EM78P157NAAS [ELAN]

8-Bit Microcontroller with OTP ROM; 8位OTP微控制器
EM78P157NAAS
型号: EM78P157NAAS
厂家: ELAN MICROELECTRONICS CORP    ELAN MICROELECTRONICS CORP
描述:

8-Bit Microcontroller with OTP ROM
8位OTP微控制器

微控制器 OTP只读存储器
文件: 总56页 (文件大小:495K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EM78P157N  
8-Bit Microcontroller  
with OTP ROM  
Product  
Specification  
Doc. Version 1.0  
ELAN MICROELECTRONICS CORP.  
September 2005  
Trademark Acknowledgments:  
IBM is a registered trademark and PS/2 is a trademark of IBM.  
Windows is a trademark of Microsoft Corporation  
ELAN and ELAN logo  
are trademarks of ELAN Microelectronics Corporation  
Copyright © 2005 by ELAN Microelectronics Corporation  
All Rights Reserved  
Printed in Taiwan  
The contents of this specification are subject to change without further notice. ELAN Microelectronics assumes  
no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN  
Microelectronics makes no commitment to update, or to keep current the information and material contained in  
this specification. Such information and material may change to conform to each confirmed order.  
In no event shall ELAN Microelectronics be made responsible for any claims attributed to errors, omissions, or  
other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not  
be liable for direct, indirect, special incidental, or consequential damages arising from the use of such information  
or material.  
The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and  
may be used or copied only in accordance with the terms of such agreement.  
ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of  
ELAN Microelectronics product in such applications is not supported and is prohibited.  
NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY  
ANY MEANS WITHOUT THE EXPRESSED WRITTEN PERMISSION OF ELAN MICROELECTRONICS.  
ELAN MICROELECTRONICS CORPORATION  
Headquarters:  
Hong Kong:  
USA:  
No. 12, Innovation Road 1  
Hsinchu Science Park  
Elan (HK) Microelectronics  
Corporation, Ltd.  
Elan Information  
Technology Group  
Hsinchu, Taiwan 30077  
Tel: +886 3 563-9977  
Fax: +886 3 563-9966  
http://www.emc.com.tw  
Rm. 1005B, 10/F Empire Centre  
68 Mody Road, Tsimshatsui  
Kowloon , HONG KONG  
Tel: +852 2723-3376  
1821 Saratoga Ave., Suite 250  
Saratoga, CA 95070  
USA  
Tel: +1 408 366-8223  
Fax: +1 408 366-8220  
Fax: +852 2723-7780  
elanhk@emc.com.hk  
Europe:  
Shenzhen:  
Shanghai:  
Elan Microelectronics Corp. Elan Microelectronics  
Elan Microelectronics  
(Europe)  
Shenzhen, Ltd.  
Shanghai Corporation, Ltd.  
Siewerdtstrasse 105  
8050 Zurich, SWITZERLAND  
Tel: +41 43 299-4060  
Fax: +41 43 299-4079  
http://www.elan-europe.com  
SSMEC Bldg., 3F, Gaoxin S. Ave. 23/Bldg. #115 Lane 572, Bibo Road  
Shenzhen Hi-Tech Industrial Park Zhangjiang Hi-Tech Park  
Shenzhen, Guandong, CHINA  
Tel: +86 755 2601-0565  
Fax: +86 755 2601-0500  
Shanghai, CHINA  
Tel: +86 021 5080-3866  
Fax: +86 021 5080-4600  
Contents  
Contents  
1
2
3
General Description ......................................................................................1  
Features .........................................................................................................1  
Pin Assignments and Descriptions..............................................................2  
3.1 Pin Assignments................................................................................................. 2  
3.2 Pin Descriptions ................................................................................................. 3  
3.2.1 EM78P157NBP and EM78P157NBM Pin Descriptions......................................3  
3.2.2 EM78P157NAP and EM78P157NAM Pin Descriptions......................................3  
3.2.3 EM78P157NAAS Pin Descriptions......................................................................4  
3.2.4 EM78P157NAKM Pin Descriptions.....................................................................4  
4
Function Description.....................................................................................5  
4.1 Operational Registers......................................................................................... 5  
4.1.1 Indirect Addressing (R0) Register .......................................................................6  
4.1.2 Time Clock / Counter (R1) Register....................................................................6  
4.1.3 Program Counter and Stack (R2) Register .........................................................6  
4.1.4 Status (R3) Register............................................................................................7  
4.1.5 RAM Select (R4) Register...................................................................................7  
4.1.6 Port 5 ~ Port 6 (R5 ~ R6) Registers....................................................................8  
4.1.7 Interrupt Status (RF) Register .............................................................................8  
4.1.8 General Purpose (R10 ~ R3F) Registers............................................................8  
4.2 Special Purpose Registers ................................................................................. 8  
4.2.1 Accumulator (A) Register....................................................................................8  
4.2.2 Control (CONT ) Register....................................................................................9  
4.2.3 I/O Port Control (IOC5 ~ IOC6) Registers...........................................................9  
4.2.4 Prescaler Counter (IOCA ) Register....................................................................9  
4.2.5 Pull-Down Control (IOCB) Register...................................................................10  
4.2.6 Open-Drain Control (IOCC ) Register ...............................................................10  
4.2.7 Pull-High Control (IOCD) Register ....................................................................11  
4.2.8 WDT Control (IOCE) Register...........................................................................11  
4.2.9 IOCF (Interrupt Mask Register).........................................................................12  
4.3 TCC/WDT & Prescaler ..................................................................................... 12  
4.4 I/O Ports ........................................................................................................... 13  
4.4.1 Port 6 Input Change Wake-up/Interrupt Function Usage..................................16  
4.5 RESET and Wake-up ....................................................................................... 17  
4.5.1 Summary of Initialized Values for Registers......................................................19  
4.5.2 The Status of RST, T, and P of STATUS Register.............................................21  
4.5.2.1 RST, T and P after RESET Values .....................................................21  
4.5.2.2 Event Affecting T and P Status...........................................................21  
4.6 Interrupt............................................................................................................ 22  
Product Specification (V1.0) 09.22.2005  
iii  
Contents  
4.7 Oscillator .......................................................................................................... 23  
4.7.1 Oscillator Modes................................................................................................23  
4.7.1.1 Oscillator Modes Defined by OSC, HLF, and HLP.............................23  
4.7.1.2 The Summary of Maximum Operating Speeds..................................23  
4.7.2 Crystal Oscillator/Ceramic Resonators (XTAL).................................................23  
4.7.2.1 Capacitor Selection Guide for Crystal Oscillator or  
Ceramic Resonator ............................................................................24  
4.7.3 External RC Oscillator Mode.............................................................................25  
4.7.3.1 RC Oscillator Frequencies .................................................................26  
4.8 CODE Option Register..................................................................................... 26  
4.8.1 Code Option Register (Word 0).........................................................................26  
4.8.2 Customer ID Register (Word 1).........................................................................27  
4.9 Power-On Considerations ................................................................................ 28  
4.10 External Power-On Reset Circuit .................................................................... 28  
4.11 Residual-Voltage Protection............................................................................. 29  
4.12 Instruction Set .................................................................................................. 30  
4.13 Timing Diagrams .............................................................................................. 32  
4.13.1 AC Test Input/Output Waveform........................................................................32  
4.13.2 RESET Timing (CLK = ”0”)................................................................................32  
4.13.3 TCC Input Timing (CLKS = ”0”).........................................................................32  
5
6
Absolute Maximum Ratings........................................................................33  
Electrical Characteristics............................................................................33  
6.1 DC Electrical Characteristic.............................................................................. 33  
6.2 AC Electrical Characteristics............................................................................ 34  
6.3 Device Characteristics...................................................................................... 35  
6.3.1 Port 6 Vih/Vil vs. VDD (Input Pin with Schmitt Inverter)....................................35  
6.3.2 Port 5 Input Threshold Voltage (Vth) vs. VDD...................................................35  
6.3.3 Ports 5 & Port 6 Voh vs. Ioh, VDD=5V and 3V .................................................36  
6.3.4 Ports 5 & Port 6 Vol vs. Iol, VDD=5V and 3V....................................................36  
6.3.5 WDT Time Out Period vs. VDD (Prescaler Set to 1:1)......................................37  
6.3.6 Typical RC OSC Frequency vs. VDD (Cext = 100pF, Temp. = 25) ..............38  
6.3.7 Typical RC OSC Frequency vs. VDD  
(with R and C under Ideal Conditions)..............................................................38  
6.3.8 Typical and Maximum Operating Current  
