W127-AH [CYPRESS]

Clock Generator, CMOS, PDSO48,;
W127-AH
型号: W127-AH
厂家: CYPRESS    CYPRESS
描述:

Clock Generator, CMOS, PDSO48,

时钟 光电二极管 外围集成电路 晶体
文件: 总20页 (文件大小:200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
W127/W127-A  
SpreadSpectrum3DIMMSystemFrequencySynthesizerw/AGP  
CPU Cycle to Cycle Jitter:...........................................250 ps  
Features  
CPU to AGP Skew: .................................................0±500 ps  
• Maximized EMI suppression using Cypress’s Spread  
AGP to PCI Skew:..................................1.5 ns (AGP Leads)  
CPU Output Edge Rate:............................................ >1 V/ns  
SDRAM Output Edge Rate:.................................... >1.5 V/ns  
Spectrum technology  
• I2C interface  
• Four copies of CPU Output  
• Six copies of PCI Output  
• Two copies of AGP Output  
• One copy of 48-MHz USB Output  
• One copy of 24-MHz SIO Output  
• Twelve copies of SDRAM Output  
• One buffered copy of 14.318-MHz reference input  
• Mode input pin selects optional power management in-  
put control pins (reconfigures pins 29, 30, 31, and 32)  
• Smooth frequency transition upon frequency  
reselection  
Note: All skews are optimized @VDDQ2 = VDDQ3 = 3.3V±5%.  
Skews are not guaranteed for VDDQ2 = 2.5V.  
Table 1. Pin Selectable Frequency[1]  
Input Address  
CPU  
AGP  
PCI  
FS2  
0
FS1  
0
FS0  
0
(MHz)  
(MHz)  
(MHz)  
68.5  
112  
68.5  
74.6  
63.5  
66.6  
55.53  
75  
34.25  
37.3  
0
0
1
0
1
0
95.25  
100  
31.75  
33.3  
• Available in 48-pin SSOP (300 mils)  
0
1
1
• Standard W127 device supports up to 112-MHz opera-  
tions. High-performance option W127-A supports up to  
124-MHz.  
1
0
0
83.3  
75.0  
124  
27.77  
37.5  
1
0
1
1
1
0
82.6  
66.6  
41.3  
Key Specifications  
1
1
1
66.6  
33.3  
Supply Voltages:.......... VDDQ3 = 3.3V, VDDQ2 = 3.3V or 2.5V  
.
Pin Configuration[2]  
Block Diagram  
SDATA  
SCLOCK  
Device  
Control  
Serial Port  
XTAL OSC  
PLL1  
VDDQ3  
VDDQ3  
REF/SD_SEL*  
GND  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
48MHz/FS1*  
24MHz/FS0*  
GND  
2
PLL Ref  
Freq  
3
4
GND  
X1  
X2  
X1  
5
CPU0  
CPU1  
VDDQ2  
CPU2  
CPU3  
GND  
SDRAM0  
SDRAM1  
VDDQ3  
SDRAM2  
SDRAM3  
GND  
SDRAM4(AGP_STOP#)*  
SDRAM5(PWR_DWN#)*  
SDRAM6(CPU_STOP#)*  
SDRAM7(PCI_STOP#)*  
GND  
VDDQ3  
X2  
6
7
8
9
VDDQ3  
PCI_F/FS2*  
PCI0  
REF/SD_SEL  
I/O  
4
VDDQ2  
CPU0:3  
GND  
PCI1  
PCI2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CPU  
STOP  
(CPU_STOP#)  
PCI3  
VDDQ3  
PCI4  
SDRAM  
STOP  
÷1  
÷1.5  
SDRAM0:11  
GND  
12  
GND  
AGP_F/MODE*  
AGP0  
VDDQ3  
SDRAM11  
SDRAM10  
VDDQ3  
SDATA  
VDDQ3  
AGP_F/MODE  
AGP0  
I/O  
I/O  
AGP  
STOP  
SDRAM8  
SDRAM9  
SCLOCK  
÷2  
(AGP_STOP#)  
PCI_F/FS2  
PCI0:4  
PCI  
STOP  
/
5
(PCI_STOP#)  
(PWR_DWN#)  
Power Down  
Control  
VDDQ3  
÷1  
48MHZ/FS1  
24MHZ/FS0  
I/O  
I/O  
PLL2  
÷2  
Notes:  
1. Configuration 110is supported by W127-A only (see shaded row of Table 1).  
2. Signal names with *denote pins have internal 250K pull-up resistor, though not relied upon for pulling to VDDQ3. Signal names with parenthesis denote function  
is selectable by MODE pin strapping.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-07225 Rev. *A  
Revised December 14, 2002  
PRELIMINARY  
W127/W127-A  
Pin Definitions  
Pin  
No.  
Pin  
Type  
Pin Name  
Pin Description  
CPU0:3  
44, 43,  
41, 40  
O
CPU Clock Outputs 0 through 3: These four CPU clock outputs are controlled  
by the CPU_STOP# control pin. Output voltage swing is controlled by voltage  
applied to VDDQ2.  
PCI_F/FS2  
8
I/O  
Free-running PCI Clock Output and Frequency Selection Bit 2: As an output,  
this pin works in conjunction with PCI0:4. Output voltage swing is controlled by  
voltage applied to VDDQ3.  
When an input, this pin functions as part of the frequency selection address. The  
value of FS0:2 determines the power-up default frequency of device output clocks  
as per Table 1, Pin Selectable Frequencyon page 1.  
PCI0:4  
9, 11, 12, 13,  
14  
O
O
PCI Clock Outputs 0 through 4: Output voltage swing is controlled by voltage  
applied to VDDQ3. Outputs are held LOW if PCI_STOP# is set LOW.  
SDRAM0:3  
SDRAM8:11  
38, 37, 35, 34,  
27, 26, 21, 20  
SDRAM Clock Outputs: These eight SDRAM clock outputs run synchronous to  
