EM78P156NM [ELAN]

8-BIT MICRO-CONTROLLER; 8位微控制器
EM78P156NM
型号: EM78P156NM
厂家: ELAN MICROELECTRONICS CORP    ELAN MICROELECTRONICS CORP
描述:

8-BIT MICRO-CONTROLLER
8位微控制器

微控制器 光电二极管 局域网 可编程只读存储器
文件: 总58页 (文件大小:1342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM78P156N  
OTP ROM  
EM78P156N  
8-BIT MICRO-CONTROLLER  
Version 1.2  
EM78P156N  
OTP ROM  
Specification Revision History  
Content  
Version  
1.0  
Initial version  
1.1  
Change Power on reset content  
07/01/2003  
07/29/2004  
1.2  
Add the Device Characteristic at section 6.3  
Application Note  
AN-001 EM78P156N v.s. EM78P156E on the DC Characteristics  
This specification is subject to change without prior notice.  
2
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
1. GENERAL DESCRIPTION  
EM78P156N is an 8-bit microprocessor designed and developed with low-power, high-speed CMOS  
technology.. It is equipped with 1K*13-bits Electrical One Time Programmable Read Only Memory  
(OTP-ROM). It provides three PROTECTION bits to prevent user’s code in the OTP memory from being  
intruded. 8 OPTION bits are also available to meet user’s requirements.  
With its OTP-ROM feature, the EM78P156N is able to offer a convenient way of developing and verifying  
user’s programs. Moreover, user can take advantage of EMC Writer to easily program his development  
code.  
This specification is subject to change without prior notice.  
3
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
2. FEATURES  
• Operating voltage range : 2.5V~5.5V  
• Operating temperature range: -40°C~85°C  
• Operating frequency rang (base on 2 clocks ):  
* Crystal mode: DC~20MHz at 5V, DC~8MHz at 3V, DC~4MHz at 2.5V.  
* ERC mode: DC~4MHz at 5V, DC~4MHz at 3V, DC~4MHz at 2.5V.  
• Low power consumption:  
* Less then 2 mA at 5V/4MHz  
* Typically 20 µA at 3V/32KHz  
* Typically 1 µA during sleep mode  
• 1K × 13 bits on chip ROM  
• One security register to prevent intrusion of OTP memory codes  
• One configuration register to accommodate user’s requirements  
• 48× 8 bits on chip registers (SRAM, general purpose register)  
• 2 bi-directional I/O ports  
• 5 level stacks for subroutine nesting  
• 8-bit real time clock/counter (TCC) with selective signal sources, trigger edges, and overflow interrupt  
• Two clocks per instruction cycle  
• Power down (SLEEP) mode  
• Three available interruptions  
* TCC overflow interrupt  
* Input-port status changed interrupt (wake up from sleep mode)  
* External interrupt  
• Programmable free running watchdog timer  
• 8 programmable pull-high pins  
• 7 programmable pull-down pins  
• 8 programmable open-drain pins  
• 2 programmable R-option pins  
• Package types:  
* 18 pin DIP 300mil  
* 18 pin SOP 300mil  
* 20 pin SSOP 209mil  
: EM78P156NP  
: EM78P156NM  
: EM78P156NAS  
This specification is subject to change without prior notice.  
4
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
* 20 pin SSOP 209mil  
: EM78P156NKM  
• 99.9% single instruction cycle commands  
• The transient point of system frequency between HXT and LXT is around 400KHz  
This specification is subject to change without prior notice.  
5
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
3. PIN ASSIGNMENTS  
NC  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
1
2
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P52  
P51  
P52  
18  
17  
16  
15  
14  
13  
12  
11  
10  
P51  
1
2
3
4
5
6
7
8
9
P52  
P51  
P50  
P53  
TCC  
/RESET  
Vss  
P50  
P53  
TCC  
3
P50  
P53  
TCC  
3
OSCI  
OSCO  
VDD  
VDD  
OSCI  
OSCO  
VDD  
4
OSCI  
OSCO  
VDD  
4
/RESET  
Vss  
/RESET  
Vss  
5
5
6
Vss  
6
P60/INT  
P61  
P67  
P66  
P65  
P64  
P60/INT  
P61  
7
P67  
P66  
P65  
P64  
P60/INT  
P61  
7
P67  
P66  
P65  
P64  
8
8
P62  
P62  
9
P62  
9
P63  
P63  
10  
P63  
10  
Fig. 1 Pin Assignment  
Table 1 EM78P156NP and EM78P156NM Pin Description  
Symbol Pin No.  
Type  
-
Function  
VDD  
14  
* Power supply.  
* XTAL type: Crystal input terminal or external clock input pin.  
* ERC type: RC oscillator input pin.  
OSCI  
16  
I
* XTAL type: Output terminal for crystal oscillator or external clock input pin.  
* RC type: Instruction clock output.  
OSCO  
15  
I/O  
* External clock signal input.  
* The real time clock/counter (with Schmitt trigger input pin), must be tied to  
VDD or VSS if not in use.  
* Input pin with Schmitt trigger. If this pin remains at logic low, the controller  
will also remain in reset condition.  
TCC  
3
4
I
I
/RESET  
* P50~P53 are bi-directional I/O pins.  
17,18,  
1, 2  
P50~P53  
I/O  
I/O  
* P50 and P51 can also be defined as the R-option pins.  
* P50~P52 can be pulled-down by software.  
* P60~P67 are bi-directional I/O pins.  
* These can be pulled-high or can be open-drain by software programming.  
* P60~P63 can also be pulled-down by software.  
* External interrupt pin triggered by falling edge.  
* Ground.  
P60~P67 6~13  
/INT  
VSS  
6
5
I
-
This specification is subject to change without prior notice.  
6
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Table 2 EM78P156NAS Pin Description  
Symbol Pin No.  
Type  
-
Function  
VDD  
15  
* Power supply.  
* XTAL type: Crystal input terminal or external clock input pin.  
* ERC type: RC oscillator input pin.  
OSCI  
17  
I
* XTAL type: Output terminal for crystal oscillator or external clock input pin.  
* RC type: Instruction clock output.  
OSCO  
16  
I/O  
* External clock signal input.  
* The real time clock/counter (with Schmitt trigger input pin), must be tied to  
VDD or VSS if not in use.  
* Input pin with Schmitt trigger. If this pin remains at logic low, the controller  
will also remain in reset condition.  
TCC  
4
5
I
I
/RESET  
* P50~P53 are bi-directional I/O pins.  
* P50 and P51 can also be defined as the R-option pins.  
* P50~P52 can be pulled-down by software.  
* P60~P67 are bi-directional I/O pins.  
* These can be pulled-high or can be open-drain by software programming.  
* P60~P63 can also be pulled-down by software.  
18, 19,  
2, 3  
P50~P53  
I/O  
I/O  
P60~P67 7~14  
/INT  
VSS  
7
6
I
-
* External interrupt pin triggered by falling edge.  
* Ground.  
Table 3 EM78P156NKM Pin Description  
Symbol Pin No.  
Type  
-
Function  
VDD  
15,16  
* Power supply.  
* XTAL type: Crystal input terminal or external clock input pin.  
* ERC type: RC oscillator input pin.  
OSCI  
18  
I
* XTAL type: Output terminal for crystal oscillator or external clock input pin.  
* RC type: Instruction clock output.  
OSCO  
17  
I/O  
* External clock signal input.  
* The real time clock/counter (with Schmitt trigger input pin), must be tied to  
VDD or VSS if not in use.  
* Input pin with Schmitt trigger. If this pin remains at logic low, the controller  
will also remain in reset condition.  
TCC  
3
4
I
I
/RESET  
* P50~P53 are bi-directional I/O pins.  
* P50 and P51 can also be defined as the R-option pins.  
* P50~P52 can be pulled-down by software.  
* P60~P67 are bi-directional I/O pins.  
* These can be pulled-high or can be open-drain by software programming.  
* P60~P63 can also be pulled-down by software.  
19, 20,  
1, 2  
P50~P53  
I/O  
I/O  
P60~P67 7~14  
/INT  
VSS  
7
5, 6  
I
-
* External interrupt pin triggered by falling edge.  
* Ground.  
This specification is subject to change without prior notice.  
7
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
4. FUNCTION DESCRIPTION  
OSCO  
/RESET  
OSCI  
TCC /INT  
WDT timer  
Prescaler  
Oscillator/Timing  
Control  
ROM  
R2  
Stack  
ALU  
IOCA  
RAM  
Interrupt  
Controller  
Instruction  
Register  
R3  
R1(TCC)  
R4  
Instruction  
Decoder  
ACC  
DATA & CONTROL BUS  
P60//INT  
P61  
P62  
P63  
P64  
P65  
IOC6  
R6  
IOC5  
R5  
P50  
P51  
P52  
P53  
I/O  
PORT 6  
I/O  
PORT 5  
P66  
P67  
Fig. 2 Function Block Diagram  
4.1 Operational Registers  
1. R0 (Indirect Addressing Register)  
R0 is not a physically implemented register. Its major function is to perform as an indirect addressing  
pointer. Any instruction using R0 as a pointer actually accesses data pointed by the RAM Select  
Register (R4).  
2. R1 (Time Clock /Counter)  
• Increased by an external signal edge, which is defined by TE bit (CONT-4) through the TCC pin,  
or by the instruction cycle clock.  
• Writable and readable as any other registers.  
• Defined by resetting PAB(CONT-3).  
• The prescaler is assigned to TCC, if the PAB bit (CONT-3) is reset.  
• The contents of the prescaler counter will be cleared only when TCC register is written with a  
value.  
This specification is subject to change without prior notice.  
8
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
3. R2 (Program Counter) & Stack  
• Depending on the device type, R2 and hardware stack are 10-bits wide. The structure is depicted  
in Fig.3.  
• Generating 1024×13 bits on-chip OTP ROM addresses to the relative programming instruction  
codes. One program page is 1024 words long.  
• R2 is set as all "0"s when under RESET condition.  
• "JMP" instruction allows direct loading of the lower 10 program counter bits. Thus, "JMP" allows  
PC to go to any location within a page.  
• "CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed into the stack. Thus,  
the subroutine entry address can be located anywhere within a page.  
• "RET" ("RETL k", "RETI") instruction loads the program counter with the contents of the top-level  
stack.  
• "ADD R2, A" allows the contents of ‘A’ to be added to the current PC, and the ninth and tenth bits  
of the PC are cleared.  
• "MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of the PC, and the  
ninth and tenth bits of the PC are cleared.  
• Any instruction that writes to R2 (e.g., "ADD R2,A", "MOV R2,A", "BC R2,6",⋅⋅⋅⋅⋅) will cause the  
ninth and tenth bits (A8~A9) of the PC to be cleared. Thus, the computed jump is limited to the first  
256 locations of a page.  
• All instruction are single instruction cycle (fclk/2 or fclk/4) except for the instruction that would  
change the contents of R2. Such instruction will need one more instruction cycle.  
000H  
008H  
Reset Vector  
Interrupt Vector  
PC (A9 ~ A0)  
On-chip Program  
Memory  
Stack Level 1  
Stack Level 2  
Stack Level 3  
Stack Level 4  
Stack Level 5  
3FFH  
Fig. 3 Program Counter Organization  
This specification is subject to change without prior notice.  
9
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Address  
R PAGE registers  
IOC PAGE registers  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
(IAR)  
Reserve  
CONT (Control Register)  
Reserve  
(TCC)  
(PC)  
(Status)  
(RSR)  
Reserve  
Reserve  
(Port5)  
IOC5 (I/O Port Control Register)  
