS falling.  
BA0, BA1  
(Bank select)  
A10  
Row  
Row  
Add  
Fig. 2 Row address strobe and  
bank active command  
Precharge command  
CLK  
H
( CS ,RAS , WE = Low, CAS = High )  
CKE  
CS  
This command begins precharge operation of the bank selected by BA1 and BA0  
(BS). When A10 is High, all banks are precharged, regardless of BA1 and BA0.  
When A10 is Low, only the bank selected by BA1 and BA0 is precharged.  
After this command, the M12L2561616A can’t accept the activate command to  
the precharging bank during tRP (precharge to activate command period).  
RAS  
CAS  
This command corresponds to a conventional DRAM’s RAS rising.  
WE  
BA0, BA1  
(Bank select)  
A10  
(Precharge select)  
Add  
Fig. 3 Precharge command  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
13/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
CLK  
Write command  
H
CKE  
CS  
( CS , CAS , WE = Low, RAS = High)  
If the mode register is in the burst write mode, this command sets the burst start  
address given by the column address to begin the burst write operation. The first  
write data in burst can be input with this command with subsequent data on following  
clocks.  
RAS  
CAS  
WE  
BA0,BA1  
(Bank select)  
A10  
Add  
Col.  
Fig. 4 Column address and  
write command  
CLK  
Read command  
H
CKE  
CS  
RAS  
CAS  
( CS , CAS = Low, RAS , WE = High)  
Read data is available after CAS latency requirements have been met.  
This command sets the burst start address given by the column address.  
WE  
BA0,BA1  
(Bank select)  
A10  
Add  
Col.  
Fig. 5 Column address and  
read command  
CLK  
CBR (auto) refresh command  
H
CKE  
CS  
( CS ,RAS , CAS = Low, WE , CKE = High)  
This command is a request to begin the CBR refresh operation. The refresh  
address is generated internally.  
Before executing CBR refresh, all banks must be precharged.  
After this cycle, all banks will be in the idle (precharged) state and ready for a  
row activate command.  
RAS  
CAS  
WE  
During tRC period (from refresh command to refresh or activate command), the  
M12L2561616A cannot accept any other command.  
BA0,BA1  
(Bank select)  
A10  
Add  
Fig. 6 Auto refresh command  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
14/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
CLK  
CKE  
Self refresh entry command  
( CS ,RAS , CAS , CKE = Low , WE = High)  
CS  
RAS  
CAS  
After the command execution, self refresh operation continues while CKE  
remains low. When CKE goes to high, the M12L2561616A exits the self refresh  
mode.  
During self refresh mode, refresh interval and refresh operation are performed  
internally, so there is no need for external control.  
WE  
Before executing self refresh, all banks must be precharged.  
BA0, BA1  
(Bank select)  
A10  
Add  
Fig. 7 Self refresh entry  
command  
CLK  
Burst stop command  
H
CKE  
( CS , WE = Low, RAS , CAS = High)  
CS  
RAS  
CAS  
This command terminates the current burst operation.  
Burst stop is valid at every burst length.  
WE  
BA0, BA1  
(Bank select)  
A10  
Add  
Fig. 8 Burst stop command  
CLK  
No operation  
CKE  
CS  
H
( CS = Low, RAS , CAS , WE = High)  
This command is not an execution command. No operations begin or terminate  
by this command.  
RAS  
CAS  
WE  
BA0, BA1  
(Bank select)  
A10  
Add  
Fig. 9 No operation  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 15/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
BASIC FEATURE AND FUNCTION DESCRIPTIONS  
1. CLOCK Suspend  
1 ) C l o c k S u s p e n d e d D u r i n g W r i t e ( B L = 4 )  
2 ) C l o c k S u s p e n d e d D u r i n g R e a d ( B L = 4 )  
CL K  
C M D  
C K E  
W R  
R D  
M as k e d b y CK E  
I nt ern al  
CLK  
D2  
D 3  
D Q ( C L 2 )  
D Q ( C L 3 )  
D 0  
D0  
Q3  
Q3  
D 1  
D 1  
Q1  
Q1  
Q0  
Q2  
Q2  
D 2  
D 3  
Q0  
N ot W ri t t e n  
Suspe nded Dout  
2. DQM Operation  
2 ) R e a d M a s k ( B L = 4 )  
1 ) W r i t e M a s k ( B L = 4 )  
CL K  
C M D  
R D  
W R  
D Q M  
DQ ( C L 2 )  
DQ ( C L 3 )  
M a s k e d b y D Q M  
M a s k e d b y D Q M  
H i - Z  
D0  
D1  
Q2  
Q3  
Q2  
D3  
Q0  
H i - Z  
D3  
D1  
D0  
Q1  
Q3  
DQ M t o D at a-i n M ask = 0  
DQ M to D at a- ou t M ask = 2  
* N o t e 2  
3 ) D Q M w i t h c l c o k s u s p e n d e d ( F u l l P a g e R e a d )  
CLK  
R D  
C M D  
CK E  
I nter na l  
CLK  
D Q M  
H i - Z  
H i - Z  
H i - Z  
H i - Z  
H i - Z  
Q4  
Q3  
Q6  
Q5  
Q7  
Q6  
Q2  
Q8  
Q7  