(ICC1/2/3/4) vs. Temperature............................................................................39  
6.3.9 Typical and Maximum Standby Current  
(ISB1 and ISB2) vs. Temperature .....................................................................41  
6.3.10 Operating Voltage under Temperature Range of 0°C to 70°C  
and –40°C to 85°C ............................................................................................42  
6.3.11 Operating Current Range (Based on High and Low Freq. @ =25)  
vs. Voltage.........................................................................................................43  
iv •  
Product Specification (V1.0) 09.22.2005  
Contents  
APPENDIX  
A
Package Types.............................................................................................44  
A..1 Package Detailed Information .......................................................................... 44  
A.1.1 14-Lead Plastic Dual in line (PDIP) — 300 Mil .................................................44  
A.1.2 14-Lead Plastic Small Outline (SOP) — 150 Mil...............................................45  
A.1.3 18-Lead Plastic Dual in Line (PDIP) — 300 Mil ................................................46  
A.1.4 18-Lead Plastic Small Outline (SOP) — 300 Mil...............................................47  
A.1.5 20-Lead Plastic Small Outline (SSOP) — 209 Mil ............................................48  
B
C
Quality Assurance and Reliability..............................................................49  
Address Trap Detect....................................................................................50  
Product Specification (V1.0) 09.22.2005  
v  
Contents  
Specification Revision History  
Doc. Version  
Revision Description  
Date  
1.0  
Initial version  
09/22/2005  
vi •  
Product Specification (V1.0) 09.22.2005  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
1 General Description  
EM78P157N is an 8-bit microprocessor designed and developed with low-power,  
high-speed CMOS technology. It is equipped with 1K*13-bits Electrical One Time  
Programmable Read Only Memory (OTP-ROM). It provides three PROTECTION bits  
to prevent user’s code in the OTP memory from being intruded. Eight OPTION bits are  
also provided to meet user’s additional requirements.  
With its OTP-ROM feature, the EM78P157N is able to offer a convenient way of  
developing and verifying user’s programs. Moreover, user can take advantage of  
ELAN DWriter to easily program his development code.  
2 Features  
„
Operating voltage range: 2.5V~5.5V  
„
„
Operating temperature range: -40°C~85°C  
Operating frequency range (base on 2 clocks ):  
Crystal mode: DC~20MHz at 5V, DC~8MHz at 3V, DC~4MHz at 2.5V.  
ERC mode: DC~4MHz at 5V, DC~4MHz at 3V, DC~4MHz at 2.5V.  
„
Low power consumption:  
Less then 2 mA at 5V/4MHz  
Typically 20 µA at 3V/32KHz  
Typically 1 µA during sleep mode  
„
„
„
„
„
„
„
1K × 13 bits on chip ROM  
One security register to prevent intrusion of OTP memory codes  
One configuration register to accommodate user’s requirements  
48× 8 bits on chip registers (SRAM, general purpose register)  
2 bi-directional I/O ports  
5 level stacks for subroutine nesting  
8-bit real time clock/counter (TCC) with selective signal sources, trigger edges, and  
overflow interrupt  
„
„
„
Two clocks per instruction cycle  
Power down (SLEEP) mode  
Three available interruptions  
TCC overflow interrupt  
Input-port status changed interrupt (wake up from sleep mode)  
External interrupt  
Product Specification (V1.0) 09.22.2005  
1  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
„
„
„
„
„
„
Programmable free running watchdog timer  
8 programmable pull-high pins  
7 programmable pull-down pins  
8 programmable open-drain pins  
2 programmable R-option pins  
Package types:  
14 pin DIP  
300mil : EM78P157NBP  
14 pin SOP 150mil : EM78P157NBM  
18 pin DIP  
300mil : EM78P157NAP  
18 pin SOP 300mil : EM78P157NAM  
20 pin SSOP 209mil : EM78P157NAAS  
20 pin SSOP 209mil : EM78P157NAKM  
„
„
99.9% single instruction cycle commands  
The transient point of system frequency between HXT and LXT is around 400KHz  
3 Pin Assignments and Descriptions  
3.1 Pin Assignments  
P52  
18  
17  
16  
15  
14  
13  
12  
11  
10  
P51  
1
2
3
4
5
6
7
8
9
P50  
P53  
TCC  
OSCI  
OSCO  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
P51  
P52  
P53  
/RESET  
Vss  
P50  
TCC  
/RESET  
Vss  
OSCI  
P60/INT  
P61  
OSCO  
VDD  
P67  
P67  
P66  
P65  
P64  
P60/INT  
P61  
P62  
8
P66  
P63  
NC  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
1
2
20  
P52  
1
2
P51  
P52  
P51  
19  
18  
17  
16  
15  
14  
13  
12  
11  
P50  
P53  
TCC  
/RESET  
Vss  
3
P50  
P53  
TCC  
3
OSCI  
OSCO  
VDD  
VDD  
OSCI  
OSCO  
VDD  
4
4
/RESET  
Vss  
5
5
6
Vss  
6
P60/INT  
P61  
7
P67  
P66  
P65  
P64  
P60/INT  
P61  
7
P67  
P66  
P65  
P64  
8
8
P62  
9
P62  
9
P63  
10  
P63  
10  
Fig. 1-1 Pin Assignments  
2 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
3.2 Pin Descriptions  
3.2.1 EM78P157NBP and EM78P157NBM Pin Descriptions  
Symbol Pin No. Type  
Function  
VDD  
10  
Power supply  
y
y
y
XTAL type: Crystal input terminal or external clock input pin  
ERC type: RC oscillator input pin  
OSCI  
12  
I
XTAL type: Output terminal for crystal oscillator or external clock input pin  
RC type: Instruction clock output  
External clock signal input  
y
y
y
OSCO  
11  
I/O  
The real time clock/counter (with Schmitt trigger input pin), must be tied  
to VDD or VSS if not in use  
y
TCC  
3
4
I
I
Input pin with Schmitt trigger. If this pin remains at logic low, the controller  
will also remain at reset condition.  
y
/RESET  
P50~P53 are bi-directional I/O pins  
P50 and P51 can also be defined as the R-option pins  
P50~P52 can be set as pull-down by software  
y
y
y
13, 14,  
1, 2  
P50~P53  
I/O  
P60~P61 are bi-directional I/O pins  
These pins can be set as pull-high, pull-down, or open-drain through  
software programming  
y
y
P60~P61  
P66~P67  
6~7  
8~9  
I/O  
I/O  
P66~P67 are bi-directional I/O pins  
These pins can be set as pull-high or open-drain through software  
programming  
y
y
/INT  
VSS  
6
5
I
External interrupt pin triggered by falling edge  
Ground  
y
y
3.2.2 EM78P157NAP and EM78P157NAM Pin Descriptions  
Symbol Pin No. Type  
Function  
VDD  
14  
Power supply  
y
y
y
XTAL type: Crystal input terminal or external clock input pin  
ERC type: RC oscillator input pin  
OSCI  
16  
I
XTAL type: Output terminal for crystal oscillator or external clock input pin  
RC type: Instruction clock output  
External clock signal input  
y
y
y
OSCO  
15  
I/O  
The real time clock/counter (with Schmitt trigger input pin), must be tied to  
VDD or VSS if not in use  
y
TCC  
3
4
I
I
Input pin with Schmitt trigger. If this pin remains at logic low, the controller  
will also remain at reset condition.  
y
/RESET  
P50~P53 are bi-directional I/O pins  
P50 and P51 can also be defined as the R-option pins  
P50~P52 can be set as pull-down by software  
y
y
y
17,18,  
1, 2  
P50~P53  
P60~P67  
I/O  
I/O  
P60~P67 are bi-directional I/O pins  
These pins can be set as pull-high or open-drain through software  
programming  
y
y
6~13  
P60~P63 can also be set as pull-down by software  
y
y
y
/INT  
VSS  
6
5
I
External interrupt pin triggered by falling edge  
Ground  
Product Specification (V1.0) 09.22.2005  
3  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
3.2.3 EM78P157NAAS Pin Descriptions  
Symbol Pin No. Type  
Function  
VDD  
15  
Power supply  
y
y
y
XTAL type: Crystal input terminal or external clock input pin  
ERC type: RC oscillator input pin  
OSCI  
17  
I
XTAL type: Output terminal for crystal oscillator or external clock input pin  
RC type: Instruction clock output  
External clock signal input  
y
y
y
OSCO  
16  
I/O  
The real time clock/counter (with Schmitt trigger input pin), must be tied to  
VDD or VSS if not in use  
Input pin with Schmitt trigger. If this pin remains at logic low, the controller  
will also remain at reset condition.  
y
TCC  
4
5
I
I
y
/RESET  
P50~P53 are bi-directional I/O pins  
P50 and P51 can also be defined as the R-option pins  
P50~P52 can be set as pull-down by software  
y
y
y
18, 19,  
2, 3  
P50~P53  
P60~P67  
I/O  
I/O  
P60~P67 are bi-directional I/O pins  
These pins can be set as pull-high or open-drain through software  
programming  
y
y
7~14  
P60~P63 can also be set as pull-down by software  
y
y
y
/INT  
VSS  
7
6
I
External interrupt pin triggered by falling edge  
Ground  
3.2.4 EM78P157NAKM Pin Descriptions  
Symbol Pin No. Type  
Function  
VDD  
15,16  
Power supply  
y
y
y
y
y
y
y
XTAL type: Crystal input terminal or external clock input pin  
ERC type: RC oscillator input pin  
OSCI  
18  
I
XTAL type: Output terminal for crystal oscillator or external clock input pin  
RC type: Instruction clock output  
External clock signal input  
OSCO  
17  
I/O  
The real time clock/counter (with Schmitt trigger input pin), must be tied to  
VDD or VSS if not in use  
Input pin with Schmitt trigger. If this pin remains at logic low, the controller  
will also remain at reset condition.  
TCC  
3
4
I
I
y
/RESET  
P50~P53 are bi-directional I/O pins  
P50 and P51 can also be defined as the R-option pins  
P50~P52 can be set as pull-down by software  
y
y
y
P50~P53 19, 20, 1, 2 I/O  
P60~P67 are bi-directional I/O pins  
These pins can be set as pull-high or open-drain through software  
programming  
y
y
P60~P67  
7~14  
I/O  
P60~P63 can also be set as pull-down by software  
y
y
y
/INT  
VSS  
7
I
External interrupt pin triggered by falling edge  
Ground  
5, 6  
4 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4 Function Description  
OSCO  
/RESET  
OSCI  
TCC /INT  
WDT timer  
Prescaler  
Oscillator/Timing  
Control  
ROM  
R2  
Stack  
ALU  
IOCA  
RAM  
Interrupt  
Controller  
Instruction  
Register  
R3  
R1(TCC)  
R4  
Instruction  
Decoder  
ACC  
DATA & CONTROL BUS  
P60//INT  
P61  
P62  
IOC6  
R6  
IOC5  
R5  
P50  
I/O  
PORT 6  
I/O  
PORT 5  
P63  
P64  
P65  
P66  
P67  
P51  
P52  
P53  
Fig. 4-1 Function Block Diagram  
4.1 Operational Registers  
The following is the operational registers’ data memory configuration.  
Address  
R PAGE Registers  
IOC PAGE Registers  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
(IAR)  
Reserve  
CONT  
Reserve  
Reserve  
Reserve  
IOC5  
(TCC)  
(PC)  
(Control Register)  
(Status)  
(RSR)  
(Port5)  
(Port6)  
(I/O Port Control Register)  
(I/O Port Control Register)  
IOC6  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
RF  
Reserve  
Reserve  
Reserve  
IOCA  
(Prescaler Control Register)  
(Pull-down Register)  
IOCB  
IOCC  
(Open-drain Control)  
IOCD  
(Pull-high Control Register)  
(WDT Control Register)  
(Interrupt Mask Register)  
IOCE  
(Interrupt Status)  
IOCF  
General Registers  
3F  
Product Specification (V1.0) 09.22.2005  
5  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.1.1 Indirect Addressing (R0) Register  
R0 is not a physically implemented register. Its major function is to perform as an  
indirect addressing pointer. Any instruction using R0 as a pointer actually accesses  
data pointed by the RAM Select Register (R4).  
4.1.2 Time Clock / Counter (R1) Register  
„
Increased by an external signal edge, which is defined by TE bit (CONT-4) through  
the TCC pin, or by the instruction cycle clock.  
„
„
„
„
Writable and readable as any other registers.  
Defined by resetting PAB (CONT-3).  
The prescaler is assigned to TCC, if the PAB bit (CONT-3) is reset.  
The contents of the prescaler counter will be cleared only when TCC register is  
written with a value.  
4.1.3 Program Counter and Stack (R2) Register  
„
Depending on the device type, R2 and hardware stack are 10-bits wide. The R2  
structure is depicted in Fig. 4-2 below.  
„
Generates 1024×13 bits on-chip OTP ROM addresses to the relative programming  
instruction codes. One program page is 1024 words long.  
„
„
R2 is set as all “0” when under RESET condition.  
"JMP" instruction allows direct loading of the lower 10 program counter bits. Thus,  
"JMP" allows PC to go to any location within a page.  
„
"CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed into  
the stack. Thus, the subroutine entry address can be located anywhere within a  
page.  
„
„
„
„
"RET" ("RETL k," "RETI") instruction loads the program counter with the contents  
of the top-level stack.  
"ADD R2, A" allows the contents of ‘A’ to be added to the current PC, and the ninth  
and tenth bits of the PC are cleared.  
"MOV R2, A" allows to load an address from the "A" register to the lower 8 bits of  
the PC, and the ninth and tenth bits of the PC are cleared.  
Any instruction that writes to R2 (e.g., "ADD R2,A," "MOV R2,A," "BC R2,6",etc.)  
will cause the ninth and tenth bits (A8~A9) of the PC to be cleared. Thus, the  
computed jump is limited to the first 256 locations of a page.  
„
All instructions are single instruction cycle (fclk/2 or fclk/4) except for the instruction  
that would change the contents of R2. Such instruction will need one more  
instruction cycle.  
6 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
000H  
008H  
Reset Vector  
Interrupt Vector  
PC (A9 ~ A0)  
On-chip Program  
Memory  
Stack Level 1  
Stack Level 2  
Stack Level 3  
Stack Level 4  
Stack Level 5  
3FFH  
Fig. 4-2 R2 (Program Counter) & Stack Organization  
4.1.4 Status (R3) Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GP2  
GP1  
GP0  
T
P
Z
DC  
C
Bit 0 (C): Carry flag  
Bit 1 (DC): Auxiliary carry flag  
Bit 2 (Z): Zero flag  
Set to "1" if the result of an arithmetic or logic operation is zero  
Bit 3 (P): Power down bit  
Set to “1” during power on or by a "WDTC" command  
Reset to “0” by a "SLEP" command  
Bit 4 (T): Time-out bit  
Set to “1” with the "SLEP" and "WDTC" commands, or during power up  
Reset to “0” by WDT time-out  
Bit 5~7 (GP0 ~ 2): General-purpose read/write bits  
4.1.5 RAM Select (R4) Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Not used (read only)  
Select Registers  
Z flag of R3 will set to “1” when R4 content is equal to “3F.” When R4=R4+1, R4  
content will function as R0. See the data memory configuration shown in Section 4.1.  
Bits 0~5: are used to select registers (Address: 00~06, 0F~3F) in indirect address  
mode  
Bits 6~7: are not used (read only)  
Bits 6~7 are set to “1” all the time  
Product Specification (V1.0) 09.22.2005  
7  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.1.6 Port 5 ~ Port 6 (R5 ~ R6) Registers  
R5 and R6 are I/O registers. Only the lower 4 bits of R5 are available.  
4.1.7 Interrupt Status (RF) Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
EXIF  
ICIF  
TCIF  
RF can be cleared by instruction but cannot be set  
IOCF is the interrupt mask register (see Section 4.2.9)  
NOTE  
The result of reading RF is the "logic AND" of RF and IOCF.  
0: disable interrupt request  
1: enable interrupt request  
Bit 0 (TCIF): TCC overflow interrupt flag  
Set when TCC overflows. Reset by software.  
Bit 1 (ICIF): Port 6 input status change interrupt flag  
Set when Port 6 input changes. Reset by software.  
Bit 2 (EXIF): External interrupt flag  
Set by falling edge on /INT pin. Reset by software.  
Bits 3 ~ 7: Not used  
4.1.8 General Purpose (R10 ~ R3F) Registers  
R10 ~ R3F are all 8-bit general-purpose registers  
4.2 Special Purpose Registers  
4.2.1 Accumulator (A) Register  
„
„
Internal data transfer, or instruction operand holding  
It cannot be addressed  
8 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.2.2 Control (CONT ) Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
/INT  
TS  
TE  
PAB  
PSR2  
PSR1  
PSR0  
CONT register is both readable and writable  
Bit 0 ~ Bit 2 (PSR0 ~ PSR2): TCC/WDT prescaler bits  
PSR2  
PSR1  
PSR0  
TCC Rate  
1:2  
WDT Rate  
1:1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
1:256  
1:2  
1:4  
1:8  
1:16  
1:32  
1:64  
1:128  
Bit 3 (PAB): Prescaler assignment bit  
0: TCC  
1: WDT  
Bit 4 (TE): TCC signal edge  
0: increment if the transition from low to high takes place on TCC pin  
1: increment if the transition from high to low takes place on TCC pin  
Bit 5 (TS): TCC signal source  
0: internal instruction cycle clock  
1: transition on TCC pin  
Bit 6 (/INT): Interrupt enable flag  
0: masked by DISI or hardware interrupt  
1: enabled by ENI/RETI instructions  
Bit 7:  
Not used  
4.2.3 I/O Port Control (IOC5 ~ IOC6) Registers  
„
0: defines the relative I/O pin as output  
1: put the relative I/O pin into high impedance  
„
„
Only the lower 4 bits of IOC5 can be defined.  
IOC5 and IOC6 registers are both readable and writable  
4.2.4 Prescaler Counter (IOCA ) Register  
„
„
„
IOCA register is readable  
The value of IOCA is equal to the contents of Prescaler counter  
Down counter  
Product Specification (V1.0) 09.22.2005  
9  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.2.5 Pull-Down Control (IOCB) Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PD7  
/PD6  
/PD5  
/PD4  
-
/PD2  
/PD1  
/PD0  
IOCB Register is both readable and writable.  
Bit 0 (/PD0): Control bit is used to enable the P50 pin pull-down  
0: Enable internal pull-down  
1: Disable internal pull-down  
Bit 1 (/PD1): Control bit is used to enable the P51 pin pull-down  
Bit 2 (/PD2): Control bit is used to enable the P52 pin pull-down  
Bit 3:  
Not used  
Bit 4 (/PD4): Control bit is used to enable the P60 pin pull-down  
Bit 5 (/PD5): Control bit is used to enable the P61 pin pull-down  
Bit 6 (/PD6): Control bit is used to enable the P62 pin pull-down  
Bit 7 (/PD7): Control bit is used to enable the P63 pin pull-down  
4.2.6 Open-Drain Control (IOCC ) Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OD7  
OD6  
OD5  
OD4  
OD3  
OD2  
OD1  
OD0  
IOCC Register is both readable and writable.  
Bit 0 (OD0): Control bit is used to enable the P60 pin open-drain  
0: Disable open-drain output  
1: Enable open-drain output  
Bit 1 (OD1): Control bit is used to enable the P61 pin open-drain  
Bit 2 (OD2): Control bit is used to enable the P62 pin open-drain  
Bit 3 (OD3): Control bit is used to enable the P63 pin open-drain  
Bit 4 (OD4): Control bit is used to enable the P64 pin open-drain  
Bit 5 (OD5): Control bit is used to enable the P65 pin open-drain  
Bit 6 (OD6): Control bit is used to enable the P66 pin open-drain  
Bit 7 (OD7): Control bit is used to enable the P67 pin open-drain  
10 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.2.7 Pull-High Control (IOCD) Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
/PH7  
/PH6  
/PH5  
/PH4  
/PH3  
/PH2  
/PH1  
/PH0  
IOCD Register is both readable and writable  
Bit 0 (/PH0): Control bit is used to enable the P60 pin pull-high  
0: Enable internal pull-high  
1: Disable internal pull-high  
Bit 1 (/PH1): Control bit is used to enable the P61 pin pull-high  
Bit 2 (/PH2): Control bit is used to enable the P62 pin pull-high  
Bit 3 (/PH3): Control bit is used to enable the P63 pin pull-high  
Bit 4 (/PH4): Control bit is used to enable the P64 pin pull-high  
Bit 5 (/PH5): Control bit is used to enable the P65 pin pull-high  
Bit 6 (/PH6): Control bit is used to enable the P66 pin pull-high  
Bit 7 (/PH7): Control bit is used to enable the P67 pin pull-high  
4.2.8 WDT Control (IOCE) Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WDTE  
EIS  
-
ROC  
-
-
-
-
Bits 0~3, 5: Not used  
Bit 4 (ROC): ROC is used for the R-option  
Setting the ROC to "1" will enable the status of R-option pins (P50P51)  
that are read by the controller. Clearing the ROC will disable the  
R-option function. If the R-option function is selected, you must connect  
the P51 pin or/and P50 pin to VSS with a 430Kexternal resistor (Rex).  
If the Rex is connected or disconnected, the status of P50 (P51) is read  
as "0" or "1" respectively Refer to Fig. 4-6 under Section 4.4.  
Bit 6 (EIS): Control bit is used to define the P60 (/INT) pin function  
0: P60, bi-directional I/O pin  
1: /INT, external interrupt pin. In this case, the I/O control bit of P60  
(bit 0 of IOC6) must be set to "1"  
EIS is both readable and writable.  
When EIS is "0," the path of /INT is masked. When EIS is "1,” the status  
of /INT pin can also be read by way of reading Port 6 (R6). Refer to Fig.  
4-5(a) under Section 4.4.  
Bit 7 (WDTE):Control bit is used to enable Watchdog timer  
0: Disable WDT  
1: Enable WDT  
WDTE is both readable and writable  
Product Specification (V1.0) 09.22.2005  
11  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.2.9 IOCF (Interrupt Mask Register)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
EXIE  
ICIE  
TCIE  
Individual interrupt is enabled by setting its associated control bit in the IOCF to "1."  
Global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction.  
Refer to Fig. 4-8 under Section 4.6.  
IOCF register is both readable and writable.  
Bit 0 (TCIE): TCIF interrupt enable bit  
0: disable TCIF interrupt  
1: enable TCIF interrupt  
Bit 1 (ICIE): ICIF interrupt enable bit  
0: disable ICIF interrupt  
1: enable ICIF interrupt  
Bit 2 (EXIE): EXIF interrupt enable bit  
0: disable EXIF interrupt  
1: enable EXIF interrupt  
Bits 3~7:  
Not used.  
4.3 TCC/WDT & Prescaler  
An 8-bit counter available as prescaler for the TCC or WDT. The prescaler is available  
for either the TCC or WDT only at any given time, and the PAB bit of the CONT register  
is used to determine the prescaler assignment. The PSR0~PSR2 bits determine the  
ratio. The prescaler is cleared each time the instruction is written to TCC under TCC  
mode. The WDT and prescaler, when assigned to WDT mode, are cleared by the  
“WDTC” or “SLEP” instructions. Fig. 4-3 below, depicts the circuit diagram of  
TCC/WDT.  
„
R1 (TCC) is an 8-bit timer/counter. The clock source of TCC can be internal or  
external clock input (edge selectable from TCC pin). If TCC signal source is from  
internal clock, TCC will increase by 1 at every instruction cycle (without prescaler).  
Referring to Fig. 4-3 below, CLK=Fosc/2 or CLK=Fosc/4 application is determined  
by the CODE Option bit CLK status. CLK=Fosc/2 is used when CLK bit is "0," and  
CLK=Fosc/4 is used when CLK bit is "1." If TCC signal source comes from external  
clock input, TCC is increased by 1 at every falling edge or rising edge of TCC pin.  
12 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
„
The watchdog timer is a free running on-chip RC oscillator. The WDT will keep on  
running even when the oscillator driver has been turned off (i.e., in sleep mode).  
During normal operation or sleep mode, a WDT time-out (if enabled) will cause the  
device to reset. The WDT can be enabled or disabled any time during normal  
mode by software programming. Refer to WDTE bit of IOCE register. Without  
prescaler, the WDT time-out period is approximately 18 ms1 (default).  
Data Bus  
CLK(=Fosc/2 or Fosc/4)  
0
1
0
TCC  
Pin  
M
U
X
M
U
X
SYNC  
2 cycles  
TCC (R1)  
1
TE  
TCC overflow interrupt  
TS  
PAB  
0
1
M
U
X
8-bit Counter  
M
U
X
IOCA  
WDT  
WTE  
PAB  
PAB  
(in IOCE)  
8-to-1 MUX  
Initial  
value  
PSR0~PSR2  
0
1
MUX  
WDT time-out  
Fig. 4-3 TCC and WDT Block Diagram  
PAB  
4.4 I/O Ports  
The I/O registers, both Port 5 and Port 6, are bi-directional tri-state I/O ports. Port 6 can  
be set as pull-high internally by software. Furthermore, Port 6 can also be set as  
open-drain output by software and supports input status change interrupt (or wake-up)  
function. P50 ~ P52 and P60 ~ P63 pins can be pulled down by software. Each I/O pin  
can be defined as "input" or "output" pin by the I/O control register (IOC5 ~ IOC6). P50  
~ P51 are the R-option pins which are enabled by setting the ROC bit in the IOCE  
register to “1.” When the R-option function is used, it is recommended that P50 ~ P51  
are used as output pins. When R-option is in enabled state, P50 ~ P51 must be  
programmed as input pins. Under R-option mode, the current/power consumption by  
Rex should be taken into the consideration to promote energy conservation.  
The I/O registers and I/O control registers are both readable and writable. The I/O  
interface circuits for Port 5 and Port 6 are depicted in Figures 4-4, 4-5(a), 4-5(b), and  
4-6 shown below.  
1
Vdd = 5V, set up time period = 16.8ms ± 30%  
Vdd = 3V, set up time period = 18ms ± 30%  
Product Specification (V1.0) 09.22.2005  
13  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
PCRD  
P
Q
D
R
PCWR  
CLK  
_
Q
C
L
P
IOD  
PORT  
Q
D
R
PDWR  
CLK  
_
Q
C
L
PDRD  
0
1
M
U
X
NOTE: Pull-down is not shown in the figure  
Fig. 4-4(a) I/O Port and I/O Control Register Port 5 Circuit Diagram  
P C R D  
P
Q
_
Q
D
R
P C W  
R
R
C L K  
C
L
P 6 0 / I N T  
P O R T  
I O D  
P
Q
_
Q
D
R
P D W  
C L K  
C
L
B i t  
6
o f I O C E  
P
0
1
D
Q
R
M
U
X
_
Q
C L K  
C
L
T 1 0  
P D R D  
P
D
Q
R
C L K  
_
Q
C
L
I N T  
NOTE: Pull-high/down and open-drain are not shown in the figure  
Fig. 4-5(b) I/O Port and I/O Control Register P60 (/INT) Circuit Diagram  
14 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
PCRD  
P
Q
_
Q
D
CLK  
R
PCWR  
C
L
P61~P67  
PORT  
IOD  
P
Q
D
R
PDWR  
_
Q
CLK  
C
L
0
1
M
U
X
TIN  
PDRD  
P
R
D
Q
CLK  
_
Q
C
L
NOTE: Pull-high/down and open-drain are not shown in the figure  
Fig. 4-5(c) I/O Port and I/O Control Register for P61~P67 Circuit Diagram  
IOCE.1  
P
Q
D
R
CLK  
Interrupt  
_
Q
C
L
RE.1  
ENI Instruction  
P
T10  
T11  
D
Q
R
P
CLK  
Q
D
R
_
Q
C
CLK  
L
_
Q
C
L
T17  
DISI Instruction  
Interrupt  
(Wake-up from SLEEP)  
/SLEP  
Next Instruction  
(Wake-up from SLEEP)  
Fig. 4-5(d) Block Diagram on I/O Port 6 with Input Change Interrupt/Wake-up  
Product Specification (V1.0) 09.22.2005  
15  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.4.1 Port 6 Input Change Wake-up/Interrupt Function Usage  
(I) Wake-up from Port 6 Input Status Change  
(II) Port 6 Input Status Change Interrupt  
(a) Before SLEEP  
1. Read I/O Port 6 (MOV R6,R6)  
2. Execute "ENI"  
1. Disable WDT* (using very carefully)  
2. Read I/O Port 6 (MOV R6,R6)  
3. Execute "ENI" or "DISI"  
3. Enable interrupt (Set IOCF.1)  
4. IF Port 6 change (interrupt)  
Interrupt vector (008H)  
4. Enable interrupt (Set IOCF.1)  
5. Execute "SLEP" instruction  
(b) After Wake-up  
1. IF "ENI" Interrupt vector (008H)  
2. IF "DISI" Next instruction  
* Software disables WDT (watchdog timer) but hardware must be enabled before applying the Port 6 Change  
Wake-Up function (CODE Option Register and Bit 11 (ENWDTB-) set to “1”).  
PCRD  
ROC  
VCC  
P
R
Q
Q
D
Weakly  
Pull-up  
CLK  
PCWR  
C
L
P
R
PORT  
Q
Q
D
IOD  
PDWR  
C
L
PDRD  
0
1
M
U
X
Rex*  
*The Rex is a 430K ohm external  
resistor  
Fig. 4-6 I/O Port with R-option (P50,P51) Circuit Diagram  
16 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.5 RESET and Wake-up  
A RESET is initiated by one of the following events:  
1. Power on reset  
2. /RESET pin input "low," or  
3. WDT time-out (if enabled)  
The device is kept in a RESET condition for a period of approximately 18ms2 (one  
oscillator start-up timer period) after the reset is detected. Once the RESET occurs, the  
following functions are performed (see Fig. 4-7 under Section 4.5.2.1)  
„
„
„
„
„
„
„
„
„
„
„
„
The oscillator is running, or will be started.  
The Program Counter (R2) is set to all "0."  
All I/O port pins are configured as input mode (high-impedance state).  
The Watchdog timer and prescaler are cleared.  
When power is switched on, the upper 3 bits of R3 are cleared.  
All the CONT register bits are set to "1" except for the Bit 6 (INT flag).  
All the IOCA register bits are set to "1."  
All the IOCB register bits are set to "1."  
The IOCC register is cleared.  
All the IOCD register bits are set to "1."  
Bit 7 of the IOCE register is set to "1," and Bits 4 and 6 are cleared.  
Bits 0 ~2 of RF and bits 0 ~2 of IOCF registers are cleared.  
The sleep (power down) mode is asserted by executing the “SLEP” instruction. While  
entering sleep mode, WDT (if enabled) is cleared but keeps on running. The controller  
can be awakened by:  
1. External reset input on /RESET pin,  
2. WDT time-out (if enabled), or  
3. Port 6 input status changes (if enabled).  
The first two cases will cause the EM78P157N to reset. The T and P flags of R3 can be  
used to determine the source of the reset (wake-up). The last case is considered the  
continuation of the program execution. The global interrupt ("ENI" or "DISI" being  
executed) decides whether or not the controller branches to the interrupt vector  
following wake-up. If ENI is executed before SLEP, the instruction will begin to execute  
from the address 008H after wake-up. If DISI is executed before SLEP, the operation  
will restart from the succeeding instruction right next to SLEP after wake-up.  
2
Vdd = 5V, set up time period = 16.8ms ± 30%  
Vdd = 3V, set up time period = 18ms ± 30%  
Product Specification (V1.0) 09.22.2005  
17  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
Only one of Cases 2 and 3 can be enabled before entering into sleep mode, i.e.,  
[a] if Port 6 Input Status Change Interrupt is enabled before SLEP, WDT must be  
disabled by software. However, the WDT bit in the option register remains enabled.  
Hence, the EM78P157N can be awakened only by either Case 1 or 3.  
[b] if WDT is enabled before SLEP, Port 6 Input Status Change Interrupt must be  
disabled. Hence, the EM78P157N can only be awakened by either Case 1 or 2.  
Refer to the section (Section 4.6) on Interrupt.  
If Port 6 Input Status Change Interrupt is used to wake-up the EM78P157N (Case [a]  
above), the following instructions must be executed before SLEP:  
MOV A, @xx000110b  
CONTW  
; Select internal TCC clock  
CLR R1  
; Clear TCC and prescaler  
; Select WDT prescaler  
MOV A, @xxxx1110b  
CONTW  
WDTC  
; Clear WDT and prescaler  
; Disable WDT  
MOV A, @0xxxxxxxb  
IOW RE  
MOV R6, R6  
MOV A, @00000x1xb  
IOW RF  
; Read Port 6  
; Enable Port 6 input change interrupt  
ENI (or DISI)  
SLEP  
; Enable (or disable) global interrupt  
; Sleep  
NOP  
One problem you should be aware of is that after waking up from the sleep mode, WDT  
is enabled automatically. The WDT operation (being enabled or disabled) should be  
handled appropriately by software after waking up from the sleep mode.  
18 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.5.1 Summary of Initialized Values for Registers  
Legend:  
U = Unknown or don’t care P = Previous value before reset t = Check with Section 4.5.2.1  
Address  
Name  
Reset Type  
Bit Name  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
X
U
U
X
U
U
X
U
U
X
U
U
C53  
1
C52  
1
C51  
1
C50  
1
Power-On  
N/A  
IOC5  
/RESET and WDT  
1
1
1
1
Wake-Up from Pin  
Change  
U
U
U
U
P
P
P
P
Bit Name  
C67  
1
C66  
1
C65  
1
C64 C63  
C62  
1
C61  
1
C60  
1
Power-On  
1
1
1
1
N/A  
N/A  
IOC6  
CONT  
/RESET and WDT  
1
1
1
1
1
1
Wake-Up from Pin  
Change  
Bit Name  
P
P
P
P
P
P
P
P
X
1
1
/INT  
0
TS  
1
TE  
1
PAB PSR2 PSR1 PSR0  
Power-On  
1
1
1
1
1
1
1
1
/RESET and WDT  
0
1
1
Wake-Up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
-
-
-
-
-
-
-
-
Power-On  
U
P
U
P
U
P
U
P
U
P
U
P
U
P
U
P
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
R0(IAR)  
R1(TCC)  
R2(PC)  
R3(SR)  
R4(RSR)  
P5  
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
P
P
P
P
P
P
P
P
-
-
-
-
-
-
-
-
Power-On  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
P
P
P
P
P
P
P
P
-
-
-
-
-
-
-
-
Power-On  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
*0/P *0/P *0/P *0/P *1/P *0/P *0/P *0/P  
GP2 GP1 GP0  
T
1
t
P
1
t
Z
U
P
DC  
U
C
U
P
Power-On  
0
0
0
0
0
0
/RESET and WDT  
P
Wake-Up from Pin  
Change  
Bit Name  
P
P
P
t
t
P
P
P
-
-
-
-
-
-
-
-
Power-On  
1
1
1
1
U
P
U
P
U
P
U
P
U
P
U
P
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
1
1
P
P
P
P
P
P
X
0
0
X
0
0
X
0
0
X
0
0
P53  
U
P52  
U
P51  
U
P50  
U
Power-On  
/RESET and WDT  
P
P
P
P
Wake-Up from Pin  
Change  
0
0
0
0
P
P
P
P
* Jump to address 0x08, or execute the instruction following the “SLEP” instruction.  
Product Specification (V1.0) 09.22.2005  
19  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
Address  
Name  
Reset Type  
Bit Name  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
P67  
U
P66  
U
P65  
U
P64  
U
P63  
U
P62  
U
P61  
U
P60  
U
Power-On  
0x06  
P6  
/RESET and WDT  
P
P
P
P
P
P
P
P
Wake-Up from Pin  
Change  
P
P
P
P
P
P
P
P
Bit Name  
X
U
U
X
U
U
X
U
U
X
U
U
X
U
U
EXIF ICIF TCIF  
Power-On  
0
0
0
0
0
0
0x0F  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
RF(ISR)  
IOCA  
IOCB  
IOCC  
IOCD  
IOCE  
IOCF  
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
U
U
U
U
U
P
P
P
-
-
-
-
-
-
-
-
Power-On  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
P
P
P
P
P
P
P
P
/PD7 /PD6 /PD5 /PD4  
X
U
U
/PD2 /PD1 /PD0  
Power-On  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
P
P
P
P
U
P
P
P
OD7 OD6 OD5 OD4 OD3 OD2 OD1 OD0  
Power-On  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
P
P
P
P
P
P
P
P
/PH7 /PH6 /PH5 /PH4 /PH3 /PH2 /PH1 /PH0  
Power-On  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
P
P
P
P
P
P
P
P
WDTE EIS  
X
U
U
ROC  
X
U
U
X
U
U
X
U
U
X
U
U
Power-On  
1
1
0
0
0
0
/RESET and WDT  
Wake-Up from Pin  
Change  
Bit Name  
1
P
U
P
U
U
U
U
X
U
U
X
U
U
X
U
U
X
U
U
X
U
U
EXIE ICIE TCIE  
Power-On  
0
0
0
0
0
0
/RESET and WDT  
Wake-Up from Pin  
Change  
U
U
U
U
U
P
P
P
Bit Name  
-
-
-
-
-
-
-
-
Power-On  
U
P
U
P
U
P
U
P
U
P
U
P
U
P
U
P
0x10~0x2F R10~R2F  
/RESET and WDT  
Wake-Up from Pin  
Change  
P
P
P
P
P
P
P
P
20 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.5.2 The Status of RST, T, and P of STATUS Register  
A RESET condition is initiated by the following events:  
1. A power-on condition  
2. A high-low-high pulse on /RESET pin  
3. Watchdog timer time-out  
4.5.2.1 RST, T and P after RESET Values  
The values of T (Time-out) and P (Power-down) as listed below are used to verify how  
the processor wakes up.  
Reset Type  
T
P
Power on  
1
*P  
1
1
*P  
0
/RESET during Operating mode  
/RESET wake-up during SLEEP mode  
WDT during Operating mode  
0
*P  
0
WDT wake-up during SLEEP mode  
Wake-Up on pin change during SLEEP mode  
0
1
0
*P = Previous status before reset  
4.5.2.2 Event Affecting T and P Status  
The table below shows the events that may affect the status of T (Time-out) and  
P (Power-down).  
Event  
T
P
Power on  
1
1
0
1
1
1
1
WDTC instruction  
WDT time-out  
SLEP instruction  
*P  
0
Wake-Up on pin change during SLEEP mode  
0
*P = Previous status before reset  
VDD  
D
CLK  
Q
CLK  
Oscillator  
CLR  
Power-on  
Reset  
Voltage  
Detector  
WDTE  
WDT Timeout  
Setup Time  
RESET  
WDT  
/RESET  
Fig. 4-7 Controller Reset Block Diagram  
Product Specification (V1.0) 09.22.2005  
21  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.6 Interrupt  
The EM78P157N has three falling-edge interrupts as listed below:  
1. TCC overflow interrupt  
2. Port 6 Input Status Change Interrupt  
3. External interrupt [(P60, /INT) pin].  
Before the Port 6 Input Status Change Interrupt is enabled, reading Port 6 (e.g.,  
"MOV R6,R6") is necessary. Each Port 6 pin of will have this feature when its status  
changes. Any pin configured as output or P60 pin configured as “/INT,” is excluded  
from this function. The Port 6 Input Status Change Interrupt can wake up the  
EM78P157N from the sleep mode if Port 6 is enabled prior to going into the sleep mode  
by executing SLEP instruction. When the chip wakes-up, the controller will continue to  
execute the succeeding address if the global interrupt is disabled or branches to the  
interrupt vector 008H if the global interrupt is enabled.  
RF is the interrupt status register that records the interrupt requests in the relative  
flags/bits. IOCF is an interrupt mask register. The global interrupt is enabled by the  
ENI instruction and is disabled by the DISI instruction. When one of the enabled  
interrupts occurs, the next instruction will be fetched from address 008H. Once in the  
interrupt service routine, the source of an interrupt can be determined by polling the flag  
bits in RF. The interrupt flag bit must be cleared by instructions before leaving the  
interrupt service routine and before interrupts are enabled to avoid recursive interrupts.  
The flag (except ICIF bit) in the Interrupt Status Register (RF) is set regardless of the  
status of its mask bit or ENI execution. Note that the outcome of RF will be the logic  
AND of RF and IOCF (refer to Fig. 4-7 above). The RETI instruction ends the interrupt  
routine and enables the global interrupt (execution of ENI).  
When an interrupt is generated by the INT instruction (enabled), the next instruction will  
be fetched from address 001H.  
VCC  
P
D
Q
IRQn  
R
/IRQn  
CLK  
INT  
_
Q
IRQm  
C
L
RFRD  
RF  
ENI/DISI  
P
IOD  
Q
D
R
CLK  
_
Q
IOCFWR  
C
L
IOCF  
/RESET  
IOCFRD  
RFWR  
Fig. 4-8 Interrupt Input Circuit  
22 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.7 Oscillator  
4.7.1 Oscillator Modes  
The EM78P157N can be operated in three different oscillator modes, namely, External  
RC oscillator mode (ERC), High XTAL oscillator mode (HXT), and Low XTAL oscillator  
mode (LXT). User can select one of them by programming OSC, HLF, and HLP in the  
CODE option register. The following table depicts how these three modes are defined.  
4.7.1.1 Oscillator Modes Defined by OSC, HLF, and HLP  
Mode  
OSC  
HLF  
HLP  
X2  
1
X2  
X2  
0
ERC (External RC oscillator mode)  
HXT (High XTAL oscillator mode)1  
LXT (Low XTAL oscillator mode)1  
0
1
1
0
1 The transient point of system frequency between HXT and LXY is around 400 kHz  
2 X = Don’t care  
4.7.1.2 The Summary of Maximum Operating Speeds  
The maximum operational frequency of crystal/resonator under different VDDs is as  
listed below.  
Condition  
VDD  
Fxt Max Freq.  
3.0  
5.0  
8.0 MHz  
Two cycles with two clocks  
20.0 MHz  
4.7.2 Crystal Oscillator/Ceramic Resonators (XTAL)  
EM78P157N can be driven by an external clock signal through the OSCI pin as  
illustrated in the following figure.  
OSCI  
OSCO  
Ext. Clock  
EM78P157N  
Fig. 4-9 External Clock Input Circuit  
Product Specification (V1.0) 09.22.2005  
23  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
In most applications, Pin OSCI and Pin OSCO can connected with a crystal or ceramic  
resonator to generate oscillation. The figure below depicts such circuit. The same  
thing is applicable whether it is in the HXT mode or LXT mode. Table below provides  
the recommended values of C1 and C2. Since each resonator has its own attribute,  
you should refer to its specification for the appropriate values of C1 and C2. RS, a  
serial resistor, may be necessary for AT strip cut crystal or low frequency mode.  
C1  
OSCI  
EM78P157N  
XTAL  
OSCO  
C2  
RS  
Fig. 4-10 Crystal/Resonator Circuit  
4.7.2.1 Capacitor Selection Guide for Crystal Oscillator or Ceramic  
Resonator  
The table below provides the recommended values of C1 and C2. Since each  
resonator has its own attribute, you should refer to its specification for the appropriate  
values of C1 and C2. RS, a serial resistor, may be necessary for AT strip cut crystal or  
low frequency mode.  
Oscillator Type  
Frequency Mode  
Frequency  
C1(pF)*  
C2(pF)*  
455 kHz  
2.0 MHz  
4.0 MHz  
32.768kHz  
100KHz  
200KHz  
455KHz  
1.0MHz  
2.0MHz  
4.0MHz  
100~150  
20~40  
10~30  
25  
100~150  
20~40  
10~30  
15  
Ceramic Resonators  
HXT  
LXT  
HXT  
25  
25  
25  
25  
Crystal Oscillator  
20~40  
15~30  
15  
20~150  
15~30  
15  
15  
15  
* The values shown for capacitors C1 & C2 are for reference only.  
24 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.7.3 External RC Oscillator Mode  
For some applications that do not need a very precise timing calculation, the RC  
oscillator (Fig. 4-11 below) offers a lot of cost savings. Nevertheless, it should be noted  
that the frequency of the RC oscillator is influenced by the supply voltage, the values of  
the resistor (Rext), the capacitor (Cext), and even by the operation temperature.  
Moreover, the frequency also changes slightly from one chip to another due to the  
manufacturing process variation.  
In order to maintain a stable system frequency, the values of the Cext should not be  
less than 20pF, and that the value of Rext should not be greater than 1 M. If they  
cannot be kept in this range, the frequency is easily affected by noise, humidity, and  
leakage.  
The smaller the Rext in the RC oscillator, the faster its frequency will be. On the  
contrary, for very low Rext values, for instance, 1 K, the oscillator will become  
unstable because the NMOS cannot accurately discharge the current of the  
capacitance.  
Based on the above factors, it must be kept in mind that all of the supply voltage, the  
operation temperature, the components of the RC oscillator, the package types, the  
way the PCB is laid out, will affect the system frequency.  
Vcc  
Rext  
OSCI  
Cext  
EM78P157N  
Fig. 4-11 External RC Oscillator Mode Circuit  
Product Specification (V1.0) 09.22.2005  
25  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.7.3.1 RC Oscillator Frequencies  
Average Fosc  
Average Fosc  
Cext  
Rext  
5V, 25°C  
3V, 25°C  
3.3k  
5.1k  
10k  
3.92 MHz  
2.67 MHz  
1.39MHz  
149 KHz  
1.39 MHz  
940 KHz  
480 KHz  
52 KHz  
3.65 MHz  
2.60 MHz  
1.40 MHz  
156 KHz  
1.33 MHz  
920 KHz  
475 KHz  
50 KHz  
20 pF  
100k  
3.3k  
5.1k  
10k  
100 pF  
300 pF  
100k  
3.3k  
5.1k  
10k  
595 KHz  
400 KHz  
200 KHz  
21 KHz  
560 KHz  
390 KHz  
200 KHz  
20 KHz  
100k  
NOTE: 1. Values derived and measured from DIP packages  
2. Values are for design references only  
3. The frequency drift is about ±30%  
4.8 CODE Option Register  
The EM78P157N has a CODE option word that is not a part of the normal program  
memory. The option bits cannot be accessed during normal program execution.  
The following is the Code Option Register and Customer ID Register arrangement  
distribution:  
Word 0  
Word 1  
Bit12~Bit0  
Bit12~Bit0  
4.8.1 Code Option Register (Word 0)  
WORD 0  
Bit12 Bit11 Bit10 Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
PR2  
Bit1  
Bit0  
-
-
-
-
CLKS ENWDTB  
-
HLF OSC HLP  
PR1  
PR0  
Bit 9~Bit 12: Not used (reserved)  
This bit is set to “1” all the time  
Bit 8 (CLKS): Instruction period option bit  
0: two oscillator periods  
1: four oscillator periods  
(Refer to Section 4-12, Instruction Set)  
Bit 7 (ENWDTB): Watchdog timer enable bit  
0: Enable  
1: Disable  
Bit 6:  
Not used (reserved)  
This bit is set to “1” all the time  
26 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
Bit 5 (HLF): XTAL frequency selection  
0: XTAL2 type (low frequency, 32.768KHz)  
1: XTAL1 type (high frequency)  
This bit will affect system oscillation only when Bit 4 (OSC) is “1.” When  
OSC is”0,” HLF must be “0”.  
NOTE  
The transient point of system frequency between HXT and LXY is around 400 KHz.  
Bit 4 (OSC): Oscillator type selection  
0: RC type  
1: XTAL type (XTAL1 and XTAL2)  
Bit 3 (HLP): Power selection  
0: Low power  
1: High power  
Bit 2 ~ Bit 0 (PR2 ~ PR0): Protect bits  
PR2 ~ PR0 are protect bits that can be set as follows:  
PR2  
PR1  
PR0  
Protect  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Enable  
Enable  
Enable  
Enable  
Enable  
Enable  
Enable  
Disable  
4.8.2 Customer ID Register (Word 1)  
Bit 12 ~ Bit 0  
XXXXXXXXXXXXX  
Bit 12 ~ Bit 0: Customer’s ID code  
Product Specification (V1.0) 09.22.2005  
27  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.9 Power-On Considerations  
Any microcontroller is not guaranteed to start to operate properly before the power  
supply stays at its steady state.  
EM78P157N POR voltage range is 1.2V~1.8V. Under customer application, when  
power is OFF, Vdd must drop to below 1.2V and remains OFF for 10µs before power  
can be switched ON again. This way, the EM78P157N will reset and works normally.  
The extra external reset circuit will work well if Vdd can rise at very fast speed (50 ms or  
less). However, under most cases where critical applications are involved, extra  
devices are required to assist in solving the power-up problems.  
4.10 External Power-On Reset Circuit  
The circuit shown below implements an external RC to produce the reset pulse. The  
pulse width (time constant) should be kept long enough for Vdd to reach the minimum  
operation voltage. This circuit is used when the power supply has a slow rise time.  
Because the current leakage from the /RESET pin is about ±5µA, it is recommended  
that R should not be greater than 40K. In this way, the /RESET pin voltage is held  
below 0.2V. The diode (D) acts as a short circuit at the moment of power down. The  
capacitor C will discharge rapidly and fully. Rin, the current-limited resistor, will prevent  
high current or ESD (electrostatic discharge) from flowing into /RESET pin.  
Vdd  
R
/RESET  
D
EM78P157N  
Rin  
C
Fig. 4-12 External Power-Up Reset Circuit  
28 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.11 Residual-Voltage Protection  
When battery is replaced, device power (Vdd) is taken off but residual-voltage remains.  
The residual-voltage may trips below Vdd minimum, but not to zero. This condition  
may cause a poor power-on reset. Figures 4-13 and 4-14 illustrate how to build a  
residual-voltage protection circuit.  
Vdd  
Vdd  
33K  
EM78P157N  
Q1  
10K  
/RESET  
40K  
1N4684  
Fig. 4-13 Circuit 1 for the Residue Voltage Protection  
Vdd  
Vdd  
R1  
EM78P157N  
Q1  
/RESET  
R2  
40K  
Fig. 4-14 Circuit 2 for the Residue Voltage Protection  
Product Specification (V1.0) 09.22.2005  
29  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.12 Instruction Set  
Each instruction in the instruction set is a 13-bit word divided into an OP code and one  
or more operands. Normally, all instructions are executed within one single instruction  
cycle (one instruction consists of 2 oscillator periods), unless the program counter is  
changed by instruction "MOV R2,A," "ADD R2,A," or by instructions of arithmetic or  
logic operation on R2 (e.g., "SUB R2,A," "BS(C) R2,6," "CLR R2," etc.). In this case,  
the execution takes two instruction cycles.  
If for some reasons, the specification of the instruction cycle is not suitable for certain  
applications, try modifying the instruction as follows:  
1. Change one instruction cycle to consist of 4 oscillator periods.  
2. "JMP,” "CALL," "RET," "RETL," and "RETI," or the conditional skip ("JBS," "JBC,"  
"JZ," "JZA," "DJZ," and "DJZA") commands which were tested to be true, are  
executed within two instruction cycles. The instructions that are written to the  
program counter also take two instruction cycles.  
Case (1) is selected by the CODE Option bit, called CLK. One instruction cycle  
consists of two oscillator clocks if CLK is low, and four oscillator clocks if CLK is high.  
Note that once the 4 oscillator periods within one instruction cycle is selected as in  
Case (A), the internal clock source to TCC should be CLK=Fosc/4, instead of Fosc/2 as  
indicated in Fig. 4-3 (TCC and WDT Block Diagram) in Section 4.3.  
Furthermore, the instruction set has the following features:  
1. Every bit of any register can be set, cleared, or tested directly.  
2. The I/O register can be regarded as general register. That is, the same instruction  
can operate on I/O register.  
LEGEND: "R" represents a register designator that specifies which one of the registers (including operational registers  
and general purpose registers) is to be utilized by the instruction.  
"b" represents a bit field designator that selects the value for the bit which is located in the register "R" and  
affects operation.  
"k" represents an 8 or 10-bit constant or literal value.  
Instruction Binary  
Hex  
Mnemonic  
Operation  
Status Affected  
0 0000 0000 0000  
0 0000 0000 0001  
0 0000 0000 0010  
0 0000 0000 0011  
0 0000 0000 0100  
0000  
NOP  
DAA  
CONTW  
SLEP  
WDTC  
No Operation  
Decimal Adjust A  
A CONT  
0 WDT, Stop oscillator  
0 WDT  
None  
C
None  
T,P  
0001  
0002  
0003  
0004  
T,P  
None1  
None  
None  
None  
0 0000 0000 rrrr  
0 0000 0001 0000  
0 0000 0001 0001  
0 0000 0001 0010  
000r  
0010  
0011  
0012  
IOW R  
ENI  
DISI  
A IOCR  
Enable Interrupt  
Disable Interrupt  
[Top of Stack] PC  
RET  
[Top of Stack] PC, Enable  
0 0000 0001 0011  
0013  
RETI  
None  
None  
None1  
None  
Z
Interrupt  
0 0000 0001 0100  
0 0000 0001 rrrr  
0 0000 01rr rrrr  
0 0000 1000 0000  
0014  
001r  
00rr  
CONTR  
IOR R  
CONT A  
IOCR A  
A R  
MOV R,A  
CLRA  
0080  
0 A  
30 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
Instruction Binary  
Hex  
Mnemonic  
Operation  
Status Affected  
0 0000 11rr rrrr  
0 0001 00rr rrrr  
0 0001 01rr rrrr  
0 0001 10rr rrrr  
0 0001 11rr rrrr  
0 0010 00rr rrrr  
0 0010 01rr rrrr  
0 0010 10rr rrrr  
0 0010 11rr rrrr  
0 0011 00rr rrrr  
0 0011 01rr rrrr  
0 0011 10rr rrrr  
0 0011 11rr rrrr  
0 0100 00rr rrrr  
0 0100 01rr rrrr  
0 0100 10rr rrrr  
0 0100 11rr rrrr  
0 0101 00rr rrrr  
0 0101 01rr rrrr  
0 0101 10rr rrrr  
0 0101 11rr rrrr  
00rr  
CLR R  
Z
0 R  
R-A A  
R-A R  
R-1 A  
R-1 R  
A R A  
A R R  
A & R A  
A & R R  
A R A  
A R R  
A + R A  
A + R R  
R A  
R R  
/R A  
/R R  
01rr  
01rr  
01rr  
01rr  
02rr  
02rr  
02rr  
02rr  
03rr  
03rr  
03rr  
03rr  
04rr  
04rr  
04rr  
04rr  
05rr  
05rr  
05rr  
05rr  
SUB A,R  
SUB R,A  
DECA R  
DEC R  
Z,C,DC  
Z,C,DC  
Z
Z
Z
Z
Z
Z
Z
Z
OR A,R  
OR R,A  
AND A,R  
AND R,A  
XOR A,R  
XOR R,A  
ADD A,R  
ADD R,A  
MOV A,R  
MOV R,R  
COMA R  
COM R  
Z,C,DC  
Z,C,DC  
Z
Z
Z
Z
Z
Z
INCA R  
INC R  
DJZA R  
DJZ R  
R+1 A  
R+1 R  
None  
None  
R-1 A, skip if zero  
R-1 R, skip if zero  
R(n) A(n-1),  
R(0) C, C A(7)  
R(n) R(n-1),  
R(0) C, C R(7)  
R(n) A(n+1),  
R(7) C, C A(0)  
R(n) R(n+1),  
R(7) C, C R(0)  
R(0-3) A(4-7),  
R(4-7) A(0-3)  
R(0-3) R(4-7)  
R+1 A, skip if zero  
R+1 R, skip if zero  
0 0110 00rr rrrr  
0 0110 01rr rrrr  
0 0110 10rr rrrr  
0 0110 11rr rrrr  
0 0111 00rr rrrr  
06rr  
06rr  
06rr  
06rr  
07rr  
RRCA R  
RRC R  
C
C
RLCA R  
RLC R  
C
C
SWAPA R  
None  
0 0111 01rr rrrr  
0 0111 10rr rrrr  
0 0111 11rr rrrr  
0 100b bbrr rrrr  
07rr  
07rr  
07rr  
0xxx  
SWAP R  
JZA R  
JZ R  
None  
None  
None  
None2  
BC R,b  
0 R(b)  
None3  
None  
None  
None  
None  
None  
Z
0 101b bbrr rrrr  
0 110b bbrr rrrr  
0 111b bbrr rrrr  
1 00kk kkkk kkkk  
1 01kk kkkk kkkk  
1 1000 kkkk kkkk  
1 1001 kkkk kkkk  
1 1010 kkkk kkkk  
1 1011 kkkk kkkk  
0xxx  
0xxx  
0xxx  
1kkk  
1kkk  
18kk  
19kk  
1Akk  
1Bkk  
BS R,b  
1 R(b)  
JBC R,b  
JBS R,b  
CALL k  
JMP k  
MOV A,k  
OR A,k  
AND A,k  
XOR A,k  
if R(b)=0, skip  
if R(b)=1, skip  
PC+1 [SP], (Page, k) PC  
(Page, k) PC  
k A  
A k A  
A & k A  
A k A  
Z
Z
k A,  
[Top of Stack] PC  
1 1100 kkkk kkkk  
1Ckk  
RETL k  
None  
1 1101 kkkk kkkk  
1 1110 0000 0001  
1 1111 kkkk kkkk  
1Dkk  
1E01  
1Fkk  
SUB A,k  
INT  
Z,C,DC  
None  
k-A A  
PC+1 [SP], 001H PC  
k+A A  
ADD A,k  
Z,C,DC  
1This instruction is applicable to IOC5 ~ IOC6 and IOCB ~ IOCF only  
2This instruction is not recommended for RF operation  
3This instruction cannot operate under RF  
Product Specification (V1.0) 09.22.2005  
31  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
4.13 Timing Diagrams  
4.13.1 AC Test Input/Output Waveform  
2.4  
0.4  
2.0  
0.8  
2.0  
0.8  
TEST POINTS  
AC Testing : Input is driven at 2.4V for logic "1",and 0.4V for logic "0".Timing measurements are  
made at 2.0V for logic "1",and 0.8V for logic "0".  
Fig. 4-15 AC Test Input/Output Waveform Timing Diagram  
4.13.2 RESET Timing (CLK = ”0”)  
Instruction 1  
Executed  
NOP  
CLK  
/RESET  
Tdrh  
Fig. 4-16 RESET Timing (CLK = ”0”)Timing Diagram  
4.13.3 TCC Input Timing (CLKS = ”0”)  
Tins  
CLK  
TCC  
Ttcc  
Fig. 4-17 TCC Input Timing (CLKS = ”0”) Timing Diagram  
32 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
5 Absolute Maximum Ratings  
EM78P157N  
„
Items  
Rating  
–40°C to 85°C  
Temperature under bias  
Storage temperature  
Working voltage  
–65°C to 150°C  
2.5 to 5.5V  
Working frequency  
Input voltage  
DC to 20MHz  
Vss-0.3V to Vdd+0.5V  
Vss-0.3V to Vdd+0.5V  
Output voltage  
6 Electrical Characteristics  
6.1 DC Electrical Characteristic  
(Ta=25 °C, VDD=5V±5%, VSS=0V)  
Symbol  
FXT  
Parameter  
Condition  
Min  
DC  
Typ  
Max Unit  
XTAL: VDD to 3V  
Two cycle with two clocks  
Two cycle with two clocks  
R: 5.1K, C: 100 pF  
8.0  
MHz  
MHz  
XTAL: VDD to 5V  
DC  
20.0  
ERC  
IIL  
ERC: VDD to 5V  
F±30% 940 F±30% kHz  
Input Leakage Current for input  
pins  
VIN = VDD, VSS  
±1  
µA  
VIH1  
VIL1  
Input High Voltage (VDD=5V)  
Input Low Voltage (VDD=5V)  
Input High Threshold Voltage  
(VDD=5V)  
Ports 5, 6  
Ports 5, 6  
2.0  
2.0  
V
V
0.8  
VIHT1  
VILT1  
VIHX1  
VILX1  
/RESET, TCC(Schmitt trigger)  
V
V
V
V
Input Low Threshold Voltage  
(VDD=5V)  
/RESET, TCC(Schmitt trigger)  
0.8  
Clock Input High Voltage  
(VDD=5V)  
OSCI  
OSCI  
3.5  
Clock Input Low Voltage  
(VDD=5V)  
1.5  
0.4  
VIH2  
VIL2  
Input High Voltage (VDD=3V)  
Input Low Voltage (VDD=3V)  
Input High Threshold Voltage  
(VDD=3V)  
Ports 5, 6  
Ports 5, 6  
1.5  
1.5  
V
V
VIHT2  
VILT2  
VIHX2  
/RESET, TCC(Schmitt trigger)  
/RESET, TCC(Schmitt trigger)  
OSCI  
V
V
V
Input Low Threshold Voltage  
(VDD=3V)  
0.4  
0.9  
Clock Input High Voltage  
(VDD=3V)  
2.1  
Clock Input Low Voltage  
(VDD=3V)  
VILX2  
VOH1  
VOH1  
VOL1  
OSCI  
V
V
V
V
Output High Voltage (Ports 5)  
IOH = -12.0 mA  
IOH = -12.0 mA  
IOL = 12.0 mA  
2.4  
2.4  
Output High Voltage (Ports 6)  
(Schmitt trigger)  
Output Low Voltage(Port5)  
0.4  
Product Specification (V1.0) 09.22.2005  
33  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max Unit  
Output Low Voltage (Ports 6)  
(Schmitt trigger)  
VOL1  
IOL = 12.0 mA  
0.4  
–240  
120  
V
Pull-high active, input pin at  
VSS  
IPH  
IPD  
Pull-high current  
Pull-down current  
–50  
25  
–70  
50  
µA  
µA  
Pull-down active, input pin at  
VDD  
All input and I/O pins at VDD,  
output pin floating, WDT  
disabled  
ISB1  
ISB2  
Power down current  
Power down current  
1
2
µA  
µA  
All input and I/O pins at VDD,  
output pin floating, WDT  
enabled  
15  
/RESET= 'High', Fosc=32KHz  
(Crystal type,CLKS="0"),  
output pin floating, WDT  
disabled  
Operating supply current  
(VDD=3V)  
at two cycles/four clocks  
ICC1  
ICC2  
ICC3  
ICC4  
15  
20  
25  
30  
35  
µA  
µA  
/RESET= 'High', Fosc=32KHz  
(Crystal type,CLKS="0"),  
output pin floating, WDT  
enabled  
Operating supply current  
(VDD=3V)  
at two cycles/four clocks  
/RESET= 'High', Fosc=4MHz  
(Crystal type, CLKS="0"),  
output pin floating, WDT  
enabled  
Operating supply current  
(VDD=5.0V)  
at two cycles/two clocks  
2.0  
4.0  
mA  
mA  
/RESET= 'High', Fosc=10MHz  
(Crystal type, CLKS="0"),  
output pin floating, WDT  
enabled  
Operating supply current  
(VDD=5.0V)  
at two cycles/four clocks  
6.2 AC Electrical Characteristics  
(Ta=25 °C, VDD=5V±5%, VSS=0V)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Dclk  
Input CLK duty cycle  
45  
50  
55  
%
Crystal type  
RC type  
100  
500  
DC  
DC  
ns  
ns  
ns  
ms  
ns  
ms  
ns  
ns  
ns  
Instruction cycle time  
(CLKS="0")  
Tins  
Ttcc  
TCC input period  
(Tins+20)/N*  
11.8  
Tdrh  
Trst  
Device reset hold time  
/RESET pulse width  
Watchdog timer period  
Input pin setup time  
Input pin hold time  
Output pin delay time  
16.8  
21.8  
21.8  
2000  
Ta = 25°C  
Ta = 25°C  
Twdt  
Tset  
11.8  
16.8  
0
Thold  
Tdelay  
20  
50  
Cload=20pF  
*N = selected prescaler ratio  
34 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
6.3 Device Characteristics  
The graphs provided in the following pages were derived based on a limited number of  
samples and are shown herein for reference purposes only and are not guaranteed for  
its accuracy. In some graphs, the data may be out of the specified warranted operating  
range.  
6.3.1 Port 6 Vih/Vil vs. VDD (Input Pin with Schmitt Inverter)  
Vih/Vil (Input Pins with Schmitt Inverter)  
2.5  
Vih max (-40to 85)  
Vih typ 25℃  
2
Vih min (-40
to 85
)  
1.5  
1
Vil max (-40to 85)  
0.5  
Vil typ 25℃  
0
Vil min ( 40
to 85
)  
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (Volt)  
Fig. 6-1 Graph on Port 6 Vih/Vil vs. VDD  
6.3.2 Port 5 Input Threshold Voltage (Vth) vs. VDD  
Vth (Input Threshold Voltage) of I/O pins  
2
Max(-40to 85)  
1.5  
Typ 25℃  
1
Min(-40to 85)  
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (Volt)  
Fig. 6-2 Graph on Port 5 Input Threshold Voltage (Vth) vs. VDD  
Product Specification (V1.0) 09.22.2005  
35  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
6.3.3 Ports 5 & Port 6 Voh vs. Ioh, VDD=5V and 3V  
Voh/Ioh (5V)  
Voh/Ioh (3V)  
0
-2  
0
-5  
-4  
-10  
Min 85℃  
Min 85℃  
-6  
-15  
Typ 25℃  
Typ 25℃  
-8  
-20  
Max –40  
Max –40  
-10  
-25  
0
0.5  
1
1.5  
2
2.5  
3
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Voh (Volt)  
Voh (Volt)  
Fig. 6-3 Graph on Ports 5 & 6 Voh vs. Ioh, VDD=5V  
Fig. 6-4 Graph on Ports 5 & 6 Voh vs. Ioh, VDD=3V  
6.3.4 Ports 5 & Port 6 Vol vs. Iol, VDD=5V and 3V  
Vol/Iol (5V)  
Vol/Iol (3V)  
45  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Max -40  
Max -40  
40  
35  
30  
25  
20  
15  
10  
5
Typ 25℃  
Min 85℃  
Typ 25℃  
Min 85℃  
0
0
0.5  
1
1.5  
2
2.5  
3
0
0.5  
1
1.5  
2
2.5  
3
Vol (Volt)  
Vol (Volt)  
Fig. 6-5 Graph on Ports 5 & 6 Vol vs. Ioh, VDD=5V  
36 •  
Fig. 6-6 Graph on Ports 5 & 6 Voh vs. Iol, VDD=3V  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
6.3.5 WDT Time Out Period vs. VDD (Prescaler Set to 1:1)  
WDT Time out  
45  
40  
35  
30  
25  
20  
15  
10  
5
Max 85℃  
Max 70℃  
Typ 25℃  
Min 0℃  
Min -40℃  
0
2
3
4
5
6
VDD (Volt)  
Fig. 6-7 Graph on WDT Time Out Period vs. VDD (Perscaler Set to 1:1)  
Product Specification (V1.0) 09.22.2005  
37  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
6.3.6 Typical RC OSC Frequency vs. VDD  
(Cext = 100pF, Temp. = 25)  
Cext = 100pF, Typical RC Frequency vs. VDD  
1.6  
R = 3.3K  
1.4  
1.2  
R = 5.1K  
1
0.8  
R = 10K  
0.6  
0.4  
0.2  
0
R = 100K  
3
3.5  
4
4.5  
5
5.5  
VDD (Volt)  
Fig. 6-8 Graph on Typical RC OSC Frequency vs. VDD (Cext = 100pF, Temperature at 25)  
6.3.7 Typical RC OSC Frequency vs. VDD  
(with R and C under Ideal Conditions)  
VDD = 5V  
VDD = 3V  
Fig. 6-9 Graph on Typical RC OSC Frequency vs. VDD (with R & C under Ideal Conditions)  
38 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
6.3.8 Typical and Maximum Operating Current (ICC1/2/3/4) vs.  
Temperature  
The following four conditions exist with the Operating Current ICC1 to ICC4:  
„
„
„
„
ICC1: VDD=3V, Fosc=32K Hz, 2 clocks, WDT disabled  
ICC2: VDD=3V, Fosc=32K Hz, 2 clocks, WDT enabled  
ICC3: VDD=5V, Fosc=4M Hz, 2 clocks, WDT enabled  
ICC4: VDD=5V, Fosc=10M Hz, 2 clocks, WDT enabled  
Typical ICC1 and ICC2 vs. Temperature  
15  
12  
9
6
3
0
-40  
-20  
0
20  
40  
60  
80  
Temperature ( )  
Fig. 6-10 Graph on Typical Operating Current (ICC1 and ICC2) vs. Temperature  
Maximum ICC1 and ICC2 vs. Temperature  
21  
18  
15  
12  
9
6
-40  
-20  
0
20  
40  
60  
80  
Temperature ( )  
Fig. 6-11 Graph on Maximum Operating Current (ICC1 and ICC2) vs. Temperature  
Product Specification (V1.0) 09.22.2005  
39  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
Typical ICC3 and ICC4 vs. Temperature  
4
3.5  
3
2.5  
2
Typ ICC4  
Typ ICC3  
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
Temperature ( )  
Fig. 6-12 Graph on Typical Operating Current (ICC3 and ICC4) vs. Temperature  
Maximum ICC3 and ICC4 vs. Temperature  
4.5  
Max ICC4  
4
3.5  
3
2.5  
Max ICC3  
2
1.5  
1
-40  
-20  
0
20  
40  
60  
80  
Temperature ( )  
Fig. 6-13 Graph on Maximum Operating Current (ICC3 and ICC4) vs. Temperature  
40 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
6.3.9 Typical and Maximum Standby Current (ISB1 and ISB2) vs.  
Temperature  
The following two conditions exist with the Standby Current ISB1 and ISB2:  
„
„
ISB1: VDD=5V, WDT disabled  
ISB2: VDD=5V, WDT enabled  
Typical ISB1 and ISB2 vs. Temperature  
12  
10  
8
Typ ISB2  
6
4
Typ ISB1  
2
0
-40  
-20  
0
20  
40  
60  
80  
Temperature ( )  
Fig. 6-14 Graph on Typical Standby Current (ISB1 and ISB2) vs. Temperature  
Maximum ISB1 and ISB2 vs. Temperature  
12  
10  
8
6
4
2
0
-40  
-20  
0
20  
40  
60  
80  
Temperature ( )  
Fig. 6-15 Graph on Maximum Standby Current (ISB1 and ISB2) vs. Temperature  
Product Specification (V1.0) 09.22.2005  
41  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
6.3.10 Operating Voltage under Temperature Range of  
0°C to 70°C and –40°C to 85°C  
Fig. 6-16 Graph on Operating Voltage under Temperature Range of 0°C to 70°C  
Fig. 6-17 Graph on Operating Voltage under Temperature Range of –40°C to 85°C  
42 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
6.3.11 Operating Current Range (Based on High and  
Low Freq. @ =25) vs. Voltage  
EM78P157N HXT V-I  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
2.3  
2.8  
3.3  
3.8  
Voltage(V)  
4.3  
4.8  
5.3  
Fig. 34 Operating Current Range (Based on High Freq. @ =25) vs. Voltage  
EM78P157N LXT V-I  
40  
35  
30  
25  
20  
15  
10  
5
0
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
Voltage(V)  
Fig. 35 Operating Current Range (Based on Low Freq. @ =25) vs. Voltage  
Product Specification (V1.0) 09.22.2005  
43  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
APPENDIX  
A Package Types  
OTP MCU  
Package Type  
DIP  
Pin Count  
Package Size  
300 mil  
EM78P157NBP  
EM78P157NBM  
EM78P157NAP  
EM78P157NAM  
EM78P157NAAS  
EM78P157NAKM  
14  
14  
18  
18  
20  
20  
SOP  
DIP  
150 mil  
300 mil  
SOP  
SSOP  
SSOP  
300 mil  
209 mil  
209 mil  
A.1 Package Detailed Information  
A.1.1 14-Lead Plastic Dual in line (PDIP) 300 Mil  
44 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
A.1.2 14-Lead Plastic Small Outline (SOP) 150 Mil  
Product Specification (V1.0) 09.22.2005  
45  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
A.1.3 18-Lead Plastic Dual in Line (PDIP) 300 Mil  
46 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
A.1.4 18-Lead Plastic Small Outline (SOP) 300 Mil  
Product Specification (V1.0) 09.22.2005  
47  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
A.1.5 20-Lead Plastic Small Outline (SSOP) 209 Mil  
48 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
B Quality Assurance and Reliability  
Test Category  
Test Conditions  
Remarks  
Solder temperature=245±5℃,for 5 seconds up to the stopper  
using a rosin-type flux  
Solderability  
For SMD IC(such as  
SOP, QFP, SOJ, etc.)  
Step1: TCT 65(15mins)~150(15mins)10 cycles  
Step2: bake 125℃,TD(durance)=24 hrs  
Step3:soak 30°C /60%TD(durance)=192hrs  
Pre-condition  
Step4:IR flow 3cycles  
(Pkg thickness2.5mm or Pkg volume350mm3 ----225±5)  
(Pkg thickness2.5mm or Pkg volume350mm3 ----240±5)  
–65(15mins)~150(15mins) , 200 cycles  
Temperature cycle  
test  
Pressure cooker test  
TA =121,RH=100%,pressure=2atm, TD(durance)= 96 Hrs  
TA=85, RH=85%TD(durance)=168 ,500 Hrs  
High temperature  
/high humidity test  
High-temperature  
storage life  
TA=150, TD(durance)=500,1000Hrs  
High-temperature  
operating life  
TA=125 , VCC=Max. operating voltage, TD(durance)  
=168,500,1000Hrs  
Latch-up  
TA=25, VCC=Max. operating voltage, 150mA/20V  
TA=25, ≧∣±3KV∣  
IP_ND,OP_ND,IO_ND  
IP_NS,OP_NS,IO_NS  
IP_PD,OP_PD,IO_PD,  
IP_PS,OP_PS,IO_PS,  
ESD(HBM)  
ESD(MM)  
TA=25, ≧∣±300V∣  
VDD-VSS(+),VDD_V  
SS(-)mode  
Product Specification (V1.0) 09.22.2005  
49  
(This specification is subject to change without further notice)  
EM78P157N  
8-Bit Microcontroller with OTP ROM  
C Address Trap Detect  
An address trap detect is one of the fail-safe function that detects CPU malfunction  
caused by noise or the like. If the CPU attempts to fetch an instruction from a part of  
RAM, an internal recovery circuit will auto started. Until CPU got the correct function, it  
will execute the next program that follows.  
Vdd  
Tvr  
/Reset  
Tvd  
Internal POR  
Tpor  
Power on  
Reset  
Symbol  
Tpor  
Tvd  
Parameter  
Condition  
Min.  
Typ.  
Max.  
22  
Unit  
ms  
us  
Power on reset time  
Vdd Voltage drop time  
Vdd Voltage rise time  
10.5  
16.8  
Vdd = 5V, -40to 85℃  
Vdd = 5V, -40to 85℃  
Vdd = 5V, -40to 85℃  
-
-
-
-
1*  
Tvr  
us  
1**  
* Tvd is the period of Vdd voltage less than POR voltage 1.9 volts.  
** Tvr is the period of Vdd voltage higher than 5.5 volts.  
50 •  
Product Specification (V1.0) 09.22.2005  
(This specification is subject to change without further notice)  

相关型号:

EM78P157NAKM

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NAM

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NAP

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NBM

8-Bit Microcontroller with OTP ROM
EMC

EM78P157NBP

8-Bit Microcontroller with OTP ROM
EMC

EM78P159N

8-Bit Microcontroller with OTP ROM
EMC

EM78P159NM

8-Bit Microcontroller with OTP ROM
EMC

EM78P159NP

8-Bit Microcontroller with OTP ROM
EMC

EM78P173N

8-Bit Microcontroller with OTP ROM,台湾义隆8bit单片机EM78P173N--EM78P153S/EM78P153AB工业级版本 EM78P173N是一个采用低功耗、高速CMOS工艺制造的8位单片机,,其内部具有1K* 13位一次性可编程只读内存(OTP - ROM),用户通过仿真器编写和调试正确的机器码文件通过编程器烧录进芯片,提供了一个保护位,以防止用户OTP存储器代码时的侵扰。同时有密码保护位防止程序数据读出. 可代客户开发,烧录。专业软件工程师设计指导,提供整套技术支持及疑难解答! 深圳市美力科电子有限公司 业务部 手机: 13684932947 QQ:981734760 地 址:深圳市福田区彩田南路彩天名苑红荔轩10D 电 话:0755-82965828,82965533,82965118,82965566 传 真:0755-82964700 http://www.mlkdz.com E-mail:mlk_wqy@126.com
EMC

EM78P176N

8-Bit Microcontroller with OTP ROM
EMC

EM78P176ND18J/S

8-Bit Microcontroller with OTP ROM
EMC

EM78P176NJSS20J/S

8-Bit Microcontroller with OTP ROM
EMC