PKM4319EPI [ERICSSON]

36-75 Vdc DC/DC converter Output up to 20 A/50 W;
PKM4319EPI
型号: PKM4319EPI
厂家: ERICSSON    ERICSSON
描述:

36-75 Vdc DC/DC converter Output up to 20 A/50 W

文件: 总37页 (文件大小:2264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PKM 4000E Series  
36-75 Vdc DC/DC converter  
Output up to 20 A/50 W  
Contents  
Product Programꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2  
Quality Statement ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2  
Limitation of Liability ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 2  
Mechanical Informationꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 3  
Mechanical Information HS-Optionꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 4  
Absolute Maximum Ratings ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 5  
Input ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 5  
Safety Specification ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 6  
Product Qualification Specificationꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 7  
PKM 4218LE PI - 1ꢀ2 V Dataꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 8  
PKM 4318HE PI - 1ꢀ5 V Data ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 11  
PKM 4318GE PI - 1ꢀ8 V Data ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 14  
PKM 4319E PI - 2ꢀ5 V Dataꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 17  
PKM 4510E PI - 3ꢀ3 V Dataꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 20  
PKM 4511E PI - 5ꢀ0 V Dataꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 23  
PKM 4513E PI - 12 V Data ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 26  
PKM 4515E PI - 15 V Data ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 29  
EMC Specificationꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 32  
Operating Information ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 33  
Thermal Consideration ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 35  
Soldering Information ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 36  
Delivery Package Information ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 36  
Compatibility with RoHS requirements ꢀ ꢀ ꢀ ꢀ 36  
Reliability ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ ꢀ 36  
Sales Offices and Contact Information ꢀ ꢀ ꢀ ꢀ 37  
3P)4  
DPNQBUJCMF  
Key Features  
Industry standard Quarter-brick  
57ꢀ9 x 36ꢀ8 x 8ꢀ5 mm (2ꢀ28 x 1ꢀ45 x 0ꢀ33 in)  
High efficiency, typꢀ 90 % at 3ꢀ3 Vout half load  
1500 Vdc input to output isolation, meets isolation  
requirements equivalent to basic insulation according  
to IEC/EN/UL 60950  
More than 7ꢀ0 million hours predicted MTBF at +40 ºC  
ambient temperature  
The PKM 4000E series of high efficiency DC/DC  
service network by specifying the input voltage range in  
accordance with ETSI specificationsꢀ Included as standard  
features are output over-voltage protection, input under-  
voltage protection, over temperature protection, soft-start,  
output short circuit protection, remote sense, remote control,  
and output voltage adjust functionꢀ These converters are  
designed to meet high reliability requirements and are  
manufactured in highly automated manufacturing lines and  
meet world-class quality levelsꢀ  
converters are designed to provide high quality on-board  
power solutions in distributed power architectures used  
in Internetworking equipment in wireless and wired  
communications applicationsꢀ The PKM 4000E series  
has industry standard quarter brick footprint and pin-out  
and is only 8ꢀ5 mm (0ꢀ33 in) highꢀ This makes it extremely  
well suited for narrow board pitch applications with board  
spacing down to 15 mm (0ꢀ6 in)ꢀ The PKM 4000E series  
uses patented synchronous rectification technology and  
achieves an efficiency up to 90% at full loadꢀ Ericsson’s  
PKM 4000E series addresses both the industrial and the  
emerging telecom market for applications in the multi-  
Ericsson Power Modules is an ISO 9001/14001 certified  
supplierꢀ  
Datasheet  
E
Product Program  
VO/IO max  
Output 1  
VI  
PO max  
Ordering Noꢀ  
Comment  
48/60  
48/60  
48/60  
48/60  
48/60  
48/60  
48/60  
48/60  
Option  
1ꢀ2 V/20 A  
24W  
30W  
36W  
37ꢀ5W  
50W  
50W  
50W  
50W  
PKM 4218LE PI  
PKM 4318HE PI  
PKM 4318GE PI  
PKM 4319E PI  
PKM 4510E PI  
PKM 4511E PI  
PKM 4513E PI  
PKM 4515E PI  
Example  
1ꢀ5 V/20 A  
1ꢀ8 V/20 A  
2ꢀ5V/15 A  
3ꢀ3 V/15 A  
5ꢀ0 V/10 A  
12 V/4ꢀ2 A  
15 V/3ꢀ3 A  
Suffix  
Positive Remote Control logic  
Heatsink  
P
PKM 4510E PIP  
PKM 4510E PIHS  
PKM 4510E PILA  
HS  
LA  
Lead length 3ꢀ69 mm (0ꢀ145 in)  
For more information about the complete product program, please refer to our  
website: wwwꢀericssonꢀcom/powermodules  
Note: As an example a positive logic, heatsink, short pin product would be  
PKM 4510E PIPHSLA  
Quality Statement  
Limitation of Liability  
Ericsson Power Modules does not make any other  
warranties, expressed or implied including any warranty of  
merchantability or fitness for a particular purpose (including,  
but not limited to, use in life support applications, where  
malfunctions of product can cause injury to a person's  
health or life)ꢀ  
The PKM 4000E DC/DC converters are designed and  
manufactured in an industrial environment where quality  
systems and methods like ISO 9000, 6σ (sigma), and SPC  
are intensively in use to boost the continuous improvements  
strategyꢀ Infant mortality or early failures in the products are  
screened out and they are subjected to an ATE-based final  
testꢀ Conservative design rules, design reviews and product  
qualifications, plus the high competence of an engaged work  
force, contribute to the high quality of our productsꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
Mechanical Information  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
Mechanical Information HS-Option  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
Absolute Maximum Ratings  
Characteristics  
min  
-40  
typ  
max  
+110  
+125  
+80  
1500  
100  
75  
Unit  
˚C  
T
T
Maximum Operating Baseplate Temperature (see Thermal Consideration section)  
Storage temperature  
C
S
-55  
˚C  
V
V
V
Input voltage  
-0ꢀ5  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
Vdc  
I
Isolation voltage (input to output test voltage)  
Input voltage transient (Tp 100 ms)  
Negative logic (referenced to -In)  
Positive logic (referenced to -In)  
Maximum input  
ISO  
tr  
V
V
RC  
adj  
6
-0ꢀ5  
2xVoi  
Stress in excess of Absolute Maximum Ratings may cause permanent damageꢀ Absolute  
Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with  
one parameter at a time exceeding the limits of Output data or Electrical Characteristicsꢀ  
If exposed to stress above these limits, function and performance may degrade in an  
unspecified mannerꢀ  
T
Pcb  
<T  
unless otherwise specified  
Pcb max  
Input  
Characteristics  
Conditions  
min  
typ  
max  
Unit  
Vdc  
Vdc  
Vdc  
µF  
V
Input voltage range  
Turn-off input voltage  
35  
75  
I
V
V
Ramping from higher voltage  
Ramping from lower voltage  
30  
33ꢀ5  
1
Ioff  
Ion  
Turn-on input voltage  
C
Input capacitance  
I
P
P
Input idling power  
I = 0, V = 53 V  
2
W
Ii  
o
I
Input standby power (turned off with RC)  
V = 53 V, RC activated  
0ꢀ25  
W
RC  
I
Fundamental Circuit Diagram  
1SJNBSZ  
4FDPOEBSZ  
$IPLF  
1
3FTJTUPS  
$BQBDJUPS  
8
4
$POUSPM  
2
$POUSPM  
3
*TPMBUFE  
'FFECBDL  
6
7
5
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
Safety Specification  
General informationꢀ  
Isolated DC/DC convertersꢀ  
Ericsson Power Modules DC/DC converters and DC/DC regulators  
are designed in accordance with safety standards  
IEC/EN/UL 60 950, Safety of Information Technology Equipment.  
It is recommended that a fast blow fuse with a rating  
twice the maximum input current per selected product  
be used at the input of each DC/DC converterIf an input filter is  
used in the circuit the fuse should be placed in front of the input  
filterꢀ  
In the rare event of a component problem in the input filter or in the  
DC/DC converter that imposes a short circuit on the input source,  
this fuse will provide the following functions:  
IEC/EN/UL60950 contains requirements to prevent injury or  
damage due to the following hazards:  
Electrical shock  
Energy hazards  
Fire  
• Isolate the faulty DC/DC converter from the input power source  
so as not to affect the operation of other parts of the systemꢀ  
Mechanical and heat hazards  
Radiation hazards  
Chemical hazards  
• Protect the distribution wiring from excessive current and power  
loss thus preventing hazardous overheatingꢀ  
The galvanic isolation is verified in an electric strength testꢀ The test  
voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for  
60 seconds (refer to product specification)ꢀ Leakage current is less  
than 1µA at nominal input voltageꢀ  
On-board DC-DC converters are defined as component power  
suppliesꢀ As components they cannot fully comply with the  
provisions of any Safety requirements without “Conditions of  
Acceptability”ꢀ It is the responsibility of the installer to ensure that  