Q0  
DQ ( C L 2 )  
DQ ( C L 3 )  
H i - Z  
Q1  
*Note : 1. CKE to CLK disable/enable = 1CLK.  
2. DQM masks data out Hi-Z after 2CLKs which should masked by CKE ”L”.  
3. DQM masks both data-in and data-out.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 16/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
3. CAS Interrupt (I)  
* N o t e 1  
1 )R e a d i n t e r ru p t e d b y R e a d (B L =4 )  
CL K  
C MD  
R D  
A
R D  
B
AD D  
DQ (C L 2 )  
D Q( CL 3 )  
QA0  
QB1 QB2 QB3  
QB0  
QB1 QB2 QB3  
QA0 QB0  
t C CD  
* N o t e  
2
2 ) W r i t e i n t e r r u p t e d b y W ri t e (B L = 2 )  
3 ) W r i t e in t e r ru p t e d b y R e a d (B L = 2 )  
C L K  
C MD  
WR  
WR  
W R  
R D  
tC CD * N o t e  
2
t CC D * No t e  
2
A
ADD  
D Q  
A
B
B
DQ (C L 2 )  
D B1  
DB0  
D A0 DB0 D B1  
tC D L  
D A0  
DA0  
D B0  
D Q( CL 3 )  
* No t e  
3
D B1  
tC D L  
* No t e  
3
*Note : 1. By “interrupt” is meant to stop burst read/write by external before the end of burst.  
By ” CAS interrupt ”, to stop burst read/write by CAS access ; read and write.  
2. tCCD : CAS to CAS delay. (=1CLK)  
3. tCDL : Last data in to new column address delay. (=1CLK)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 17/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
4. CAS Interrupt (II) : Read Interrupted by Write & DQM  
( a) CL =2 , B L= 4  
CLK  
i ) C M D  
W R  
D0  
R D  
R D  
R D  
R D  
D Q M  
D Q  
D2  
D1  
D3  
i i ) C M D  
W R  
D Q M  
D Q  
H i - Z  
D3  
D2  
D1  
D0  
D1  
D2  
i i i ) C M D  
W R  
D Q M  
D Q  
H i - Z  
D0  
D1  
D3  
i v ) C M D  
W R  
D Q M  
D Q  
H i - Z  
Q0  
D2  
D0  
D3  
* N o t e 1  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
18/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
(b) CL = 3 , B L= 4  
CLK  
i ) C M D  
W R  
D0  
R D  
R D  
R D  
R D  
R D  
D Q M  
D Q  
D1  
D2  
D3  
W R  
i i ) C M D  
D Q M  
D Q  
D0  
D1  
D2  
D3  
i i i ) C M D  
W R  
D Q M  
D Q  
D3  
D2  
D1  
D0  
D2  
D1  
W R  
i v ) C M D  
D Q M  
D Q  
H i - Z  
D0  
D1  
D3  
v ) C M D  
W R  
D Q M  
D Q  
H i - Z  
D2  
D3  
Q0  
D0  
* N o t e 1  
*Note : 1. To prevent bus contention, there should be at least one gap between data in and data out.  
5. Write Interrupted by Precharge & DQM  
C LK  
*
N o t e 3  
P R E  
W R  
CMD  
*
N
o t e 2  
DQM  
DQ  
D
D1  
D
3
0
D2  
tRD L(m in)  
M
a
s
k
e
d
b
y
D Q M  
*Note : 1. To prevent bus contention, DQM should be issued which makes at least one gap between data in and data out.  
2. To inhibit invalid write, DQM should be issued.  
3. This precharge command and burst write command should be of the same bank, otherwise it is not precharge interrupt  
but only another bank precharge of four banks operation.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 19/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
6. Precharge  
1 ) N o r m a l W r i t e ( B L = 4 )  
2 ) N o r m a l R e a d ( B L = 4 )  
CLK  
C M D  
D Q  
CL K  
C M D  
PR E CL= 2  
PR E  
W R  
D0  
R D  
* N o t e 2  
DQ ( C L 2 )  
C M D  
Q0  
Q1  
Q0  
Q3  
Q2  
PR E  
Q1  
D1  
D2  
D3  
tR D L  
* N o t e 1  
CL= 3  
* N o t e 2  
Q2  
DQ ( C L 3 )  
Q3  
.
7. Auto Precharge  
1 ) N o r m a l W r i t e ( B L = 4 )  
2 ) N o r m a l R e a d ( B L = 4 )  
CLK  
CLK  
C M D  
C M D  
D Q  
W R  
R D  
D3  
D2  
D3  
D1  
DQ ( C L 2 )  
DQ ( C L 3 )  
D0  
D1  
D0  
D2  
D1  
D0  
D2  
tR D L ( m i n )  
D3  
* N o t e 3  
Auto Pr ech arge st art s  
* N o t e 3  
Auto Pr ech arge st art s  
*Note : 1. tRDL : Last data in to row precharge delay.  
2. Number of valid output data after row precharge : 1,2 for CAS Latency = 2,3 respectively.  
3. The row active command of the precharge bank can be issued after tRP from this point.  
The new read/write command of other activated bank can be issued from this point.  
At burst read/write with auto precharge, CAS interrupt of the same/another bank is illegal.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 20/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
8. Burst Stop & Interrupted by Precharge  
1 ) W r i t e B u r s t S t o p ( B L = 8 )  
1 ) W r i t e i n t e r r u p t e d b y p r e c h a r g e ( B L = 4 )  
C L K  
C L K  
* N o t e 3  
* N o t e 4  
C MD  
C MD  
W R  
W R  
D 0  
P R E  
S TO P  
t
R D L  
D Q M  
D Q  
D Q M  
D Q  
M a s k  
D 0  
D 1  
M a s k  
D 1  
D 2  
D 3  
D 4  
D 5  
* N o t e 1  
t
B D L  
2 ) R e a d B u r s t S t o p ( B L = 4 )  