the CPU clock outputs or AGP clock output as selected using SD_SEL per Table 2.  
SDRAM4:7  
32, 31, 30, 29  
I/O  
SDRAM Clock Outputs: These four SDRAM clock outputs run synchronous to  
the CPU clock outputs or AGP clock output as selected using SD_SEL per Table  
2. If programmed as inputs, (refer to MODE pin description), these pins are used  
for STOP_ CPU, AGP, PCI, and power-down control.  
48MHZ/FS1  
48  
I/O  
I/O  
I/O  
48-MHz Output and Frequency Selection Bit 1: Fixed clock output that defaults  
to 48 MHz following device power-up.  
When an input, this pin functions as part of the frequency selection address. The  
value of FS0:2 determines the power-up default frequency of device output clocks  
as per Table 1, Pin Selectable Frequencyon page 1.  
24MHZ/FS0  
47  
17  
24-MHz Output and Frequency Selection Bit 0: Fixed clock output that defaults  
to 24 MHz following device power-up.  
When an input, this pin functions as part of the frequency selection address. The  
value of FS0:2 determines the power-up default frequency of device output clocks  
as per Table 1, Pin Selectable Frequencyon page 1.  
AGP_F/MODE  
Free-runningAGPOutputandModeControlInput: As an output, thispinworks  
in conjunction with AGP0 and is a free running clock. When an input, it determines  
the functions for pin 29, 30, 31, and 32. See Table 3.  
AGP0  
18  
3
O
AGP Output: This output is controlled by the AGP_STOP# pin.  
REF/SD_SEL  
I/O  
Fixed 14.318-MHz and SDRAM Output Selection: As an output, this pin is used  
for various system applications. Output voltage swing is controlled by voltage  
applied to VDDQ3.  
When an input, this pin selects the SDRAM to run synchronous to either CPU or  
AGP. See Table 2.  
X1  
5
I
Crystal Connection or External Reference Frequency Input: This pin has dual  
functions. It can be used as an external 14.318-MHz crystal connection or as an  
external reference frequency input.  
X2  
6
I
I
Crystal Connection: An input connection for an external 14.318-MHz crystal. If  
using an external reference, this pin must be left unconnected.  
SDATA  
SCLOCK  
VDDQ3  
23  
25  
Serial Data Input: Data input for Serial Data Interface. Refer to Serial Data Inter-  
face section that follows.  
I
Serial Clock Input: Clock input for Serial Data Interface. Refer to Serial Data  
Interface section that follows.  
1, 2, 7, 19, 22,  
24, 36  
P
Power Connection: Connected to 3.3V supply.  
VDDQ2  
GND  
42  
P
Power Connection: Power Supply for CPU0:3 clock outputs. (3.3V Supply)  
4, 10, 15, 16,  
28, 33, 39, 45,  
46  
G
Ground Connection: Connect all ground pins to the common system ground  
plane.  
Document #: 38-07225 Rev. *A  
Page 2 of 20  
PRELIMINARY  
W127/W127-A  
W127/W127-A Pin Selection Tables  
Table 2. SD_SEL Function  
SD_SEL  
SDRAM0:11  
1
0
Running @ CPU Frequency  
Running @ AGP Frequency  
Table 3. Mode Function  
Pin Function  
Mode  
Pin 29  
Pin 30  
SDRAM6  
Pin 31  
SDRAM5  
Pin 32  
SDRAM4  
1
0
SDRAM7  
PCI_STOP#  
CPU_STOP#  
PWR_DWN#  
AGP_STOP#  
Table 4. Power Management Pin Function  
SIGNAL  
=0  
=1  
CPU_STOP#  
PCI_STOP#  
AGP_STOP#  
PWR_DWN#  
CPU0:3 & SDRAM0:11 = LOW  
PCI0:4 = LOW  
Active  
Active  
Active  
Active  
AGP0 = LOW  
All Clock Outputs LOW  
Upon W127/W127-A power-up, the first 2 ms of operation is  
used for input logic selection. During this period, the 24-MHz,  
48-MHz, REF, PCI_F and AGP_F clock output buffers are  
three-stated, allowing the output strapping resistor on each l/O  
pin to pull the pin and its associated capacitive clock load to  
either a logic HIGH or logic LOW state. At the end of the 2-ms  
period, the established logic 0 or 1 condition of each l/O pin is  
latched. Next the output buffers are enabled, converting all l/O  
pins into operating clock outputs. The 2-ms timer starts when  
VDDQ3 reaches 2.0V. The input bits can only be reset by turn-  
ing VDDQ3 off and then back on again.  
Overview  
The W127/W127-A was designed specifically to provide all  
clock signals required for a motherboard designed with the Via  
MVP3 chipset using either a Pentium® or K6 microprocessor.  
Although it can be used with split voltages (3.3/2.5), the skew  
specifications are guaranteed only for single 3.3V supply. The  
primary distinguishing feature of the W127/W127-A is the  
95.25-MHz CPU frequency option, which supports the K6 333-  
MHz CPU.  
