PKM4318PIOA [ERICSSON]

DC-DC Regulated Power Supply Module, 1 Output, 30W, Hybrid, QUARTER BRICK PACKAGE-8;
PKM4318PIOA
型号: PKM4318PIOA
厂家: ERICSSON    ERICSSON
描述:

DC-DC Regulated Power Supply Module, 1 Output, 30W, Hybrid, QUARTER BRICK PACKAGE-8

局域网
文件: 总28页 (文件大小:428K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PKM 4000 PI  
15-20A DC/DC Power Modules  
48V Input, (1.5V-1.8V-2.5V-3.3V-5V) Outputs  
High efficiency 92% Typ (5V) at full load  
Fast dynamic response, 100µs,  
+
150 mVpeak Typ  
-
Low output ripple, 60 mVp-p Typ  
High power density, 44 W/in (5.0V)  
Wide input voltage range (36-75V)  
Industry standard footprint & pin-out  
1,500Vdc isolation voltage  
3
Max case temperature +100ºC  
UL 1950/UL 1950 Recognized  
c
TUV to EN60 950 Type Approved  
The PKM 4000 series represents a “third generation” of High  
Density DC/DC Power Modules in an industry standard quarter-  
brick package with unparalleled power densities and efficiencies.  
These breakthrough performance features have been achieved by  
using the most advanced patented topology, utilizing integrated  
magnetics and synchronous rectification on a low resistivity  
multilayer PCB. The product features fast dynamic response  
times and low output ripple, which are important parameters  
when supplying low voltage logics. The PKM 4000 series is  
especially suited for limited board space and high dynamic load  
applications such as demanding microprocessors.  
Ericsson’s PKM 4000 Power Modules address the converging  
“New Telecoms” market by specifying the input voltage range  
in accordance with ETSI specifications. The PKM 4000 series  
also offers over-voltage protection, under-voltage protection,  
over-temperature protection, soft-start, and is short circuit proof.  
These products are manufactured using highly automated  
manufacturing lines with a world-class quality commitment  
and a five-year warranty. Ericsson Inc., Microelectronics has  
been an ISO 9001 certified supplier since 1991.  
For a complete product program please reference the back page.  
General  
Absolute Maximum Ratings  
Stress in excess of Absolute Maximum Ratings may cause  
permanent damage. Absolute Maximum Ratings,  
sometimes referred to as no destruction limits, are  
normally tested with one parameter at a time exceeding  
the limits of Output data or Electrical Characteristics.  
Characteristics  
min  
-40  
max  
+100  
+125  
+80  
Unit  
°C  
TC  
TS  
VI  
Maximum Operating Case Temperature  
Storage temperature  
-40  
°C  
If exposed to stress above these limits, function and  
performance may degrade in an unspecified manner.  
For design margin and to enhance system reliability, it is  
recommended that the PKM 4000 series DC/DC power  
modules are operated at case temperatures below 90°C.  
Input voltage  
-0.5  
Vdc  
Vdc  
VISO Isolation voltage  
(input to output test voltage)  
1,500  
VRC Remote control voltage  
I2t  
12  
1
Vdc  
A2s  
Inrush transient  
Safety  
Input TC < TCmax  
Characteristics  
Conditions  
min typ max Unit  
The PKM 4000 Series DC/DC power modules are  
designed in accordance with EN 60 950, Safety of  
Information Technology Equipment Including  
Electrical Business Equipment and are TUV Type  
Approved.  
VI  
Input voltage  
range  
36  
75  
Vdc  
Vdc  
Vdc  
V
Ioff  
Turn-off input  
voltage  
Ramping from  
higher voltage  
31  
33  
34  
The PKM 4000 DC/DC power modules are also  
recognized by UL and meet the applicable  
requirements in UL 1950, Safety of Information  
Technology Equipment and applicable Canadian  
safety requirements, i.e. ULc 1950.  
VIon  
Turn-on input  
voltage  
Ramping from  
lower voltage  
36  
CI  
Input capacitance  
1.5  
10  
µF  
IIac  
Reflected  
ripple current  
5 Hz to 20 MHz  
mA p-p  
The isolation is an operational insulation in  
accordance with EN 60 950. The DC/DC power  
module should be installed in end-use equipment,  
in compliance with the requirements of the  
ultimate application, and is intended to be  
supplied by an isolated secondary circuit.  
Consideration should be given to measuring the  
case temperature to comply with TCmax when in  
operation.  
IImax  
Maximum input  
current  
VI = VI min  
75 W  
100 W  
1.8  
2.3  
A
PIi  
Input idling power  
IO = 0  
2.6 4.6  
0.4 0.6  
W
W
PRC  
Input  
stand-by power  
(turned off with RC)  
VI = 50V  
RC open  
VTRIM Maximum input  
voltage on trim pin  
6
Vdc  
When the supply to the DC/DC power  
module meets all the requirements for SELV  
(<60Vdc), the output is considered to remain  
within SELV limits (level 3). If connected to a 60V  
DC power system, reinforced insulation must be  
provided in the power supply that isolates the  
input from the mains. Single fault testing in the  
power supply must be performed in combination  
with the DC/DC power module to demonstrate  
that the output meets the requirement for SELV.  
One pole of the input and one pole of the output is  
to be grounded or both are to be kept floating.  
Environmental Characteristics  
Characteristics  
Test procedure & conditions  
Random  
Vibration  
IEC 68-2-34Fc  
Frequency  
10...500 Hz  
0.025 g2/Hz  