2 ) R e a d i n t e r r u p t e d b y p r e c h a r g e ( B L = 4 )  
C L K  
C L K  
C MD  
* N o t e 5  
C MD  
R D  
R D  
P R E  
Q2  
S TO P  
Q0  
* N o t e 2  
D Q ( C L 3 )  
Q0  
D Q ( C L2 )  
D Q ( C L 3 )  
Q1  
Q0  
Q3  
Q2  
Q1  
Q0  
* N o t e 2  
D Q ( C L2 )  
Q1  
Q3  
Q1  
9. MRS  
1 ) M o d e R e g i s t e r S e t  
CLK  
* N o t e 4  
C M D  
A C T  
PR E  
M R S  
tR P  
2 C L K  
*Note: 1. tBDL : 1 CLK ; Last data in to burst stop delay.  
Read or write burst stop command is valid at every burst length.  
2. Number of valid output data after burst stop : 1,2 for CAS latency = 2,3 respectiviely.  
3. Write burst is terminated. tBDL determinates the last data write.  
4. DQM asserted to prevent corruption of locations D2 and D3.  
5. Precharge can be issued here or earlier (satisfying tRAS min delay) with DQM.  
6. PRE : All banks precharge, if necessary.  
MRS can be issued only at all banks precharge state.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 21/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
10. Clock Suspend Exit & Power Down Exit  
1 ) C l o c k S u s p e n d ( = Ac t i v e P o w e r D o w n ) E x i t  
2 ) P o w e r D o w n ( = P r e c h a r g e P o w e r D o w n )  
CLK  
CK E  
CLK  
CK E  
tS S  
tS S  
Inter nal  
Internal  
CLK  
* N o t e 1  
* N o t e 2  
CLK  
C M D  
R D  
C M D  
A C T  
NO P  
11. Auto Refresh & Self Refresh  
* N o t e 3  
1 ) A u t o R e f r e s h  
&
S e l f R e f r e s h  
C L K  
* N o t e 4  
* N o t e 5  
CM D  
P R E  
A R  
CM D  
C K E  
t
R P  
t
R F C  
* N o t e 6  
2 ) S e l f R e f r e s h  
C L K  
* N o t e 4  
CM D  
S R  
P R E  
C M D  
C K E  
t
R P  
t
R F C  
*Note : 1. Active power down : one or more banks active state.  
2. Precharge power down : all banks precharge state.  
3. The auto refresh is the same as CBR refresh of conventional DRAM.  
No precharge commands are required after auto refresh command.  
During tRFC from auto refresh command, any other command can not be accepted.  
4. Before executing auto/self refresh command, all banks must be idle state.  
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.  
6. During self refresh entry, refresh interval and refresh operation are performed internally.  
After self refresh entry, self refresh mode is kept while CKE is low.  
During self refresh entry, all inputs expect CKE will be don’t cared, and outputs will be in Hi-Z state.  
For the time interval of tRFC from self refresh exit command, any other command can not be accepted.  
Before/After self refresh mode, burst auto refresh (8192 cycles) is recommended.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 22/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
12. About Burst Type Control  
At MRS A3 = “0”. See the BURST SEQUENCE TABLE. (BL = 4,8)  
BL = 1, 2, 4, 8 and full page.  
Sequential Counting  
Basic  
MODE  
At MRS A3 = “1”. See the BURST SEQUENCE TABLE. (BL = 4,8)  
BL = 4, 8 At BL =1, 2 interleave Counting = Sequential Counting  
Interleave Counting  
Every cycle Read/Write Command with random column address can realize Random  
Column Access.  
That is similar to Extended Data Out (EDO) Operation of conventional DRAM.  
Random Random Column Access  
MODE  
tCCD = 1 CLK  
13. About Burst Length Control  
At MRS A210 = “000”  
At auto precharge . tRAS should not be violated.  
1
2
At MRS A210 = “001”  
At auto precharge . tRAS should not be violated.  
Basic  
MODE  
4
8
At MRS A210 = “010”  
At MRS A210 = “011”  
At MRS A210 = “111”  
At the end of the burst length , burst is warp-around.  
Full Page  
At MRS A9 = “1”  
Read burst = 1,2,4,8, full page write burst =1  
At auto precharge of write, tRAS should not be violated.  
Special  
MODE  
BRSW  
tBDL = 1, Valid DQ after burst stop is 1, 2 for CAS latency 2, 3 respectively.  
Using burst stop command, any burst length control is possible.  
Random  
MODE  
Burst Stop  
Before the end of burst. Row precharge command of the same bank stops read /write burst  
with auto precharge.  
RAS Interrupt  
(Interrupted by  
Precharge)  
t
RDL = 1 with DQM , Valid DQ after burst stop is 1, 2 for CAS latency 2, 3 respectively.  
During read/write burst with auto precharge, RAS interrupt can not be issued.  
Interrupt  
MODE  
Before the end of burst, new read/write stops read/write burst and starts new read/write  
burst.  
CAS Interrupt  
During read/write burst with auto precharge, CAS interrupt can not be issued.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 23/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