Twelve SDRAM outputs are provided for support of up to 3  
SDRAM DIMM modules. Unused clock outputs can be dis-  
abled through the I2C interface to reduce system power con-  
sumption and more importantly reduce EMI emissions.  
It should be noted that the strapping resistors have no signifi-  
cant effect on clock output signal integrity. The drive imped-  
ance of the clock output is 40(nominal), which is minimally  
affected by the 10-kstrap to ground or VDDQ3. As with the  
series termination resistor, the output strapping resistor should  
be placed as close to the l/O pin as possible in order to keep  
the interconnecting trace short. The trace from the resistor to  
ground or VDDQ3 should be kept less than two inches in length  
to prevent system noise coupling during input logic sampling.  
Functional Description  
I/O Pin Operation  
Pins 3, 8, 17, 47, and 48 are dual-purpose l/O pins. Upon  
power-up these pins act as logic inputs, allowing the determi-  
nation of assigned device functions. A short time after power-  
up, the logic state of each pin is latched and the pins then  
become clock outputs. This feature reduces device pin count  
by combining clock outputs with input select pins.  
When the clock outputs are enabled following the 2-ms input  
period, target (normal) output frequency is delivered, assum-  
ing that VDDQ3 has stabilized. If VDDQ3 has not yet reached full  
value, output frequency initially may be below target but will  
increase to target once VDDQ3 voltage has stabilized. In either  
case, a short output clock cycle may be produced from the  
CPU clock outputs when the outputs are enabled.  
An external 10-kstrappingresistor is connected between  
each l/O pin and ground or VDDQ3. Connection to ground sets  
a latch to 0,connection to VDDQ3 sets a latch to 1.Figure 1  
and Figure 2 show two suggested methods for strapping resis-  
tor connection.  
Document #: 38-07225 Rev. *A  
Page 3 of 20  
PRELIMINARY  
W127/W127-A  
V
DDQ3  
Output Strapping Resistor  
Series Termination Resistor  
10 k  
(Load Option 1)  
Clock Load  
W127/W127-A  
R
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 kΩ  
(Load Option 0)  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
Jumper Options  
Output Strapping Resistor  
Series Termination Resistor  
V
DD  
10 kΩ  
Clock Load  
W127/W127-A  
R
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
Q
D
Data  
Latch  
Figure 2. Input Logic Selection Through Jumper Option  
CPU/PCI Frequency Selection  
ther an externally generated clock signal or the clock generat-  
ed by the internal crystal oscillator. When using an external  
clock signal, pin X1 is used as the clock input and pin X2 is left  
open. The input threshold voltage of pin X1 is (VDDQ3)/2.  
CPU output frequency is selected with I/O pins 8, 47, and 48.  
Refer to Table 1 for CPU/PCI frequency programming informa-  
tion. Alternatively, frequency selections are available through  
the serial data interface. Refer to Table 8, Additional Frequen-  
cy Selections through Serial Data Interface Data Bytes,on  
page 9.  
The internal crystal oscillator is used in conjunction with a  
quartz crystal connected to device pins X1 and X2. This forms  
a parallel resonant crystal oscillator circuit. The W127/W127-A  
incorporates the necessary feedback resistor and crystal load  
capacitors. Including typical stray circuit capacitance, the total  
load presented to the crystal is approximately 20 pF. For opti-  
mum frequency accuracy without the addition of external ca-  
pacitors, a parallel-resonant mode crystal specifying a load of  
20 pF should be used. This will typically yield reference fre-  
quency accuracies within ±100 ppm. To achieve similar accu-  
racies with a crystal calling for a greater load, external capac-  
itors must be added such that the total load (internal, external,  
and parasitic capacitors) equals that called for by the crystal.  
Output Buffer Configuration  
Clock Outputs  
All clock outputs are designed to drive serially terminated clock  
lines. The W127/W127-A outputs are CMOS-type, which pro-  
vide rail-to-rail output swing.  
Crystal Oscillator  
The W127/W127-A requires one input reference clock to syn-  
thesize all output frequencies. The reference clock can be ei-  
Document #: 38-07225 Rev. *A  
Page 4 of 20  