10 min in each  
direction  
Spectral density  
Duration  
Sinusoidal  
Vibration  
IEC 68-2-6 Fc  
Frequency  
Amplitude  
Acceleration  
10-500 Hz  
0.75mm  
10g  
Number of cycles  
10 in each axis  
Shock  
IEC 68-2-27 Ea  
IEC 68-2-14 Na  
Peak acceleration  
Duration  
100 g  
3ms  
(half sinus)  
Temperature  
change  
Temperature  
Number of cycles  
-40°C...+100°C  
300  
Accelerated  
damp heat  
IEC 68-2-3 Ca  
with bias  
Temperature  
Humidity  
85°C  
85% RH  
Duration  
1000 hours  
Solder  
resistibility  
IEC 68-2-20 Tb  
method IA  
Temperature, solder 260° C  
Duration 10...13 s  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
2
Safety (continued)  
• Isolate the failed module from the input source so that the  
remainder of the system may continue operation.  
• Protect the distribution wiring from overheating.  
The galvanic isolation is verified in an electric strength test. The  
test voltage (VISO) between input and output is 1,500 Vdc or 60 sec.  
Leakage current is less than 1µA @ 50Vdc.  
A fast blow fuse should be used with a rating of 10A or less. It is  
recommended to use a fuse with the lowest current rating, that is  
suitable for the application.  
Flammability ratings of the terminal support and internal plastic  
construction details meet UL 94V-0.  
A fuse should be used at the input of each PKM 4000 series power  
module. If a fault occurs in the power module, that imposes a short  
on the input source, this fuse will provide the following two functions:  
Mechanical Data  
Connections  
Weight  
55 grams  
Designation Function  
Pin # (for ref.)  
-IN  
Negative input  
1
2
ON/OFF  
Remote control (primary). To turn-on  
and turn-off the output  
Case  
+IN  
Positive input  
3
Aluminum baseplate with metal standoffs.  
-OUT  
-SEN  
Trim  
Negative output  
4
5
6
Negative remote sense  
Output voltage adjust  
Positive remote sense  
Positive output  
Pins  
+SEN  
+OUT  
7
8
Pin material: Brass  
Pin plating: Tin/Lead over Nickel.  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
3
Thermal Data  
Airflow Conversion Table  
The PKM 4000 series DC/DC power modules has a robust thermal  
design which allows operation at case (baseplate) temperatures (TC)  
up to +100°C. The main cooling mechanism is convection (free or  
forced) through the case or optional heatsinks.  
m/s  
lfm  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
100  
200  
300  
400  
500  
600  
The graphs below show the allowable maximum output current to  
maintain a maximum +100°C case temperature. Note that the ambient  
temperature is the air temperature adjacent to the power module which  
is typically elevated above the room environmental temperature.  
Note: Natural Convection average airflow speed can vary from 0.05 m/s to 0.2 m/s.  
Output Current Derating (No Heatsink) for 1.8V/15A  
PKM4218PI  
Output Current Derating (No Heatsink) for 1.5V/20A  
PKM4318PIOA  
15  
20  
3.0 m/s  
2.5 m/s  
3.0 m/s  
2.5 m/s  
15  
2.0 m/s  
10  
2.0 m/s  
1.5 m/s  
1.0 m/s  
1.5 m/s  
10  
0.5 m/s  
0.2 m/s  
1.0 m/s  
5
0
Natural Convection  
0.5 m/s  
5
0.2 m/s  
Natural Convection  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Output Current Derating (No Heatsink) for 2.5V/20A  
PKM4519PI  
Output Current Derating (No Heatsink) for 1.5V/15A  
PKM4218PIOA  
20  
15  
10  
5
15  
3.0 m/s  
2.5 m/s  
3.0 m/s  
2.5 m/s  
2.0 m/s  
1.5 m/s  
1.0 m/s  
0.5 m/s  
10  
5
2.0 m/s  
1.5 m/s  
1.0 m/s  
0.5 m/s  
0.2 m/s  
0.2 m/s  
Natural Convection  
Natural Convection  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Output Current Derating (No Heatsink) for 2.5V/15A  
PKM4319PI  
Output Current Derating (No Heatsink) for 1.8V/20A  
PKM4318PI  
20  
15  
10  
5
15  
10  
5
3.0 m/s  
2.5 m/s  
2.0 m/s  
1.5 m/s  
3.0 m/s  
2.5 m/s  
2.0 m/s  
1.5 m/s  
1.0 m/s  
1.0 m/s  
0.5 m/s  
0.5 m/s  
0.2 m/s  
Natural Convection  
0.2 m/s  
Natural Convection  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
4
Output Current Derating (No Heatsink) for 5V  
PKM4111PI and PKM4711PI  
Output Current Derating (No heatsink) for 3.3V  
PKM 4610PI and PKM 4510PI  
20  
15  
10  
5
20  
15  
10  
5
3.0 m/s  
3.0 m/s  
2.5 m/s  
2.0 m/s  
2.5 m/s  
2.0 m/s  
1.5 m/s  
1.5 m/s  
1.0 m/s  
0.5 m/s  
1.0 m/s  
0.5 m/s  
0.2 m/s  
Natural Convection  
0.2 m/s  
Natural Convection  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Allowable Power Dissipation vs. Ambient Temp for 2.5V  
PKM4519PI and PKM4319PI  
Thermal Data  
The graphs below can be used to estimate case temperatures  
for given system operating conditions (see Thermal Design).  
For further information on optional heatsinks, please contact  
your local Ericsson sales office.  
9
8
3.0 m/s  
2.5 m/s  
7
2.0 m/s  
6
1.5 m/s  
All Bending Points  
5
are at 6W  
4
1.0 m/s  
0.5 m/s  
3
2
0.2 m/s  
Natural Convection  
1
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Allowable Power Dissipation vs. Ambient Temp for 3.3V  
PKM 4610PI and PKM 4510PI  
Allowable Power Dissipation vs. Ambient Temp for 1.5V  
PKM4318PIOA and PKM4218PIOA  
12  
10  
2.0 m/s  
1.5 m/s  
3.0 m/s  
2.5 m/s  
3.0 m/s  
6
5
4
3
2
1
0
2.5 m/s  
2.0 m/s  
8
6
1.0 m/s  