FUNCTION TURTH TABLE (TABLE 1)  
Current  
WE  
BA  
ADDR  
ACTION  
Note  
CS RAS CAS  
State  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
X
H
H
H
L
L
L
L
X
H
H
H
H
L
X
H
H
L
H
H
L
X
H
L
X
H
L
H
L
X
H
L
H
L
H
L
X
X
H
L
H
L
H
L
X
X
H
L
H
L
H
L
X
X
H
L
X
X
X
X
H
L
X
X
X
BA  
BA  
BA  
X
X
X
X
NOP  
NOP  
ILLEGAL  
2
2
IDLE  
CA, A10/AP ILLEGAL  
RA  
A10/AP  
Row (&Bank) Active ; Latch RA  
NOP  
Auto Refresh or Self Refresh  
Mode Register Access  
NOP  
NOP  
ILLEGAL  
4
5
5
X
L
OP code  
X
OP code  
X
H
H
L
X
X
X
X
X
2
2
Row  
Active  
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
BA  
X
X
X
X
BA  
BA  
X
X
X
CA, A10/AP Begin Read ; latch CA ; determine AP  
CA, A10/AP Begin Write ; latch CA ; determine AP  
RA  
A10/AP  
L
H
H
L
X
H
H
L
ILLEGAL  
Precharge  
ILLEGAL  
L
L
X
X
X
X
X
H
H
H
H
L
NOP (Continue Burst to End Æ Row Active)  
NOP (Continue Burst to End Æ Row Active)  
Term burst Æ Row active  
Read  
Write  
CA, A10/AP Term burst, New Read, Determine AP  
CA, A10/AP Term burst, New Write, Determine AP  
RA  
A10/AP  
L
3
2
H
H
L
X
H
H
L
ILLEGAL  
L
L
Term burst, Precharge timing for Reads  
ILLEGAL  
NOP (Continue Burst to End Æ Row Active)  
NOP (Continue Burst to End Æ Row Active)  
Term burst Æ Row active  
X
X
X
X
X
H
H
H
H
L
CA, A10/AP Term burst, New Read, Determine AP  
CA, A10/AP Term burst, New Write, Determine AP  
RA  
A10/AP  
3
3
2
3
L
H
H
L
X
H
H
L
H
L
X
H
H
L
ILLEGAL  
L
L
Term burst, Precharge timing for Writes  
ILLEGAL  
NOP (Continue Burst to End Æ Row Active)  
NOP (Continue Burst to End Æ Row Active)  
ILLEGAL  
X
X
X
X
X
H
H
H
L
Read with  
Auto  
Precharge  
CA, A10/AP ILLEGAL  
RA, RA10  
ILLEGAL  
ILLEGAL  
2
2
L
X
X
X
X
X
H
H
H
L
NOP (Continue Burst to End Æ Row Active)  
NOP (Continue Burst to End Æ Row Active)  
ILLEGAL  
Write with  
Auto  
Precharge  
X
X
X
X
BA  
BA  
X
CA, A10/AP ILLEGAL  
RA, RA10  
X
H
L
ILLEGAL  
ILLEGAL  
L
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
24/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Current  
State  
BA  
ADDR  
ACTION  
NOP Æ Idle after tRP  
NOP Æ Idle after tRP  
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP Æ Idle after tRPL  
ILLEGAL  
NOP Æ Row Active after tRCD  
NOP Æ Row Active after tRCD  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP Æ Idle after tRFC  
NOP Æ Idle after tRFC  
ILLEGAL  
ILLEGAL  
ILLEGAL  
Note  
CS RAS CAS WE  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
X
H
H
H
L
X
H
H
L
H
H
L
X
H
H
L
H
H
L
X
H
L
H
L
X
H
H
L
X
H
L
X
H
L
X
X
H
L
X
H
L
X
X
X
X
X
X
X
H
L
X
X
X
BA  
BA  
BA  
X
X
X
X
BA  
BA  
BA  
X
X
X
X
X
X
X
X
X
X
CA  
RA  
A10/AP  
Read with  
Auto  
Precharge  
2
2
2
4
L
L
X
X
X
X
X
H
H
H
L
L
L
X
H
H
L
Row  
Activating  
2
2
2
2
CA  
RA  
A10/AP  
X
X
X
X
X
X
X
X
X
X
X
Refreshing  
L
X
H
H
H
L
NOP Æ Idle after 2clocks  
NOP Æ Idle after 2clocks  
ILLEGAL  
ILLEGAL  
ILLEGAL  
Mode  
Register  
Accessing  
X
X
X
X
X
X
X
Abbreviations :  
RA = Row Address  
NOP = No Operation Command  
BA = Bank Address  
CA = Column Address  
AP = Auto Precharge  
*Note : 1. All entries assume the CKE was active (High) during the precharge clock and the current clock cycle.  
2. Illegal to bank in specified state ; Function may be legal in the bank indicated by BA, depending on the state of the  
bank.  
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.  
4. NOP to bank precharge or in idle state. May precharge bank indicated by BA (and A10/AP).  
5. Illegal if any bank is not idle.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 25/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
FUNCTION TRUTH TABLE (TABLE2)  
Current  
State  
CKE  
( n-1 )  
H
L
L
L
L
L
L
H
L
CKE  
n
ADDR  
ACTION  
Note  
CS RAS CAS WE  
X
H
H
H
H
H
L
X
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
X
H
L
L
L
X
X
H
H
H
L
X
X
X
H
H
H
L
X
X
X
H
H
H
L
X
X
H
H
L
X
X
X
X
H
H
L
X
X
X
X
H
H
L
H
H
L
X
X
H
L
X
X
X
X
X
H
L
X
X
X
X
X
H
L
X
H
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
Exit Self Refresh Æ Idle after tRFC (ABI)  
Exit Self Refresh Æ Idle after tRFC (ABI)  
ILLEGAL  
6
6
Self  
Refresh  
ILLEGAL  
ILLEGAL  
L
X
X
H
L
L
L
NOP (Maintain Self Refresh)  
INVALID  
Exit Self Refresh Æ ABI  
Exit Self Refresh Æ ABI  
ILLEGAL  
All  
Banks  
Precharge  
Power  
7
7
L
L
L
L
ILLEGAL  
ILLEGAL  
Down  
L
L
X
X
H
L
L
L
L
L
L
NOP (Maintain Low Power Mode)  
Refer to Table1  