PRELIMINARY  
W127/W127-A  
The output clock is modulated with a waveform depicted in  
Figure 4. This waveform, as discussed in Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is ±0.5% of the center frequen-  
cy. Figure 4 details the Cypress spreading pattern. Cypress  
does offer options with more spread and greater EMI reduc-  
tion. Contact your local Sales representative for details on  
these devices.  
Spread Spectrum Generator  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 3.  
As shown in Figure 3, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is:  
Spread Spectrum clocking is activated or deactivated by se-  
lecting the appropriate values for bits 10 in data byte 0 of the  
I2C data stream. Refer to Table 7 for more details.  
dB = 6.5 + 9*log10(P) + 9*log10(F)  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Figure 3. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation  
MAX (+.0.5%)  
MIN. (0.5%)  
Figure 4. Typical Modulation Profile  
Document #: 38-07225 Rev. *A  
Page 5 of 20  
PRELIMINARY  
W127/W127-A  
logic outputs of the chipset. Clock device register changes are  
normally made upon system initialization, if any are required.  
The interface can also be used during system operation for  
power management functions. Table 5 summarizes the control  
functions of the serial data interface.  
Serial Data Interface  
The W127/W127-A features a two-pin, serial data interface  
that can be used to configure internal register settings that  
control particular device functions. Upon power-up, the  
W127/W127-A initializes with default register settings, there-  
fore the use of this serial data interface is optional. The serial  
interface is write-only (to the clock chip) and is the dedicated  
function of device pins SDATA and SCLOCK. In motherboard  
applications, SDATA and SCLOCK are typically driven by two  
Operation  
Data is written to the W127/W127-A in ten bytes of eight bits  
each. Bytes are written in the order shown in Table 6.  
Table 5. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Clock Output Disable  
Any individual clock output(s) can be disabled. Dis- Unused outputs are disabled to reduce EMI  
abled outputs are actively held LOW.  
and system power. Examples are clock out-  
puts to unused SDRAM DIMM socket or PCI  
slot.  
CPU Clock Frequency  
Selection  
Provides CPU/PCI frequency selections. Frequen- For alternate CPU devices and power man-  
cy is changed in a smooth and controlled fashion. agement options. Smooth frequency transi-  
tion allows CPU frequency change under nor-  
mal system operation.  
Output Three-state  
(Reserved)  
Puts all clock outputs into a high-impedance state. Production PCB testing.  
Reserved function for future device revision or pro- No user application. Register bit must be writ-  
duction device testing.  
ten as 0.  
Table 6. Byte Writing Sequence  
Byte Sequence  
Byte Name  
Bit Sequence  
Byte Description  
1
Slave Address 11010010  
Commands the W127/W127-A to accept the bits in Data Bytes 06 for  
internal register configuration. Since other devices may exist on the  
same common serial data bus, it is necessary to have a specific slave  
address for each potential receiver. The slave receiver address for the  
W127/W127-A is 11010010. Register setting will not be made if the  
Slave Address is not correct (or is for an alternate slave receiver).  
2
3
Command  
Code  
Dont Care  
Dont Care  
Unused by the W127/W127-A, therefore bit values are ignored (dont  
care). This byte must be included in the data write sequenceto maintain  
proper byte allocation. The Command Code Byte is part of the standard  
serial communication protocol and may be used when writing to another  
addressed slave receiver on the serial data bus.  
Byte Count  
Unused by the W127/W127-A, therefore bit values are ignored (dont  
care). This byte must be included in the data write sequenceto maintain  
proper byte allocation. The Byte Count Byte is part of the standard serial  
communication protocol and may be used when writing to another ad-  
dressed slave receiver on the serial data bus.  
4
5
Data Byte 0  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
Data Byte 5  
Data Byte 6  
Refer to Table 7 The data bits in these bytes set internal W127/W127-A registers that  
control device operation. The data bits are only accepted when the Ad-  
dress Byte bit sequence is 11010010, as noted above. For description  
of bit control functions, refer to Table 7, Data Byte Serial Configuration  
Map.  
6
7
8
9
10  
Document #: 38-07225 Rev. *A  
Page 6 of 20  
PRELIMINARY  
W127/W127-A  
Writing Data Bytes  
Table 8 details additional frequency selections that are avail-  
able through the serial data interface.  
Each bit in the data bytes controls a particular device function  
except for the reservedbits, which must be written as a logic  
0. Bits are written MSB (most significant bit) first, which is bit  
7. Table 7 gives the bit formats for registers located in Data  
Bytes 06.  
Table 9 details the select functions for Byte 0, bits 1 and 0.  
Table 7. Data Bytes 06 Serial Configuration Map  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 0  
7
6
5
4
--  
--  
--  
--  
--  
--  
(Reserved)  
--  
--  
0
0
0
0
0
SEL_2  
Refer to Table 8  
Refer to Table 8  
Refer to Table 8  
--  
SEL_1  
--  
SEL_0  
3
8, 47, 48  
FS0:2  
BYT0 /FS#  
Frequency Controlled Frequency Controlled  
by external pins FS0:2 by SEL_0:2, above  
2
(Reserved)  
Bit 1 Bit 0  
--  
--  
0
10  
--  
--  
Function (See Table 9 for function details)  
Normal Operation  
00  
0
0
1
1
0
1
0
1
(Reserved)  
Spread Spectrum On  
All Outputs Three-stated  
Data Byte 1  
7
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
--  
--  
0
0
0
0
1
1
1
1
6
5
--  
--  
--  
--  
4
--  
--  
--  
--  
3
40  
41  
43  
44  
CPU3  
CPU2  
CPU1  
CPU0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
2
1
0
Data Byte 2  
7
6
5
4
3
2
1
0
--  
8
--  
(Reserved)  
--  
--  
0
1
0
1
1
1
1
1
PCI_F  
--  
Clock Output Disable  
(Reserved)  
Low  
--  
Active  
--  
--  
14  
13  
12  
11  
9
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Document #: 38-07225 Rev. *A  
Page 7 of 20  
PRELIMINARY  
W127/W127-A  
Table 7. Data Bytes 06 Serial Configuration Map (continued)  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
0
1
Default  
Data Byte 3  
7
29  
30  
31  
32  
34  
35  
37  
38  
SDRAM7  
SDRAM6  
SDRAM5  
SDRAM4  
SDRAM3  
SDRAM2  
SDRAM1  
SDRAM0  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
1
1
1
1
1
1
1
1
6
5
4
3
2
1
0
Data Byte 4  
7
--  
--  
--  
(Reserved)  
--  
--  
0
0
1
1
1
1
1
1
6
--  
(Reserved)  
--  
--  
5
17  
18  
20  
21  
26  
27  
AGP_F  
AGP0  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
Active  
Active  
4
3
SDRAM11 Clock Output Disable  
SDRAM10 Clock Output Disable  
2
1
SDRAM9  
SDRAM8  
Clock Output Disable  
Clock Output Disable  
0
Data Byte 5  
7
--  
--  
--  
--  
--  
--  
--  
3
--  
--  
(Reserved)  
--  
--  
--  
0
0
0
0
0
0
0
1
5
(Reserved)  
--  
5
--  
(Reserved)  
--  
--  
4
--  
(Reserved)  
--  
--  
--  
3
--  
(Reserved)  
--  
2
--  
(Reserved)  
--  
--  
1
--  
(Reserved)  
--  
--  
0
REF  
Clock Output Disable  
Low  
Active  
Data Byte 6  
7
6
5
4
3
2
1
0
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
(Reserved)  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
0
0
0
0
0
0
0
0
Document #: 38-07225 Rev. *A  
Page 8 of 20  
PRELIMINARY  
W127/W127-A  
Table 8. Additional Frequency Selections through Serial Data Interface Data Bytes[3]  
Input Conditions  
Output Frequency  
Data Byte 0, Bit 3 = 1  
Bit 6  
Bit 5  
Bit 4  
CPU Clocks  
(MHz)  
PCI Clocks  
(MHz)  
SEL_2  
SEL_1  
SEL_0  
AGP  
68.5  
74.6  
63.5  
66.6  
55.53  
75  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
68.5  
112  
34.25  
37.3  
95.25  
100  
31.75  
33.3  
83.3  
75.0  
124  
27.77  
37.5  
82.6  
66.6  
41.3  
66.6  
33.3  
Table 9. Select Function for Data Byte 0, Bits 0:1  
Input Conditions  
Output Conditions  
Data Byte 0  
CPU0:3,  
PCI_F,  
Function  
Normal Operation  
Spread Spectrum  
Three-state  
Bit 1  
Bit 0  
SRAM0:11  
Note 4  
±0.5%  
PCI0:4  
Note 4  
±0.5%  
Hi-Z  
REF  
48/24MHZ  
0
1
1
0
0
1
14.318 MHz  
14.318 MHz  
Hi-Z  
48/24 MHz  
48/24 MHz  
Hi-Z  
Hi-Z  
Notes:  
3. Configuration 110is supported by W127-A only (see shaded row of Table 8).  
4. CPU, SDRAM, and PCI frequency selections are listed in Table 1 and Table 8.  
Document #: 38-07225 Rev. *A  
Page 9 of 20  
PRELIMINARY  
W127/W127-A  
Although the W127/W127-A is a receive-only device (no data  
write-back capability), it does transmit an acknowledgedata  