0.5 m/s  
1.5 m/s  
1.0 m/s  
0.5 m/s  
0.2 m/s  
Natural Convection  
4
2
0
0.2 m/s  
Natural Convection  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Allowable Power Dissipation vs. Ambient Temp for 1.8V  
PKM4318PI and PKM4218PI  
Allowable Power Dissipation vs. Ambient Temp for 5V  
PKM4111PI and PKM4711PI  
16  
14  
12  
10  
8
7
3.0 m/s  
2.5 m/s  
3.0 m/s  
2.5 m/s  
6
2.0 m/s  
1.5 m/s  
5
4
All Bending Points  
are at 5.5W  
2.0 m/s  
1.5 m/s  
3
2
1
0
6
1.0 m/s  
0.5 m/s  
1.0 m/s  
0.5 m/s  
4
0.2 m/s  
Natural Convection  
0.2 m/s  
Natural Convection  
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Note: For conversion from m/s to lfm please see conversion table on pg. 4.  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
5
Thermal Data  
Power Dissipation vs. Output Current for 1.5V/20A  
PKM4318PIOA  
Power Dissipation vs. Output Current for 1.8V/15A  
PKM4218PI  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Vi=72v  
Vi=60v  
Vi=72v  
Vi=60v  
Vi=48v  
Vi=36v  
Vi=48v  
Vi=36v  
0
5
10  
15  
20  
0
5
10  
15  
Output Current (A)  
Output Current (A)  
Power Dissipation vs. Output Current for 1.5V/15A  
PKM4218PIOA  
Power Dissipation vs. Output Current for 2.5V/20A  
PKM4519PI  
5
4
3
2
1
0
8
6
4
2
0
Vi=72v  
Vi=60v  
Vi=72v  
Vi=60v  
Vi=48v  
Vi=36v  
Vi=48v  
Vi=36v  
0
5
10  
15  
0
5
10  
15  
20  
Output Current (A)  
Output Current (A)  
Power Dissipation vs. Output Current for 2.5V/15A  
PKM4319PI  
Power Dissipation vs. Output Current for 1.8V/20A  
PKM4318PI  
7
6
6
5
4
3
2
1
0
Vi=72v  
Vi=60v  
5
4
3
2
1
0
Vi=72v  
Vi=60v  
Vi=48v  
Vi=36v  
Vi=48v  
Vi=36v  
0
5
10  
15  
0
5
10  
15  
20  
Output Current (A)  
Output Current (A)  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
6
Thermal Data  
Power Dissipation vs. Output Current for 3.3V/20A  
PKM4610PI  
Power Dissipation vs. Output Current for 5V/20A  
PKM4111PI  
12  
10  
8
10  
8
6
Vi=72v  
Vi=60v  
Vi=72v  
Vi=60v  
6
Vi=48v  
4
2
0
Vi=48v  
4
Vi=36v  
2
Vi=36v  
0
5
10  
Output Current (A)  
15  
20  
0
0
5
10  
15  
20  
Output Current (A)  
Power Dissipation vs. Output Current for 3.3V/15A  
PKM4510PI  
Power Dissipation vs. Output Current for 5V/15A  
PKM4711PI  
8
7
6
5
4
3
2
1
0
6
Vi=72v  
Vi=60v  
Vi=72v  
Vi=60v  
5
4
3
2
1
0
Vi=48v  
Vi=48v  
Vi=36v  
Vi=36v  
0
5
10  
15  
0
5
10  
15  
Output Current (A)  
Output Current (A)  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
7
Thermal Design  
The thermal data can be used to determine thermal performance  
without a heatsink.  
For design margin and to enhance system reliability, it is recommended  
that the PKM 4000 series DC/DC power modules are operated at case  
temperatures below 90°C.  
Case temperature is calculated by the following formula:  
TC = TA + Pd x RthC-A (˚C/W)where Pd = PO(1/η - 1)  
Where:  
TC: Case Temperature  
TA: Local Ambient Temperature  
Pd: Dissipated Power  
RthC-A: Thermal Resistance from TC to TA  
Po: Output Power  
η: Efficiency  
The efficiency η can be found in the tables on the following pages.  
Case to Ambient Thermal Resistance  
PKM 4000 Series  
10  
8
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
Air Flow (m/s)  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
8
PKM 4318 PIOA (30W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
1.48  
1.5  
1.52  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax  
IO = 0 to IOmax  
1.2  
1.66  
1.58  
V
V
VO  
Output voltage  
tolerance band  
1.43  
Line regulation  
Load regulation  
IO = IOmax  
3
10  
10  
mV  
mV  
VI = 53V, IO = 0 to IOmax  
3
V
tr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
ttr  
Load transient  
recovery time  
100  
25  
µs  
ts  
IO  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
40  
20  
ms  
A
Output current  
0
POmax  
IIim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
30  
W
VO = 0.96 VOnom @ TC<100°C  
21  
24  
24  
70  
26  
A
ISC  
28  
A
VOac  
SVR  
IO = IOmax f < 20 MHz  
f<1kHz  
150  
mVp-p  
dB  
Supply voltage  
rejection (ac)  
-53  
2.2  
OVP  
Over voltage protection  
Vin = 50V  
2.5  
2.8  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
87  
max  
Unit  
%
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
IO = 0...1.0 x IOmax  
Pd  
fO  
Power dissipation  
Switching frequency  
4.5  
200  
W
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
9
PKM 4218 PIOA (22.5W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
1.48  
1.5  
1.52  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax  
IO = 0 to IOmax  
1.2  
1.66  
1.58  
V
V
VO  
Output voltage  
tolerance band  
1.43  
Line regulation  
Load regulation  
IO = IOmax  
3
10  
10  
mV  
mV  
VI = 53V, IO = 0 to IOmax  
3
V
tr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
ttr  
Load transient  
recovery time  
100  
25  
µs  
ts  
IO  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
40  
15  
ms  
A
Output current  
0
POmax  
IIim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
22.5  
21  
W
VO = 0.96 VOnom @ TC<100°C  
16  
18  
20  
70  
A
ISC  
23  
A
VOac  
SVR  
IO = IOmax f < 20 MHz  
f<1kHz  
150  
mVp-p  
dB  
Supply voltage  
rejection (ac)  
-53  
2.2  
OVP  
Over voltage protection  