IOC6 (I/O Port Control Register)  
Reserve  
(Port6)  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
(Interrupt Status)  
Reserve  
Reserve  
IOCA (Prescaler Control Register)  
IOCB (Pull-down Register)  
IOCC (Open-drain Control)  
IOCD (Pull-high Control Register)  
IOCE (WDT Control Register)  
IOCF (Interrupt Mask Register)  
RF  
General Registers  
3F  
Fig. 4 Data Memory Configuration  
This specification is subject to change without prior notice. 10  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
4. R3 (Status Register)  
7
6
5
4
T
3
2
Z
1
0
GP2  
GP1  
GP0  
P
DC  
C
Bit 0 (C) Carry flag  
Bit 1 (DC) Auxiliary carry flag  
Bit 2 (Z) Zero flag.  
Set to "1" if the result of an arithmetic or logic operation is zero.  
Bit 3 (P) Power down bit.  
Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP" command.  
Bit 4 (T) Time-out bit.  
Set to 1 with the "SLEP" and "WDTC" commands, or during power up and reset to 0 by WDT  
time-out.  
Bit5 ~7 (GP0 ~ 2) General-purpose read/write bits.  
5. R4 (RAM Select Register)  
• Bits 0~5 are used to select registers (address: 00~06, 0F~3F) in the indirect addressing mode.  
• Bits 6~7 are not used (read only).  
• The Bits 6~7 set to “1” at all time.  
• Z flag of R3 will set to “1” when R4 content is equal to “3F.” When R4=R4+1, R4 content will select  
as R0.  
• See the configuration of the data memory in Fig. 4.  
6. R5 ~ R6 (Port 5 ~ Port 6)  
• R5 and R6 are I/O registers.  
• Only the lower 4 bits of R5 are available.  
7. RF (Interrupt Status Register)  
7
-
6
-
5
-
4
-
3
-
2
1
0
EXIF  
ICIF  
TCIF  
“1” means interrupt request, and “0” means no interrupt occurs.  
Bit 0 (TCIF) TCC overflow interrupt flag. Set when TCC overflows, reset by software.  
Bit 1 (ICIF) Port 6 input status change interrupt flag. Set when Port 6 input changes, reset by  
software.  
Bit 2 (EXIF) External interrupt flag. Set by falling edge on /INT pin, reset by software.  
Bits 3 ~ 7 Not used.  
This specification is subject to change without prior notice. 11  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
• RF can be cleared by instruction but cannot be set.  
• IOCF is the interrupt mask register.  
• Note that the result of reading RF is the "logic AND" of RF and IOCF.  
8. R10 ~ R3F  
• All of these are 8-bit general-purpose registers.  
4.2 Special Purpose Registers  
1. A (Accumulator)  
• Internal data transfer, or instruction operand holding  
• It cannot be addressed.  
2. CONT (Control Register)  
7
-
6
5
4
3
2
1
0
/INT  
TS  
TE  
PAB  
PSR2  
PSR1  
PSR0  
• Bit 0 (PSR0) ~ Bit 2 (PSR2) TCC/WDT prescaler bits.  
PSR2  
PSR1  
PSR0  
TCC Rate  
WDT Rate  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
1:1  
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
Bit 3 (PAB) Prescaler assignment bit.  
0: TCC  
1: WDT  
Bit 4 (TE) TCC signal edge  
0: increment if the transition from low to high takes place on TCC pin  
1: increment if the transition from high to low takes place on TCC pin  
Bit 5 (TS) TCC signal source  
0: internal instruction cycle clock  
1: transition on TCC pin  
Bit 6 (/INT) Interrupt enable flag  
0: masked by DISI or hardware interrupt  
1: enabled by ENI/RETI instructions  
Bit 7 Not used.  
This specification is subject to change without prior notice. 12  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
• CONT register is both readable and writable.  
3. IOC5 ~ IOC6 (I/O Port Control Register)  
• "1" put the relative I/O pin into high impedance, while "0" defines the relative I/O pin as output.  
• Only the lower 4 bits of IOC5 can be defined.  
• IOC5 and IOC6 registers are both readable and writable.  
4. IOCA (Prescaler Counter Register)  
• IOCA register is readable.  
• The value of IOCA is equal to the contents of Prescaler counter.  
• Down counter.  
5. IOCB (Pull-down Control Register)  
7
6
5
4
3
-
2
1
0
/PD7  
/PD6  
/PD5  
/PD4  
/PD2  
/PD1  
/PD0  
Bit 0 (/PD0) Control bit is used to enable the pull-down of P50 pin.  
0: Enable internal pull-down  
1: Disable internal pull-down  
Bit 1 (/PD1) Control bit is used to enable the pull-down of P51 pin.  
Bit 2 (/PD2) Control bit is used to enable the pull-down of P52 pin.  
Bit 3  
Not used.  
Bit 4 (/PD4) Control bit is used to enable the pull-down of P60 pin.  
Bit 5 (/PD5) Control bit is used to enable the pull-down of P61 pin.  
Bit 6 (/PD6) Control bit is used to enable the pull-down of P62 pin.  
Bit 7 (/PD7) Control bit is used to enable the pull-down of P63 pin.  
• IOCB Register is both readable and writable.  
6. IOCC (Open-drain Control Register)  
7
6
5
4
3
2
1
0
OD7  
OD6  
OD5  
OD4  
OD3  
OD2  
OD1  
OD0  
Bit 0 (OD0) Control bit is used to enable the open-drain of P60 pin.  
0: Disable open-drain output  
1: Enable open-drain output  
Bit 1 (OD1) Control bit is used to enable the open-drain of P61 pin.  
Bit 2 (OD2) Control bit is used to enable the open-drain of P62 pin.  
Bit 3 (OD3) Control bit is used to enable the open-drain of P63 pin.  
Bit 4 (OD4) Control bit is used to enable the open-drain of P64 pin.  
This specification is subject to change without prior notice. 13  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Bit 5 (OD5) Control bit is used to enable the open-drain of P65 pin.  
Bit 6 (OD6) Control bit is used to enable the open-drain of P66 pin.  
Bit 7 (OD7) Control bit is used to enable the open-drain of P67 pin.  
• IOCC Register is both readable and writable.  
7. IOCD (Pull-high Control Register)  
7
6
5
4
3
2
1
0
/PH7  
/PH6  
/PH5  
/PH4  
/PH3  
/PH2  
/PH1  
/PH0  
Bit 0 (/PH0) Control bit is used to enable the pull-high of P60 pin.  
0: Enable internal pull-high  
1: Disable internal pull-high  
Bit 1 (/PH1) Control bit is used to enable the pull-high of P61 pin.  
Bit 2 (/PH2) Control bit is used to enable the pull-high of P62 pin.  
Bit 3 (/PH3) Control bit is used to enable the pull-high of P63 pin.  
Bit 4 (/PH4) Control bit is used to enable the pull-high of P64 pin.  
Bit 5 (/PH5) Control bit is used to enable the pull-high of P65 pin.  
Bit 6 (/PH6) Control bit is used to enable the pull-high of P66 pin.  
Bit 7 (/PH7) Control bit is used to enable the pull-high of P67 pin.  
• IOCD Register is both readable and writable.  
8. IOCE (WDT Control Register)  
7
6
5
-
4
3
-
2
-
1
-
0
-
WDTE  
EIS  
ROC  
Bit 7 (WDTE) Control bit used to enable Watchdog timer.  
0: Disable WDT.  
1: Enable WDT.  
WDTE is both readable and writable.  
Bit 6 (EIS) Control bit is used to define the function of P60 (/INT) pin.  
0: P60, bi-directional I/O pin.  
1: /INT, external interrupt pin. In this case, the I/O control bit of P60 (bit 0 of IOC6) must be set to  
"1".  
When EIS is "0", the path of /INT is masked. When EIS is "1", the status of /INT pin can also be  
read by way of reading Port 6 (R6). Refer to Fig. 7(a).  
EIS is both readable and writable.  
Bit 4 (ROC) ROC is used for the R-option.  
This specification is subject to change without prior notice. 14  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Setting the ROC to "1" will enable the status of R-option pins (P50P51) that are read by the  
controller. Clearing the ROC will disable the R-option function. If the R-option function is selected,  
user must connect the P51 pin or/and P50 pin to VSS with a 430Kexternal resistor (Rex). If the  
Rex is connected/disconnected, the status of P50 (P51) is read as "0"/"1". Refer to Fig. 8.  
Bits 0~3,5 Not used.  
9. IOCF (Interrupt Mask Register)  
7
-
6
-
5
-
4
-
3
-
2
1
0
EXIE  
ICIE  
TCIE  
Bit 0 (TCIE) TCIF interrupt enable bit.  
0: disable TCIF interrupt  
1: enable TCIF interrupt  
Bit 1 (ICIE) ICIF interrupt enable bit.  
0: disable ICIF interrupt  
1: enable ICIF interrupt  
Bit 2 (EXIE) EXIF interrupt enable bit.  
0: disable EXIF interrupt  
1: enable EXIF interrupt  
Bits 3~7 Not used.  
• Individual interrupt is enabled by setting its associated control bit in the IOCF to "1".  
• Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Refer to  
Fig. 10.  
• IOCF register is both readable and writable.  
4.3 TCC/WDT & Prescaler  
An 8-bit counter available as prescaler for the TCC or WDT. The prescaler is available for either the  
TCC or WDT only at any given time, and the PAB bit of the CONT register is used to determine the  
prescaler assignment. The PSR0~PSR2 bits determine the ratio. The prescaler is cleared each time the  
instruction is written to TCC under TCC mode. The WDT and prescaler, when assigned to WDT mode,  
are cleared by the “WDTC” or “SLEP” instructions. Fig. 5 depicts the circuit diagram of TCC/WDT.  
• R1 (TCC) is an 8-bit timer/counter. The clock source of TCC can be internal or external clock input  
(edge selectable from TCC pin). If TCC signal source is from internal clock, TCC will increase by 1 at  
every instruction cycle (without prescaler). Referring to Fig. 5, CLK=Fosc/2 or CLK=Fosc/4 application  
is determined by the CODE Option bit CLK status. CLK=Fosc/2 is used if CLK bit is "0", and  
This specification is subject to change without prior notice. 15  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
CLK=Fosc/4 is used if CLK bit is "1". If TCC signal source comes from external clock input, TCC is  
increased by 1 at every falling edge or rising edge of TCC pin.  
• The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on running even when  
the oscillator driver has been turned off (i.e. in sleep mode). During normal operation or sleep mode, a  
WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled any  
time during normal mode by software programming. Refer to WDTE bit of IOCE register. Without  
prescaler, the WDT time-out period is approximately 18 ms1 (default).  
Data Bus  
CLK(=Fosc/2 or Fosc/4)  
0
1
0
TCC  
Pin  
M
U
X
M
U
X
SYNC  
2 cycles  
TCC (R1)  
1
TE  
TCC overflow interrupt  
TS  
PAB  
0
1
M
U
X
8-bit Counter  
M
U
X
IOCA  
WDT  
WTE  
PAB  
PAB  
(in IOCE)  
8-to-1 MUX  
Initial  
value  
PSR0~PSR2  
0
1
MUX  
WDT time-out  
PAB  
Fig. 5 Block Diagram of TCC and WDT  
4.4 I/O Ports  
The I/O registers, both Port 5 and Port 6, are bi-directional tri-state I/O ports. Port 6 can be pulled high  
internally by software. In addition, Port 6 can also have open-drain output by software. Input status  
change interrupt (or wake-up) function on Port 6. P50 ~ P52 and P60 ~ P63 pins can be pulled down by  
software. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC5 ~ IOC6).  
P50~P51 are the R-option pins enabled by setting the ROC bit in the IOCE register to 1. When the  
1 <Note>: Vdd = 5V, set up time period = 16.8ms ± 30%  
Vdd = 3V, set up time period = 18ms ± 30%  
This specification is subject to change without prior notice. 16  
07.29.2004 (V1.2)  
 