the final product housing these components complies with the  
requirements of all applicable Safety standards and Directives for  
the final productꢀ  
24 V dc systemsꢀ  
The input voltage to the DC/DC converter is SELV (Safety Extra Low  
Voltage) and the output remains SELV under normal and abnormal  
operating conditionsꢀ  
Component power supplies for general use should comply with  
the requirements in IEC60950, EN60950 and UL60950 “Safety of  
information technology equipment”ꢀ  
48 and 60 V dc systemsꢀ  
If the input voltage to Ericsson Power Modules DC/DC converter  
is 75 V dc or less, then the output remains SELV (Safety Extra Low  
Voltage) under normal and abnormal operating conditionsꢀ  
There are other more product related standards, eꢀgꢀ  
IEC61204-7 “Safety standard for power supplies",  
IEEE802ꢀ3af “Ethernet LAN/MAN Data terminal equipment  
power”, and ETS300132-2 “Power supply interface at the input to  
telecommunications equipment; part 2: DC”,  
Single fault testing in the input power supply circuit should be  
performed with the DC/DC converter connected to demonstrate  
that the input voltage does not exceed 75 V dcꢀ  
but all of these standards are based on IEC/EN/UL60950 with  
regards to safetyꢀ  
If the input power source circuit is a DC power system, the source  
may be treated as a TNV2 circuit and testing has demonstrated  
compliance with SELV limits and isolation requirements equivalent  
to Basic Insulation in accordance with IEC/EN/UL 60 950ꢀ  
Ericsson Power Modules DC/DC converters and DC/DC regulators  
are UL 60 950 recognized and certified in accordance with EN 60  
950ꢀ  
The flammability rating for all construction parts of the products  
meets UL 94V-0ꢀ  
Non-isolated DC/DC regulatorsꢀ  
The input voltage to the DC/DC regulator is SELV (Safety Extra Low  
Voltage) and the output remains SELV under normal and abnormal  
operating conditionsꢀ  
The products should be installed in the end-use equipment, in  
accordance with the requirements of the ultimate applicationꢀ  
Normally the output of the DC/DC converter is considered as SELV  
(Safety Extra Low Voltage) and the input source must be isolated by  
minimum Double or Reinforced Insulation from the primary circuit  
(AC mains) in accordance with  
It is recommended that a slow blow fuse with a rating  
twice the maximum input current per selected product  
be used at the input of each DC/DC regulatorꢀ  
IEC/EN/UL 60 950ꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
Product Qualification Specification  
Characteristics  
Frequency  
Spectral density  
Duration  
10 ꢀꢀꢀ 500 Hz  
0ꢀ07 g /Hz  
10 min each direction  
2
Random Vibration  
IEC 68-2-64 Fh  
Frequency  
Amplitude  
10 ꢀꢀꢀ 500 Hz  
0ꢀ75 mm  
Sinusoidal  
Vibration  
IEC 68-2-6 F  
c
Acceleration  
Number of cycles  
10 g  
10 in each axis  
Peak acceleration  
Duration  
Pulse shape  
100 g  
6 ms  
half sine  
Mechanical shock  
(half sinus)  
IEC 68-2-27 E  
a
Temperature  
Number of cycles  
-40 ... +100 ˚C  
300  
Temperature cycling  
Heat/Humidity  
IEC 68-2-14 N  
a
Temperature  
Humidity  
Duration  
+85 ˚C  
85 % RH  
1000 hours  
IEC 68-2-3 C  
a
Temperature, solder  
Duration  
260 ˚C  
10 ꢀꢀꢀ13 s  
Solder heat stability  
IEC 68-2-20 Tb 1A  
Water  
+55 ±5 ˚C  
+35 ±5 ˚C  
+35 ±5 ˚C  
with rubbing  
IEC 68-2-45 XA  
Method 2  
Isopropyl alcohol  
Glycol ether  
Method  
Resistance to cleaning agents  
Storage test  
Temperature  
Duration  
125 ˚C  
1000 h  
IEC 68-2-2 Ba  
IEC 68-2-1 Ad  
Temperature, TA  
Duration  
-45 ˚C  
2 h  
Cold (in operation)  
Operational life test  
Duration  
1000 h  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
PKM ꢂꢀ1ꢆLE PI Output  
TPcb = -40ꢀꢀꢀ+90 ºC and VI = 36…75V, sense pins connected to output pins unless otherwise specifiedꢀ  
Output  
Unit  
V
Characteristics  
Conditions  
min  
typ  
1ꢀ2  
max  
Output voltage initial setting  
and accuracy  
IOmax, VI = 53 V, TPcb = 25 ˚C  
IOmax, VI = 53 V, TPcb = 25 ˚C  
1ꢀ175  
1ꢀ225  
V
Oi  
Output adjust range  
1ꢀ08  
1ꢀ32  
1ꢀ235  
1ꢀ225  
5
V
Output voltage tolerance band  
Idling voltage  
I
= (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmax  
= 0  
1ꢀ165  
1ꢀ175  
V
O
O
I
V
V
V
O
tr  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = (0ꢀ01ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
5
Load transient  
voltage deviation  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
±100  
100  
6
mV  
µs  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
t
t
t
Load transient recovery time  
Ramp-up time  
tr  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
(0ꢀ1ꢀꢀꢀ0ꢀ9) × VOnom  
10  
ms  
ms  
r
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
VI connection to 0ꢀ9 x VOnom  
Start-up time  
9
15  
20  
s
I
Output current  
0
A
O
POmax Max output power  
At V = V nom  
24  
W
A
O
O
I
I
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
26  
30  
35  
lim  
TPcb = 25 °C, VO < 0ꢀ5V  
A
sc  
VOac  
SVR  
OVP  
See ripple and noise, IOmax, VOnom,  
60  
mV  
dB  
V
p-p  
TPcb = 25 °C, f = 100 Hz sinewave , 1 Vpp,  
Supply voltage rejection (ac)  
Over voltage protection  
67  
V
= 53 V  
I
V = 53 V IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax  
I
1ꢀ5  
2ꢀ5  
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
84ꢀ5  
83  
max  
Unit  
%
η
η
η
η
P
Efficiency - 50% load  
T
Pcb  
T
Pcb  
T
Pcb  
T
Pcb  
= +25 °C, V = 48 V, I = 0ꢀ5 x I  
I O  
Omax  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
= +25 °C, V = 48 V, I = I  
Omax  
%
I
O
= +25 °C, V = 53 V, I = 0ꢀ5 x I  
84  
%
I
O
Omax  
= +25 °C, V = 53 V, I = I  
Omax  
81  
84  
%
I
O
IOmax, VI = 53 V, TPcb = 25 ˚C  
5
W
d
f
Switching frequency  
180  
kHz  
s
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
PKM ꢂꢀ1ꢆLE PI Typical Characteristics  
Efficiency  
Output Current Derating  
[%]  
90  
[A]  
20  
16  
3.0 m/s (600 lfm)  
2.5 m/s (500 lfm)  
2.0 m/s (400 lfm)  
85  
12  
1.5 m/s (300 lfm)  
80  
75  
70  
36 V  
48 V  
53 V  
75 V  
1.0 m/s (200 lfm)  
Nat. Conv.  
8
4
0
0
20  
40  
60  
80  
100  
[°C]  
4
8
12  
16  
20  
[A]  
0
Available load current vsꢀ ambient air temperature and airflow  
at Vin=53 VDC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration sectionꢀ  
Efficiency vsꢀ load current and input voltage at TPcb=+25 °C  
Thermal resistance  
Power Dissipation  
[W]  
6
[°C/W]  
10  
5
4
3
2
1
0
8
6
4
2
0
36 V  
48 V  
53 V  
75 V  
0,0  
3,0  
0,5  
1,0  
1,5  
2,0  
2,5  
0
5
10  
15  
20 [A]  
[m/s]  
Thermal resistance vsꢀ airspeed measured at the converterꢀ  
Tested in windtunnel with airflow and test conditions as  
per the Thermal consideration sectionꢀ  
Dissipated power vsꢀ load current and input voltage at  
TPcb=+25 °C  
Output Characteristic  
Heatsink (HS) option  
[V]  
1,30  
The PKM4000E series DC/DC converters can be  
ordered with a heatsink (HS) optionꢀ The heatsink  
option have approximately 5 °C improved derating  
compared with the PKM4000E without heatsinkꢀ  
The HS option is intended to be mounted on a cold  
wall to transfer heat away from the converterꢀ  
1,25  
1,20  
1,15  
1,10  
0
4
8
12  
16  
20 [A]  
Output voltage vsꢀ load current at TPcb=+25 °C, Vin=53 Vꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
PKM ꢂꢀ1ꢆLE PI Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off at Io=20A resistive load at TPcb=+25 °C,  
Vin=53 Vꢀ Turn-off enabled by disconnecting Vinꢀ Top  
trace: input voltage (20mV/divꢀ)ꢀ Bottom trace: Output  
voltage (0ꢀ5 V/divꢀ)ꢀ Time scale: 500 µs/divꢀ  
Start-up at Io=20A resistive load at TPcb=+25 °C,  
Vin=53 VStart enabled by connecting Vinꢀ Top trace:  
input voltage (20 V/divꢀ)ꢀ Bottom trace: output voltage  
(0ꢀ5 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ  
Transient  
Output Ripple  
Output voltage ripple (5mV/divꢀ) at TPcb=+25 °C, Vin=53 V,  
Io=20A resistive load with C=10 µF tantalum and 0ꢀ1 µF  
ceramic capacitorsꢀ Band width=20MHzꢀ Time scale: 2µs / divꢀ  
Output voltage response to load current step-change  
(5-15-5 A) at TPcb=+25 °C, Vin=53 Vꢀ Top trace:  
load current (5 A/divꢀ)ꢀ Bottom trace: output voltage  
(100mV/divꢀ) Time scale: 0ꢀ1 ms/divꢀ  
Output Voltage Adjust (see operating information)  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
Output Voltage Adjust Downwards, Decrease:  
1
- 5.11 kOhm  
R
adj  
=
1
1
100  
-1  
+
12 9.1 100-  
%
Δ
Output Voltage Adjust Upwards, Increase:  
8.85x(100+Δ%)x9.1x1.2  
Eg Decrease 4% =>Vout = 1ꢀ152 Vdc  
R
adj  
=
- 5.11 kOhm  
1
21.1x Δ%x1.225  
= 119.1 kOhm  
- 5.11 kOhm  
R
adj  
=
1
1
100  
-1  
+
12 9.1  
100-4  
Eg Increase 4% =>Vout = 1ꢀ248 Vdc  
8.85x(100+4)x9.1x1.2  
R
adj  
=
- 5.11 kOhm = 92 kOhm  
21.1x 4x1.225  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
10  
PKM ꢂꢁ1ꢆHE PI Output  
TPcb = -40ꢀꢀꢀ+90 ºC and VI = 36…75V, sense pins connected to output pins unless otherwise specifiedꢀ  
Output  
Unit  
V
Characteristics  
Conditions  
min  
typ  
1ꢀ5  
max  
Output voltage initial setting  
and accuracy  
IOmax, VI = 53 V, TPcb = 25 ˚C  
IOmax, VI = 53 V, TPcb = 25 ˚C  
1ꢀ468  
1ꢀ532  
V
Oi  
Output adjust range  
1ꢀ35  
1ꢀ65  
1ꢀ545  
1ꢀ545  
5
V
Output voltage tolerance band  
Idling voltage  
I
= (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmax  
= 0  
1ꢀ455  
1ꢀ455  
V
O
O
I
V
V
V
O
tr  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = (0ꢀ01ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
5
Load transient  
voltage deviation  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
±100  
100  
5
mV  
µs  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
t
t
t
Load transient recovery time  
Ramp-up time  
tr  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
(0ꢀ1ꢀꢀꢀ0ꢀ9) × VOnom  
10  
ms  
ms  
r
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
VI connection to 0ꢀ9 x VOnom  
Start-up time  
7ꢀ5  
15  
20  
s
I
Output current  
0
A
O
POmax Max output power  
At V = V nom  
30  
W
A
O
O
I
I
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
25  
lim  
TPcb = 25 °C, VO < 0ꢀ5V  
28ꢀ5  
35  
A
sc  
VOac  
SVR  
OVP  
See ripple and noise, IOmax, VOnom,  
60  
mV  
dB  
V
p-p  
TPcb = 25 °C, f = 100 Hz sinewave , 1 Vpp,  
Supply voltage rejection (ac)  
Over voltage protection  
67  
V
= 53 V  
I
V = 53 V IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax  
I
1ꢀ8  
2ꢀ5  
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
86  
max  
Unit  
%
η
η
η
η
P
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
T
Pcb  
T
Pcb  
T
Pcb  
T
Pcb  
= +25 °C, V = 48 V, I = 0ꢀ5 x I  
I O  
Omax  
= +25 °C, V = 48 V, I = I  
Omax  
85ꢀ5  
86  
%
I
O
= +25 °C, V = 53 V, I = 0ꢀ5 x I  
%
I
O
Omax  
= +25 °C, V = 53 V, I = I  
Omax  
83ꢀ5  
85ꢀ5  
5ꢀ2  
%
I
O
IOmax, VI = 53 V, TPcb = 25 ˚C  
W
d
f
Switching frequency  
180  
kHz  
s
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
11  
PKM ꢂꢁ1ꢆHE PI Typical Characteristics  
Efficiency  
Output Current Derating  
<ꢇ>  
ꢆꢀ  
<">  
ꢁꢀ  
ꢅꢃ  
ꢋꢆꢀꢇNꢈTꢇꢉꢃꢀꢀꢇMGNꢊ  
ꢁꢆꢌꢇNꢈTꢇꢉꢌꢀꢀꢇMGNꢊ  
ꢁꢆꢀꢇNꢈTꢇꢉꢂꢀꢀꢇMGNꢊ  
ꢅꢁ  
ꢅꢁ  
ꢅꢆꢌꢇNꢈTꢇꢉꢋꢀꢀꢇMGNꢊꢇꢇ  
ꢅꢀ  
ꢈꢉꢊ7  
ꢅꢆꢀꢇNꢈTꢇꢉꢁꢀꢀꢇMGNꢊ  
ꢋꢅꢊ7  
ꢁꢈꢊ7  
ꢄꢁꢊ7  
/BUꢆꢇ$POWꢆ  
ꢄꢁ  
ꢄꢀ  
ꢂꢀ  
ꢂꢁ  
ꢃꢀ  
ꢃꢁ <">  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
<«$>  
Available load current vsꢀ ambient air temperature and airflow  
at Vin=53 VDC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration sectionꢀ  
Efficiency vsꢀ load current and input voltage at TPcb=+25 °C  
Thermal resistance  
Power Dissipation  
<8>  
<«$ꢉ8>  
ꢃꢀ  
ꢄꢆꢇ7  
ꢅꢈꢇ7  
ꢁꢄꢇ7  
ꢉꢁꢇ7  
ꢂꢀ  
ꢂꢁ  
ꢃꢀ  
<">  
<NꢉT>  
ꢅꢁꢀ  
ꢀꢁꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
Thermal resistance vsꢀ airspeed measured at the converterꢀ  
Tested in windtunnel with airflow and test conditions as  
per the Thermal consideration sectionꢀ  
Dissipated power vsꢀ load current and input voltage at  
TPcb=+25 °C  
Output Characteristic  
Heatsink (HS) option  
<7>  
ꢃꢆꢅꢀ  
The PKM4000E series DC/DC converters can be  
ordered with a heatsink (HS) optionꢀ The heatsink  
option have approximately 5 °C improved derating  
compared with the PKM4000E without heatsinkꢀ  
The HS option is intended to be mounted on a cold  
wall to transfer heat away from the converterꢀ  
ꢃꢆꢇꢇ  
ꢃꢆꢇꢀ  
ꢃꢆꢁꢇ  
ꢃꢆꢁꢀ  
ꢃꢄ  
ꢃꢅ  
ꢄꢀ  
<">  
Output voltage vsꢀ load current at TPcb=+25 °C, Vin=53 Vꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
1ꢀ  
PKM ꢂꢁ1ꢆHE PI Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off at Io=10A resistive load at TPcb=+25 °C,  
Vin=53 Vꢀ Turn-off enabled by disconnecting Vinꢀ  
Output voltage (0ꢀ5 V/divꢀ)ꢀ Time scale: 20 µs/divꢀ  
Start-up at Io=20A resistive load at TPcb=+25 °C,  
Vin=53 VStart enabled by connecting Vinꢀ Top trace:  
input voltage (10 V/divꢀ)ꢀ Bottom trace: output voltage  
(0ꢀ5 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ  
Transient  
Output Ripple  
Output voltage ripple (50mV/divꢀ) at TPcb=+25 °C, Vin=53 V,  
Io=20A resistive load with C=10 µF tantalum and 0ꢀ1 µF  
ceramic capacitorsꢀ Band width=20MHzꢀ Time scale: 2µs / divꢀ  
Output voltage response to load current step-change  
(5-15-5 A) at TPcb=+25 °C, Vin=53 Vꢀ Top trace: output  
voltage (100mV/divꢀ)ꢀ Bottom trace:  
load current (5 A/divꢀ) Time scale: 0ꢀ1 ms/divꢀ  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
ꢀꢁꢁ  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
ꢂꢁꢁ  
ꢃꢁꢁ  
ꢄꢁꢁ  
ꢅꢁꢁ  
ꢆꢁꢁ  
Output Voltage Adjust Upwards, Increase:  
Radj= 5ꢀ11 [1ꢀ5(100+Δ%)/1ꢀ225Δ%- (100+2Δ%)/Δ%] kOhm  
%FDSFBTF  
*ODSFBTF  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5ꢀ11 [(100/Δ%-2)] kOhm  
Eg Increase 4% =>Vout = 1ꢀ56 Vdc  
5ꢀ11 [1ꢀ5(100+4)/(1ꢀ225x4)-(100+2x4)/4]=24ꢀ7 kOhm  
ꢆ ꢇ ꢇ ꢇ ꢅ ꢇ ꢇ ꢇ ꢄ ꢇ ꢇ ꢇ ꢃ ꢇ ꢇ ꢇ ꢂ ꢇ ꢇ ꢇ ꢀ ꢇ ꢇ ꢇ ꢈ ꢇ ꢇ ꢇ ꢉ ꢇ ꢇ ꢇ ꢊ ꢇ ꢇ ꢇ ꢆ ꢁ  
<>  
Eg Decrease 2% =>Vout = 1ꢀ47 Vdc  
5ꢀ11 x(100/2-2)=245ꢀ3 kOhm  
Output voltage adjust resistor value vsꢀ  
percentage change in output voltageꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
1ꢁ  
PKM ꢂꢁ1ꢆGE PI Output  
TPcb = -40ꢀꢀꢀ+90 ºC and VI = 36…75V, sense pins connected to output pins unless otherwise specifiedꢀ  
Output  
Unit  
V
Characteristics  
Conditions  
min  
1ꢀ77  
typ  
max  
1ꢀ83  
Output voltage initial setting  
and accuracy  
IOmax, VI = 53 V, TPcb = 25 ˚C  
IOmax, VI = 53 V, TPcb = 25 ˚C  
1ꢀ80  
V
Oi  
Output adjust range  
1ꢀ62  
1ꢀ75  
1ꢀ75  
1ꢀ98  
1ꢀ85  
1ꢀ85  
5
V
Output voltage tolerance band  
Idling voltage  
I
= (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmax  
= 0  
V
O
O
I
V
V
V
O
tr  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = (0ꢀ01ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
5
Load transient  
voltage deviation  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
±150  
100  
5
mV  
µs  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
t
t
t
Load transient recovery time  
Ramp-up time  
tr  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
(0ꢀ1ꢀꢀꢀ0ꢀ9) × VOnom  
10  
ms  
ms  
r
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
VI connection to 0ꢀ9 x VOnom  
Start-up time  
7ꢀ5  
15  
20  
s
I
Output current  
0
A
O
POmax Max output power  
At V = V nom  
36  
W
A
O
O
I
I
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
25  
30  
35  
lim  
sc  
TPcb = 25 °C, VO < 0ꢀ5V  
A
VOac  
SVR  
OVP  
See ripple and noise, IOmax, VOnom,  
50  
mV  
dB  
V
p-p  
TPcb = 25 °C, f = 100 Hz sinewave , 1 Vpp,  
Supply voltage rejection (ac)  
Over voltage protection  
67  
V
= 53 V  
I
V = 53 V IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax  
I
2ꢀ1  
2ꢀ9  
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
86ꢀ5  
85  
max  
Unit  
%
η
η
η
η
P
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
T
T
T
T
= +25 °C, V = 48 V, I = 0ꢀ5 x I  
I O  
Pcb  
Pcb  
Pcb  
Pcb  
Omax  
= +25 °C, V = 48 V, I = I  
Omax  
%
I
O
= +25 °C, V = 53 V, I = 0ꢀ5 x I  
86ꢀ5  
85ꢀ5  
6
%
I
O
Omax  
= +25 °C, V = 53 V, I = I  
Omax  
84  
%
I
O
IOmax, VI = 53 V, TPcb = 25 ˚C  
W
d
f
Switching frequency  
180  
kHz  
s
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
1ꢂ  
PKM ꢂꢁ1ꢆGE PI Typical Characteristics  
Efficiency  
Output Current Derating  
<ꢇ>  
ꢆꢀ  
<">  
ꢁꢀ  
ꢅꢃ  
ꢅꢁ  
ꢋꢆꢀꢇNꢈTꢇꢉꢃꢀꢀꢇMGNꢊꢇꢇ  
ꢁꢆꢌꢇNꢈTꢇꢉꢌꢀꢀꢇMGNꢊ  
ꢁꢆꢀꢇNꢈTꢇꢉꢂꢀꢀꢇMGNꢊ  
ꢅꢆꢌꢇNꢈTꢇꢉꢋꢀꢀꢇMGNꢊ  
ꢅꢁ  
ꢅꢀ  
ꢈꢉꢊ7  
ꢋꢅꢊ7  
ꢁꢈꢊ7  
ꢅꢆꢀꢇNꢈTꢇꢉꢁꢀꢀꢇMGNꢊ  
/BUꢆꢇ$POWꢆ  
ꢄꢁꢊ7  
ꢄꢁ  
ꢄꢀ  
ꢂꢀ  
ꢂꢁ  
ꢃꢀ  
ꢃꢁ <">  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
<«$>  
Available load current vsꢀ ambient air temperature and airflow  
at Vin=53 VDC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration sectionꢀ  
Efficiency vsꢀ load current and input voltage at TPcb=+25 °C  
Thermal resistance  
Power Dissipation  
<8>  
<«$ꢉ8>  
ꢃꢀ  
ꢄꢆꢈ7  
ꢅꢉꢈ7  
ꢁꢄꢈ7  
ꢇꢁꢈ7  
ꢂꢀ  
ꢂꢁ  
ꢃꢀ  
ꢃꢁ  
<">  
<NꢉT>  
ꢅꢁꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
Thermal resistance vsꢀ airspeed measured at the converterꢀ  
Tested in windtunnel with airflow and test conditions as  
per the Thermal consideration sectionꢀ  
Dissipated power vsꢀ load current and input voltage at  
TPcb=+25 °C  
Output Characteristic  
Heatsink (HS) option  
<7>  
ꢄꢈꢃꢀ  
The PKM4000E series DC/DC converters can be  
ordered with a heatsink (HS) optionꢀ The heatsink  
option have approximately 5 °C improved derating  
compared with the PKM4000E without heatsinkꢀ  
The HS option is intended to be mounted on a cold  
wall to transfer heat away from the converterꢀ  
ꢄꢈꢇꢆ  
ꢄꢈꢇꢀ  
ꢄꢈꢉꢆ  
ꢄꢈꢉꢀ  
<">  
ꢄꢅ  
ꢄꢆ  
ꢄꢇ ꢅꢄ  
Output voltage vsꢀ load current at TPcb=+25 °C, Vin=53 Vꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
1ꢃ  
PKM ꢂꢁ1ꢆGE PI Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off at Io=20A resistive load at TPcb=+25 °C,  
Vin=53 Vꢀ Turn-off enabled by disconnecting Vinꢀ Bot-  
tom trace: output voltage (0ꢀ5 V/divꢀ)ꢀ Top trace: input  
voltage (20 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ  
Start-up at Io=20A resistive load at TPcb=+25 °C,  
Vin=53 VStart enabled by connecting Vinꢀ Top trace:  
input voltage (10 V/divꢀ)ꢀ Bottom trace: output voltage  
(0ꢀ5 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ  
Transient  
Output Ripple  
Output voltage ripple (50mV/divꢀ) at TPcb=+25 °C, Vin=53 V,  
Io=20A resistive load with C=10 µF tantalum and 0ꢀ1 µF  
ceramic capacitorsꢀ Band width=20MHzꢀ Time scale: 2µs / divꢀ  
Output voltage response to load current step-change  
(5-15-5 A) at TPcb=+25 °C, Vin=53 Vꢀ Top trace: output  
voltage (200mV/divꢀ)ꢀ Bottom trace:  
load current (5 A/divꢀ) Time scale: 0ꢀ1 ms/divꢀ  
Output Voltage Adjust  
Output Voltage Adjust  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
<L0IN>  
ꢀꢁꢁꢁꢁꢁ  
Output Voltage Adjust Upwards, Increase:  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
%FDSFBTF  
*ODSFBTF  
Radj= 5ꢀ11 [1ꢀ5(100+Δ%)/1ꢀ225Δ%- (100+2Δ%)/Δ%] kOhm  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5ꢀ11 [(100/Δ%-2)] kOhm  
Eg Increase 4% =>Vout = 1ꢀ56 Vdc  
5ꢀ11 [1ꢀ5(100+4)/(1ꢀ225x4)-(100+2x4)/4]=24ꢀ7 kOhm  
<>  
ꢀꢂ  
ꢀꢁ  
Eg Decrease 2% =>Vout = 1ꢀ47 Vdc  
5ꢀ11 x(100/2-2)=245ꢀ3 kOhm  
Output voltage adjust resistor value vsꢀ  
percentage change in output voltageꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
1ꢄ  
PKM ꢂꢁ1ꢇE PI Output  
TPcb = -40ꢀꢀꢀ+90 ºC and VI = 36…75V, sense pins connected to output pins unless otherwise specifiedꢀ  
Output  
Unit  
V
Characteristics  
Conditions  
min  
2ꢀ45  
typ  
max  
2ꢀ55  
Output voltage initial setting  
and accuracy  
IOmax, VI = 53 V, TPcb = 25 ˚C  
IOmax, VI = 53 V, TPcb = 25 ˚C  
2ꢀ50  
V
Oi  
Output adjust range  
2ꢀ25  
2ꢀ42  
2ꢀ42  
2ꢀ75  
2ꢀ58  
2ꢀ58  
5
V
Output voltage tolerance band  
Idling voltage  
I
= (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmax  
= 0  
V
O
O
I
V
V
V
O
tr  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = (0ꢀ01ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
5
Load transient  
voltage deviation  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
±100  
100  
5
mV  
µs  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
t
t
t
Load transient recovery time  
Ramp-up time  
tr  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
(0ꢀ1ꢀꢀꢀ0ꢀ9) × VOnom  
10  
ms  
ms  
r
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
VI connection to 0ꢀ9 x VOnom  
Start-up time  
7ꢀ5  
15  
15  
s
I
Output current  
0
A
O
POmax Max output power  
At V = V nom  
37ꢀ5  
W
A
O
O
I
I
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
18  
23  
60  
lim  
TPcb = 25 °C, VO < 0ꢀ5V  
A
sc  
VOac  
SVR  
OVP  
See ripple and noise, IOmax, VOnom,  
90  
5
mV  
dB  
V
p-p  
TPcb = 25 °C, f = 100 Hz sinewave , 1 Vpp,  
Supply voltage rejection (ac)  
Over voltage protection  
68  
V
= 53 V  
I
V = 53 V IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax  
I
3ꢀ5  
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
90  
max  
Unit  
%
η
η
η
η
P
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
T
Pcb  
T
Pcb  
T
Pcb  
T
Pcb  
= +25 °C, V = 48 V, I = 0ꢀ5 x I  
I O  
Omax  
= +25 °C, V = 48 V, I = I  
Omax  
89  
%
I
O
= +25 °C, V = 53 V, I = 0ꢀ5 x I  
90  
%
I
O
Omax  
= +25 °C, V = 53 V, I = I  
Omax  
87  
89  
%
I
O
IOmax, VI = 53 V, TPcb = 25 ˚C  
5ꢀ5  
180  
W
d
f
Switching frequency  
kHz  
s
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
1ꢅ  
PKM ꢂꢁ1ꢇE PI Typical Characteristics  
Efficiency  
Output Current Derating  
<ꢉ>  
ꢃꢆ  
<">  
ꢅꢈ  
ꢅꢁ  
ꢃꢀ  
ꢆꢉꢀꢊNꢋTꢊꢌꢃꢀꢀꢊMGNꢍ  
ꢁꢉꢈꢊNꢋTꢊꢌꢈꢀꢀꢊMGNꢍ  
ꢁꢉꢀꢊNꢋTꢊꢌꢂꢀꢀꢊMGNꢍ  
ꢅꢉꢈꢊNꢋTꢊꢌꢆꢀꢀꢊMGNꢍꢊꢊ  
ꢈꢆ  
ꢁꢂꢊ7  
ꢋꢈꢊ7  
ꢆꢁꢊ7  
ꢇꢆꢊ7  
ꢅꢉꢀꢊNꢋTꢊꢌꢁꢀꢀꢊMGNꢍ  
/BUꢉꢊ$POWꢉ  
ꢈꢀ  
ꢇꢆ  
<">  
ꢄꢆ  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
<«$>  
ꢄꢅ  
Available load current vsꢀ ambient air temperature and airflow  
at Vin=53 VDC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration sectionꢀ  
Efficiency vsꢀ load current and input voltage at TPcb=+25 °C  
Thermal resistance  
Power Dissipation  
<«$ꢉ8>  
ꢃꢀ  
<8>  
ꢁꢂꢈ7  
ꢇꢉꢈ7  
ꢆꢁꢈ7  
ꢊꢆꢈ7  
<">  
<NꢉT>  
ꢅꢁꢀ  
ꢄꢅ  
ꢄꢆ  
ꢀꢁꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
Thermal resistance vsꢀ airspeed measured at the converterꢀ  
Tested in windtunnel with airflow and test conditions as  
per the Thermal consideration sectionꢀ  
Dissipated power vsꢀ load current and input voltage at  
TPcb=+25 °C  
Output Characteristic  
Heatsink (HS) option  
<7>  
ꢄꢆꢅꢀ  
The PKM4000E series DC/DC converters can be  
ordered with a heatsink (HS) optionꢀ The heatsink  
option have approximately 5 °C improved derating  
compared with the PKM4000E without heatsinkꢀ  
The HS option is intended to be mounted on a cold  
wall to transfer heat away from the converterꢀ  
ꢄꢆꢇꢇ  
ꢄꢆꢇꢀ  
ꢄꢆꢁꢇ  
ꢄꢆꢁꢀ  
ꢃꢄ  
ꢃꢅ  
<">  
Output voltage vsꢀ load current at TPcb=+25 °C, Vin=53 Vꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
1ꢆ  
PKM ꢂꢁ1ꢇE PI Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off at Io=15A resistive load at TPcb=+25 °C,  
Vin=53 Vꢀ Turn-off enabled by disconnecting Vinꢀ Top  
trace: output voltage (1ꢀ0 V/divꢀ)ꢀ Bottom trace: input  
voltage (20 V/divꢀ)ꢀ Time scale: 10 ms/divꢀ  
Start-up at Io=15A resistive load at TPcb=+25 °C,  
Vin=53 VStart enabled by connecting Vinꢀ Top trace:  
input voltage (10 V/divꢀ)ꢀ Bottom trace: output voltage  
(1ꢀ0 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ  
Transient  
Output Ripple  
Output voltage ripple (50mV/divꢀ) at TPcb=+25 °C, Vin=53 V,  
Io=15A resistive load with C=10 µF tantalum and 0ꢀ1 µF  
ceramic capacitorsꢀ Band width=20MHzꢀ Time scale: 1µs / divꢀ  
Output voltage response to load current step-change  
(3ꢀ75-11ꢀ25-3ꢀ37A) at TPcb=+25 °C, Vin=53 Vꢀ Top  
trace: output voltage (50mV/divꢀ)ꢀ Bottom trace:  
load current (5 A/divꢀ) Time scale: 0ꢀ1 ms/divꢀ  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
ꢀꢁꢁꢁ  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
Output Voltage Adjust Upwards, Increase:  
Radj= 5ꢀ11 [2ꢀ5(100+Δ%)/1ꢀ225Δ%- (100+2Δ%)/Δ%] kOhm  
ꢀꢁꢁ  
ꢀꢁ  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5ꢀ11 [(100/Δ%-2)] kOhm  
%FDSFBTF  
*ODSFBTF  
Eg Increase 4% =>Vout = 2ꢀ6 Vdc  
5ꢀ11 [2ꢀ5(100+4)/(1ꢀ225x4)-(100+2x4)/4]=133 kOhm  
Eg Decrease 2% =>Vout = 2ꢀ45 Vdc  
5ꢀ11 x(100/2-2)=245ꢀ3 kOhm  
<>  
ꢀꢂ  
ꢀꢁ  
Output voltage adjust resistor value vsꢀ  
percentage change in output voltageꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
1ꢇ  
PKM ꢂꢃ10E PI Output  
TPcb = -40ꢀꢀꢀ+90 ºC and VI = 36…75V, sense pins connected to output pins unless otherwise specifiedꢀ  
Output  
Unit  
V
Characteristics  
Conditions  
min  
3ꢀ23  
typ  
3ꢀ3  
max  
3ꢀ37  
Output voltage initial setting  
and accuracy  
IOmax, VI = 53 V, TPcb = 25 ˚C  
IOmax, VI = 53 V, TPcb = 25 ˚C  
V
Oi  
Output adjust range  
2ꢀ97  
3ꢀ2  
3ꢀ63  
3ꢀ4  
3ꢀ4  
5
V
Output voltage tolerance band  
Idling voltage  
I
= (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmax  
= 0  
V
O
O
I
3ꢀ2  
V
V
V
O
tr  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = (0ꢀ01ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
5
Load transient  
voltage deviation  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
±250  
100  
5
mV  
µs  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
t
t
t
Load transient recovery time  
Ramp-up time  
tr  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
(0ꢀ1ꢀꢀꢀ0ꢀ9) × VOnom  
10  
ms  
ms  
r
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
VI connection to 0ꢀ9 x VOnom  
Start-up time  
7ꢀ5  
15  
15  
s
I
Output current  
0
A
O
POmax Max output power  
At V = V nom  
50  
W
A
O
O
I
I
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
20  
25  
25  
lim  
TPcb = 25 °C, VO < 0ꢀ5V  
A
sc  
VOac  
SVR  
OVP  
See ripple and noise, IOmax, VOnom,  
50  
mV  
dB  
V
p-p  
TPcb = 25 °C, f = 100 Hz sinewave , 1 Vpp,  
Supply voltage rejection (ac)  
Over voltage protection  
70  
V
= 53 V  
I
V = 53 V IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax  
I
3ꢀ9  
5ꢀ0  
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
90ꢀ5  
89  
max  
Unit  
%
η
η
η
η
P
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
T
T
T
T
= +25 °C, V = 48 V, I = 0ꢀ5 x I  
I O  
Pcb  
Pcb  
Pcb  
Pcb  
Omax  
= +25 °C, V = 48 V, I = I  
Omax  
%
I
O
= +25 °C, V = 53 V, I = 0ꢀ5 x I  
90  
%
I
O
Omax  
= +25 °C, V = 53 V, I = I  
Omax  
87  
89  
%
I
O
IOmax, VI = 53 V, TPcb = 25 ˚C  
6
W
d
f
Switching frequency  
180  
kHz  
s
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀ0  
PKM ꢂꢃ10E PI Typical Characteristics  
Efficiency  
Output Current Derating  
[A]  
15  
<ꢇ>  
ꢆꢁ  
ꢆꢀ  
3.0 m/s (600 lfm)  
10  
2.5 m/s (500 lfm)  
ꢅꢁ  
2.0 m/s (400 lfm)  
1.5 m/s (300 lfm)  
1.0 m/s (200 lfm)  
ꢈꢉꢊ7  
ꢋꢅꢊ7  
ꢁꢈꢊ7  
ꢄꢁꢊ7  
ꢅꢀ  
5
Nat. Conv.  
ꢄꢁ  
0
ꢄꢀ  
0
20  
40  
60  
80  
100 [°C]  
<">  
ꢃꢀ  
ꢂꢀ  
ꢂꢁ  
Available load current vsꢀ ambient air temperature and airflow  
at Vin=53 VDC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration sectionꢀ  
Efficiency vsꢀ load current and input voltage at TPcb=+25 °C  
Thermal resistance  
Power Dissipation  
[W]  
8
[°C/W]  
10  
7
6
5
4
3
2
1
0
8
6
4
2
0
36 V  
48 V  
53 V  
75 V  
0
3
6
9
12  
15 [A]  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0 [m/s]  
Thermal resistance vsꢀ airspeed measured at the converterꢀ  
Tested in windtunnel with airflow and test conditions as  
per the Thermal consideration sectionꢀ  
Dissipated power vsꢀ load current and input voltage at  
TPcb=+25 °C  
Output Characteristic  
Heatsink (HS) option  
[V]  
3.40  
The PKM4000E series DC/DC converters can be  
ordered with a heatsink (HS) optionꢀ The heatsink  
option have approximately 5 °C improved derating  
compared with the PKM4000E without heatsinkꢀ  
The HS option is intended to be mounted on a cold  
wall to transfer heat away from the converterꢀ  
3.35  
3.30  
3.25  
3.20  
[A]  
15  
0
3
6
9
12  
Output voltage vsꢀ load current at TPcb=+25 °C, Vin=53 Vꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀ1  
PKM ꢂꢃ10E PI Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off at Io=15A resistive load at TPcb=+25 °C,  
Vin=53 Vꢀ Turn-off enabled by disconnecting Vinꢀ Top  
trace: output voltage (1 V/divꢀ)ꢀ Bottom trace: input  
voltage (20 V/divꢀ)ꢀ Time scale: 10 ms/divꢀ  
Start-up at Io=15A resistive load at TPcb=+25 °C,  
Vin=53 VStart enabled by connecting Vinꢀ Top trace:  
input voltage (10 V/divꢀ)ꢀ Bottom trace: output voltage  
(1 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ  
Transient  
Output Ripple  
Output voltage ripple (50mV/divꢀ) at TPcb=+25 °C, Vin=53 V,  
Io=15A resistive load with C=10 µF tantalum and 0ꢀ1 µF  
ceramic capacitorsꢀ Band width=20MHzꢀ Time scale: 2µs / divꢀ  
Output voltage response to load current step-change  
(3ꢀ75-11ꢀ25-3ꢀ75 A) at TPcb=+25 °C, Vin=53 Vꢀ Top  
trace: output voltage (200mV/divꢀ)ꢀ Bottom trace:  
load current (5 A/divꢀ) Time scale: 0ꢀ1 ms/divꢀ  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
ꢀꢁꢁꢁꢁꢁ  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
Output Voltage Adjust Upwards, Increase:  
Radj= 5ꢀ11 [3ꢀ3(100+Δ%)/1ꢀ225Δ%- (100+2Δ%)/Δ%] kOhm  
%FDSFBTF  
*ODSFBTF  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5ꢀ11 [(100/Δ%-2)] kOhm  
Eg Increase 4% =>Vout = 3ꢀ43 Vdc  
5ꢀ11 [3ꢀ3(100+4)/(1ꢀ225x4)-(100+2x4)/4]=219ꢀ9 kOhm  
<>  
ꢀꢂ  
ꢀꢁ  
Eg Decrease 2% =>Vout = 3ꢀ23 Vdc  
5ꢀ11 x(100/2-2)=245ꢀ3 kOhm  
Output voltage adjust resistor value vsꢀ  
percentage change in output voltageꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀꢀ  
PKM ꢂꢃ11E PI Output  
TPcb = -40ꢀꢀꢀ+90 ºC and VI = 36…75V, sense pins connected to output pins unless otherwise specifiedꢀ  
Output  
Unit  
V
Characteristics  
Conditions  
min  
4ꢀ89  
typ  
5ꢀ0  
max  
5ꢀ11  
Output voltage initial setting  
and accuracy  
IOmax, VI = 53 V, TPcb = 25 ˚C  
IOmax, VI = 53 V, TPcb = 25 ˚C  
V
Oi  
Output adjust range  
4ꢀ5  
5ꢀ5  
5ꢀ15  
5ꢀ15  
5
V
Output voltage tolerance band  
Idling voltage  
I
= (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmax  
= 0  
4ꢀ85  
4ꢀ85  
V
O
O
I
V
V
V
O
tr  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = (0ꢀ01ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
5
Load transient  
voltage deviation  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
±250  
100  
5
mV  
µs  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
t
t
t
Load transient recovery time  
Ramp-up time  
tr  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
(0ꢀ1ꢀꢀꢀ0ꢀ9) × VOnom  
10  
ms  
ms  
r
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
VI connection to 0ꢀ9 x VOnom  
Start-up time  
7ꢀ5  
15  
10  
s
I
Output current  
0
A
O
POmax Max output power  
At V = V nom  
50  
W
A
O
O
I
I
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
15  
25  
30  
lim  
TPcb = 25 °C, VO < 0ꢀ5V  
A
sc  
VOac  
SVR  
OVP  
See ripple and noise, IOmax, VOnom,  
50  
mV  
dB  
V
p-p  
TPcb = 25 °C, f = 100 Hz sinewave , 1 Vpp,  
Supply voltage rejection (ac)  
Over voltage protection  
75  
V
= 53 V  
I
V = 53 V IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax  
I
5ꢀ6  
7ꢀ6  
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
90ꢀ5  
90  
max  
Unit  
%
η
η
η
η
P
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
T
T
T
T
= +25 °C, V = 48 V, I = 0ꢀ5 x I  
I O  
Pcb  
Pcb  
Pcb  
Pcb  
Omax  
= +25 °C, V = 48 V, I = I  
Omax  
%
I
O
= +25 °C, V = 53 V, I = 0ꢀ5 x I  
90  
%
I
O
Omax  
= +25 °C, V = 53 V, I = I  
Omax  
88  
90  
%
I
O
IOmax, VI = 53 V, TPcb = 25 ˚C  
5ꢀ5  
180  
W
d
f
Switching frequency  
kHz  
s
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀꢁ  
PKM ꢂꢃ11E PI Typical Characteristics  
Efficiency  
Output Current Derating  
<">  
ꢅꢀ  
<ꢇ>  
ꢆꢂ  
ꢆꢁ  
ꢆꢀ  
ꢄꢄ  
ꢌꢆꢀꢇNꢈTꢇꢉꢃꢀꢀꢇMGNꢊꢇꢇ  
ꢁꢆꢋꢇNꢈTꢇꢉꢋꢀꢀꢇMGNꢊ  
ꢁꢆꢀꢇNꢈTꢇꢉꢂꢀꢀꢇMGNꢊ  
ꢅꢆꢋꢇNꢈTꢇꢉꢌꢀꢀꢇMGNꢊ  
ꢅꢆꢀꢇNꢈTꢇꢉꢁꢀꢀꢇMGNꢊ  
/BUꢆꢇ$POWꢆ  
36 V  
48 V  
53 V  
ꢄꢃ  
ꢄꢂ  
ꢄꢁ  
75 V  
ꢅꢀ <">  
ꢁꢀ  
ꢂꢀ  
ꢃꢀ  
ꢄꢀ  
ꢅꢀꢀ  
ꢅꢁꢀ  
<«$>  
Available load current vsꢀ ambient air temperature and airflow  
at Vin=53 VDC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration sectionꢀ  
Efficiency vsꢀ load current and input voltage at TPcb=+25 °C  
Thermal resistance  
Power Dissipation  
<8>  
<«$ꢉ8>  
ꢃꢀ  
ꢆꢃꢈ7  
ꢂꢄꢈ7  
ꢇꢆꢈ7  
ꢉꢇꢈ7  
<">  
ꢅꢀ  
<NꢉT>  
ꢀꢁꢀ  
ꢅꢁꢀ  
ꢀꢁꢂ  
ꢃꢁꢀ  
ꢃꢁꢂ  
ꢄꢁꢀ  
ꢄꢁꢂ  
Thermal resistance vsꢀ airspeed measured at the converterꢀ  
Tested in windtunnel with airflow and test conditions as  
per the Thermal consideration sectionꢀ  
Dissipated power vsꢀ load current and input voltage at  
TPcb=+25 °C  
Heatsink (HS) option  
Output Characteristic  
<7>  
ꢆꢇꢅꢀꢀ  
The PKM4000E series DC/DC converters can be  
ordered with a heatsink (HS) optionꢀ The heatsink  
option have approximately 5 °C improved derating  
compared with the PKM4000E without heatsinkꢀ  
The HS option is intended to be mounted on a cold  
wall to transfer heat away from the converterꢀ  
ꢆꢇꢀꢄꢀ  
ꢆꢇꢀꢃꢀ  
ꢆꢇꢀꢂꢀ  
ꢆꢇꢀꢁꢀ  
ꢆꢇꢀꢀꢀ  
<">  
ꢅꢀ  
Output voltage vsꢀ load current at TPcb=+25 °C, Vin=53 Vꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀꢂ  
PKM ꢂꢃ11E PI Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off at Io=10A resistive load at TPcb=+25 °C,  
Vin=53 Vꢀ Turn-off enabled by disconnecting Vinꢀ Top  
trace: output voltage (2 V/divꢀ)ꢀ Bottom trace: input  
voltage (20 V/divꢀ)ꢀ Time scale: 10 ms/divꢀ  
Start-up at Io=10A resistive load at TPcb=+25 °C,  
Vin=53 VStart enabled by connecting Vinꢀ Top trace:  
input voltage (10 V/divꢀ)ꢀ Bottom trace: output voltage  
(1 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ  
Transient  
Output Ripple  
Output voltage ripple (50mV/divꢀ) at TPcb=+25 °C, Vin=53 V,  
Io=10A resistive load with C=10 µF tantalum and 0ꢀ1 µF  
ceramic capacitorsꢀ Band width=20MHzꢀ Time scale: 2µs / divꢀ  
Output voltage response to load current step-change  
(2ꢀ5-7ꢀ5-2ꢀ5 A) at TPcb=+25 °C, Vin=53 Vꢀ Top trace:  
output voltage (200mV/divꢀ)ꢀ Bottom trace:  
load current (2ꢀ5 A/divꢀ) Time scale: 0ꢀ1 ms/divꢀ  
Output Voltage Adjust  
Output Voltage Adjust  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
<L0IN>  
ꢀꢁꢁꢁꢁꢁ  
Output Voltage Adjust Upwards, Increase:  
Radj= 5ꢀ11 [5(100+Δ%)/1ꢀ225Δ%- (100+2Δ%)/Δ%] kOhm  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5ꢀ11 [(100/Δ%-2)] kOhm  
Eg Increase 4% =>Vout = 5ꢀ2 Vdc  
5ꢀ11 [5(100+4)/(1ꢀ225x4)-(100+2x4)/4]=404ꢀ3 kOhm  
Eg Decrease 2% =>Vout = 4ꢀ9 Vdc  
5ꢀ11 x(100/2-2)=245ꢀ3 kOhm  
<>  
ꢀꢂ  
ꢀꢁ  
Output voltage adjust resistor value vsꢀ  
percentage change in output voltageꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀꢃ  
PKM ꢂꢃ1ꢁE PI Output  
TPcb = -40ꢀꢀꢀ+90 ºC and VI = 36…75V, sense pins connected to output pins unless otherwise specifiedꢀ  
Output  
Unit  
V
Characteristics  
Conditions  
min  
11ꢀ8  
typ  
max  
12ꢀ2  
Output voltage initial setting  
and accuracy  
IOmax, VI = 53 V, TPcb = 25 ˚C  
IOmax, VI = 53 V, TPcb = 25 ˚C  
12ꢀ0  
V
Oi  
Output adjust range  
10ꢀ8  
13ꢀ2  
12ꢀ26  
12ꢀ26  
10  
V
Output voltage tolerance band  
Idling voltage  
I
I
= (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmax  
= 0  
11ꢀ74  
11ꢀ74  
V
O
O
V
V
V
O
tr  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = (0ꢀ01ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
10  
Load transient  
voltage deviation  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
±300  
100  
5
mV  
µs  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
t
t
t
Load transient recovery time  
Ramp-up time  
tr  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
(0ꢀ1ꢀꢀꢀ0ꢀ9) × VOnom  
10  
ms  
ms  
r
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
VI connection to 0ꢀ9 x VOnom  
Start-up time  
7ꢀ5  
15  
s
I
Output current  
0
4ꢀ2  
A
O
POmax Max output power  
At V = V nom  
50  
W
A
O
O
I
I
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
6ꢀ0  
9
lim  
TPcb = 25 °C, VO < 0ꢀ5V  
A
sc  
VOac  
SVR  
OVP  
See ripple and noise, IOmax, VOnom,  
100  
150  
16  
mV  
dB  
V
p-p  
TPcb = 25 °C, f = 100 Hz sinewave , 1 Vpp,  
Supply voltage rejection (ac)  
Over voltage protection  
75  
V
= 53 V  
I
V = 53 V IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax  
I
14  
Miscellaneous  
Characteristics  
Conditions  
min  
typ  
87ꢀ5  
89  
max  
Unit  
%
η
η
η
η
P
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
T
Pcb  
T
Pcb  
T
Pcb  
T
Pcb  
= +25 °C, V = 48 V, I = 0ꢀ5 x I  
I O  
Omax  
= +25 °C, V = 48 V, I = I  
Omax  
%
I
O
= +25 °C, V = 53 V, I = 0ꢀ5 x I  
87  
%
I
O
Omax  
= +25 °C, V = 53 V, I = I  
Omax  
87  
89  
%
I
O
IOmax, VI = 53 V, TPcb = 25 ˚C  
6,5  
200  
W
d
f
Switching frequency  
kHz  
s
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀꢄ  
PKM ꢂꢃ1ꢁE PI Typical Characteristics  
Efficiency  
Output Current Derating  
[A]  
5
<ꢉ>  
ꢈꢅ  
ꢈꢀ  
ꢇꢅ  
4
3.0 m/s (600 lfm)  
2.5 m/s (500 lfm)  
3
2.0 m/s (400 lfm)  
1.5 m/s (300 lfm)  
1.0 m/s (200 lfm)  
Nat. Conv.  
ꢃꢊꢋ7  
ꢄꢇꢋ7  
ꢅꢃꢋ7  
ꢇꢀ  
2
ꢆꢅꢋ7  
ꢆꢅ  
1
0
ꢆꢀ  
<">  
0
20  
40  
60  
80  
100 [°C]  
Available load current vsꢀ ambient air temperature and airflow  
at Vin=53 VDC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration sectionꢀ  
Efficiency vsꢀ load current and input voltage at TPcb=+25 °C  
Thermal resistance  
Power Dissipation  
[W]  
8
[°C/W]  
12  
7
6
5
4
3
2
1
0
36 V  
48 V  
53 V  
75 V  
10  
8
6
4
2
0
[A]  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
[m/s]  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
Thermal resistance vsꢀ airspeed measured at the converterꢀ  
Tested in windtunnel with airflow and test conditions as  
per the Thermal consideration sectionꢀ  
Dissipated power vsꢀ load current and input voltage at  
TPcb=+25 °C  
Output Characteristic  
Heatsink (HS) option  
[V]  
12.2  
The PKM4000E series DC/DC converters can be  
ordered with a heatsink (HS) optionꢀ The heatsink  
option have approximately 5 °C improved derating  
compared with the PKM4000E without heatsinkꢀ  
The HS option is intended to be mounted on a cold  
wall to transfer heat away from the converterꢀ  
12.1  
12.0  
11.9  
11.8  
[A]  
5
0
1
2
3
4
Output voltage vsꢀ load current at TPcb=+25 °C, Vin=53 Vꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀꢅ  
PKM ꢂꢃ1ꢁE PI Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off at Io=4ꢀ2 A resistive load at TPcb=+25 °C,  
Vin=53 Vꢀ Turn-off enabled by disconnecting Vinꢀ Top  
trace: output voltage (5 V/divꢀ)ꢀ Bottom trace: input  
voltage (20 V/divꢀ)ꢀ Time scale: 10 ms/divꢀ  
Start-up at Io=4ꢀ2 A resistive load at TPcb=+25 °C,  
Vin=53 VStart enabled by connecting Vinꢀ Top trace:  
output voltage (2 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ Bot-  
tom trace: input voltage (10 V/divꢀ)ꢀ  
Transient  
Output Ripple  
Output voltage ripple (50mV/divꢀ) at TPcb=+25 °C, Vin=53 V,  
Io=4ꢀ2 A resistive load with C=10 µF tantalum and 0ꢀ1 µF  
ceramic capacitorsꢀ Band width=20MHzꢀ Time scale: 2µs / divꢀ  
Output voltage response to load current step-change  
(1ꢀ05-3ꢀ15-1ꢀ05 A) at TPcb=+25 °C, Vin=53 Vꢀ Top  
trace: output voltage (200mV/divꢀ)ꢀ Bottom trace:  
load current (1 A/divꢀ) Time scale: 0ꢀ1 ms/divꢀ  
Output Voltage Adjust  
Output Voltage Adjust  
<L0IN>  
ꢀꢁꢁꢁꢁꢁ  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
Output Voltage Adjust Upwards, Increase:  
Radj= 5ꢀ11 [12(100+Δ%)/1ꢀ225Δ%- (100+2Δ%)/Δ%] kOhm  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5ꢀ11 [(100/Δ%-2)] kOhm  
Eg Increase 4% =>Vout = 12ꢀ48 Vdc  
5ꢀ11 [12(100+4)/(1ꢀ225x4)-(100+2x4)/4]=1163ꢀ5 kOhm  
Eg Decrease 2% =>Vout = 11ꢀ76 Vdc  
5ꢀ11 x(100/2-2)=245ꢀ3 kOhm  
<>  
ꢀꢂ  
ꢀꢁ  
Output voltage adjust resistor value vsꢀ  
percentage change in output voltageꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀꢆ  
PKM ꢂꢃ1ꢃE PI Output  
TPcb = -40ꢀꢀꢀ+90 ºC and VI = 36…75V, sense pins connected to output pins unless otherwise specifiedꢀ  
Output  
Unit  
V
Characteristics  
Conditions  
min  
typ  
max  
Output voltage initial setting  
and accuracy  
IOmax, VI = 53 V, TPcb = 25 ˚C  
IOmax, VI = 53 V, TPcb = 25 ˚C  
14ꢀ75  
15ꢀ0  
15ꢀ25  
V
Oi  
Output adjust range  
13ꢀ5  
16ꢀ5  
15ꢀ30  
15ꢀ30  
10  
V
Output voltage tolerance band  
Idling voltage  
I
= (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmax  
= 0  
14ꢀ70  
14ꢀ70  
V
O
O
I
V
V
V
O
tr  
Line regulation  
IOmax  
mV  
mV  
Load regulation  
IO = (0ꢀ01ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
10  
Load transient  
voltage deviation  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
±300  
100  
5
mV  
µs  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V,  
load step = 0ꢀ5 × IOmax  
t
t
t
Load transient recovery time  
Ramp-up time  
tr  
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
(0ꢀ1ꢀꢀꢀ0ꢀ9) × VOnom  
10  
ms  
ms  
r
IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax, VI = 53 V  
VI connection to 0ꢀ9 x VOnom  
Start-up time  
7ꢀ5  
15  
s
I
Output current  
0
3ꢀ33  
A
O
POmax Max output power  
At V = V nom  
50  
W
A
O
O
I
I
Current limit threshold  
Short circuit current  
Output ripple & noise  
TPcb < TPcbmax  
4ꢀ5  
7ꢀ5  
100  
lim  
TPcb = 25 °C, VO < 0ꢀ5V  
A
sc  
VOac  
SVR  
OVP  
See ripple and noise, IOmax, VOnom,  
150  
mV  
dB  
V
p-p  
TPcb = 25 °C, f = 100 Hz sinewave , 1 Vpp,  
Supply voltage rejection (ac)  
Over voltage protection  
70  
V
= 53 V  
I
V = 53 V IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) × IOmax  
I
TBD  
min  
TBD  
Miscellaneous  
Characteristics  
Conditions  
typ  
86ꢀ5  
90  
max  
Unit  
%
η
η
η
η
P
Efficiency - 50% load  
Efficiency - 100% load  
Efficiency - 50% load  
Efficiency - 100% load  
Power Dissipation  
T
T
T
T
= +25 °C, V = 48 V, I = 0ꢀ5 x I  
I O  
Pcb  
Pcb  
Pcb  
Pcb  
Omax  
= +25 °C, V = 48 V, I = I  
Omax  
%
I
O
= +25 °C, V = 53 V, I = 0ꢀ5 x I  
86  
%
I
O
Omax  
= +25 °C, V = 53 V, I = I  
Omax  
88  
89ꢀ5  
6
%
I
O
IOmax, VI = 53 V, TPcb = 25 ˚C  
W
d
f
Switching frequency  
200  
kHz  
s
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢀꢇ  
PKM ꢂꢃ1ꢃE PI Typical Characteristics  
Efficiency  
Output Current Derating  
[A]  
4
<ꢉ>  
ꢈꢆ  
ꢈꢀ  
ꢇꢆ  
3
3.0 m/s (600 lfm)  
2.5 m/s (500 lfm)  
2
1
0
2.0 m/s (400 lfm)  
1.5 m/s (300 lfm)  
1.0 m/s (200 lfm)  
Nat. Conv.  
ꢃꢊꢋ7  
ꢄꢇꢋ7  
ꢆꢃꢋ7  
ꢇꢀ  
ꢅꢆꢋ7  
ꢅꢆ  
ꢅꢀ  
<">  
[°C]  
100  
0
20  
40  
60  
80  
Available load current vsꢀ ambient air temperature and airflow  
at Vin=53 VDC/DC converter mounted vertically with airflow  
and test conditions as per the Thermal consideration sectionꢀ  
Efficiency vsꢀ load current and input voltage at TPcb=+25 °C  
Thermal resistance  
Power Dissipation  
[W]  
8
[°C/W]  
12  
36 V  
48 V  
53 V  
75 V  
7
6
5
4
3
2
1
0
10  
8
6
4
2
0
[A]  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
[m/s]  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Thermal resistance vsꢀ airspeed measured at the converterꢀ  
Tested in windtunnel with airflow and test conditions as  
per the Thermal consideration sectionꢀ  
Dissipated power vsꢀ load current and input voltage at  
TPcb=+25 °C  
Heatsink (HS) option  
Output Characteristic  
[V]  
15.1  
The PKM4000E series DC/DC converters can be  
ordered with a heatsink (HS) optionꢀ The heatsink  
option have approximately 5 °C improved derating  
compared with the PKM4000E without heatsinkꢀ  
The HS option is intended to be mounted on a cold  
wall to transfer heat away from the converterꢀ  
15.1  
15.0  
14.9  
14.8  
[A]  
4
0
1
2
3
Output voltage vsꢀ load current at TPcb=+25 °C, Vin=53 Vꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢁ0  
PKM ꢂꢃ1ꢃE PI Typical Characteristics  
Start-Up  
Turn-Off  
Turn-off at Io=3ꢀ33 A resistive load at TPcb=+25 °C,  
Vin=53 Vꢀ Turn-off enabled by disconnecting Vinꢀ Top  
trace: output voltage (5 V/divꢀ)ꢀ Bottom trace: input  
voltage (20 V/divꢀ)ꢀ Time scale: 10 ms/divꢀ  
Start-up at Io=3ꢀ33 A resistive load at TPcb=+25 °C,  
Vin=53 VStart enabled by connecting Vinꢀ Top trace:  
input voltage (10 V/divꢀ)ꢀ Bottom trace: output voltage  
(5 V/divꢀ)ꢀ Time scale: 5 ms/divꢀ  
Transient  
Output Ripple  
Output voltage ripple (50mV/divꢀ) at TPcb=+25 °C, Vin=53 V,  
Io=3ꢀ33 A resistive load with C=10 µF tantalum and 0ꢀ1 µF  
ceramic capacitorsꢀ Band width=20MHzꢀ Time scale: 1µs / divꢀ  
Output voltage response to load current step-change  
(0ꢀ82-2ꢀ50-0ꢀ82 A) at TPcb=+25 °C, Vin=53 Vꢀ Top  
trace: output voltage (200mV/divꢀ)ꢀ Bottom trace:  
load current (1 A/divꢀ) Time scale: 0ꢀ1 ms/divꢀ  
Output Voltage Adjust  
Output Voltage Adjust  
[kOhm]  
100000  
The resistor value for an adjusted output voltage is  
calculated by using the following equations:  
Decrease  
Increase  
10000  
1000  
100  
10  
Output Voltage Adjust Upwards, Increase:  
Radj= 5ꢀ11 [15(100+Δ%)/1ꢀ225Δ%- (100+2Δ%)/Δ%] kOhm  
Output Voltage Adjust Downwards, Decrease:  
Radj= 5ꢀ11 [(100/Δ%-2)] kOhm  
Eg Increase 4% =>Vout = 15ꢀ6 Vdc  
5ꢀ11 [15(100+4)/(1ꢀ225x4)-(100+2x4)/4]=1488ꢀ9 kOhm  
1
[%]  
12  
Eg Decrease 2% =>Vout = 14ꢀ7 Vdc  
5ꢀ11 x(100/2-2)=245ꢀ3 kOhm  
0
2
4
6
8
10  
Output voltage adjust resistor value vsꢀ  
percentage change in output voltageꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢁ1  
EMC Specification  
The conducted EMI measurement was performed using a  
module placed directly on the test benchꢀ  
The fundamental switching frequency is 180 kHz for  
PKM4510E PI @ VI = 53V, IO = (0ꢀ1ꢀꢀꢀ1ꢀ0) x IOmaxꢀ  
Printed Circuit Board  
Power Module  
5µH 50  
50 ohm temination  
+
out  
in  
LISN  
rcvr  
DC  
Power  
Source  
Filter  
(if used)  
Conducted EMI Input terminal value (typ)  
5µH 50Ω  
LISN  
-
out  
in  
1 m Twisted Pair  
rcvr  
Resistive  
Load  
Optional Connection  
to Earth Ground  
50 ohm input  
EMC  
Reciver  
Computer  
Test set-up.  
Layout Recommendation  
The radiated EMI performance of the DC/DC converter  
will be optimised by including a ground plane in the PCB  
area under the DC/DC converterꢀ This approach will re-  
turn switching noise to ground as directly as possible, with  
improvements to both emissions and susceptibilityꢀ It is also  
important to consider the stand-off of the PKM 4000E series  
DC/DC converterIf one ground trace is used, it should be  
connected to the input returnꢀ Alternatively, two ground  
traces may be used, with the trace under the input side of  
the DC/DC converter connected to the input return and the  
trace under the output side of the DC/DC converter con-  
nected to the output returnꢀ Make sure to use appropriate  
safety isolation spacing between these two return tracesꢀ  
The use of two traces as described will provide the capabil-  
ity of routing the input noise and output noise back to their  
respective returnsꢀ  
PKM 4510 E PI without filter  
External filter (class B)  
Required external input filter in order to meet class B in  
EN 55022, CISPR 22 and FCC part 15Jꢀ  
$ꢂ  
-ꢁ  
-ꢀ  
%$ꢈ%$  
$ꢃ  
$ꢅ  
$ꢀ  
$ꢁ  
$ꢄ  
Output ripple and noise  
$ꢀꢉ$ꢁꢉ$ꢃꢊꢋꢌꢍꢅꢎꢋ¬'ꢋꢏDFSBNJDꢐ  
$ꢂꢉ$ꢄꢊꢋꢃꢍꢑꢋO'ꢋꢏDFSBNJDꢐ  
$ꢅꢊꢋꢂꢒꢋ¬'ꢋꢏFMFDUSPMZUJDꢐ  
-ꢀꢊꢋꢒꢅꢎꢋ¬)ꢋꢏDPNNPOꢋNPEFꢐ  
-ꢁꢊꢋꢀꢄꢋ¬)  
The circuit below has been used for the ripple and noise  
measurements on the PKM 4000E Series DC/DC convertersꢀ  
Ceramic  
Capacitor  
Tantalum  
Capacitor  
+Vout  
+Sense  
+
Trim  
0.1uF  
10uF  
Load  
-Sense  
-Vout  
BNC  
Connector  
to Scope  
* Conductor from Vout to capacitors = 50mm [1.97in]  
Output ripple and noise test setup  
PKM 4510 E PI with filter  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢁꢀ  
Operating Information  
Input Voltage  
Remote Sense  
The input voltage range 36…75Vdc meets the requirements  
of the European Telecom Standard ETS 300 132-2 for  
normal input voltage range in –48V and –60V DC systems,  
-40ꢀ5…-57ꢀ0V and –50ꢀ0…-72V respectivelyꢀ At input  
voltages exceeding 75V, the power loss will be higher than  
at normal input voltage and TPcb must be limited to absolute  
max +110°Cꢀ The absolute maximum continuous input  
voltage is 80Vdcꢀ  
All PKM 4000E Series DC/DC converters have remote sense  
that can be used to compensate for moderate amounts of  
resistance in the distribution system and allow for voltage  
regulation at the load or other selected pointꢀ The remote  
sense lines will carry very little current and do not need a  
large cross sectional areaꢀ However, the sense lines on the  
PCB should be located close to a ground trace or ground  
planeꢀ In a discrete wiring situation, the use of twisted pair  
wires or other technique to reduce noise susceptibility  
is highly recommendedꢀ The remote sense circuitry will  
compensate for up to 10% voltage drop between the sense  
voltage and the voltage at the output pinsꢀ The output  
voltage and the remote sense voltage offset must be less  
than the minimum over voltage trip pointꢀ If the remote sense  
is not needed the –Sense should be connected to –Out and  
+Sense should be connected to +Outꢀ  
Turn-Off Input Voltage  
The PKM 4000E Series DC/DC converters monitor the input  
voltage and will turn on and turn off at predetermined levelsꢀ  
The minimum hysteresis between turn on and turn off input  
voltage is 2V where the turn on input voltage is the highestꢀ  
Remote Control (RC)  
Output Voltage Adjust (Vadj  
)
The PKM 4000E Series DC/DC  
converters have a remote control  
function referenced to the primary  
side (- In), with negative and positive  
logic options availableꢀ The RC  
function allows the converter to be  
turned on/off by an external device  
like a semiconductor or mechanical  
All PKM 4000E Series DC/DC converters have an Output  
Voltage adjust pin (Vadj)ꢀ This pin can be used to adjust  
the output voltage above or below Output voltage initial  
settingꢀ When increasing the output voltage, the voltage at  
the output pins (including any remote sense offset) must  
be kept below the overvoltage trip point, to prevent the  
converter from shut downꢀ Also note that at increased output  
voltages the maximum power rating of the converter remains  
the same, and the output current capability will decrease  
correspondinglyꢀ To decrease the output voltage the resistor  
should be connected between Vadj pin and –Sense pinꢀ  
To increase the voltage the resistor should be connected  
between Vadj pin and +Sense pinꢀ The resistor value of the  
Output voltage adjust function is according to information  
given under the output sectionꢀ  
+In  
RC  
-In  
Circuit configuration  
for RC function  
switchꢀ The RC pin has an internal  
pull up resistor to + Inꢀ The needed maximum sink current  
is 1mAꢀ When the RC pin is left open, the voltage generated  
on the RC pin is 3ꢀ5 - 6 VThe maximum allowable leakage  
current of the switch is 50 µAꢀ  
The standard converter is provided with “negative logic”  
remote control and the converter will be off until the RC  
pin is connected to the - Inꢀ To turn on the converter the  
voltage between RC pin and - In should be less than 1Vꢀ  
To turn off the converter the RC pin should be left open, or  
connected to a voltage higher than 4 V referenced to - Inꢀ In  
situations where it is desired to have the converter to power  
up automatically without the need for control signals or a  
switch, the RC pin can be wired directly to - Inꢀ  
+Out  
+Out  
+Sense  
+Sense  
R
adj  
Load  
Load  
The second option is “positive logic” remote control, which  
can be ordered by adding the suffix “P” to the end of the  
part numberThe converter will turn on when the input  
voltage is applied with the RC pin openꢀ Turn off is achieved  
by connecting the RC pin to the - Inꢀ To ensure safe turn  
off the voltage difference between RC pin and the - In pin  
shall be less than 1VThe converter will restart automatically  
when this connection is openedꢀ  
V
V
adj  
adj  
R
adj  
-Sense  
-Sense  
-Out  
-Out  
Decrease  
Increase  
Circuit configuration for output voltage adjust  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢁꢁ  
Operating Information  
Current Limit Protection  
Maximum Capacitive Load  
When powering loads with significant dynamic current  
requirements, the voltage regulation at the load can be  
improved by addition of decoupling capacitance at the loadꢀ  
The most affective technique is to locate low ESR ceramic  
capacitors as close to the load as possible, using several  
capacitors to lower the effective ESRꢀ These ceramic ca-  
pacitors will handle short duration high-frequency compo-  
nents of dynamic load changesꢀ In addition, higher values of  
electrolytic capacitors should be used to handle the mid-fre-  
quency componentsꢀ It is equally important to use good de-  
sign practise when configuring the DC distribution systemꢀ  
Low resistance and low inductance PCB (printed circuit  
board) layouts and cabling should be usedꢀ Remember that  
when using remote sensing, all resistance, inductance and  
capacitance of the distribution system is within the feed-  
back loop of the converterꢀ This can affect on the convert-  
ers compensation and the resulting stability and dynamic  
response performanceꢀ As a “rule of thumb”, 100µF/A of  
output current can be used without any additional analysisꢀ  
For example with a 25A converter, values of decoupling  
capacitance up to 2500 µF can be used without regard to  
stabilityꢀ With larger values of capacitance, the load transient  
recovery time can exceed the specified valueꢀ As much of  
the capacitance as possible should be outside the remote  
sensing loop and close to the loadꢀ The absolute maximum  
value of output capacitance is 10 000 µFFor values larger  
than this, please contact your local Ericsson Power Modules  
representativeꢀ  
The PKM 4000E Series DC/DC converters include current  
limiting circuitry that allows them to withstand continuous  
overloads or short circuit conditions on the outputꢀ The out-  
put voltage will decrease towards zero for output currents in  
excess of max output current (Iomax)ꢀ  
The converter will resume normal operation after removal  
of the overloadꢀ The load distribution system should be  
designed to carry the maximum output short circuit current  
specifiedꢀ  
Over Voltage Protection (OVP)  
The PKM 4000E Series DC/DC converters have output over-  
voltage protectionꢀ In the event of an overvoltage condition,  
the converter will shut down immediatelyꢀ The converter will  
make continuous attempts to start up (non-latching mode)  
and resume normal operation automaticallyꢀ  
Over Temperature Protection (OTP)  
The PKM 4000E Series DC/DC converters are protected  
from thermal overload by an internal over temperature  
shutdown circuitꢀ When the PCB temperature adjacent to  
the PWM control circuit exceeds 120 ºC the converter will  
shut down immediatelyꢀ The converter will make continuos  
attempts to start up (non-latching mode) and resume normal  
operation automatically when the temperature has dropped  
>10ºC below the temperature thresholdꢀ  
Input And Output Impedance  
The impedance of both the power source and the load will  
interact with the impedance of the DC/DC converterꢀ It is  
most important to have a ratio between L and C as low as  
possible, iꢀeꢀ a low characteristic impedance, both at the in-  