Vin = 50V  
2.5  
2.8  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
IO = 0...1.0 x IOmax  
87  
3.4  
200  
%
W
Pd  
fO  
Power dissipation  
Switching frequency  
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
10  
PKM 4318 PI (36W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
1.83  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
1.77  
1.8  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax  
IO = 0 to IOmax  
1.44  
1.71  
2.0  
V
V
Output voltage  
tolerance band  
1.89  
VO  
Line regulation  
Load regulation  
IO = IOmax  
3
10  
10  
mV  
mV  
VI = 53V, IO = 0 to IOmax  
3
V
tr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
ttr  
Load transient  
recovery time  
100  
25  
µs  
ts  
IO  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
40  
20  
ms  
A
Output current  
0
POmax  
IIim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
36  
W
VO = 0.96 VOnom @ TC<100°C  
21  
24  
24  
70  
26  
A
ISC  
28  
A
VOac  
SVR  
IO = IOmax f < 20 MHz  
f<1kHz  
150  
mVp-p  
dB  
Supply voltage  
rejection (ac)  
-53  
2.5  
OVP  
Over voltage protection  
Vin = 50V  
2.8  
3.0  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
88  
%
W
4.9  
Pd  
fO  
Power dissipation  
Switching frequency  
IO = 0...1.0 x IOmax  
200  
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
11  
PKM 4218 PI (27W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
1.77  
1.8  
1.83  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax  
IO = 0 to IOmax  
1.44  
1.71  
2.0  
V
V
VO  
Output voltage  
tolerance band  
1.89  
Line regulation  
Load regulation  
IO = IOmax  
3
10  
10  
mV  
mV  
VI = 53V, IO = 0 to IOmax  
3
V
tr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
ttr  
Load transient  
recovery time  
100  
25  
µs  
ts  
IO  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
40  
15  
ms  
A
Output current  
0
POmax  
IIim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
27  
W
VO = 0.96 VOnom @ TC<100°C  
16  
18  
24  
70  
21  
A
ISC  
28  
A
VOac  
SVR  
IO = IOmax f < 20 MHz  
f<1kHz  
150  
mVp-p  
dB  
Supply voltage  
rejection (ac)  
-53  
2.5  
OVP  
Over voltage protection  
Vin = 50V  
2.8  
3.0  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
η
Efficiency  
89  
%
T
A = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
3.3  
W
Pd  
fO  
Power dissipation  
Switching frequency  
IO = 0...1.0 x IOmax  
200  
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
12  
PKM 4519 PI (50W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
2.45  
2.5  
2.55  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax  
IO = 0 to IOmax  
2.0  
2.4  
2.75  
2.6  
V
V
VO  
Output voltage  
tolerance band  
Line regulation  
Load regulation  
IO = IOmax  
3
10  
10  
mV  
mV  
VI = 53V, IO = 0 to IOmax  
3
V
tr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
ttr  
Load transient  
recovery time  
100  
25  
µs  
ts  
IO  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
40  
20  
ms  
A
Output current  
0
POmax  
IIim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
50  
W
VO = 0.96 VOnom @ TC<100°C  
21  
24  
26  
60  
26  
A
ISC  
30  
A
VOac  
SVR  
IO = IOmax f < 20 MHz  
f<1kHz  
100  
mVp-p  
dB  
Supply voltage  
rejection (ac)  
-53  
3.2  
OVP  
Over voltage protection  
Vin = 50V  
3.7  
4.2  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
89  
max  
Unit  
%
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
IO = 0...1.0 x IOmax  
Pd  
fO  
Power dissipation  
Switching frequency  
6.2  
200  
W
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
13  
PKM 4319 PI (37.5W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
2.45  
2.5  
2.55  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax  
IO = 0 to IOmax  
2.0  
2.4  
2.75  
2.6  
V
V
VO  
Output voltage  
tolerance band  
Line regulation  
Load regulation  
IO = IOmax  
3
10  
10  
mV  
mV  
VI = 53V, IO = 0 to IOmax  
3
V
tr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
ttr  
Load transient  
recovery time  
100  
25  
µs  
ts  
IO  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
40  
15  
ms  
A
Output current  
0
POmax  
IIim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
37.5  
21  
W
VO = 0.96 VOnom @ TC<100°C  
16  
18  
26  
60  
A
ISC  
30  
A
VOac  
SVR  
IO = IOmax f < 20 MHz  
f<1kHz  
100  
mVp-p  
dB  
Supply voltage  
rejection (ac)  
-53  
3.2  
OVP  
Over voltage protection  
Vin = 50V  
3.7  
4.2  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
IO = 0...1.0 x IOmax  
89  
4.6  
200  
%
W
Pd  
fO  
Power dissipation  
Switching frequency  
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
14  
PKM 4610 PI (66W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
3.25  
3.30  
3.35  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax  
IO = 0 to IOmax  
2.64  
3.2  
3.63  
3.4  
V
V
VO  
Output voltage  
tolerance band  
Line regulation  
Load regulation  
IO = IOmax  
3
10  
10  
mV  
mV  
VI = 53V, IO = 0 to IOmax  
3
Vtr  
ttr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
Load transient  
recovery time  
100  
25  
µs  
ts  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
40  