EM78P156N  
OTP ROM  
R-option function is used, it is recommended that P50~P51 are used as output pins. When R-option is in  
enable state, P50~P51 must be programmed as input pins. Under R-option mode, the current/power  
consumption by Rex should be taken into the consideration to promote energy conservation.  
The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits for  
Port 5 and Port 6 are shown in the following Figures 6, 7(a), 7(b), and Figure 8.  
PCRD  
P
Q
D
R
PCWR  
CLK  
_
Q
C
L
P
IOD  
PORT  
Q
D
R
PDWR  
CLK  
_
Q
C
L
PDRD  
0
1
M
U
X
NOTE: Pull-down is not shown in the figure.  
Fig. 6 The Circuit of I/O Port and I/O Control Register for Port 5  
P C R D  
P
Q
_
Q
D
R
P C W  
R
R
C L K  
C
L
P 6 0 / I N T  
P O R T  
I O  
D
P
Q
_
Q
D
R
P D W  
C L K  
C
L
B i t  
6
o f I O C E  
P
0
1
D
Q
R
M
U
X
_
Q
C L K  
C
L
T 1 0  
P D R D  
P
D
Q
R
C L K  
_
Q
C
L
I N T  
NOTE: Pull-high (down) and Open-drain are not shown in the figure.  
Fig. 7(a) The Circuit of I/O Port and I/O Control Register for P60 (/INT)  
This specification is subject to change without prior notice. 17  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
PCRD  
P
Q
_
Q
D
D
R
CLK  
PCWR  
PDWR  
C
L
P61~P67  
PORT  
IOD  
P
Q
R
_
Q
CLK  
C
L
0
1
M
U
X
TIN  
PDRD  
P
R
D
Q
CLK  
_
Q
C
L
NOTE: Pull-high (down) and Open-drain are not shown in the figure.  
Fig. 7(b) The Circuit of I/O Port and I/O Control Register for P61~P67  
IOCE.1  
P
Q
D
R
CLK  
Interrupt  
_
Q
C
L
RE.1  
ENI Instruction  
P
T10  
T11  
D
Q
R
P
CLK  
Q
D
R
_
Q
C
CLK  
L
_
Q
C
L
T17  
DISI Instruction  
Interrupt  
(Wake-up from SLEEP)  
/SLEP  
Next Instruction  
(Wake-up from SLEEP)  
Fig. 7(c) Block Diagram of I/O Port 6 with Input Change Interrupt/Wake-up  
This specification is subject to change without prior notice. 18  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Table 4 Usage of Port 6 Input Change Wake-up/Interrupt Function  
Usage of Port 6 input status changed Wake-up/Interrupt  
(I) Wake-up from Port 6 Input Status Change  
(a) Before SLEEP  
(II) Port 6 Input Status Change Interrupt  
1. Read I/O Port 6 (MOV R6,R6)  
2. Execute "ENI"  
3. Enable interrupt (Set IOCF.1)  
4. IF Port 6 change (interrupt)  
Interrupt vector (008H)  
1. Disable WDT1 (using very carefully)  
2. Read I/O Port 6 (MOV R6,R6)  
3. Execute "ENI" or "DISI"  
4. Enable interrupt (Set IOCF.1)  
5. Execute "SLEP" instruction  
(b) After Wake-up  
1. IF "ENI" Interrupt vector (008H)  
2. IF "DISI" Next instruction  
PCRD  
ROC  
VCC  
P
R
Q
Q
D
Weakly  
Pull-up  
CLK  
PCWR  
C
L
P
R
PORT  
Q
Q
D
IOD  
PDWR  
C
L
PDRD  
0
M
U
X
1
Rex*  
*The Rex is 430K ohm external resistor  
Fig. 8 The Circuit of I/O Port with R-option(P50,P51)  
1 NOTE: Software disables WDT (watchdog timer) but hardware must be enabled before applying  
Port 6 Change Wake-Up function. (CODE Option Register and Bit 11 (ENWDTB-) set to  
“1”).  
This specification is subject to change without prior notice. 19  
07.29.2004 (V1.2)  
 
EM78P156N  
OTP ROM  
4.5 RESET and Wake-up  
1. RESET  
A RESET is initiated by one of the following events-  
(1) Power on reset.  
(2) /RESET pin input "low", or  
(3) WDT time-out (if enabled).  
The device is kept in a RESET condition for a period of approx. 18ms1 (one oscillator start-up timer period)  
after the reset is detected. Once the RESET occurs, the following functions are performed. Refer to Fig.9.  
• The oscillator is running, or will be started.  
• The Program Counter (R2) is set to all "0".  
• All I/O port pins are configured as input mode (high-impedance state).  
• The Watchdog timer and prescaler are cleared.  
• When power is switched on, the upper 3 bits of R3 are cleared.  
• The bits of the CONT register are set to all "1" except for the Bit 6 (INT flag).  
• The bits of the IOCA register are set to all "1".  
• The bits of the IOCB register are set to all "1".  
• The IOCC register is cleared.  
• The bits of the IOCD register are set to all "1".  
• Bit 7 of the IOCE register is set to "1", and Bits 4 and 6 are cleared.  
• Bits 0~2 of RF and bits 0~2 of IOCF register are cleared.  
The sleep (power down) mode is asserted by executing the “SLEP” instruction. While entering sleep mode,  
WDT (if enabled) is cleared but keeps on running. The controller can be awakened by-  
(1) External reset input on /RESET pin,  
(2) WDT time-out (if enabled), or  
(3) Port 6 input status changes (if enabled).  
The first two cases will cause the EM78P156N to reset. The T and P flags of R3 can be used to determine the  
source of the reset (wake-up). The last case is considered the continuation of program execution and the  
global interrupt ("ENI" or "DISI" being executed) decides whether or not the controller branches to the interrupt  
1 NOTE: Vdd = 5V, set up time period = 16.8ms ± 30%  
Vdd = 3V, set up time period = 18ms ± 30%  
This specification is subject to change without prior notice. 20  
07.29.2004 (V1.2)  
 
EM78P156N  
OTP ROM  
vector following wake-up. If ENI is executed before SLEP, the instruction will begin to execute from the address  
008H after wake-up. If DISI is executed before SLEP, the operation will restart from the succeeding instruction  
right next to SLEP after wake-up.  
Only one of Cases 2 and 3 can be enabled before entering the sleep mode. That is,  
[a] if Port 6 Input Status Change Interrupt is enabled before SLEP , WDT must be disabled. by  
software. However, the WDT bit in the option register remains enabled. Hence, the  
EM78P156N can be awakened only by Case 1 or 3.  
[b] if WDT is enabled before SLEP, Port 6 Input Status Change Interrupt must be disabled. Hence,  
the EM78P156N can be awakened only by Case 1 or 2. Refer to the section on Interrupt.  
If Port 6 Input Status Change Interrupt is used to wake-up the EM78P156N (Case [a] above), the following  
instructions must be executed before SLEP:  
MOV A, @xx000110b  
CONTW  
; Select internal TCC clock  
CLR R1  
; Clear TCC and prescaler  
; Select WDT prescaler  
MOV A, @xxxx1110b  
CONTW  
WDTC  
; Clear WDT and prescaler  
; Disable WDT  
MOV A, @0xxxxxxxb  
IOW RE  
MOV R6, R6  
MOV A, @00000x1xb  
IOW RF  
; Read Port 6  
; Enable Port 6 input change interrupt  
ENI (or DISI)  
SLEP  
; Enable (or disable) global interrupt  
; Sleep  
NOP  
One problem user should be aware of, is that after waking up from the sleep mode, WDT would enable  
automatically. The WDT operation (being enabled or disabled) should be handled appropriately by software  
after waking up from the sleep mode.  
This specification is subject to change without prior notice. 21  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Table 5 The Summary of the Initialized Values for Registers  
Address  
Name  
Reset Type  
Bit Name  
Bit 7  
X
U
U
U
C67  
1
Bit 6  
X
Bit 5  
X
U
U
U
C65  
1
Bit 4  
X
U
U
U
C64  
1
Bit 3  
C53  
1
Bit 2  
C52  
1
Bit 1  
C51  
1
Bit 0  
C50  
1
Power-On  
U
U
U
C66  
1
N/A  
IOC5  
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
1
1
1
1
P
P
P
P
C63  
1
C62  
1
C61  
1
C60  
1
Power-On  
N/A  
N/A  
IOC6  
CONT  
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
1
1
1
1
1
1
1
1
P
X
1
P
P
TS  
1
P
TE  
1
P
P
P
P
/INT  
0
PAB PSR2 PSR1 PSR0  
Power-On  
1
1
P
-
1
1
P
-
1
1
P
-
1
1
P
-
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
1
0
1
1
P
-
P
P
-
P
-
-
Power-On  
U
P
P
-
U
P
U
P
P
-
U
P
P
-
U
P
P
-
U
P
P
-
U
P
P
-
U
P
P
-
0x00  
0x01  
0x02  
0x03  
0x04  
R0(IAR)  
R1(TCC)  
R2(PC)  
R3(SR)  
R4(RSR)  
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
P
-
Power-On  
0
0
0
0
0
0
P
-
0
0
P
-
0
0
P
-
0
0
P
-
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
0
0
0
0
P
-
P
P
-
P
-
-
Power-On  
0
0
0
0
0
0
0
0
0
0
0
0
/RESET and WDT  
0
0
0
0
Wake-Up from Pin Change **0/P **0/P **0/P **0/P **1/P **0/P **0/P **0/P  
Bit Name  
Power-On  
GP2  
0
GP1  
0
GP0  
0
T
1
P
1
Z
U
DC  
U
C
U
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
0
0
0
t
t
P
P
P
P
P
P
t
t
P
P
P
-
-
-
-
-
-
-
-
Power-On  
1
1
U
P
U
P
P
X
0
U
P
U
U
U
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
1
1
P
P
P
1
1
P
P
P
P
P
X
X
X
P53  
U
P
P52  
U
P51  
U
P50  
U
Power-On  
0
0
0
0x05  
0x06  
P5  
P6  
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
0
0
0
0
P
P
P
0
0
0
0
P
P
P
P
P67  
U
P66  
U
P65  
U
P64  
U
P63  
U
P62  
U
P61  
U
P60  
U
Power-On  
This specification is subject to change without prior notice. 22  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Address  
Name  
Reset Type  
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
Bit 7  
P
Bit 6  
P
Bit 5  
P
Bit 4  
P
Bit 3  
P
Bit 2  
Bit 1  
P
Bit 0  
P
P
P
P
P
P
P
P
P
P
X
X
X
X
X
EXIF  
ICIF  
0
TCIF  
Power-On  
U
U
U
-
U
U
U
-
U
U
U
-
U
U
U
-
U
U
U
-
0
0
P
-
0
0
P
-
0x0F  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
RF(ISR)  
IOCA  
IOCB  
IOCC  
IOCD  
IOCE  
IOCF  
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
0
P
-
Power-On  
1
1
1
1
1
1
1
P
1
1
1
P
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
1
1
1
1
1
1
P
P
P
P
P
P
/PD7 /PD6 /PD5 /PD4  
X
/PD2 /PD1 /PD0  
Power-On  
1
1
1
1
1
1
1
1
P
U
U
U
1
1
1
1
1
1
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
P
P
P
P
P
P
OD7  
0
OD6  
0
OD5  
0
OD4 OD3  
OD2  
0
OD1  
0
OD0  
0
Power-On  
0
0
P
0
0
P
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
0
0
0
0
0
0
P
P
P
P
P
P
/PH7 /PH6 /PH5 /PH4 /PH3 /PH2 /PH1 /PH0  
Power-On  
1
1
P
1
1
P
1
1
1
1
1
1
1
1
1
1
1
1
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
P
X
U
U
U
X
U
U
U
-
P
P
X
U
U
U
X
U
U
U
-
P
X
U
U
U
P
X
U
U
U
P
X
U
U
U
WDTE EIS  
ROC  
0
Power-On  
1
1
0
0
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
0
1
P
X
U
U
U
-
P
X
U
U
U
-
X
EXIE ICIE TCIE  
Power-On  
U
U
U
-
0
0
P
-
0
0
P
-
0
0
P
-
/RESET and WDT  
Wake-Up from Pin Change  
Bit Name  
Power-On  
U
P
P
U
P
P
U
P
P
U
P
U
P
P
U
P
P
U
P
P
U
P
P
0x10~0x2F R10~R2F  
/RESET and WDT  
Wake-Up from Pin Change  
P
** To jump address 0x08, or to execute the instruction which is next to the “SLEP” instruction.  
X: Not used. U: Unknown or don’t care. P: Previous value before reset. t: Check Table 4  
2. The Status of RST, T, and P of STATUS Register  
A RESET condition is initiated by the following events:  
This specification is subject to change without prior notice. 23  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
1. A power-on condition,  
2. A high-low-high pulse on /RESET pin, and  
3. Watchdog timer time-out.  
The values of T and P, listed in Table 4 are used to check how the processor wakes up. Table 5 shows the  
events that may affect the status of T and P.  
Table 6 The Values of RST, T and P after RESET  
Reset Type  
T
P
Power on  
/RESET during Operating mode  
/RESET wake-up during SLEEP mode  
WDT during Operating mode  
WDT wake-up during SLEEP mode  
Wake-Up on pin change during SLEEP mode  
1
*P  
1
0
0
1
*P  
0
*P  
0
1
0
*P: Previous status before reset  
Table 7 The Status of T and P Being Affected by Events.  
Event  
Power on  
T
1
1
0
1
1
P
1
WDTC instruction  
1
WDT time-out  
*P  
0
SLEP instruction  
Wake-Up on pin change during SLEEP mode  
0
*P: Previous value before reset  
VDD  
D
CLK  
CLR  
Q
CLK  
Oscillator  
Power-on  
Reset  
Voltage  
Detector  
WDTE  
WDT Timeout  
Setup Time  
RESET  
WDT  
/RESET  
Fig. 9 Block Diagram of Controller Reset  
This specification is subject to change without prior notice. 24  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
4.6 Interrupt  
The EM78P156N has three falling-edge interrupts listed below:  
(1) TCC overflow interrupt  
(2) Port 6 Input Status Change Interrupt  
(3) External interrupt [(P60, /INT) pin].  
Before the Port 6 Input Status Change Interrupt is enabled, reading Port 6 (e.g. "MOV R6,R6") is  
necessary. Each pin of Port 6 will have this feature if its status changed. Any pin configured as output or  
P60 pin configured as /INT is excluded from this function. The Port 6 Input Status Changed Interrupt can  
wake up the EM78P156N from the sleep mode if Port 6 is enabled prior to going into the sleep mode by  
executing SLEP. When the chip wakes-up, the controller will continue to execute the succeeding  
address if the global interrupt is disabled or branch to the interrupt vector 008H if the global interrupt is  
enabled.  
RF is the interrupt status register that records the interrupt requests in the relative flags/bits. IOCF is an  
interrupt mask register. The global interrupt is enabled by the ENI instruction and is disabled by the DISI  
instruction. When one of the interrupts (enabled) occurs, the next instruction will be fetched from  
address 008H. Once in the interrupt service routine, the source of an interrupt can be determined by  
polling the flag bits in RF. The interrupt flag bit must be cleared by instructions before leaving the  
interrupt service routine and before interrupts are enabled to avoid recursive interrupts.  
The flag (except ICIF bit) in the Interrupt Status Register (RF) is set regardless of the status of its mask  
bit or the execution of ENI. Note that the outcome of RF will be the logic AND of RF and IOCF (refer to  
Fig. 10). The RETI instruction ends the interrupt routine and enables the global interrupt (the execution  
of ENI).  
When an interrupt is generated by the INT instruction (enabled), the next instruction will be fetched from  
address 001H.  
This specification is subject to change without prior notice. 25  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
VCC  
P
D
Q
IRQn  
R
/IRQn  
CLK  
INT  
_
Q
IRQm  
C
L
RFRD  
RF  
ENI/DISI  
P
IOD  
Q
D
R
CLK  
_
Q
IOCFWR  
C
L
IOCF  
/RESET  
IOCFRD  
RFWR  
Fig. 10 Interrupt Input Circuit  
4.7 Oscillator  
1. Oscillator Modes  
The EM78P156N can be operated in three different oscillator modes, such as External RC oscillator mode  
(ERC), High XTAL oscillator mode (HXT), and Low XTAL oscillator mode (LXT). User can select one of them  
by programming OSC and HLF in the CODE option register. Table 6 depicts how these three modes are  
defined.  
The up-most limited operation frequency of crystal/resonator on the different VDDs is listed in Table 7.  
Table 8 Oscillator Modes Defined by OSC and HLP  
Mode  
OSC  
HLF  
*X  
1
HLP  
*X  
*X  
0
ERC(External RC oscillator mode)  
HXT(High XTAL oscillator mode)  
LXT(Low XTAL oscillator mode)  
0
1
1
0
<Note> 1. X, Don’t care  
2.The transient point of system frequency between HXT and LXY is around 400 KHz.  
This specification is subject to change without prior notice. 26  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Table 9 The Summary of Maximum Operating Speeds  
Conditions  
VDD  
3.0  
Fxt max.(MHz)  
8.0  
Two cycles with two clocks  
5.0  
20.0  
2. Crystal Oscillator/Ceramic Resonators (XTAL)  
EM78P156N can be driven by an external clock signal through the OSCI pin as shown in Fig. 11 below.  
OSCI  
OSCO  
Ext. Clock  
EM78P156N  
Fig. 11 Circuit for External Clock Input  
In the most applications, pin OSCI and pin OSCO can connected with a crystal or ceramic resonator to  
generate oscillation. Fig. 12 depicts such circuit. The same thing applies whether it is in the HXT mode or in the  
LXT mode. Table 8 provides the recommended values of C1 and C2. Since each resonator has its own  
attribute, user should refer to its specification for appropriate values of C1 and C2. RS, a serial resistor, may be  
necessary for AT strip cut crystal or low frequency mode.  
C1  
OSCI  
EM78P156N  
XTAL  
OSCO  
C2  
RS  
Fig. 12 Circuit for Crystal/Resonator  
This specification is subject to change without prior notice. 27  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Table 10 Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonator  
Oscillator Type  
Frequency Mode  
Frequency  
C1(pF)  
C2(pF)  
455 kHz  
2.0 MHz  
4.0 MHz  
32.768kHz  
100KHz  
200KHz  
455KHz  
1.0MHz  
2.0MHz  
4.0MHz  
100~150  
20~40  
10~30  
25  
25  
25  
20~40  
15~30  
15  
100~150  
20~40  
10~30  
15  
25  
25  
20~150  
15~30  
15  
Ceramic Resonators  
HXT  
LXT  
HXT  
Crystal Oscillator  
15  
15  
<Note> 1. The value of capacitors (C1, C2) is for reference.  
3. External RC Oscillator Mode  
For some applications that do not need a very precise timing calculation, the RC oscillator (Fig. 15) offers a lot  
of cost savings. Nevertheless, it should be noted that the frequency of the RC oscillator is influenced by the  
supply voltage, the values of the resistor (Rext), the capacitor (Cext), and even by the operation temperature.  
Moreover, the frequency also changes slightly from one chip to another due to the manufacturing process  
variation.  
In order to maintain a stable system frequency, the values of the Cext should not be less than 20pF, and that  
the value of Rext should not be greater than 1 M ohm. If they cannot be kept in this range, the frequency is  
easily affected by noise, humidity, and leakage.  
The smaller the Rext in the RC oscillator, the faster its frequency will be. On the contrary, for very low Rext  
values, for instance, 1 K, the oscillator becomes unstable because the NMOS cannot discharge the current of  
the capacitance correctly.  
Based on the above reasons, it must be kept in mind that all of the supply voltage, the operation temperature,  
the components of the RC oscillator, the package types, the way the PCB is layout, will affect the system  
frequency.  
This specification is subject to change without prior notice. 28  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Vcc  
Rext  
OSCI  
Cext  
EM78P156N  
Fig. 13 Circuit for External RC Oscillator Mode  
Table 11 RC Oscillator Frequencies  
Cext  
Rext  
Average Fosc 5V,25°C Average Fosc 3V,25°C  
3.3k  
5.1k  
10k  
3.92 MHz  
2.67 MHz  
1.39MHz  
149 KHz  
1.39 MHz  
940 KHz  
480 KHz  
52 KHz  
3.65 MHz  
2.60 MHz  
1.40 MHz  
156 KHz  
1.33 MHz  
920 KHz  
475 KHz  
50 KHz  
20 pF  
100k  
3.3k  
5.1k  
10k  
100 pF  
300 pF  
100k  
3.3k  
5.1k  
10k  
595 KHz  
400 KHz  
200 KHz  
21 KHz  
560 KHz  
390 KHz  
200 KHz  
20 KHz  
100k  
<Note> 1. Measured on DIP packages.  
2. For design reference only.  
3. The frequency drift is about ±30%  
4.8 CODE Option Register  
The EM78P156N has a CODE option word that is not a part of the normal program memory. The option  
bits cannot be accessed during normal program execution.  
Code Option Register and Customer ID Register arrangement distribution:  
This specification is subject to change without prior notice. 29  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Word 0  
Word 1  
Bit12~Bit0  
Bit12~Bit0  
1. Code Option Register (Word 0)  
WORD 0  
Bit7  
Bit12  
-
Bit11  
-
Bit10  
-
Bit9  
-
Bit8  
Bit6  
-
Bit5 Bit4 Bit3 Bit2 Bit1 Bit0  
HLF OSC HLP PR2 PR1 PR0  
CLKS ENWDTB  
Bit 12 11 10 9:Not used.  
Reserved.  
The bit set to “1” all the time.  
Bit 8 (CLKS): Instruction period option bit.  
0: two oscillator periods.  
1: four oscillator periods.  
Refer to the section on Instruction Set.  
Bit 7(ENWDTB): Watchdog timer enable bit.  
0: Enable  
1: Disable  
Bit 6: Not used.  
Reserved.  
The bit set to “1” all the time.  
Bit 5 (HLF): XTAL frequency selection  
0: XTAL2 type (low frequency, 32.768KHz)  
1: XTAL1 type (high frequency)  
This bit will affect system oscillation only when Bit4 (OSC) is “1”. When OSC is”0”, HLF must be “0”.  
<Note>: The transient point of system frequency between HXT and LXY is around 400 KHz.  
Bit 4 (OSC):Oscillator type selection.  
0:RC type  
1:XTAL type (XTAL1 and XTAL2)  
Bit 3 (HLP): Power selection.  
0: Low power  
1: High power  
Bit 2~0 (PR2~PR0): Protect Bit  
PR2~PR0 are protect bits, protect type as following  
PR2 PR1  
PR0  
Protect  
Enable  
Enable  
Enable  
0
0
0
0
0
1
0
1
0
This specification is subject to change without prior notice. 30  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
Enable  
Enable  
Enable  
Enable  
Disable  
2. Customer ID Register (Word 1)  
Bit 12~Bit 0  
XXXXXXXXXXXXX  
• Bit 12~0: Customer’s ID code  
4.9 Power On Considerations  
Any microcontroller is not guaranteed to start to operate properly before the power supply stays at its  
steady state.  
EM78156N POR voltage range is 1.2V~1.8V. Under customer application, when power is OFF, Vdd  
must drop to below 1.2V and remains OFF for 10us before power can be switched ON again. This way,  
the EM78156E will reset and work normally. The extra external reset circuit will work well if Vdd can rise  
at very fast speed (50 ms or less). However, under most cases where critical applications are involved,  
extra devices are required to assist in solving the power-up problems.  
4.10 External Power On Reset Circuit  
The circuit shown in Fig.16 implements an external RC to produce the reset pulse. The pulse width (time  
constant) should be kept long enough for Vdd to reached minimum operation voltage. This circuit is  
used when the power supply has slow rise time. Because the current leakage from the /RESET pin is  
about ±5µA, it is recommended that R should not be greater than 40 K. In this way, the /RESET pin  
voltage is held below 0.2V. The diode (D) acts as a short circuit at the moment of power down. The  
capacitor C will discharge rapidly and fully. Rin, the current-limited resistor, will prevent high current or  
ESD (electrostatic discharge) from flowing to pin /RESET.  
This specification is subject to change without prior notice. 31  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Vdd  
R
C
/RESET  
D
EM78P156N  
Rin  
Fig. 14 External Power-Up Reset Circuit  
4.11 Residue-Voltage Protection  
When battery is replaced, device power (Vdd) is taken off but residue-voltage remains. The residue-voltage  
may trips below Vdd minimum, but not to zero. This condition may cause a poor power on reset. Fig.18 and Fig.  
19 show how to build a residue-voltage protection circuit.  
Vdd  
Vdd  
33K  
EM78P156N  
/RESET  
Q1  
10K  
40K  
1N4684  
Fig. 15 Circuit 1 for the Residue Voltage Protection  
This specification is subject to change without prior notice. 32  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Vdd  
Vdd  
R1  
R2  
EM78P156N  
Q1  
/RESET  
40K  
Fig. 16 Circuit 2 for the Residue Voltage Protection  
4.12 Instruction Set  
Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more operands.  
Normally, all instructions are executed within one single instruction cycle (one instruction consists of 2  
oscillator periods), unless the program counter is changed by instruction "MOV R2,A", "ADD R2,A", or by  
instructions of arithmetic or logic operation on R2 (e.g. "SUB R2,A", "BS(C) R2,6", "CLR R2", ⋅⋅⋅⋅). In this case,  
the execution takes two instruction cycles.  
If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try  
modifying the instruction as follows:  
(A) Change one instruction cycle to consist of 4 oscillator periods.  
(B) "JMP", "CALL", "RET", "RETL", "RETI", or the conditional skip ("JBS", "JBC", "JZ", "JZA", "DJZ",  
"DJZA") commands which were tested to be true, are executed within two instruction cycles.  
The instructions that are written to the program counter also take two instruction cycles.  
Case (A) is selected by the CODE Option bit, called CLK. One instruction cycle consists of two oscillator clocks  
if CLK is low, and four oscillator clocks if CLK is high.  
Note that once the 4 oscillator periods within one instruction cycle is selected as in Case (A), the internal clock  
source to TCC should be CLK=Fosc/4, instead of Fosc/ 2 as indicated in Fig. 5.  
In addition, the instruction set has the following features:  
(1) Every bit of any register can be set, cleared, or tested directly.  
This specification is subject to change without prior notice. 33  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
(2) The I/O register can be regarded as general register. That is, the same instruction can operate  
on I/O register.  
The symbol "R" represents a register designator that specifies which one of the registers (including operational  
registers and general purpose registers) is to be utilized by the instruction. "b" represents a bit field designator  
that selects the value for the bit which is located in the register "R", and affects operation. "k" represents an 8  
or 10-bit constant or literal value.  
INSTRUCTION BINARY  
HEX  
MNEMONIC  
OPERATION  
STATUS AFFECTED  
0 0000 0000 0000  
0 0000 0000 0001  
0 0000 0000 0010  
0 0000 0000 0011  
0 0000 0000 0100  
0 0000 0000 rrrr  
0 0000 0001 0000  
0 0000 0001 0001  
0 0000 0001 0010  
0000  
0001  
0002  
0003  
0004  
000r  
0010  
0011  
0012  
NOP  
DAA  
No Operation  
Decimal Adjust A  
A CONT  
None  
C
None  
T,P  
T,P  
CONTW  
SLEP  
WDTC  
IOW R  
ENI  
0 WDT, Stop oscillator  
0 WDT  
None <Note1>  
None  
A IOCR  
Enable Interrupt  
Disable Interrupt  
[Top of Stack] PC  
DISI  
RET  
None  
None  
[Top of Stack] PC, Enable  
0 0000 0001 0011  
0013  
RETI  
None  
Interrupt  
0 0000 0001 0100  
0 0000 0001 rrrr  
0 0000 01rr rrrr  
0 0000 1000 0000  
0 0000 11rr rrrr  
0 0001 00rr rrrr  
0014  
001r  
00rr  
0080  
00rr  
CONTR  
IOR R  
MOV R,A  
CLRA  
CLR R  
SUB A,R  
None  
None <Note1>  
CONT A  
IOCR A  
A R  
0 A  
0 R  
R-A A  
None  
Z
Z
01rr  
Z,C,DC  
0 0001 01rr rrrr  
01rr  
SUB R,A  
Z,C,DC  
R-A R  
0 0001 10rr rrrr  
0 0001 11rr rrrr  
0 0010 00rr rrrr  
0 0010 01rr rrrr  
0 0010 10rr rrrr  
0 0010 11rr rrrr  
0 0011 00rr rrrr  
0 0011 01rr rrrr  
0 0011 10rr rrrr  
0 0011 11rr rrrr  
0 0100 00rr rrrr  
0 0100 01rr rrrr  
0 0100 10rr rrrr  
0 0100 11rr rrrr  
0 0101 00rr rrrr  
0 0101 01rr rrrr  
0 0101 10rr rrrr  
0 0101 11rr rrrr  
01rr  
01rr  
02rr  
02rr  
02rr  
02rr  
03rr  
03rr  
03rr  
03rr  
04rr  
04rr  
04rr  
04rr  
05rr  
05rr  
05rr  
05rr  
DECA R  
DEC R  
Z
Z
Z
Z
Z
Z
Z
Z
R-1 A  
R-1 R  
A R A  
A R R  
A & R A  
A & R R  
A R A  
A R R  
A + R A  
A + R R  
R A  
R R  
/R A  
/R R  
R+1 A  
R+1 R  
OR A,R  
OR R,A  
AND A,R  
AND R,A  
XOR A,R  
XOR R,A  
ADD A,R  
ADD R,A  
MOV A,R  
MOV R,R  
COMA R  
COM R  
Z,C,DC  
Z,C,DC  
Z
Z
Z
Z
Z
Z
None  
None  
INCA R  
INC R  
DJZA R  
DJZ R  
R-1 A, skip if zero  
R-1 R, skip if zero  
R(n) A(n-1),  
R(0) C, C A(7)  
R(n) R(n-1),  
R(0) C, C R(7)  
R(n) A(n+1),  
0 0110 00rr rrrr  
06rr  
RRCA R  
C
0 0110 01rr rrrr  
0 0110 10rr rrrr  
06rr  
06rr  
RRC R  
C
C
RLCA R  
This specification is subject to change without prior notice. 34  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
R(7) C, C A(0)  
R(n) R(n+1),  
R(7) C, C R(0)  
R(0-3) A(4-7),  
R(4-7) A(0-3)  
R(0-3) R(4-7)  
R+1 A, skip if zero  
R+1 R, skip if zero  
0 R(b)  
0 0110 11rr rrrr  
0 0111 00rr rrrr  
06rr  
07rr  
RLC R  
C
SWAPA R  
None  
0 0111 01rr rrrr  
0 0111 10rr rrrr  
0 0111 11rr rrrr  
0 100b bbrr rrrr  
0 101b bbrr rrrr  
0 110b bbrr rrrr  
0 111b bbrr rrrr  
07rr  
07rr  
07rr  
0xxx  
0xxx  
0xxx  
0xxx  
SWAP R  
JZA R  
JZ R  
BC R,b  
BS R,b  
JBC R,b  
JBS R,b  
None  
None  
None  
None <Note2>  
None <Note3>  
None  
1 R(b)  
if R(b)=0, skip  
if R(b)=1, skip  
PC+1 [SP],  
(Page, k) PC  
(Page, k) PC  
k A  
None  
1 00kk kkkk kkkk  
1kkk  
CALL k  
None  
1 01kk kkkk kkkk  
1 1000 kkkk kkkk  
1 1001 kkkk kkkk  
1 1010 kkkk kkkk  
1 1011 kkkk kkkk  
1kkk  
18kk  
19kk  
1Akk  
1Bkk  
JMP k  
MOV A,k  
OR A,k  
AND A,k  
XOR A,k  
None  
None  
Z
Z
Z
A k A  
A & k A  
A k A  
k A,  
[Top of Stack] PC  
k-A A  
1 1100 kkkk kkkk  
1 1101 kkkk kkkk  
1 1110 0000 0001  
1 1111 kkkk kkkk  
1Ckk  
1Dkk  
1E01  
1Fkk  
RETL k  
SUB A,k  
INT  
None  
Z,C,DC  
None  
PC+1 [SP],  
001H PC  
ADD A,k  
Z,C,DC  
k+A A  
<Note 1> This instruction is applicable to IOC5~IOC6, IOCB~IOCF only.  
<Note 2> This instruction is not recommended for RF operation.  
<Note 3> This instruction cannot operate under RF.  
This specification is subject to change without prior notice. 35  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
4.13 Timing Diagrams  
AC Test Input/Output Waveform  
2.4  
0.4  
2.0  
0.8  
2.0  
0.8  
TEST POINTS  
AC Testing : Input is driven at 2.4V for logic "1",and 0.4V for logic "0".Timing measurements are  
made at 2.0V for logic "1",and 0.8V for logic "0".  
RESET Timing (CLK="0")  
Instruction 1  
Executed  
NOP  
CLK  
/RESET  
Tdrh  
TCC Input Timing (CLKS="0")  
Tins  
CLK  
TCC  
Ttcc  
This specification is subject to change without prior notice. 36  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
5. ABSOLUTE MAXIMUNM RATINGS  
EM78P156N  
Items  
Temperature under bias  
Storage temperature  
Working voltage  
Rating  
-40°C to 85°C  
-65°C to 150°C  
2.5 to 5.5V  
Working frequency  
DC to 20MHz*  
Input voltage  
Vss-0.3V to Vdd+0.5V  
Vss-0.3V to Vdd+0.5V  
Output voltage  
*These parameters are characterized but not tested.  
This specification is subject to change without prior notice. 37  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
6. ELECTRICAL CHARACTERISTICS  
6.1 DC Electrical Characteristic  
(Ta=25 °C, VDD=5V±5%, VSS=0V)  
Symbol  
FXT  
Parameter  
XTAL: VDD to 3V  
XTAL: VDD to 5V  
Condition  
Two cycle with two clocks  
Two cycle with two clocks  
R: 5.1K, C: 100 pF  
VIN = VDD, VSS  
Ports 5, 6  
Min  
DC  
DC  
Typ.  
940  
Max  
8.0  
20.0  
F±30%  
±1  
Unit  
MHz  
MHz  
KHz  
µA  
V
V
V
V
V
V
V
V
V
V
V
V
ERC  
IIL  
VIH1  
VIL1  
ERC: VDD to 5V  
F±30%  
Input Leakage Current for input pins  
Input High Voltage (VDD=5V)  
Input Low Voltage (VDD=5V)  
2.0  
2.0  
3.5  
1.5  
1.5  
2.1  
Ports 5, 6  
0.8  
0.8  
1.5  
0.4  
0.4  
0.9  
VIHT1 Input High Threshold Voltage (VDD=5V)  
VILT1 Input Low Threshold Voltage (VDD=5V)  
VIHX1  
VILX1  
VIH2  
/RESET, TCC(Schmitt trigger)  
/RESET, TCC(Schmitt trigger)  
OSCI  
Clock Input High Voltage (VDD=5V)  
Clock Input Low Voltage (VDD=5V)  
Input High Voltage (VDD=3V)  
Input Low Voltage (VDD=3V)  
OSCI  
Ports 5, 6  
Ports 5, 6  
VIL2  
VIHT2 Input High Threshold Voltage (VDD=3V)  
VILT2 Input Low Threshold Voltage (VDD=3V)  
VIHX2  
VILX2  
/RESET, TCC(Schmitt trigger)  
/RESET, TCC(Schmitt trigger)  
OSCI  
Clock Input High Voltage (VDD=3V)  
Clock Input Low Voltage (VDD=3V)  
OSCI  
VOH1  
VOH1  
VOL1  
VOL1  
Output High Voltage (Ports 5)  
IOH = -12.0 mA  
IOH = -12.0 mA  
IOL = 12.0 mA  
2.4  
2.4  
V
V
V
V
Output High Voltage (Ports 6)  
(Schmitt trigger)  
Output Low Voltage(Port5)  
0.4  
0.4  
Output Low Voltage (Ports 6)  
(Schmitt trigger)  
IOL = 12.0 mA  
IPH  
IPD  
Pull-high current  
Pull-down current  
Pull-high active, input pin at VSS  
-50  
25  
-70  
50  
-240  
120  
µA  
µA  
Pull-down active, input pin at VDD  
All input and I/O pins at VDD,  
output pin floating, WDT disabled  
All input and I/O pins at VDD,  
output pin floating, WDT enabled  
/RESET= 'High', Fosc=32KHz  
(Crystal type,CLKS="0"), output  
pin floating, WDT disabled  
/RESET= 'High', Fosc=32KHz  
(Crystal type,CLKS="0"), output  
pin floating, WDT enabled  
/RESET= 'High', Fosc=4MHz  
(Crystal type, CLKS="0"), output  
pin floating, WDT enabled  
ISB1  
ISB2  
Power down current  
1
2
µA  
µA  
Power down current  
15  
Operating supply current  
(VDD=3V)  
at two cycles/four clocks  
Operating supply current  
(VDD=3V)  
at two cycles/four clocks  
Operating supply current  
(VDD=5.0V)  
at two cycles/two clocks  
Operating supply current  
(VDD=5.0V)  
ICC1  
ICC2  
ICC3  
ICC4  
15  
20  
25  
30  
35  
µA  
µA  
2.0  
4.0  
mA  
mA  
/RESET= 'High', Fosc=10MHz  
(Crystal type, CLKS="0"), output  
pin floating, WDT enabled  
at two cycles/four clocks  
* These parameters are characterizes but not tested.  
This specification is subject to change without prior notice. 38  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
6.2 AC Electrical Characteristic  
(Ta=25 °C, VDD=5V±5%, VSS=0V)  
Symbol  
Dclk  
Parameter  
Input CLK duty cycle  
Instruction cycle time  
(CLKS="0")  
TCC input period  
Device reset hold time  
/RESET pulse width  
Watchdog timer period  
Input pin setup time  
Input pin hold time  
Conditions  
Min  
45  
100  
Typ  
50  
Max  
55  
DC  
DC  
Unit  
%
Crystal type  
RC type  
ns  
ns  
ns  
ms  
ns  
ms  
ns  
ns  
ns  
Tins  
500  
Ttcc  
Tdrh  
Trst  
Twdt  
Tset  
(Tins+20)/N*  
11.8  
16.8  
21.8  
21.8  
2000  
11.8  
Ta = 25°C  
Ta = 25°C  
16.8  
0
20  
50  
Thold  
Tdelay  
Output pin delay time  
Cload=20pF  
* N= selected prescaler ratio.  
* These parameters are characterizes but not tested.  
This specification is subject to change without prior notice. 39  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
6.3 Device Characteristic  
The graphs provided in the following pages were derived based on a limited number of samples and are  
shown here for reference only. The device characteristic illustrated herein are not guaranteed for it accuracy.  
In some graphs, the data maybe out of the specified warranted operating range.  
Vih/Vil (Input pins with schmitt inverter)  
2.5  
Vih max (-40to 85)  
Vih typ 25℃  
2
Vih min (-40to 85)  
1.5  
1
Vil max (-40to 85)  
0.5  
Vil typ 25℃  
Vil min (-40to 85)  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (Volt)  
Fig. 17 Vih, Vil of Port6 vs. VDD  
This specification is subject to change without prior notice. 40  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Vth (Input thershold voltage) of I/O pins  
2
1.5  
1
Max(-40to 85)  
Typ 25℃  
Min(-40to 85)  
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (Volt)  
Fig. 18 Vth (Threshold voltage) of Port5 vs. VDD  
This specification is subject to change without prior notice. 41  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Voh/Ioh (3V)  
Voh/Ioh (5V)  
0
-2  
0
-5  
Min 85℃  
Min 85℃  
-4  
-10  
-15  
-20  
-25  
Typ 25℃  
Min -40℃  
Typ 25℃  
Min -40℃  
-6  
-8  
-10  
0
0.5  
1
1.5  
2
2.5  
3
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Voh(Volt)  
Voh (Volt)  
Fig. 19 Port5 and Port6 Voh vs. Ioh, VDD=5V  
Fig. 20 Port5 and Port6 Voh vs. Ioh, VDD=3V  
EM78P156N  
OTP ROM  
Vol/Iol(5V)  
Vol/Iol (3V)  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Max -40℃  
Max -40℃  
Typ 25℃  
Min 85℃  
Typ 25℃  
Min 85℃  
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Vol(Volt)  
Vol(Volt)  
Fig. 21 Port5, Port6 Vol vs. Iol, VDD = 5V  
Fig. 22 Port5, Port6 Vol vs. Iol, VDD = 3V  
This specification is subject to change without prior notice. 43  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
W DT Tim e out  
45  
40  
35  
30  
25  
20  
15  
10  
5
Max 85℃  
Max 70℃  
Typ 25℃  
Min 0℃  
Min -40℃  
0
2
3
4
5
6
VDD (Volt)  
Fig. 23 WDT time out period vs. VDD,  
perscaler set to 1:1  
EM78P156N  
OTP ROM  
Cext = 100pF, Typical RC Frequency vs. VDD  
1.6  
1.4  
1.2  
1
R = 3.3K  
R = 5.1K  
0.8  
0.6  
0.4  
0.2  
0
R = 10K  
R = 100K  
3
3.5  
4
4.5  
5
5.5  
VDD (Volt)  
Fig. 24 Typical RC OSC Frequency vs. VDD  
(Cext= 100pF, Temperature at 25)  
VDD = 5V  
VDD = 3V  
Fig. 25 Typical RC OSC Frequency vs. VDD (R and C are ideal components)  
This specification is subject to change without prior notice. 45  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Four conditions exist with the Operating Current ICC1 to ICC4. These conditions are as follows:  
ICC1: VDD=3V, Fosc=32K Hz, 2 clocks, WDT disable  
ICC2: VDD=3V, Fosc=32K Hz, 2 clocks, WDT enable  
ICC3: VDD=5V, Fosc=4M Hz, 2 clocks, WDT enable  
ICC4: VDD=5V, Fosc=10M Hz, 2 clocks, WDT enable  
Typical ICC1 and ICC2 vs. Temperature  
15  
12  
9
Typ ICC2  
Typ ICC1  
6
3
0
-40  
-20  
0
20  
40  
60  
80  
Temperature ()  
Fig. 26 Typical operating current (ICC1 and ICC2) vs. Temperature  
Maximum ICC1 and ICC2 vs. Temperature  
21  
18  
15  
Max ICC2  
12  
Max ICC1  
9
6
-40  
-20  
0
20  
40  
60  
80  
Temperature()  
Fig. 27 Maximum operating current (ICC1 and ICC2) vs. Temperature  
This specification is subject to change without prior notice. 46  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Typical ICC3 and ICC4 vs. Temperature  
4
3.5  
3
Typ ICC4  
Typ ICC3  
2.5  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
Temperature()  
Fig. 28 Typical operating current (ICC3 and ICC4) vs. Temperature  
Maximum ICC3 and ICC4 vs. Temperature  
4.5  
4
Max ICC4  
3.5  
3
2.5  
2
Max ICC3  
1.5  
1
-40  
-20  
0
20  
40  
60  
80  
Temperature ()  
Fig. 29 Maximum operating current (ICC3 and ICC4) vs. Temperature  
This specification is subject to change without prior notice. 47  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Two conditions exist with the Standby Current ISB1 and ISB2. These conditions are as follows:  
ISB1: VDD=5V, WDT disable  
ISB2: VDD=5V, WDT enable  
Typical ISB1 and ISB2 vs. Temperature  
12  
10  
8
Typ ISB2  
Typ ISB1  
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
Temperature ()  
Fig. 30 Typical standby current (ISB1 and ISB2) vs. Temperature  
Maximum ISB1 and ISB2 vs. Temperature  
12  
10  
8
Max ISB2  
6
4
Max ISB1  
2
0
-40  
-20  
0
20  
40  
60  
80  
Temperature ()  
Fig. 31 Maximum standby current (ISB1 and ISB2) vs. Temperature  
This specification is subject to change without prior notice. 48  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Fig. 32 Operating voltage in temperature range from 0to 70℃  
Fig. 33 Operating voltage in temperature range from -40to 85℃  
This specification is subject to change without prior notice. 49  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
EM78P156N-J HXT V-I  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Voltage(V)  
Fig. 34 Operating current range (based on high Freq. @ =25) vs. Voltage  
EM78P156N-J LXT V-I  
35  
30  
25  
20  
15  
10  
5
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Voltage(V)  
Fig. 35 Operating current range (based on low Freq. @ =25) vs. Voltage  
This specification is subject to change without prior notice. 50  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
EM78P156N-G HXT V-I  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Voltage(V)  
Fig. 36 Operating current range (based on high Freq. @ =25) vs. Voltage  
EM78P156N-G LXT V-I  
40  
35  
30  
25  
20  
15  
10  
5
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Voltage(V)  
Fig. 37 Operating current range (based on high Freq. @ =25) vs. Voltage  
This specification is subject to change without prior notice. 51  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
APPENDIX  
Package Types:  
OTP MCU  
Package Type  
DIP  
Pin Count  
Package Size  
EM78P156NP  
EM78P156NM  
18  
18  
300 mil  
300 mil  
SOP  
EM78156NAS  
EM78156NKM  
SSOP  
SSOP  
20  
20  
209 mil  
209 mil  
This specification is subject to change without prior notice. 52  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Package Information  
18-Lead Plastic Dual in line (PDIP) 300 mil  
This specification is subject to change without prior notice. 53  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
18-Lead Plastic Small Outline (SOP) 300 mil  
This specification is subject to change without prior notice. 54  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
20-Lead Plastic Small Outline (SSOP) 209 mil  
This specification is subject to change without prior notice. 55  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Quality Assurance And Reliability  
Test category  
Solderability  
Test conditions  
Remarks  
Solder temperature=245±5℃,for5seconds uptoth estopper  
usingarosin-typeflux  
Pre-condition  
For SMD IC(such as  
SOPQFPSOJ…etc)  
Step1: TCT 65(15mins)~150(15mins)10 cycles  
Step2: bake 125℃,TD(durance)=24 hrs  
Step3:soak 30°C /60%TD(durance)=192hrs  
Step4:IR flow 3cycles  
(Pkg thickness2.5mm or Pkg volume350mm3 ----225±5)  
(Pkg thickness2.5mm or Pkg volume350mm3 ----240±5  
)  
Temperature cycle test  
Pressure cooker test  
-65(15mins)~150(15mins) , 200 cycles  
TA =121,RH=100%,pressure=2atm, TD(durance)= 96 Hrs  
High temperature /high  
humidity test  
TA=85, RH=85%TD(durance)=168 ,500 Hrs  
TA=150, TD(durance)=500,1000Hrs  
High-temperature  
storage life  
High-temperature  
operating life  
TA=125 , VCC=Max. operating voltage, TD(durance)  
=168,500,1000Hrs  
Latch-up  
TA=25, VCC=Max. operating voltage, 150mA/20V  
TA=25, ≧∣ ±3KV∣  
ESD(HBM)  
IP_ND,OP_ND,IO_ND  
IP_NS,OP_NS,IO_NS  
IP_PD,OP_PD,IO_PD,  
IP_PS,OP_PS,IO_PS,  
ESD(MM)  
TA=25, ≧∣ ±300V∣  
VDD-VSS(+),VDD_VSS  
(-)mode  
This specification is subject to change without prior notice. 56  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
Vdd  
/Rese  
Tvr  
Tvd  
Internal  
POR  
Tpor  
Power  
on  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
22  
Unit  
ms  
us  
Tpor  
Tvd  
Tvr  
Power on reset time  
Vdd Voltage drop time  
Vdd Voltage rise time  
Vdd = 5V, -40to 85℃  
Vdd = 5V, -40to 85℃  
Vdd = 5V, -40to 85℃  
10.5  
16.8  
-
-
-
-
1*  
1**  
us  
* Tvd is the period of Vdd voltage less than POR voltage.  
** Tvr is the period of Vdd voltage higher than 5.5 volts.  
Address Trap Detect  
An address trap detect is one of the fail-safe function that detects CPU malfunction caused by noise or the like.  
If the CPU attempts to fetch an instruction from a part of RAM, an internal recovery circuit will auto started. Until  
CPU got the correct function, it will execute the following program.  
This specification is subject to change without prior notice. 57  
07.29.2004 (V1.2)  
EM78P156N  
OTP ROM  
ELAN (HEADQUARTER) MICROELECTRONICS CORP., LTD.  
Address : No. 12, Innovation 1st. Rd. Science-Based Industrial Park, Hsinchu City, Taiwan.  
Telephone: 886-3-5639977  
Facsimile : 886-3-5639966  
ELAN (H.K.) MICROELECTRONICS CORP., LTD.  
Address : Rm. 1005B, 10/F, Empire Centre, 68 Mody Road, Tsimshatsui, Kowloon, Hong Kong.  
Telephone: 852-27233376  
Facsimile : 852-27237780  
E-mail : elanhk@emc.com.hk  
ELAN MICROELECTRONICS SHENZHEN, LTD.  
Address : SSMEC Bldg. 3F , Gaoxin S. Ave. 1st , South Area , Shenzhen High-tech Industrial Park., Shenzhen  
Telephone: 86-755-26010565  
Facsimile : 86-755-26010500  
ELAN MICROELECTRONICS SHANGHAI, LTD.  
Address : #23 Building No.115 Lane 572 BiBo Road. Zhangjiang, Hi-tech Park, Shanghai  
Telephone: 86-21-50803866  
Facsimile : 86-21-50804600  
Elan Information Technology Group.  
Address: 1821 Saratoga Avenue, suite 250, Saratoga, CA 95070, USA  
Telephone: 1-408-366-8225  
Facsimile : 1-408-366-8220  
Elan Microelectronics Corp. (Europe)  
Address: Dubendorfstrasse 4, 8051 Zurich, Switzerland  
Telephone: 41-43-2994060  
Facsimile : 41-43-2994079  
Email : info@elan-europe.com  
Web-Site : www.elan-europe.com  
Copyright © 2004 ELAN Microelectronics Corp. All rights reserved.  
ELAN owns the intellectual property rights, concepts, ideas, inventions, know-how (whether patentable  
or not) related to the Information and Technology (herein after referred as " Information and  
Technology") mentioned above, and all its related industrial property rights throughout the world, as now  
may exist or to be created in the future. ELAN represents no warranty for the use of the specifications  
described, either expressed or implied, including, but not limited, to the implied warranties of  
merchantability and fitness for particular purposes. The entire risk as to the quality and performance of  
the application is with the user. In no even shall ELAN be liable for any loss or damage to revenues,  
profits or goodwill or other special, incidental, indirect and consequential damages of any kind, resulting  
from the performance or failure to perform, including without limitation any interruption of business,  
whatever resulting from breach of contract or breach of warranty, even if ELAN has been advised of the  
possibility of such damages.  
The specifications of the Product and its applied technology will be updated or changed time by time. All  
the information and explanations of the Products in this website is only for your reference. The actual  
specifications and applied technology will be based on each confirmed order.  
ELAN reserves the right to modify the information without prior notification. The most up-to-day  
information is available on the website http://www.emc.com.tw.  
This specification is subject to change without prior notice. 58  
07.29.2004 (V1.2)  

相关型号:

EM78P156NP

8-BIT MICRO-CONTROLLER
EMC

EM78P157N

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NAAS

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NAKM

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NAM

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NAP

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NBM

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NBP

8-Bit Microcontroller with OTP ROM
EMC

EM78P159N

8-Bit Microcontroller with OTP ROM
EMC

EM78P159NM

8-Bit Microcontroller with OTP ROM
EMC

EM78P159NP

8-Bit Microcontroller with OTP ROM
EMC

EM78P173N

8-Bit Microcontroller with OTP ROM,台湾义隆8bit单片机EM78P173N--EM78P153S/EM78P153AB工业级版本 EM78P173N是一个采用低功耗、高速CMOS工艺制造的8位单片机,,其内部具有1K* 13位一次性可编程只读内存(OTP - ROM),用户通过仿真器编写和调试正确的机器码文件通过编程器烧录进芯片,提供了一个保护位,以防止用户OTP存储器代码时的侵扰。同时有密码保护位防止程序数据读出. 可代客户开发,烧录。专业软件工程师设计指导,提供整套技术支持及疑难解答! 深圳市美力科电子有限公司 业务部 手机: 13684932947 QQ:981734760 地 址:深圳市福田区彩田南路彩天名苑红荔轩10D 电 话:0755-82965828,82965533,82965118,82965566 传 真:0755-82964700 http://www.mlkdz.com E-mail:mlk_wqy@126.com
EMC