H
H
H
H
H
H
H
H
H
L
Enter Power Down  
Enter Power Down  
ILLEGAL  
8
8
X
X
X
RA  
X
X
All  
Banks  
Idle  
ILLEGAL  
Row (& Bank) Active  
NOP  
Enter Self Refresh  
Mode Register Access  
NOP  
Refer to Operations in Table 1  
Begin Clock Suspend next cycle  
Exit Clock Suspend next cycle  
Maintain Clock Suspend  
L
L
8
L
L
L
L
OP Code  
L
H
L
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Any State  
other than  
Listed  
H
H
L
9
9
above  
L
Abbreviations : ABI = All Banks Idle, RA = Row Address  
*Note : 6.CKE low to high transition is asynchronous.  
7.CKE low to high transition is asynchronous if restart internal clock.  
A minimum setup time 1CLK + tSS must be satisfy before any command other than exit.  
8.Power down and self refresh can be entered only from the all banks idle state.  
9.Must be a legal command.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
26/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Single Bit Read-Write-Read Cycle(Same Page) @ CAS Latency = 3,Burst Length = 1  
t
C H  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
t
C L  
t
C C  
H I G H  
C K E  
t
R A S  
R C  
t
t
S
H
* N o t e 1  
C S  
t
R C D  
t R P  
t
S S  
t
S H  
R A S  
C A S  
t
C C D  
t
S S  
t
S H  
t
S S  
t
S H  
A D D R  
Ca  
Cb  
R a  
C c  
Rb  
t
S S  
* N o t e 2  
* N o t e 2 , 3  
* N o t e 4  
* N o t e 2 , 3  
* N o t e 2  
* N o t e 2 , 3  
BS  
BS  
B S  
BA0,BA1  
A10/AP  
BS  
BS  
B S  
* N o t e 3  
* N o t e 3  
* N o t e 4  
Rb  
* N o t e 3  
R a  
t
S H  
t
S A C  
Q a  
D b  
D Q  
Q c  
t
S L Z  
t
S S  
t
O H  
t
S H  
W E  
t
S S  
t
S S  
t
S H  
D Q M  
R ow A ct i ve  
Read  
Read  
Ro w Ac tiv e  
W r i t e  
Pr ec ha rge  
: D o n ' t C a r e  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 27/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Note : 1. All input expect CKE & DQM can be don’t care when CS is high at the CLK high going edge.  
2. Bank active @ read/write are controlled by BA0~BA1.  
BA0  
BA1  
Active & Read/Write  
Bank A  
0
0
1
1
0
1
0
1
Bank B  
Bank C  
Bank D  
3. Enable and disable auto precharge function are controlled by A10/AP in read/write command  
A10/AP  
BA0  
0
BA1  
0
Operating  
Disable auto precharge, leave A bank active at end of burst.  
Disable auto precharge, leave B bank active at end of burst.  
Disable auto precharge, leave C bank active at end of burst.  
Disable auto precharge, leave D bank active at end of burst.  
Enable auto precharge , precharge bank A at end of burst.  
Enable auto precharge , precharge bank B at end of burst.  
Enable auto precharge , precharge bank C at end of burst.  
Enable auto precharge , precharge bank D at end of burst.  
0
1
0
1
0
1
1
0
0
0
1
1
1
0
1
1
4. A10/AP and BA0~BA1 control bank precharge when precharge is asserted.  
A10/AP  
BA0  
0
BA1  
0
Precharge  
Bank A  
0
0
0
0
1
0
1
Bank B  
1
0
Bank C  
1
1
Bank D  
X
X
All Banks  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 28/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Power Up Sequence  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
29/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Read & Write Cycle at Same Bank @ Burst Length = 4  
13  
14  
15  
16  
17  
18  
19  
0
1
2
3
4
5
6
7
8
9
11  
12  
10  
C L O C K  
H I GH  
C K E  
* N o t e 1  
t
R C  
C S  
t
R C D  
R A S  
* N o t e 2  
C A S  
A D D R  
BA0  
Cb  
Ca  
R b  
R a  
BA1  
A10/AP  
C L = 2  
Ra  
Rb  
Q a0 Q a1  
D b 0 D b 1 D b 2 Db 3  
D b0 Db 1 Db 2 Db 3  
Q a 2 Q a 3  
* N o t e 3  
D Q  
t
R D L  
C L = 3  
Qa 0 Qa 1  
Q a3  
Q a2  
* N o t e 3  
t
R D L  
W E  
DQ M  
Precharge  
( A - Bank )  
Read  
( A - Bank )  
Row Active  
( A - Bank )  
Write  
( A - Bank )  
Row Active  
( A - Bank )  
Pr ec ha r ge  
( A - Ba nk )  
: D o n ' t C a r e  
*Note :  
1. Minimum row cycle times is required to complete internal DRAM operation.  
2. Row precharge can interrupt burst on any cycle. [CAS Latency-1] number of valid output data is available after Row  
precharge. Last valid output will be Hi-Z (tSHZ) after the clock.  
3. Output will be Hi-Z after the end of burst. (1,2,4,8 & Full page bit burst)  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 30/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Page Read & Write Cycle at Same Bank @ Burst Length = 4  
Note : 1. To Write data before burst read ends. DQM should be asserted three cycle prior to write command to avoid bus  
contention.  
2. Row precharge will interrupt writing. Last data input , tRDL before row precharge , will be written.  
3. DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input  
data after Row precharge cycle will be masked internally.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 31/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Page Read Cycle at Different Bank @ Burst Length = 4  
Note: 1. CS can be don’t cared when RAS , CAS and WE are high at the clock high going edge.  
2. To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 32/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Page Write Cycle at Different Bank @ Burst Length = 4  
*Note : 1. To interrupt burst write by Row precharge , DQM should be asserted to mask invalid input data.  
2. To interrupt burst write by Row precharge , both the write and the precharge banks must be the same.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 33/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Read & Write Cycle at Different Bank @ Burst Length = 4  
*Note : 1. tCDL should be met to complete write.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
34/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Read & Write cycle with Auto Precharge @ Burst Length = 4  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
35/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Clock Suspension & DQM Operation Cycle @ CAS Letency = 2 , Burst Length = 4  
*Note : 1. DQM is needed to prevent bus contention  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 36/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Read interrupted by Precharge Command & Read Burst Stop Cycle @ Burst Length = Full page  
*Note : 1. About the valid DQs after burst stop, it is same as the case of RAS interrupt.  
Both cases are illustrated above timing diagram. See the label 1,2 on them.  
But at burst write, Burst stop and RAS interrupt should be compared carefully.  
Refer the timing diagram of “Full page write burst stop cycles”.  
2. Burst stop is valid at every burst length.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 37/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Write interrupted by Precharge Command & Write Burst Stop Cycle @ Burst Length = Full page  
*Note : 1. Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by  
AC parameter of tRDL  
.
DQM at write interrupted by precharge command is needed to prevent invalid write.  
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst. Input  
data after Row precharge cycle will be masked internally.  
2. Burst stop is valid at every burst length.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 38/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Active/Precharge Power Down Mode @ CAS Latency = 2, Burst Length = 4  
16  
17  
18  
11  
12  
13  
14  
15  
19  
0
1
2
5
9
1 0  
3
4
6
7
8
C L O C K  
C K E  
H I G H  
C S  
R A S  
C A S  
A D D R  
CA b  
R Aa  
C Aa  
B A0  
BA 1  
A10/AP  
D Q  
R Aa  
t
R D L  
t
B D L  
* N o t e 1  
DAb0  
D Aa0 DAa1 DA a2  
DA b2  
D Aa3 DAa4  
D Ab1  
D Ab3  
DA b5  
D Ab4  
W E  
D Q M  
W r it e  
( A- B a nk )  
Burs t Stop  
Ro w Ac ti ve  
( A- Ba n k)  
Pr ec ha rge  
( A- B an k)  
W r it e  
( A- B a nk )  
:D o n't C a r e  
*Note: 1. Both banks should be in idle state prior to entering precharge power down mode.  
2. CKE should be set high at least 1CLK + tSS prior to Row active command.  
3. Can not violate minimum refresh specification.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 39/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Self Refresh Entry & Exit Cycle  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C L O C K  
C K E  
* N o t e 4  
* N o t e 2  
t
R F C mi n  
* N o t e 1  
* N o t e 6  
* N o t e 3  
t
S S  
C S  
* N o t e 5  
R A S  
* N o t e 7  
C A S  
A D D R  
B A 0 , B A 1  
A10/AP  
DQ  
Hi -Z  
Hi -Z  
W E  
D Q M  
S e l f R e f r e s h E x i t  
S e l f R e f r e s h E n t r y  
A u t o R e f r e s h  
:
D o n ' t c a r e  
*Note : TO ENTER SELF REFRESH MODE  
1. CS , RAS & CAS with CKE should be low at the same clock cycle.  
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.  
3. The device remains in self refresh mode as long as CKE stays “Low”.  
cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.  
TO EXIT SELF REFRESH MODE  
4. System clock restart and be stable before returning CKE high.  
5. CS starts from high.  
6. Minimum tRFC is required after CKE going high to complete self refresh exit.  
7. 8K cycle of burst auto refresh is required before self refresh entry and after self refresh exit if the system uses burst  
refresh.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 40/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
C L O C K  
C K E  
H I G H  
H I G H  
C S  
* N o t e 2  
tR F C  
R A S  
* N o t e 1  
* N o t e 3  
C A S  
A D D R  
R a  
Key  
H I - Z  
H I - Z  
D Q  
W E  
D Q M  
New  
Co m m an d  
M R S  
New C om m a n d  
:D o n' t C ar e  
Au to Ref r es h  
All banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.  
MODE REGISTER SET CYCLE  
*Note : 1. CS , RAS , CAS , & WE activation at the same clock cycle with address key will set internal mode register.  
2. Minimum 2 clock cycles should be met before new RAS activation.  
3. Please refer to Mode Register Set table.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 41/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
PACKING DIMENSIONS  
54-LEAD TSOP(II) SDRAM (400mil)  
SEE DETAIL "A"  
Symbol  
Dimension in mm  
Dimension in inch  
Min  
Norm  
Max  
Min  
Norm  
Max  
A
A1  
A2  
b
b1  
c
c1  
D
ZD  
E
1.20  
0.15  
1.05  
0.45  
0.40  
0.21  
0.16  
0.047  
0.006  
0.041  
0.018  
0.016  
0.008  
0.006  
0.05  
0.95  
0.30  
0.30  
0.12  
0.10  
0.10  
1.00  
0.002  
0.037  
0.012  
0.012  
0.005  
0.004  
0.004  
0.039  
0.35  
0.014  
0.127  
0.005  
22.22 BSC  
0.71 REF  
11.76 BSC  
10.16 BSC  
0.50  
0.875 BSC  
0.028 REF  
0.463 BSC  
0.400 BSC  
0.020  
E1  
L
0.40  
0.60  
0.016  
0.024  
L1  
e
0.80 REF  
0.80 BSC  
0.031 REF  
0.031 BSC  
R1  
R2  
θ
0.12  
0.12  
0°  
0.005  
0.005  
0°  
0.25  
8°  
0.010  
8°  
0°  
θ 1  
θ 2  
θ 3  
y
0°  
10°  
10°  
15°  
15°  
20°  
20°  
15°  
15°  
20°  
20°  
10°  
10°  
0.100  
0.004  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 42/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
PACKING  
54-BALL  
DIMENSIONS  
SDRAM ( 8x13 mm )  
Symbol  
Dimension in mm  
Dimension in inch  
Min  
Norm  
Max  
1.00  
0.40  
0.636  
0.540  
8.10  
Min  
Norm  
Max  
A
A1  
A2  
Φb  
D
0.039  
0.016  
0.025  
0.020  
0.319  
0.516  
0.30  
0.536  
0.40  
7.90  
12.90  
0.35  
0.586  
0.45  
8.00  
13.00  
0.012  
0.021  
0.016  
0.311  
0.508  
0.014  
0.023  
0.018  
0.315  
0.512  
E
13.10  
D1  
E1  
e
6.40 BSC  
6.40 BSC  
0.80 BSC  
0.252 BSC  
0.252 BSC  
0.031 BSC  
Controlling dimension : Millimeter.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
43/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Revision History  
Revision  
1.0  
Date  
Description  
2007.10.19  
2007.10.29  
2009.05.19  
Original  
1.1  
Add BGA package  
1.2  
Modify Solder ball dimension  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2  
44/45  
ESMT  
M12L2561616A  
Operation Temperature Condition -40~85°C  
Important Notice  
All rights reserved.  
No part of this document may be reproduced or duplicated in any form or by any means without  
the prior permission of ESMT.  
The contents contained in this document are believed to be accurate at the time of publication.  
ESMT assumes no responsibility for any error in this document, and reserves the right to change  
the products or specification in this document without notice.  
The information contained herein is presented only as a guide or examples for the application of  
our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights,  
or other intellectual property rights of third parties which may result from its use. No license, either  
express , implied or otherwise, is granted under any patents, copyrights or other intellectual  
property rights of ESMT or others.  
Any semiconductor devices may have inherently a certain rate of failure. To minimize risks  
associated with customer's application, adequate design and operating safeguards against injury,  
damage, or loss from such failure, should be provided by the customer when making application  
designs.  
ESMT's products are not authorized for use in critical applications such as, but not limited to, life  
support devices or system, where failure or abnormal operation may directly affect human lives or  
cause physical injury or property damage. If products described here are to be used for such  
kinds of application, purchaser must do its own quality assurance testing appropriate to such  
applications.  
Elite Semiconductor Memory Technology Inc.  
Publication Date: May 2008  
Revision: 1.2 45/45  