20  
ms  
A
IO  
Output current  
0
POmax  
Ilim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
66  
W
VO = 0.90 x VOnom @ TC<100°C  
21  
24  
24  
60  
26  
A
ISC  
28  
A
VOac  
SVR  
IO = IOmax  
f<1 kHz  
f < 20 MHz  
100  
mVp-p  
dB  
Supply voltage  
rejection  
-53  
3.9  
OVP  
Overvoltage protection  
VI = 53V  
4.4  
5.0  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
IO = 0...1.0 x IOmax  
89  
8.2  
150  
%
Pd  
fO  
Power dissipation  
Switching frequency  
W
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
15  
PKM 4510 PI (50W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
3.25  
3.30  
3.35  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax  
IO = 0 to IOmax  
2.64  
3.2  
3.63  
3.4  
V
V
VO  
Output voltage  
tolerance band  
Line regulation  
Load regulation  
IO = IOmax  
3
10  
10  
mV  
VI = 53V, IO = 0 to IOmax  
3
mV  
Vtr  
ttr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
Load transient  
recovery time  
100  
25  
µs  
ts  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
40  
15  
ms  
A
IO  
Output current  
0
POmax  
Ilim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
50  
W
VO = 0.90 x VOnom @ TC<100°C  
16  
18  
20  
60  
21  
A
ISC  
23  
A
VOac  
SVR  
IO = IOmax  
f<1 kHz  
f < 20 MHz  
100  
mVp-p  
dB  
Supply voltage  
rejection  
-53  
3.9  
OVP  
Overvoltage protection  
VI = 53V  
4.4  
5.0  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
IO = 0...1.0 x IOmax  
91  
4.9  
150  
%
Pd  
fO  
Power dissipation  
Switching frequency  
W
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
16  
PKM 4111 PI (100W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
4.9  
5.0  
5.1  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax, VI = 38...75V dc  
IO = 0 to IOmax  
4.0  
5.5  
V
V
VO  
Output voltage  
tolerance band  
4.85  
5.15  
Line regulation  
Load regulation  
VI = 38...75V, IO = IOmax  
VI = 53V, IO = 0 to IOmax  
3
10  
10  
mV  
mV  
3
V
tr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
ttr  
Load transient  
recovery time  
200  
60  
µs  
ts  
IO  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
90  
20  
ms  
A
Output current  
0
POmax  
IIim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
100  
26  
W
VO = 0.96 VOnom @ TC<100°C  
21  
24  
24  
85  
A
ISC  
28  
A
VOac  
SVR  
IO = IOmax f < 20 MHz  
f<1kHz  
150  
mVp-p  
dB  
Supply voltage  
rejection (ac)  
-53  
5.8  
OVP  
Over voltage protection  
Vin = 50V  
6.2  
6.5  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
IO = 0...1.0 x IOmax  
90  
%
W
Pd  
fO  
Power dissipation  
Switching frequency  
11.1  
200  
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
17  
PKM 4711 PI (75W)  
TC = -40...+100°C, VI = 36...75V dc unless otherwise specified.  
Output  
Characteristics  
Conditions  
Output  
typ  
min  
max  
Unit  
VOi  
Output voltage initial  
TC = +25°C, VI = 53V, IO = IOmax  
4.9  
5.0  
5.1  
V
setting and accuracy  
Output adjust range  
IO = 0 to IOmax, VI = 38...75V dc  
IO = 0 to IOmax  
4.0  
5.5  
V
V
VO  
Output voltage  
tolerance band  
4.85  
5.15  
Line regulation  
Load regulation  
VI = 38...75V, IO = IOmax  
VI = 53V, IO = 0 to IOmax  
3
10  
10  
mV  
mV  
3
V
tr  
Load transient  
voltage deviation  
Load step = 0.25 x IOmax  
dI/dt = 1A/µs  
150  
mVpeak  
ttr  
Load transient  
recovery time  
200  
60  
µs  
ts  
IO  
Start-up time  
From VI connection to VO = 0.9 x VOnom  
90  
15  
ms  
A
Output current  
0
POmax  
IIim  
Max output power  
Current limit threshold  
Short circuit current  
Output ripple and noise  
At VO = VOnom  
75  
W
VO = 0.96 VOnom @ TC<100°C  
16  
18  
24  
85  
21  
A
ISC  
28  
A
VOac  
SVR  
IO = IOmax f < 20 MHz  
f<1kHz  
150  
mVp-p  
dB  
Supply voltage  
rejection (ac)  
-53  
5.8  
OVP  
Over voltage protection  
Vin = 50V  
6.2  
6.5  
V
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
η
Efficiency  
TA = +25°C, VI = 53V, IO = IOmax  
TA = +25°C, VI = 53V, IO = IOmax  
IO = 0...1.0 x IOmax  
92  
6.5  
200  
%
W
Pd  
fO  
Power dissipation  
Switching frequency  
kHz  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
18  
PKM 4318 PIOA (30W)  
Efficiency  
Output Characteristics  
95  
90  
85  
80  
75  
70  
65  
60  
3
2
1
0
36V  
48V  
60V  
72V  
(48Vin)  
0
5
10  
15  
20  
25  
30  
5
10  
Output Current (A)  
15  
20  
Output Current (A)  
PKM 4218 PIOA (22.5W)  
Efficiency  
Output Characteristics  
3
2
1
0
95  
90  
85  
80  
75  
70  
65  
60  
36V  
48V  
60V  
72V  
(48Vin)  
5
10  
15  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
19  
PKM 4318 PI (36W)  
Output Characteristics  
Efficiency  
3
2
1
0
95  
90  
85  
80  
75  
70  
65  
60  
36V  
48V  
60V  
72V  
(48Vin)  
5
10  
Output Current (A)  
15  
20  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
PKM 4218 PI (27W)  
Output Characteristics  
Efficiency  
3
2
1
0
95  
90  
85  
80  
75  
70  
65  
60  
36V  
48V  
60V  
72V  
(48Vin)  
0
5
10  
15  
20  
25  
5
10  
15  
Output Current (A)  
Output Current (A)  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
20  
PKM 4519 (50W)  
Efficiency  
Output Characteristics  
3
2
1
0
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