put and output, as the converters have a low energy storage  
capabilityꢀ The PKM 4000E Series DC/DC converters have  
been designed to be completely stable without the need  
for external capacitors on the input or the output circuitsꢀ  
The performance in some applications can be enhanced by  
addition of external capacitance as described under maxi-  
mum capacitive loadꢀ If the distribution of the input voltage  
source to the converter contains significant inductance, the  
addition of a 100µF capacitor across the input of the con-  
verter will help insure stabilityꢀ This capacitor is not required  
when powering the DC/DC converter from a low impedance  
source with short, low inductance, input power leadsꢀ  
Parallel Operation  
The PKM 4000E Series DC/DC converters can be paralleled  
for redundancy if external o-ring diodes are used in series  
with the outputsꢀ It is not recommended to parallel the PKM  
4000E Series DC/DC converters for increased power without  
using external current sharing circuitsꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢁꢂ  
Thermal Consideration  
General  
Calculation of ambient temperature  
The PKM 4000E Series DC/DC converters are designed  
to operate in a variety of thermal environments, however  
sufficient cooling should be provided to help ensure reliable  
operationꢀ Heat is removed by conduction, convection and  
radiation to the surrounding environmentꢀ Increased airflow  
enhances the heat transfer via convectionꢀ The available load  
current vsꢀ ambient air temperature and airflow at Vin=53 V  
for each model is according to the information given under  
the output sectionꢀ The test is done in a wind tunnel with a  
cross section of 305x305mm, the DC/DC converter vertically  
mounted on a 8 layer PCB with a size of 254x254mmꢀ  
Proper cooling can be verified by measuring the temperature  
of selected devicesꢀ Peak temperature can occur at position  
P1 and P2ꢀ The temperature at these positions should not  
exceed the recommended max valuesꢀ  
By using the thermal resistance the maximum allowed  
ambient temperature can be calculatedꢀ  
1ꢀ The powerloss is calculated by using the formula  
((1/η) - 1) × output power = power lossesꢀ  
η = efficiency of converterꢀ Eꢀg 89% = 0ꢀ89  
2ꢀ Find the value of the thermal resistance for each product in  
the diagram by using the airflow speed at the output section  
of the converterꢀ Take the thermal resistance x powerloss to  
get the temperature increaseꢀ  
3ꢀ Max allowed calculated ambient temperature is: Max  
TPCB of DC/DC converter – temperature increaseꢀ  
Eꢀg PKM 4510E PI at 1m/s:  
1
Aꢀ ((  
) - 1) × 49ꢀ5W = 6ꢀ1W  
0ꢀ89  
Position  
P1  
Device  
Transformer  
Mosfet  
Tcritical  
Max Value  
110ºC  
Bꢀ 6ꢀ1W × 5ꢀ5°C/W = 33ꢀ6°C  
Tcore  
Cꢀ110°C - 33ꢀ6°C = max ambient temperature is 76ꢀ4°C  
P2  
Tsurface  
110ºC  
The real temperature will be dependent on several factors,  
like PCB size and type, direction of airflow, air turbulence  
etcꢀ It is recommended to verify the temperature by testingꢀ  
*OQVUꢀTJEF  
1ꢁ  
"JSGMPX  
1ꢀ  
0VUQVUꢀTJEF  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢁꢃ  
Soldering Information  
Reliability  
The PKM4000E Series DC/DC converters are intended for  
through hole mounting on a PCBꢀ When wave soldering  
is used max temperature on the pins is specified to  
260°C for 10 secondsꢀ Maximum preheat rate of 4°C/s  
and temperature of max 130°C is suggestedꢀ When hand  
soldering, care should be taken to avoid direct contact  
between the hot soldering iron tip and the pins for more  
than a few seconds in order to prevent overheatingꢀ  
The Mean Time Between Failure (MTBF) of the PKM4000E  
Series DC/DC converter is calculated at full output power  
and an operating ambient temperature (TA) of +40°Cꢀ  
Different methods could be used to calculate the predicted  
MTBF andv failure rate which may give different resultsꢀ  
Ericsson Power Modules currently uses two different  
methods, Ericsson  
failure rate data system DependTool and Telcordia SR332ꢀ  
Predicted MTBF for the PKM4000E Series products is:  
7ꢀ0 million hours according to DependToolꢀ  
1ꢀ6 million hours according to Telcordia SR332, issue 1,  
Black box techiqueꢀ  
No-clean flux is recommended to avoid entrapment of  
cleaning fluids in cavities inside of the DC/DC power  
moduleꢀ The residues may affect long time reliability and  
isolation voltageꢀ  
The Ericsson failure rate data system is based on field  
tracking dataꢀ The data corresponds to actual failure rates  
of components used in Information Technology and Telecom  
(IT&T) equipment in temperature controlled environments (TA  
= -5ꢀꢀꢀ+65°C)ꢀ Telcordia SR332 is a commonly used standard  
method intended for reliability calculations in IT&T  
equipmentꢀThe parts count procedure used in this method  
was originally  
Delivery Package Information  
PKM 4000E series standard delivery packages are 100 or 20  
pcs boxes (One box contains 5 or 1 full tray(s)  
and 1 empty hold down tray)ꢀ  
modeled on the methods from MIL-HDBK-217F, Reliability  
Predictions of Electronic Equipmentꢀ It assumes that no  
reliability data is available on the actual units and devices for  
which the predictions are to be made, iꢀeꢀ all predictions are  
based on generic reliability parametersꢀequipmentꢀ For more  
information please refer to Design Note 002ꢀ  
Tray Specification  
Material:  
Polystyrene (PS)  
10 MOhm/sq  
Black  
20 pcs/tray  
16ꢀ2 mm (0ꢀ64 In)  
133 g  
Max surface resistance:  
Color:  
Capacity:  
Loaded tray stacking pitch:  
Weight:  
Compatibility with RoHS requirements  
The products are compatible with the relevant clauses  
and requirements of the RoHS directive 2002/95/EC and  
have a maximum concentration value of 0ꢀ1% by weight  
in homogeneous materials for lead, mercury, hexavalent  
chromium, PBB and PBDE and of 0ꢀ01% by weight in  
homogeneous materials for cadmiumꢀ  
Exemptions in the RoHS directive utilized in Ericsson Power  
Modules products include:  
Lead in high melting temperature type solder (used to  
solder the die in semiconductor packages)  
Lead in glass of electronics components and in electronic  
ceramic parts (eꢀgꢀ fill material in chip resistors)  
Lead as an alloying element in copper alloy containing  
up to 4% lead by weight (used in connection pins made of  
Brass)  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢁꢄ  
Sales Offices and Contact Information  
Company Headquarters  
Ericsson Power Modules AB  
LM Ericssons väg 30  
SE-126 25 Stockholm  
Sweden  
Italy, Spain (Mediterranean)  
Ericsson Power Modules AB  
Via Cadorna 71  
20090 Vimodrone (MI)  
Italy  
Phone: +46-8-568-69620  
Fax: +46-8-568-69599  
Phone: +39-02-265-946-07  
Fax: +39-02-265-946-69  
China  
Japan  
Ericsson Simtek Electronics Coꢀ  
33 Fuhua Road  
Jiading District  
Shanghai 201 818  
China  
Ericsson Power Modules AB  
Kimura Daini Building, 3 FLꢀ  
3-29-7 Minami-Oomachi, Shinagawa-ka  
Tokyo 140-0013  
Japan  
Phone: +86-21-5990-3258  
Fax: +86-21-5990-0188  
Phone: +81-3-5733-5107  
Fax: +81-3-5753-5162  
North and South America  
Ericsson Incꢀ Power Modules  
6300 Legacy Drꢀ  
Germany, Austria  
Ericsson Power Modules AB  
Mühlhauser Weg 18  
85737 Ismaning  
Plano, TX 75024  
USA  
Germany  
Phone: +1-972-583-5254  
+1-972-583-6910  
Phone: +49-89-9500-6905  
Fax: +49-89-9500-6911  
Fax: +1-972-583-7839  
Hong Kong (Asia Pacific)  
Ericsson Ltdꢀ  
12/FDevon House  
979 King’s Road  
Quarry Bay  
All other countries  
Contact Company Headquarters  
or visit our website:  
www.ericsson.com/powermodules  
Hong Kong  
Phone: +852-2590-2453  
Fax: +852-2590-7152  
Information given in this data sheet is believed to be accurate and reliableꢀ  
No responsibility is assumed for the consequences of its use nor for any infringement  
of patents or other rights of third parties which may result from its useꢀ  
No license is granted by implication or otherwise under any patent or patent rights of  
Ericsson Power Modulesꢀ These products are sold only according to  
Ericsson Power Modules’ general conditions of sale, unless otherwise confirmed in  
writingꢀ Specifications subject to change without noticeꢀ  
PKM 4000E PI Datasheet  
EN/LZT 146 051 R7A ©Ericsson Power Modules, February 2007  
ꢁꢅ  

相关型号:

PKM4319PILA

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid,
ERICSSON

PKM4319PIP

DC-DC Regulated Power Supply Module, 1 Output, 37.5W, Hybrid,
ERICSSON

PKM4402NGPI

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSGLA

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSGLB

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSGLC

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSLB

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIHSLC

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIPHS

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIPHSG

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIPHSGLA

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON

PKM4402NGPIPHSGLB

DC-DC Regulated Power Supply Module, 1 Output, 480W, Hybrid, ROHS COMPLIANT PACKAGE-6
ERICSSON