相关型号:

M12L2561616A-6BIG2A

Synchronous DRAM, 16MX16, 5.4ns, CMOS, PBGA54, 8 X 8 MM, 1 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, BGA-54
ESMT

M12L2561616A-6BIG2K

Synchronous DRAM, 16MX16, 5.4ns, CMOS, PBGA54, 8 X 8 MM, 1 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, BGA-54
ESMT

M12L2561616A-6BIG2S

Synchronous DRAM, 16MX16, 5.4ns, CMOS, PBGA54, 8 X 8 MM, 1 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, BGA-54
ESMT

M12L2561616A-6TG

4M x 16 Bit x 4 Banks Synchronous DRAM
ESMT

M12L2561616A-6TG2A

Synchronous DRAM, 16MX16, 5.4ns, CMOS, PDSO54, 0.400 X 0.875 INCH, 0.80 MM PITCH, ROHS COMPLIANT, TSOP2-54
ESMT

M12L2561616A-6TG2K

JEDEC standard 3.3V power supply
ESMT
ESMT

M12L2561616A-6TIG

4M x 16 Bit x 4 Banks Synchronous DRAM
ESMT
ESMT

M12L2561616A-6TIG2K

Synchronous DRAM, 16MX16, 5.4ns, CMOS, PDSO54, 0.400 X 0.875 INCH, 0.80 MM PITCH, LEAD FREE, TSOP2-54
ESMT

M12L2561616A-6TIG2S

Synchronous DRAM, 16MX16, 5.4ns, CMOS, PDSO54, 0.400 X 0.875 INCH, 0.80 MM PITCH, ROHS COMPLIANT, TSOP2-54
ESMT

M12L2561616A-7BG

4M x 16 Bit x 4 Banks Synchronous DRAM
ESMT