36V  
48V  
60V  
72V  
(48Vin)  
5
10  
Output Current (A)  
15  
20  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
PKM 4319 PI (37.5W)  
Efficiency  
Output Characteristics  
3
2
1
0
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
(48Vin)  
36V  
48V  
60V  
72V  
5
10  
15  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
21  
PKM 4610 PI (66W)  
Efficiency  
Output Characteristics  
94  
92  
90  
88  
86  
84  
82  
4
3
2
1
0
36V  
48V  
60V  
72V  
(48Vin)  
5
10  
Output Current (A)  
15  
20  
0
5
10  
15  
20  
25  
Output Current (A)  
PKM 4510 PI (50W)  
Efficiency  
Output Characteristics  
94  
92  
90  
88  
86  
84  
82  
4
3
2
1
0
36V  
(48Vin)  
48V  
60V  
72V  
5
10  
15  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
22  
PKM 4111 PI (100W)  
Efficiency  
Output Characteristics  
94  
92  
90  
88  
86  
84  
82  
6
5
4
3
2
1
0
36V  
48V  
60V  
72V  
(48Vin)  
5
10  
Output Current (A)  
15  
20  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
PKM 4711 PI (75W)  
Efficiency  
Output Characteristics  
6
5
4
3
2
1
0
94  
92  
90  
88  
86  
84  
82  
(48Vin)  
36V  
48V  
60V  
72V  
5
10  
15  
0
5
10  
15  
20  
25  
Output Current (A)  
Output Current (A)  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
23  
EMC Specifications  
The PKM power module is mounted on a double sided printed circuit board PCB with groundplane during EMC measurements.  
The fundamental switching frequency is 150 kHz @ IO = IOmax.  
Conducted EMI  
Input terminal value with 100µF capacitor (typ) and additional PI filter.  
Class A  
Class B  
External Filter (class B)  
Required external input filter in order to meet class B in EN 55022, CISPR 22 and FCC part 15J.  
4.7nF  
10nF  
3.3nF  
L1  
L2  
47µF  
0.68µF  
0.68µF  
47µF  
0.68µF  
L3  
3.3nF  
10nF  
4.7nF  
L1: 450µH  
TDK TF1028S-451Y3R-01  
L2 & L3: 22µH  
Coilcraft D05ø22P-23  
*The baseplate is floated.  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
24  
Over Voltage Protection (OVP)  
Operating Information  
All PKM 4000 DC/DC power modules have latching output  
overvoltage protection. In the event of an overvoltage condition, the  
power module will shut down. The power module can be restarted  
by cycling the input voltage.  
Input Voltage  
The input voltage range 36...75V meets the requirements in the  
European Telecom Standard ETS 300 132-2 for normal input  
voltage range in -48V and -60V DC power systems, -40.5...-57.0V  
and -50.0...-72.0V respectively. At input voltages exceeding 75V,  
the power loss will be higher than at normal input voltage and TC  
must be limited to absolute max +100º C. The absolute max  
continuous input voltage is 80V DC.  
Turn-(on/off) Input Voltage (VIon/VIoff)  
The power module monitors the input voltage and will turn on and  
turn off at predetermined levels. See Input Table on page 2.  
Output Voltage Adjust (Trim)  
Voltage Trimming  
Remote Control (RC)  
The PKM 4000 series DC/DC power modules have two remote  
on/off options available. Negative logic remote on/off is the standard  
option orderable without a suffix added to the part number.  
Negative logic remote on/off turns the module off during a logic  
high voltage on the on/off pin, and on during a logic low state.  
Positive logic remote on/off is orderable by adding the suffix “P” to  
the end of the part number. Positive logic remote on/off turns the  
module on during a logic high and off during a logic low state.  
All PKM 4000 series DC/DC power modules have an Output  
Voltage Adjust pin. This pin can be used to adjust the output  
voltage above or below VOi. When increasing the output voltage,  
the voltage at the output pins (including any remote sensing offset)  
must be kept below the overvoltage trip point. Also note that at  
elevated output voltages the maximum power rating of the module  
remains the same, and the output current capability will decrease  
correspondingly. These modules trim exactly like the other major  
competitors quarter-brick modules.  
The RC pin can be wired directly to -In, to allow the module to  
power up automatically without the need for control signals.  
To decrease VO connect Radj from - SEN to Trim  
To increase VO connect Radj from + SEN to Trim  
A mechanical switch or an open collector transistor or FET can be  
used to drive the RC inputs. The device must be capable of  
sinking up to 1mA at a low level voltage of 1.0V, maximum of  
15V dc, for the primary RC.  
Optional Remote Control (P)  
RC (primary) Power module  
Standard Remote Control  
RC (primary) Power module  
Low  
Open/High  
OFF  
ON  
Low  
Open/High  
ON  
OFF  
Remote Sense  
All PKM 4000 series DC/DC power modules have remote sense  
that can be used to compensate for moderate amounts of resistance  
in the distribution system and allow for voltage regulation at the  
load or other selected point. The remote sense lines will carry very  
little current and do not need a large cross sectional area. However,  
the sense lines on a PCB should be located close to a ground trace  
or ground plane. In a discrete wiring situation, the usage of  