pulse after each byte is received. Thus, the SDATA line can  
both transmit and receive data.  
How To Use the Serial Data Interface  
Electrical Requirements  
Figure 5 illustrates electrical characteristics for the serial inter-  
face bus used with the W127/W127-A. Devices send data over  
the bus with an open drain logic output that can (a) pull the bus  
line LOW, or (b) let the bus default to logic 1. The pull-up re-  
sistors on the bus (both clock and data lines) establish a de-  
fault logic 1. All bus devices generally have logic inputs to re-  
ceive data.  
The pull-up resistor should be sized to meet the rise and fall  
times specified in AC parameters, taking into consideration  
total bus line capacitance.  
VDD  
VDD  
~ 2k  
~ 2k  
SERIAL BUS DATA LINE  
SERIAL BUS CLOCK LINE  
SDCLK  
SDATA  
SCLOCK  
SDATA  
CLOCK IN  
DATA IN  
CLOCK IN  
DATA IN  
DATA OUT  
N
N
N
CLOCK OUT  
DATA OUT  
CHIP SET  
(SERIAL BUS MASTER TRANSMITTER)  
CLOCK DEVICE  
(SERIAL BUS SLAVE RECEIVER)  
Figure 5. Serial Interface Bus Electrical Characteristics  
Document #: 38-07225 Rev. *A  
Page 10 of 20  
PRELIMINARY  
W127/W127-A  
Signaling Requirements  
A write sequence is initiated by a start bitas shown in Figure  
7. A stop bitsignifies that a transmission has ended.  
As shown in Figure 6, valid data bits are defined as stable logic  
0 or 1 condition on the data line during a clock HIGH (logic 1)  
pulse. A transitioning data line during a clock HIGH pulse may  
be interpreted as a start or stop pulse (it will be interpreted as  
a start or stop pulse if the start/stop timing parameters are  
met).  
As stated previously, the W127/W127-A sends an acknowl-  
edgepulse after receiving eight data bits in each byte as  
shown in Figure 8.  
SDATA  
SCLOCK  
Valid  
Data  
Bit  
Change  
of Data Allowed  
Figure 6. Serial Data Bus Valid Data Bit  
SDATA  
SCLOCK  
Start  
Bit  
Stop  
Bit  
Figure 7. Serial Data Bus Start and Stop Bit  
Document #: 38-07225 Rev. *A  
Page 11 of 20  
PRELIMINARY  
W127/W127-A  
Signaling from System Core Logic  
Start Condition  
Stop Condition  
Slave Address  
(First Byte)  
Command Code  
(Second Byte)  
Byte Count  
(Third Byte)  
Last Data Byte  
(Last Byte)  
MSB  
1
LSB  
1
SDATA  
SCLOCK  
SDATA  
1
2
0
1
0
0
6
0
8
MSB  
1
LSB  
8
MSB  
MSB  
1
LSB  
8
1
3
4
5
7
A
2
3
4
5
6
7
A
1
2
3
4
2
3
4
5
6
7
A
Acknowledgment Bit  
from Clock Device  
Signaling by Clock Device  
Figure 8. Serial Data Bus Write Sequence  
SDATA  
tSPF  
tLOW  
tDSU  
tDHD  
tSP  
tSTHD  
tHIGH  
tSPSU  
tSTHD  
SCLOCK  
tSPSU  
tR  
tF  
Figure 9. Serial Data Bus Timing Diagram  
Document #: 38-07225 Rev. *A  
Page 12 of 20  
PRELIMINARY  
W127/W127-A  
Absolute Maximum Ratings [5.]  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
VDDQ3, VIN  
Description  
Voltage on any Pin with Respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
55 to +125  
0 to +70  
Unit  
V
TSTG  
TB  
°C  
°C  
°C  
kV  
Ambient Temperature under Bias  
Operating Temperature  
TA  
ESDPROT  
Input ESD Protection  
2 (min.)  
3.3V DC Electrical Characteristics TA = 0°C to +70°C, VDDQ3 = VDDQ2 = 3.3V±5% (3.1353.465V)  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
IDD  
Combined 3.3V Supply Current  
CPU0:3 = 66.6 MHz  
Outputs Loaded[5]  
290  
mA  
Logic Inputs  
VIL  
VIH  
IIL  
Input Low Voltage  
Input High Voltage  
Input Low Current[7]  
Input High Current  
0.8  
V
V
2.0  
20  
5
µA  
µA  
IIH  
Clock Outputs  
VOL  
VOH  
IOL  
Output Low Voltage  
IOL = 1 mA  
IOH = 1 mA  
VOL = 1.5V  
50  
mV  
V
Output High Voltage  
Output Low Current  
3.1  
55  
80  
CPU0:3  
75  
105  
155  
mA  
SDRAM0:11,  
AGP_F, AGP0  
110  
PCI_F, PCI0:4  
REF  
55  
60  
55  
55  
80  
75  
75  
105  
90  
48/24MHz  
CPU0:3  
75  
105  
125  
175  
IOH  
Output High Current  
VOH = 1.5V  
85  
mA  
SDRAM0:11,  
AGP_F, AGP0  
120  
PCI_F, PCI0:4  
REF  
55  
60  
55  
85  
85  
85  
125  
110  
125  
48/24MHz  
Crystal Oscillator  
VTH  
X1 Input Threshold Voltage[8]  
1.65  
20  
V
CLOAD  
Load Capacitance, Imposed on  
pF  
External Crystal[9]  
CIN,X1  
X1 Input Capacitance[10]  
Pin X2 unconnected  
30  
pF  
Notes:  
5. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
6. All clock outputs loaded with maximum lump capacitance test load specified in AC Electrical Characteristics section.  
7. W127/127-A logic inputs have internal pull-up devices (not full CMOS level).  
8. X1 input threshold voltage (typical) is VDD/2.  
9. The W127/W127-A contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on  
crystal is 20 pF; this includes typical stray capacitance of short PCB traces to crystal.  
10. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
Document #: 38-07225 Rev. *A  
Page 13 of 20  
PRELIMINARY  
W127/W127-A  
3.3V DC Electrical Characteristics (continued) TA = 0°C to +70°C, VDDQ3 = VDDQ2 = 3.3V±5% (3.1353.465V)  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Pin Capacitance/Inductance  
CIN  
Input Pin Capacitance  
Except X1 and X2  
5
6
7
pF  
pF  
nH  
COUT  
LIN  
Output Pin Capacitance  
Input Pin Inductance  
Serial Input Port  
VIL  
VIH  
IIL  
Input Low Voltage  
VDDQ3 = 3.3V  
VDDQ3 = 3.3V  
0.3VDDQ3  
V
V
Input High Voltage  
Input Low Current  
Input High Current  
0.7VDDQ3  
10  
10  
µA  
µA  
mA  
IIH  
IOL  
Sink Current into SDATA or SCLOCK, IOL = 0.3(VDDQ3  
)
6
Open Drain N-Channel Device On  
CIN  
Input Capacitance of SDATA and  
SCLOCK  
10  
pF  
CSDATA  
Total Capacitance of SDATA Bus  
Total Capacitance of SCLOCK Bus  
400  
400  
pF  
pF  
CSCLOCK  
AC Electrical Characteristics  
TA = 0°C to +70°C, VDDQ3 = 3.3V±5% (3.353.465V), fXTL = 14.31818 MHz  
Spread Spectrum function turned off  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output.  
CPU AGP Clock Outputs, CPU0:3, AGP_F, AGP0 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.6 MHz  
Parameter  
Description  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Measured from 0.4V to 2.4V  
Min. Typ. Max. Unit  
tP  
f
Period  
15  
ns  
MHz  
ns  
Frequency, Actual  
High Time  
66.6  
tH  
tL  
tR  
tF  
tD  
5.2  
5
Low Time  
ns  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
1
4
4
V/ns  
V/ns  
%
Measured from 2.4V to 0.4V  
1
Measured on rising and falling edge at 1.5V  
45  
55  
250  
tJC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum differ-  
ence of cycle time between two adjacent cycles.  
ps  
tSK  
fST  
Output Skew  
Measured on rising edge at 1.5V  
250  
3
ps  
Frequency Stabilization from Assumes full supply voltage reached within 1 ms  
Power-up (cold start)  
ms  
from power-up. Short cycles exist prior to frequen-  
cy stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
10  
15  
20  
Document #: 38-07225 Rev. *A  
Page 14 of 20  
PRELIMINARY  
W127/W127-A  
AC Electrical Characteristics (continued)  
SDRAM Clock Outputs, SDRAM0:11 (Lump Capacitance Test Load = 30 pF)  
CPU = 66.6 MHz  
Parameter  
Description  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Measured from 0.4V to 2.4V  
Min. Typ. Max. Unit  
tP  
f
Period  
15  
ns  
MHz  
V/ns  
V/ns  
%
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
66.6  
tR  
tF  
1
1
4
4
Measured from 2.4V to 0.4V  
tD  
tJC  
Measured on rising and falling edge at 1.5V  
45  
55  
250  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum differ-  
ence of cycle time between two adjacent cycles.  
ps  
tSK  
tSK  
Output Skew  
Measured on rising edge at 1.5V  
100  
ps  
ps  
CPU to SDRAM Clock Skew Covers all CPU/SDRAM outputs. Measured on  
rising edge at 1.5V.  
500  
3
fST  
FrequencyStabilizationfrom Assumes full supply voltage reached within 1 ms  
ms  
Power-up (cold start)  
from power-up. Short cycles exist prior to frequen-  
cy stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
10  
15  
20  
PCI Clock Outputs, PCI_F and PCI0:4 (Lump Capacitance Test Load = 30 pF)  
CPU = 66.6 MHz  
Min. Typ. Max. Unit  
Parameter  
Description  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Determined by PLL divider ratio  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Measured from 0.4V to 2.4V  
tP  
f
Period  
30  
ns  
MHz  
ns  
Frequency, Actual  
High Time  
33.3  
tH  
tL  
12  
12  
1
Low Time  
ns  
tR  
tF  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
4
4
V/ns  
V/ns  
%
Measured from 2.4V to 0.4V  
1
tD  
tJC  
Measured on rising and falling edge at 1.5V  
45  
55  
250  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum differ-  
ence of cycle time between two adjacent cycles.  
ps  
tSK  
tO  
Output Skew  
Measured on rising edge at 1.5V  
250  
3
ps  
ns  
AGP to PCI Clock Skew  
Covers all CPU/PCI outputs. Measured on rising  
edge at 1.5V. CPU leads PCI output.  
1
fST  
FrequencyStabilizationfrom Assumes full supply voltage reached within 1 ms  
3
ms  
Power-up (cold start)  
from power-up. Short cycles exist prior to frequen-  
cy stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
20  
Document #: 38-07225 Rev. *A  
Page 15 of 20  
PRELIMINARY  
W127/W127-A  
AC Electrical Characteristics (continued)  
REF Clock Output (Lump Capacitance Test Load = 45 pF)  
CPU = 66.6 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
14.31818  
tR  
0.5  
0.5  
40  
2
2
tF  
Measured from 2.4V to 0.4V  
tD  
Measured on rising and falling edge at 1.5V  
60  
1.5  
fST  
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination value.  
30  
48-/24-MHZ Clock Outputs (Lump Capacitance Test Load = 20 pF)  
CPU = 66.6 MHz  
Parameter  
Description  
Test Condition/Comments  
Min.  
Typ.  
Max.  
Unit  
f
Frequency, Actual  
Determined by PLL divider ratio  
(see m/n below)  
48.008/24.004  
MHz  
fD  
Deviation from 48 MHz  
PLL Ratio  
(48.008 48)/48  
+167  
ppm  
m/n  
tR  
(14.31818 MHz x 57/17 = 48.008 MHz)  
Measured from 0.4V to 2.4V  
57/17, 54/34  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
tF  
Measured from 2.4V to 0.4V  
tD  
Measured on rising and falling edge at 1.5V  
55  
3
fST  
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Zo  
AC Output Impedance  
Average value during switching transition.  
Used for determining series termination value.  
30  
0
Serial Input Port  
Parameter  
Description  
Test Condition  
Min.  
0
Typ.  
Max.  
Unit  
kHz  
µs  
fSCLOCK  
tSTHD  
tLOW  
SCLOCK Frequency  
Start Hold Time  
Normal Mode  
100  
4.0  
4.7  
4.0  
250  
0
µs  
SCLOCK Low Time  
SCLOCK High Time  
Data Set-up Time  
Data Hold Time  
µs  
tHIGH  
tDSU  
ns  
tDHD  
(Transmitter should provide a 300-ns hold  
time to ensure proper timing at the receiver.)  
ns  
tR  
Rise Time, SDATA and SCLOCK From 0.3VDD to 0.7VDD  
Fall Time, SDATA and SCLOCK From 0.7VDD to 0.3VDD  
Stop Set-up Time  
1000  
300  
ns  
ns  
µs  
µs  
tF  
tSTSU  
tSPF  
4.0  
4.7  
Bus Free Time between Stop  
and Start Condition  
ns  
tSP  
Allowable Noise Spike Pulse  
Width  
50  
Document #: 38-07225 Rev. *A  
Page 16 of 20  
PRELIMINARY  
W127/W127-A  
Ordering Information  
Package  
Name  
Ordering Code  
W127  
Package Type  
H
48-pin SSOP (300 mils)  
W127-A  
Pentium is a registered trademark of Intel Corporation.  
Document #: 38-07225 Rev. *A  
Page 17 of 20  
PRELIMINARY  
W127/W127-A  
Package Diagram  
48-Pin Small Shrink Outline Package (SSOP, 300 mils)  
Summary of nominal dimensions in inches:  
Body Width: 0.296  
Lead Pitch: 0.025  
Body Length: 0.625  
Body Height: 0.102  
Document #: 38-07225 Rev. *A  
Page 18 of 20  
PRELIMINARY  
W127/W127-A  
Addendum: W127/W127-A Replaces W48S87-27A  
The W127/W127-A is a pin-compatible replacement for the W48S87-27A with the following output frequency modifications (Refer  
to Table 1):  
1. The 90-MHz CPU operation is changed to 95.25-MHz to support the K6 333-MHz chipset.  
2. The 60-MHz CPU operation is changed to 124-MHz to support new motherboard designs.  
Document #: 38-07225 Rev. *A  
Page 19 of 20  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
PRELIMINARY  
W127/W127-A  
Document Title: W127/W127-A Spread Spectrum 3 DIMM System Frequency Synthesizer w/AGP  
Document Number: 38-07225  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
110490  
Description of Change  
02/13/02  
12/14/02  
SZV  
RBI  
Change from Spec number: 38-00893 to 38-07225  
*A  
122842  
Power up requirements added to Operating Conditions Information  
Document #: 38-07225 Rev. *A  
Page 20 of 20  

相关型号:

W127HT

Processor Specific Clock Generator, 124MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

W129AG

Video Clock Generator, 54MHz, CMOS, PDSO16, 0.150 INCH, SOIC-16
CYPRESS

W12D300K2

Power Management Circuit,
WALL

W12D300K2M

Power Management Circuit,
WALL

W12D400K2

Power Management Circuit,
WALL

W12D400K2M

Power Management Circuit,
WALL

W12D50UKM

Power Management Circuit,
WALL

W12NK90Z

N-CHANNEL 900V - 0.72 ohm - 11A TO-247 Zener-Protected SuperMESH Power MOSFET
STMICROELECTR

W12S250K2

Power Management Circuit,
WALL

W12S250UKM

Power Management Circuit,
WALL

W12T100UK

Power Management Circuit,
WALL

W12T100UKM

Power Management Circuit,
WALL