twisted pair wires or other technique for reducing noise  
susceptibility is recommended.  
The power module will compensate for up to 0.5V voltage drop  
between the sense voltage and the voltage at the power module  
output pins. The output voltage and the remote sense voltage  
offset must be less than the minimum overvoltage trip point.  
Current Limiting  
General Characteristics  
All PKM 4000 series DC/DC power modules include current  
limiting circuitry that makes them able to withstand continuous  
overloads or short circuit conditions on the output. The output  
voltage will decrease toward zero for heavy overloads.  
The power module will resume normal operation after removal of  
the overload. The load distribution system should be designed to  
carry the maximum short circuit output current specified.  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
25  
Output Voltage Trim for 1.5V  
Output Voltage Trim for 3.3V  
100000  
10000  
1000  
100  
100000  
10000  
1000  
100  
Increase  
Decrease  
Decrease  
Increase  
10  
10  
1
1
0
0
2
4
6
8
10  
12  
14  
16  
16  
16  
18  
18  
18  
20  
20  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
Change in Output Voltage (%)  
Change in Output Voltage (˘%)  
100  
%  
100  
Decrease: Radj = 5.11  
Increase: Radj = 5.11  
-2 k  
Decrease: Radj = 5.11  
Increase: Radj = 5.11  
-2 kΩ  
%  
( )  
[
( )  
[
Vo (100+%) (100+2%)  
Vo (100+%) (100+2%)  
-
kΩ  
-
kΩ  
1.225%  
%  
1.225%  
%  
]
]
]
]
Output Voltage Trim for 1.8V  
Output Voltage Trim for 5.0V  
100000  
10000  
1000  
100  
1000000  
100000  
10000  
1000  
100  
Increase  
Decrease  
Decrease  
Increase  
10  
10  
1
1
0
0
2
4
6
8
10  
12  
14  
2
4
6
8
10  
12  
14  
16  
18  
20  
Change in Output Voltage (%)  
Change in Output Voltage (˘%)  
100  
%  
100  
Decrease: Radj = 5.11  
Increase: Radj = 5.11  
-2 kΩ  
Decrease: Radj = 5.11  
Increase: Radj = 5.11  
-2 kΩ  
%  
( )  
[
( )  
[
Vo (100+%) (100+2%)  
Vo (100+%) (100+2%)  
-
kΩ  
-
kΩ  
1.225%  
%  
1.225%  
%  
]
Output Voltage Trim for 2.5V  
100000  
10000  
1000  
100  
Increase  
Decrease  
10  
1
0
2
4
6
8
10  
12  
14  
Change in Output Voltage (˘%)  
100  
%  
Decrease: Radj = 5.11  
Increase: Radj = 5.11  
-2 kΩ  
( )  
[
Vo (100+%) (100+2%)  
-
kΩ  
1.225%  
%  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
26  
Low resistance and low inductance PCB (printed circuit board) layouts  
and cabling should be used. Remember that when using remote  
sensing, all the resistance, inductance and capacitance of the  
distribution system is within the feedback loop of the power module.  
This can have an effect on the modules compensation and the resulting  
stability and dynamic response performance.  
Paralleling for Redundancy  
The figure below shows how n + 1 redundancy can be achieved. The  
diodes on the power module outputs allow a failed module to remove  
itself from the shared group without pulling down the common output  
bus. This configuration can be extended to additional numbers of  
power modules and they can also be controlled individually or in  
groups by means of signals to the primary RC inputs.  
As a rule of thumb, 100 µF/A of output current can be used without  
any additional analysis. For example, with a 20A (max PO 100W)  
power module, values of decoupling capacitance up to 2000 µF can be  
used without regard to stability. With larger values of capacitance, the  
load transient recovery time can exceed the specified value. As much of  
the capacitance as possible should be outside of the remote sensing  
loop and close to the load.The absolute maximum value of output  
capacitance is 10,000 µF. For values larger than this contact your local  
Ericsson representative.  
PKM1  
PKM2  
Quality  
PKM  
Reliability  
The calculated MTBF of the PKM 4000 module family is greater than  
(>) 2.8 million hours using Bellcore TR-332 methodology. The  
calculation is valid for a 90ºC baseplate temperature. Demonstrated  
MTBF has been in the range of 3.0 to 3.2 million hours.  
Output Ripple & Noise (VO  
)
ac  
Output ripple is measured as the peak to peak voltage from 0 to  
20MHz which includes the noise voltage and fundamental ripple.  
Over Temperature Protection  
Quality Statement  
The PKM 4000 DC/DC power modules are protected from thermal  
overload by an internal over temperature shutdown circuit. When the  
case temperature exceeds +110°C (+10, -5°C), the power module will  
automatically shut down (latching). To restart the module the input  
voltage must be cycled.  
The power modules are designed and manufactured in an industrial  
environment where quality systems and methods like ISO 9000, 6σ,  
and SPC, are intensively in use to boost the continuous improvements  
strategy. Infant mortality or early failures in the products are screened  
out and they are subjected to an ATE-based final test.  
Conservative design rules, design reviews and product qualifications,  
plus the high competence of an engaged work force, contribute to the  
high quality of our products.  
Input and Output Impedance  
The impedance of both the power source and the load will interact  
with the impedence of the DC/DC power module. It is most important  
to have the ratio between L and C as low as possible, i.e. a low  
characteristic impedance, both at the input and output, as the power  
modules have a low energy storage capability. The PKM 4000 series of  
DC/DC power modules has been designed to be completely stable  
without the need for external capacitors on the input or output when  
configured with low inductance input and output circuits. The  
performance in some applications can be enhanced by the addition of  
external capacitance as described below. If the distribution of the input  
voltage source to the power module contains significant inductance,  
the addition of a 220-470 µF capacitor across the input of the power  
module will help insure stability. This capacitor is not required when  
powering the module from a low impedance source with short, low  
inductance, input power leads.  
Warranty  
Ericsson Inc., Microelectronics warrants to the original purchaser or  
end user that the products conform to this Data Sheet and are free  
from material and workmanship defects for a period of five (5) years  
from the date of manufacture, if the product is used within specified  
conditions and not opened.  
In case the product is discontinued, claims will be accepted up to three  
(3) years from the date of the discontinuation. For additional details on  
this limited warranty we refer to Ericsson’s “General Terms and  
Conditions of Sales,” EKA 950701, or individual contract documents.  
Limitation of Liability  
Ericsson Inc., Microelectronics does not make any other warranties,  
expressed or implied including any warranty of merchantability or  
fitness for a particular purpose (including, but not limited to use in  
life support applications, where malfunctions of product can cause  
injury to a person’s health or life).  
Output Capacitance  
When powering loads with significant dynamic current requirements,  
the voltage regulation at the load can be improved by the addition of  
decoupling capacitance at the load. The most effective technique is to  
locate low ESR ceramic capacitors as close to the load as possible, using  
several capacitors to lower the effective ESR. These ceramic capacitors  
will handle the short duration high frequency components of the  
dynamic current requirement. In addition, higher values of electrolytic  
capacitors should be used to handle the mid-frequency components. It  
is equally important to use good design practices when configuring the  
DC distribution system.  
Data Sheet AE/LZT 108 4913 R2 © Ericsson Inc., Microelectronics, May 2001  
27  
Product Program  
VI  
VO/IO  
POmax  
Ordering Number  
48/60 V  
48/60 V  
48/60 V  
48/60 V  
48/60 V  
48/60 V  
48/60 V  
48/60 V  
48/60 V  
48/60 V  
1.5V/20A  
1.5V/15A  
1.8V/20A  
1.8V/15A  
2.5V/20A  
2.5V/15A  
3.3V/20A  
3.3V/15A  
5V/20A  
30W  
22.5W  
36W  
PKM 4318 PIOA  
PKM 4218 PIOA  
PKM 4318 PI  
PKM 4218 PI  
PKM 4519 PI  
PKM 4319 PI  
PKM 4610 PI  
PKM 4510 PI  
PKM 4111 PI  
PKM 4711 PI  
27W  
50W  
37.5W  
66W  
50W  
100W  
75W  
5V/15A  
The PKM DC/DC power module may be ordered with the different options  
listed in the Product Options table.  
Product Options  
Option  
Suffix  
Example  
Negative remote on/off logic  
Positive remote on/off logic  
Lead length of 0.145" 0.010"  
P
PKM 4610 PI  
PKM 4610 PIP  
PKM 4610 PILA  
LA  
Information given in this data sheet is  
believed to be accurate and reliable. No  
responsibility is assumed for the consequences  
of its use for any infringement of patents or  
other rights of third parties that may result  
from its use. No license is granted by  
implication or otherwise under any patent or  
patent rights of Ericsson Inc., Microelectronics.  
These products are sold only according to  
Ericsson Inc., Microelectronics’ general conditions  
of sale, unless otherwise confirmed in writing.  
Specifications subject to change without notice.  
Ericsson Inc.  
Microelectronics  
1700 International Pkwy., Suite 200  
Richardson, Texas 75081  
Phone: 877-ERICMIC  
The latest and most complete  
information can be found on our website!  
Preliminary Data Sheet  
www.ericsson.com/microelectronics  
For sales contacts, please refer to our website  
or call: 877-374-2642 or fax: 972-583-8355  
AE/LZT 108 4913 R2  
© Ericsson Inc., Microelectronics, May 2001  

相关型号:

PKM4318PIP

DC-DC Regulated Power Supply Module, 1 Output, 36W, Hybrid, QUARTER BRICK PACKAGE-8
ERICSSON

PKM4319EPI

36-75 Vdc DC/DC converter Output up to 20 A/50 W
ERICSSON

PKM4319PILA

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid,
ERICSSON

PKM4319PIP

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid,
ERICSSON

PKM4402NGPI

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSGLA

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSGLB

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSGLC

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSLB

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSLC

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIPHS

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIPHSG

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON