S34ML02G2 [CYPRESS]

1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded;
S34ML02G2
型号: S34ML02G2
厂家: CYPRESS    CYPRESS
描述:

1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded

文件: 总76页 (文件大小:7372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S34ML01G2  
S34ML02G2  
S34ML04G2  
1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC  
NAND Flash Memory for Embedded  
Distinctive Characteristics  
Density  
– Device Size  
– 1 Gb: 1 plane per device or 128 Mbyte  
– 2 Gb: 2 planes per device or 256 Mbyte  
– 4 Gb: 2 planes per device or 512 Mbyte  
– 1 Gb / 2 Gb / 4 Gb  
Architecture  
– Input / Output Bus Width: 8 bits / 16 bits  
– Page size:  
NAND Flash interface  
– Open NAND Flash Interface (ONFI) 1.0 compliant  
– Address, Data, and Commands multiplexed  
– ×8:  
1 Gb: (2048 + 64) bytes; 64-byte spare area  
2 Gb / 4 Gb: (2048 + 128) bytes; 128-byte spare area  
– ×16:  
Supply Voltage  
– 3.3-V device: V = 2.7 V ~ 3.6 V  
CC  
1 Gb: (1024 + 32) words; 32-word spare area  
2 Gb / 4 Gb (1024 + 64) words; 64-word spare area  
– Block size: 64 Pages  
Security  
– One Time Programmable (OTP) area  
– Serial number (unique ID) (Contact factory for support)  
– Hardware program/erase disabled during power transition  
– ×8:  
1 Gb: 128 KB+ 4 KB  
Additional features  
2 Gb / 4 Gb: 128 KB + 8 KB  
– ×16  
1 Gb: 64k + 2k words  
– 2 Gb and 4 Gb parts support Multiplane Program and Erase  
commands  
2 Gb / 4 Gb: 64k + 4k words  
– Plane size  
– Supports Copy Back Program  
– 2 Gb and 4 Gb parts support Multiplane Copy Back Program  
– Supports Read Cache  
– ×8  
1 Gb: 1024 blocks per plane or (128 MB + 4 MB  
2 Gb: 1024 blocks per plane or (128 MB + 8 MB  
4 Gb: 2048 blocks per plane or (256 MB + 16 MB  
– ×16  
1 Gb: 1024 blocks per plane or (64M + 2M) words  
2 Gb: 1024 Blocks per Plane or (64M + 4M) words  
4 Gb: 2048 Blocks per Plane or (128M + 8M) words  
Electronic signature  
– Manufacturer ID: 01h  
Operating temperature  
– Industrial: –40 °C to 85 °C  
– Industrial Plus: –40 °C to 105 °C  
Performance  
Page Read / Program  
Reliability  
– Random access: 25 µs (Max) (S34ML01G2)  
– Random access: 30 µs (Max) (S34ML02G2, S34ML04G2)  
– Sequential access: 25 ns (Min)  
– 100,000 Program / Erase cycles (Typ)  
(with 4-bit ECC per 528 bytes (×8) or 264 words (×16))  
– 10 Year Data retention (Typ)  
– For one plane structure (1-Gb density)  
– Program time / Multiplane Program time: 300 µs (Typ)  
– Block zero is valid and will be valid for at least 1,000 program-  
erase cycles with ECC  
Block Erase (S34ML01G2)  
– Block Erase time: 3 ms (Typ)  
– For two plane structures (2-Gb and 4-Gb densities)  
– Blocks zero and one are valid and will be valid for at least 1,000  
program-erase cycles with ECC  
Block Erase / Multiplane Erase (S34ML02G2, S34ML04G2)  
– Block Erase time: 3.5 ms (Typ)  
Package options  
– Pb-free and low halogen  
– 48-Pin TSOP 12 × 20 × 1.2 mm  
– 63-Ball BGA 9 × 11 × 1 mm  
– 67-Ball BGA 8 × 6.5 × 1 mm (S34ML01G2, S34ML02G2)  
Cypress Semiconductor Corporation  
Document Number: 002-00499 Rev. *N  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised August 30, 2016  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Contents  
Distinctive Characteristics .................................................. 1  
5.6 DC Characteristics........................................................ 37  
5.7 Pin Capacitance............................................................ 37  
5.8 Program / Erase Characteristics................................... 38  
Performance.......................................................................... 1  
1.  
General Description..................................................... 3  
6.  
Timing Diagrams......................................................... 39  
1.1 Logic Diagram................................................................ 4  
1.2 Connection Diagram ...................................................... 5  
1.3 Pin Description............................................................... 7  
1.4 Block Diagram................................................................ 8  
1.5 Array Organization......................................................... 9  
1.6 Addressing................................................................... 11  
1.7 Mode Selection ............................................................ 14  
6.1 Command Latch Cycle.................................................. 39  
6.2 Address Latch Cycle..................................................... 40  
6.3 Data Input Cycle Timing................................................ 40  
6.4 Data Output Cycle Timing (CLE=L, WE#=H, ALE=L,  
WP#=H) ........................................................................ 41  
6.5 Data Output Cycle Timing (EDO Type, CLE=L, WE#=H,  
ALE=L).......................................................................... 42  
6.6 Page Read Operation................................................... 42  
6.7 Page Read Operation (Interrupted by CE#).................. 43  
6.8 Page Read Operation Timing with CE# Don’t Care...... 44  
6.9 Page Program Operation.............................................. 44  
6.10 Page Program Operation Timing with CE# Don’t Care. 45  
6.11 Page Program Operation with Random Data Input ...... 45  
6.12 Random Data Output In a Page ................................... 46  
6.13 Multiplane Page Program Operation — S34ML02G2 and  
S34ML04G2.................................................................. 46  
6.14 Block Erase Operation.................................................. 47  
6.15 Multiplane Block Erase — S34ML02G2 and S34ML04G2  
48  
2.  
Bus Operation ............................................................ 14  
2.1 Command Input ........................................................... 14  
2.2 Address Input............................................................... 14  
2.3 Data Input .................................................................... 15  
2.4 Data Output.................................................................. 15  
2.5 Write Protect ................................................................ 15  
2.6 Standby........................................................................ 15  
3.  
Command Set............................................................. 16  
3.1 Page Read................................................................... 17  
3.2 Page Program.............................................................. 17  
3.3 Multiplane Program — S34ML02G2 and S34ML04G2 18  
3.4 Page Reprogram.......................................................... 18  
3.5 Block Erase.................................................................. 20  
3.6 Multiplane Block Erase — S34ML02G2 and  
S34ML04G2................................................................. 20  
3.7 Copy Back Program..................................................... 21  
3.8 Read Status Register................................................... 22  
3.9 Read Status Enhanced — S34ML02G2 and  
S34ML04G2................................................................. 22  
3.10 Read Status Register Field Definition.......................... 22  
3.11 Reset............................................................................ 23  
3.12 Read Cache................................................................. 23  
3.13 Cache Program............................................................ 24  
3.14 Multiplane Cache Program — S34ML02G2 and  
S34ML04G2................................................................. 25  
3.15 Read ID........................................................................ 25  
3.16 Read ID2...................................................................... 28  
3.17 Read ONFI Signature .................................................. 28  
3.18 Read Parameter Page ................................................. 29  
3.19 Read Unique ID (Contact Factory)............................... 31  
3.20 One-Time Programmable (OTP) Entry ........................ 32  
6.16 Copy Back Read with Optional Data Readout.............. 49  
6.17 Copy Back Program Operation With Random  
Data Input ..................................................................... 49  
6.18 Multiplane Copy Back Program — S34ML02G2 and  
S34ML04G2.................................................................. 50  
6.19 Read Status Register Timing........................................ 51  
6.20 Read Status Enhanced Timing ..................................... 52  
6.21 Reset Operation Timing................................................ 52  
6.22 Read Cache.................................................................. 53  
6.23 Cache Program............................................................. 55  
6.24 Multiplane Cache Program — S34ML02G2 and  
S34ML04G2.................................................................. 56  
6.25 Read ID Operation Timing............................................ 58  
6.26 Read ID2 Operation Timing.......................................... 58  
6.27 Read ONFI Signature Timing........................................ 59  
6.28 Read Parameter Page Timing ...................................... 59  
6.29 Read Unique ID Timing (Contact Factory).................... 60  
6.30 OTP Entry Timing ......................................................... 60  
6.31 Power On and Data Protection Timing ......................... 61  
6.32 WP# Handling............................................................... 61  
4.  
Signal Descriptions ................................................... 32  
7.  
Physical Interface ....................................................... 62  
4.1 Data Protection and Power On / Off Sequence ........... 32  
4.2 Ready/Busy.................................................................. 33  
4.3 Write Protect Operation ............................................... 34  
7.1 Physical Diagram.......................................................... 62  
8.  
9.  
System Interface......................................................... 65  
Error Management...................................................... 67  
5.  
Electrical Characteristics.......................................... 35  
9.1 System Bad Block Replacement................................... 67  
9.2 Bad Block Management................................................ 68  
5.1 Valid Blocks ................................................................. 35  
5.2 Absolute Maximum Ratings ......................................... 35  
5.3 Recommended Operating Conditions.......................... 35  
5.4 AC Test Conditions...................................................... 35  
5.5 AC Characteristics ....................................................... 36  
10. Ordering Information.................................................. 69  
11. Document History....................................................... 70  
Document Number: 002-00499 Rev. *N  
Page 2 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
1. General Description  
The S34ML01G2, S34ML02G2, and S34ML04G2 series is offered with a 3.3V VCC power supply, and with x8 or x16 I/O interface.  
Its NAND cell provides the most cost-effective solution for the solid state mass storage market. The memory is divided into blocks  
that can be erased independently so it is possible to preserve valid data while old data is erased. The page size for x8 is (2048 +  
spare) bytes; for x16 (1024 + spare) words.  
To extend the lifetime of NAND flash devices, the implementation of an ECC is mandatory.  
The chip supports CE# don't care function. This function allows the direct download of the code from the NAND flash memory device  
by a microcontroller, since the CE# transitions do not stop the read operation.  
The devices have a Read Cache feature that improves the read throughput for large files. During cache reading, the devices load  
the data in a cache register while the previous data is transferred to the I/O buffers to be read.  
Like all other 2-kB page NAND flash devices, a program operation typically writes 2 KB (×8) or 1 kword (×16) in 300 µs and an erase  
operation can typically be performed in 3 ms (S34ML01G2) on a 128-kB block (×8) or 64k-word block (×16). In addition, thanks to  
multiplane architecture, it is possible to program two pages at a time (one per plane) or to erase two blocks at a time (again, one per  
plane). The multiplane architecture allows program time to be reduced by 40% and erase time to be reduced by 50%.  
In multiplane operations, data in the page can be read out at 25 ns cycle time per byte. The I/O pins serve as the ports for command  
and address input as well as data input/output. This interface allows a reduced pin count and easy migration towards different  
densities, without any rearrangement of the footprint.  
Commands, Data, and Addresses are asynchronously introduced using CE#, WE#, ALE, and CLE control pins.  
The on-chip Program/Erase Controller automates all read, program, and erase functions including pulse repetition, where required,  
and internal verification and margining of data. A WP# pin is available to provide hardware protection against program and erase  
operations.  
The output pin R/B# (open drain buffer) signals the status of the device during each operation. It identifies if the program/erase/read  
controller is currently active. The use of an open-drain output allows the Ready/Busy pins from several memories to connect to a  
single pull-up resistor. In a system with multiple memories the  
R/B# pins can be connected all together to provide a global status signal.  
The Reprogram function allows the optimization of defective block management — when a Page Program operation fails the data  
can be directly programmed in another page inside the same array section without the time consuming serial data insertion phase.  
Multiplane Copy Back is also supported. Data read out after Copy Back Read (both for single and multiplane cases) is allowed.  
In addition, Cache Program and Multiplane Cache Program operations improve the programing throughput by programing data  
using the cache register.  
The devices provide two innovative features: Page Reprogram and Multiplane Page Reprogram. The Page Reprogram re-programs  
one page. Normally, this operation is performed after a failed Page Program operation. Similarly, the Multiplane Page Reprogram re-  
programs two pages in parallel, one per plane. The first page must be in the first plane while the second page must be in the second  
plane. The Multiplane Page Reprogram operation is performed after a failed Multiplane Page Program operation. The Page  
Reprogram and Multiplane Page Reprogram guarantee improved performance, since data insertion can be omitted during re-  
program operations.  
The devices are available in the TSOP48 (12 x 20 mm) package and come with the following security features:  
OTP (one time programmable) area, which is a restricted access area where sensitive data/code can be stored permanently.  
Serial number (unique identifier), which allows the devices to be uniquely identified. Contact factory for support of this feature.  
These security features are subject to an NDA (non-disclosure agreement) and are, therefore, not described in the data sheet. For  
more details about them, contact your nearest sales office.  
Document Number: 002-00499 Rev. *N  
Page 3 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Density (bits)  
Number of Blocks per  
Plane  
Device  
Number of Planes  
Main  
Spare  
128M x 8  
64M x 16  
4M x 8  
S34ML01G2  
S34ML02G2  
S34ML04G2  
1
2
2
1024  
1024  
2048  
2M x 16  
256M x 8  
16M x 8  
8M x 16  
128M x 16  
512M x 8  
32M x 8  
256M x 16  
16M x 16  
1.1  
Logic Diagram  
Figure 1.1 Logic Diagram  
VCC  
I/O0~I/O7  
CE#  
WE#  
R/B#  
RE#  
ALE  
CLE  
WP#  
VSS  
Table 1.1 Signal Names  
I/O7 - I/O0 (×8)  
Data Input / Outputs  
I/O8 - I/O15 (×16)  
CLE  
ALE  
CE#  
RE#  
WE#  
WP#  
R/B#  
VCC  
VSS  
NC  
Command Latch Enable  
Address Latch Enable  
Chip Enable  
Read Enable  
Write Enable  
Write Protect  
Read/Busy  
Power Supply  
Ground  
Not Connected  
Document Number: 002-00499 Rev. *N  
Page 4 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
1.2  
Connection Diagram  
Figure 1.2 48-Pin TSOP1 Contact ×8, ×16 Device  
x8  
x16  
x8  
x16  
(1)  
1
48  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
I/O7  
I/O6  
VSS  
I/O15  
I/O14  
I/O13  
I/O7  
I/O6  
NC  
NC  
I/O5  
I/O4  
NC  
I/O5  
I/O4  
I/O12  
R/B#  
RE#  
CE#  
NC  
R/B#  
RE#  
CE#  
NC  
(1)  
(1)  
VCC  
NC  
VCC  
VSS  
NC  
VCC  
NC  
I/O3  
I/O2  
I/O1  
VCC  
NC  
VCC  
VSS  
NC  
VCC  
I/011  
I/O3  
I/O2  
I/O1  
NC  
NC  
NAND Flash  
TSOP1  
VCC  
VSS  
NC  
VCC  
VSS  
NC  
12  
13  
37  
36  
NC  
NC  
CLE  
ALE  
WE#  
WP#  
NC  
CLE  
ALE  
WE#  
WP#  
NC  
I/O0  
NC  
I/O0  
I/O10  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
I/O9  
I/O8  
VSS  
(1)  
24  
25  
Note:  
1. These pins should be connected to power supply or ground (as designated) following the ONFI specification, however they might not be bonded internally.  
Figure 1.3 63-BGA Contact, ×8 Device (Balls Down, Top View)  
A2  
A9  
A1  
A10  
NC  
NC  
NC  
NC  
B1  
B9  
B10  
NC  
NC  
NC  
C3  
C4  
C5  
C6  
C7  
C8  
WP#  
ALE  
VSS  
CE#  
WE#  
RB#  
D3  
D4  
D5  
D6  
D7  
D8  
VCC (1)  
RE#  
CLE  
NC  
NC  
NC  
E3  
E4  
E5  
E6  
E7  
E8  
NC  
NC  
NC  
NC  
NC  
NC  
F3  
F4  
F5  
F6  
F7  
F8  
NC  
NC  
NC  
NC  
VSS (1)  
NC  
G3  
NC  
G4  
G5  
NC  
G6  
NC  
G7  
NC  
G8  
NC  
VCC (1)  
H3  
H4  
H5  
H6  
H7  
H8  
NC  
I/O0  
NC  
NC  
NC  
V
cc  
J3  
J4  
J5  
J6  
J7  
J8  
NC  
I/O1  
NC  
V
I/O5  
I/O7  
K8  
CC  
K3  
K4  
K5  
K6  
K7  
V
I/O2  
I/O3  
I/O4  
I/O6  
V
SS  
SS  
L1  
L2  
L9  
L10  
NC  
NC  
NC  
NC  
M1  
NC  
M2  
NC  
M9  
NC  
M10  
NC  
Note:  
1. These pins should be connected to power supply or ground (as designated) following the ONFI specification, however they might not be bonded internally.  
Document Number: 002-00499 Rev. *N  
Page 5 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 1.4 63-BGA Contact, x16 Device (Balls Down, Top View)  
A2  
A9  
A1  
A10  
NC  
NC  
NC  
NC  
B1  
B9  
B10  
NC  
NC  
NC  
C3  
C4  
C5  
C6  
C7  
C8  
WP#  
ALE  
VSS  
CE#  
WE#  
RB#  
D3  
D4  
D5  
D6  
D7  
D8  
VCC  
RE#  
CLE  
NC  
NC  
NC  
E3  
E4  
E5  
E6  
E7  
E8  
NC  
NC  
NC  
NC  
NC  
NC  
F3  
F4  
F5  
F6  
F7  
F8  
NC  
NC  
NC  
NC  
VSS  
NC  
G3  
NC  
G4  
G5  
NC  
G6  
G7  
G8  
NC  
VCC  
I/O13  
I/O15  
H3  
H4  
H5  
H6  
H7  
H8  
I/O8  
I/O0  
I/O10  
I/O12  
I/O14  
V
cc  
J3  
J4  
J5  
J6  
J7  
J8  
I/O9  
I/O1  
I/O11  
V
I/O5  
I/O7  
K8  
CC  
K3  
K4  
K5  
K6  
K7  
V
I/O2  
I/O3  
I/O4  
I/O6  
V
SS  
SS  
L1  
L2  
L9  
L10  
NC  
NC  
NC  
NC  
M1  
NC  
M2  
NC  
M9  
NC  
M10  
NC  
Document Number: 002-00499 Rev. *N  
Page 6 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 1.5 67-BGA Contact (Balls Down, Top View)  
A2  
A3  
A6  
A7  
A8  
NC  
NC  
NC  
NC  
NC  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
NC  
WP#  
ALE  
VSS  
CE#  
WE#  
RY/BY#  
NC  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
NC  
NC  
RE#  
CLE  
NC  
NC  
NC  
NC  
D2  
D3  
D4  
D5  
D6  
D7  
NC  
NC  
NC  
NC  
NC  
NC  
E2  
E3  
E4  
E5  
E6  
E7  
NC  
NC  
NC  
NC  
NC  
NC  
F2  
F3  
F4  
F5  
F6  
F7  
NC  
NC  
NC  
NC  
NC  
NC  
G2  
NC  
G3  
G4  
NC  
G5  
NC  
G6  
NC  
G7  
I/O0  
VCC  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
NC  
NC  
I/O1  
NC  
VCC  
I/O5  
I/O7  
NC  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
NC  
VSS  
I/O2  
I/O3  
I/O4  
I/O6  
VSS  
NC  
K1  
K2  
K3  
K6  
K7  
K8  
NC  
NC  
NC  
NC  
NC  
NC  
1.3  
Pin Description  
Table 1.2 Pin Description  
Pin Name  
Description  
I/O0 - I/O7 (×8)  
Inputs/Outputs. The I/O pins are used for command input, address input, data input, and data output. The  
I/O pins float to High-Z when the device is deselected or the outputs are disabled.  
I/O8 - I/O15 (×16)  
Command Latch Enable. This input activates the latching of the I/O inputs inside the Command Register on the  
rising edge of Write Enable (WE#).  
CLE  
ALE  
CE#  
WE#  
RE#  
Address Latch Enable. This input activates the latching of the I/O inputs inside the Address Register on the rising  
edge of Write Enable (WE#).  
Chip Enable. This input controls the selection of the device. When the device is not busy CE# low selects the  
memory.  
Write Enable. This input latches Command, Address and Data. The I/O inputs are latched on the rising edge of  
WE#.  
Read Enable. The RE# input is the serial data-out control, and when active drives the data onto the I/O bus. Data is  
valid t  
after the falling edge of RE# which also increments the internal column address counter by one.  
REA  
Write Protect. The WP# pin, when low, provides hardware protection against undesired data modification  
(program / erase).  
WP#  
R/B#  
VCC  
Ready Busy. The Ready/Busy output is an Open Drain pin that signals the state of the memory.  
Supply Voltage. The V supplies the power for all the operations (Read, Program, Erase). An internal lock circuit  
CC  
prevents the insertion of Commands when V is less than V  
.
CC  
LKO  
VSS  
NC  
Ground.  
Not Connected.  
Notes:  
1. A 0.1 µF capacitor should be connected between the V Supply Voltage pin and the V Ground pin to decouple the current surges from the power supply. The PCB  
CC  
SS  
track widths must be sufficient to carry the currents required during program and erase operations.  
2. An internal voltage detector disables all functions whenever V is below 1.8V to protect the device from any involuntary program/erase during power transitions.  
CC  
Document Number: 002-00499 Rev. *N  
Page 7 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
1.4  
Block Diagram  
Figure 1.6 Functional Block Diagram  
Address  
Register/  
Counter  
Program Erase  
Controller  
HV Generation  
X
1024 Mbit + 32 Mbit (1 Gb Device)  
2048 Mbit + 128 Mbit (2 Gb Device)  
4096 Mbit + 256 Mbit (4 Gb Device)  
D
E
C
O
D
E
R
ALE  
CLE  
NAND Flash  
WE#  
CE#  
WP#  
Memory Array  
Command  
Interface  
Logic  
RE#  
PAGE Buffer  
Y Decoder  
I/O Buffer  
Command  
Register  
Data  
Register  
I/O0~I/O7 (x8)  
I/O0~I/O15 (x16)  
Document Number: 002-00499 Rev. *N  
Page 8 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
1.5  
Array Organization  
Figure 1.7 Array Organization — S34ML01G2 (×8)  
1 Page = (2k + 64) Bytes  
Plane(s)  
1 Block = (2k + 64) Bytes x 64 Pages  
= (128k + 4k) Bytes  
0
1
1 Plane = (128k + 4k) Bytes x 1024 Blocks  
1024  
Blocks  
per  
2
Plane  
1022  
1023  
I/O  
[7:0]  
Page Buffer  
2048 Bytes  
64 Bytes  
Array Organization (x8)  
Figure 1.8 Array Organization — S34ML01G2 (x16)  
1 Page = (1k + 32) Words  
Plane(s)  
1 Block = (1k + 32) Words x 64 Pages  
= (64k + 2k) Words  
0
1
1 Plane = (64k + 2k) Words x 1024 Blocks  
1024  
Blocks  
per  
2
Plane  
1022  
1023  
I/O0~I/O15  
Page Buffer  
32 Words  
1024 Words  
Array Organization (x16)  
Document Number: 002-00499 Rev. *N  
Page 9 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 1.9 Array Organization — S34ML02G2 and S34ML04G2 (×8)  
2176 Bytes  
2176 Bytes  
I/O 7  
I/O 0  
Cache Register  
Data Register  
128  
128  
128  
128  
2048  
2048  
2048  
2048  
1 Page = (2K+128) Bytes  
1 Block = (2K+128) Bytes x 64 Pages  
= (128K+8K) Bytes  
S34ML02G2 has  
1024 Blocks per Plane  
1 Block  
1 Block  
S34ML02G2 Device = (128K+8K) x 2048 Blocks  
S34ML04G2 Device = (128K+8K) x 4096 Blocks  
S34ML04G2 has  
2048 Blocks per Plane  
Plane 1  
Plane 0  
Array Organization (x8)  
Figure 1.10 Array Organization — S34ML02G2 and S34ML04G2 (x16)  
1088 Words  
1088 Words  
I/O 15  
I/O 0  
Cache Register  
Data Register  
64  
64  
64  
64  
1024  
1024  
1024  
1024  
1 Page = (1K+64) Words  
1 Block = (1K+64) Words x 64 Pages  
= (64K+4K) Words  
S34ML02G2 has  
1024 Blocks per Plane  
1 Block  
1 Block  
S34ML04G2 has  
2048 Blocks per Plane  
S34ML02G2 Device = (64K+4K) x 2048 Blocks  
S34ML04G2 Device = (64K+4K) x 4096 Blocks  
Plane 1  
Plane 0  
Array Organization (x16)  
Document Number: 002-00499 Rev. *N  
Page 10 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
1.6  
Addressing  
S34ML01G2  
1.6.1  
Table 1.3 Address Cycle Map — 1 Gb Device  
Bus Cycle  
I/O [15:8] (5)  
I/O0  
I/O1  
I/O2  
×8  
A2 (CA2)  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
1st / Col. Add.1  
2nd / Col. Add. 2  
3rd / Row Add. 1  
4th / Row Add. 2  
A0 (CA0)  
A8 (CA8)  
A1 (CA1)  
A3 (CA3)  
A4 (CA4)  
Low  
A5 (CA5)  
Low  
A6 (CA6)  
Low  
A7 (CA7)  
Low  
A9 (CA9) A10 (CA10) A11 (CA11)  
A12 (PA0) A13 (PA1) A14 (PA2)  
A20 (BA2) A21 (BA3) A22 (BA4)  
×16  
A15 (PA3) A16 (PA4) A17 (PA5) A18 (BA0) A19 (BA1)  
A23 (BA5) A24 (BA6) A25 (BA7) A26 (BA8) A27 (BA9)  
1st / Col. Add.1  
2nd / Col. Add. 2  
3rd / Row Add. 1  
4th / Row Add. 2  
Low  
Low  
Low  
Low  
A0 (CA0)  
A8 (CA8)  
A1 (CA1)  
A2 (CA2)  
A3 (CA3)  
Low  
A4 (CA4)  
Low  
A5 (CA5)  
Low  
A6 (CA6)  
Low  
A7 (CA7)  
Low  
A9 (CA9) A10 (CA10)  
A11 (PA0) A12 (PA1) A13 (PA2)  
A19 (BA2) A20 (BA3) A21 (BA4)  
A14 (PA3) A15 (PA4) A16 (PA5) A17 (BA0) A18 (BA1)  
A22 (BA5) A23 (BA6) A24 (BA7) A25 (BA8) A26 (BA9)  
Notes:  
1. CAx = Column Address bit.  
2. PAx = Page Address bit.  
3. BAx = Block Address bit.  
4. Block address concatenated with page address = actual page address, also known as the row address.  
5. I/O[15:8] are not used during the addressing sequence and should be driven Low.  
For the ×8 address bits, the following rules apply:  
A0 - A11: column address in the page  
A12 - A17: page address in the block  
A18 - A27: block address  
For the x16 address bits, the following rules apply:  
A0 - A10: column address in the page  
A11 - A16: page address in the block  
A17 - A26: block address  
1.6.2  
S34ML02G2  
Table 1.4 Address Cycle Map — 2 Gb Device  
Bus Cycle  
I/O [15:8] (6)  
I/O0  
I/O1  
I/O2  
×8  
A2 (CA2)  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
1st / Col. Add.1  
2nd / Col. Add. 2  
A0 (CA0)  
A8 (CA8)  
A1 (CA1)  
A3 (CA3)  
A4 (CA4)  
Low  
A5 (CA5)  
Low  
A6 (CA6)  
Low  
A7 (CA7)  
Low  
A9 (CA9) A10 (CA10) A11 (CA11)  
A18  
(PLA0)  
3rd / Row Add. 1  
A12 (PA0) A13 (PA1) A14 (PA2)  
A20 (BA1) A21 (BA2) A22 (BA3)  
A15 (PA3) A16 (PA4) A17 (PA5)  
A19 (BA0)  
4th / Row Add. 2  
5th / Row Add. 3  
A23 (BA4) A24 (BA5) A25 (BA6) A26 (BA7) A27 (BA8)  
A28 (BA9)  
Low  
Low  
×16  
A2 (CA2)  
Low  
Low  
Low  
Low  
Low  
1st / Col. Add.1  
Low  
A0 (CA0)  
A1 (CA1)  
A3 (CA3)  
A4 (CA4)  
A5 (CA5)  
A6 (CA6)  
A7 (CA7)  
Document Number: 002-00499 Rev. *N  
Page 11 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Table 1.4 Address Cycle Map — 2 Gb Device  
Bus Cycle  
I/O [15:8] (6)  
I/O0  
I/O1  
I/O2  
×8  
A9 (CA9) A10 (CA10)  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
2nd / Col. Add. 2  
3rd / Row Add. 1  
Low  
Low  
A8 (CA8)  
Low  
Low  
Low  
Low  
Low  
A17  
(PLA0)  
A11 (PA0) A12 (PA1) A13 (PA2)  
A19 (BA1) A20 (BA2) A21 (BA3)  
A14 (PA3) A15 (PA4) A16 (PA5)  
A18 (BA0)  
4th / Row Add. 2  
5th / Row Add. 3  
Low  
Low  
A22 (BA4) A23 (BA5) A24 (BA6) A25 (BA7) A26 (BA8)  
A27 (BA9)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Notes:  
1. CAx = Column Address bit.  
2. PAx = Page Address bit.  
3. PLA0 = Plane Address bit zero.  
4. BAx = Block Address bit.  
5. Block address concatenated with page address and plane address = actual page address, also known as the row address.  
6. I/O[15:8] are not used during the addressing sequence and should be driven Low.  
For the ×8 address bits, the following rules apply:  
A0 - A11: column address in the page  
A12 - A17: page address in the block  
A18: plane address (for multiplane operations) / block address (for normal operations)  
A19 - A28: block address  
For the x16 address bits, the following rules apply:  
A0 - A10: column address in the page  
A11 - A16: page address in the block  
A17: plane address (for multiplane operations) / block address (for normal operations)  
A18 - A27: block address  
1.6.3  
S34ML04G2  
Table 1.5 Address Cycle Map — 4 Gb Device  
Bus Cycle  
I/O [15:8] (6)  
I/O0  
I/O1  
I/O2  
×8  
A2 (CA2)  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
1st / Col. Add.1  
2nd / Col. Add. 2  
A0 (CA0)  
A8 (CA8)  
A1 (CA1)  
A3 (CA3)  
A4 (CA4)  
Low  
A5 (CA5)  
Low  
A6 (CA6)  
Low  
A7 (CA7)  
Low  
A9 (CA9) A10 (CA10) A11 (CA11)  
A18  
(PLA0)  
3rd / Row Add. 1  
A12 (PA0) A13 (PA1)  
A14 (PA2)  
A15 (PA3) A16 (PA4) A17 (PA5)  
A19 (BA0)  
4th / Row Add. 2  
5th / Row Add. 3  
A20 (BA1) A21 (BA2)  
A28 (BA9) A29 (BA10)  
A22 (BA3)  
Low  
A23 (BA4) A24 (BA5) A25 (BA6) A26 (BA7) A27 (BA8)  
Low  
Low  
Low  
Low  
Low  
×16  
1st / Col. Add.1  
2nd / Col. Add. 2  
Low  
Low  
A0 (CA0)  
A8 (CA8)  
A1 (CA1)  
A2 (CA2)  
A3 (CA3)  
Low  
A4 (CA4)  
Low  
A5 (CA5)  
Low  
A6 (CA6)  
Low  
A7 (CA7)  
Low  
A9 (CA9) A10 (CA10)  
A17  
(PLA0)  
3rd / Row Add. 1  
Low  
A11 (PA0) A12 (PA1)  
A13 (PA2)  
A14 (PA3) A15 (PA4) A16 (PA5)  
A18 (BA0)  
4th / Row Add. 2  
5th / Row Add. 3  
Low  
Low  
A19 (BA1) A20 (BA2)  
A27 (BA9) A28 (BA10)  
A21 (BA3)  
Low  
A22 (BA4) A23 (BA5) A24 (BA6) A25 (BA7) A26 (BA8)  
Low Low Low Low Low  
Document Number: 002-00499 Rev. *N  
Page 12 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Notes:  
1. CAx = Column Address bit.  
2. PAx = Page Address bit.  
3. PLA0 = Plane Address bit zero.  
4. BAx = Block Address bit.  
5. Block address concatenated with page address and plane address = actual page address, also known as the row address.  
6. I/O[15:8] are not used during the addressing sequence and should be driven Low.  
For the ×8 address bits, the following rules apply:  
A0 - A11: column address in the page  
A12 - A17: page address in the block  
A18: plane address (for multiplane operations) / block address (for normal operations)  
A19 - A29: block address  
For the x16 address bits, the following rules apply:  
A0 - A10: column address in the page  
A11 - A16: page address in the block  
A17: plane address (for multiplane operations) / block address (for normal operations)  
A18 - A28: block address  
Document Number: 002-00499 Rev. *N  
Page 13 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
1.7  
Mode Selection  
Table 1.6 Mode Selection  
Mode  
CLE  
High  
Low  
High  
Low  
Low  
Low  
X
ALE  
Low  
High  
Low  
High  
Low  
Low  
X
CE#  
Low  
Low  
Low  
Low  
Low  
Low  
X
WE#  
Rising  
Rising  
Rising  
Rising  
Rising  
High  
High  
High  
X
RE#  
High  
High  
High  
High  
High  
Falling  
High  
High (3)  
X
WP#  
X
Command Input  
Read Mode  
Address Input  
Command Input  
Address Input  
X
High  
High  
High  
X
Program or Erase Mode  
Data Input  
Data Output (on going)  
Data Output (suspended)  
Busy Time in Read  
Busy Time in Program  
Busy Time in Erase  
Write Protect  
X
X
X
X
X
X
X
X
High  
High  
Low  
X
X
X
X
X
X
X
X
X
X
Stand By  
X
X
High  
X
X
0V / V (2)  
CC  
Notes:  
1. X can be V or V . High = Logic level high, Low = Logic level low.  
IL  
IH  
2. WP# should be biased to CMOS high or CMOS low for stand-by mode.  
3. During Busy Time in Read, RE# must be held high to prevent unintended data out.  
2. Bus Operation  
There are six standard bus operations that control the device: Command Input, Address Input, Data Input, Data Output, Write  
Protect, and Standby. (See Table 1.6.)  
Typically glitches less than 5 ns on Chip Enable, Write Enable, and Read Enable are ignored by the memory and do not affect bus  
operations.  
2.1  
Command Input  
The Command Input bus operation is used to give a command to the memory device. Commands are accepted with Chip Enable  
low, Command Latch Enable high, Address Latch Enable low, and Read Enable high and latched on the rising edge of Write Enable.  
Moreover, for commands that start a modify operation (program/erase) the Write Protect pin must be high. See Figure 6.1  
on page 39 and Table 5.5 on page 36 for details of the timing requirements. Command codes are always applied on I/O7:0  
regardless of the bus configuration (×8 or ×16).  
2.2  
Address Input  
The Address Input bus operation allows the insertion of the memory address. For the S34ML02G2 and S34ML04G2 devices, five  
write cycles are needed to input the addresses. For the S34ML01G2, four write cycles are needed to input the addresses. If  
necessary, a 5th dummy address cycle can be issued to S34ML01G2, which will be ignored by the NAND device without causing  
problems. Addresses are accepted with Chip Enable low, Address Latch Enable high, Command Latch Enable low, and Read  
Enable high and latched on the rising edge of Write Enable. Moreover, for commands that start a modify operation (program/erase)  
the Write Protect pin must be high. See Figure 6.2 on page 40 and Table 5.5 on page 36 for details of the timing requirements.  
Addresses are always applied on I/O7:0 regardless of the bus configuration (×8 or ×16). Refer to Table 1.3 through Table 1.5  
on page 12 for more detailed information.  
Document Number: 002-00499 Rev. *N  
Page 14 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
2.3  
Data Input  
The Data Input bus operation allows the data to be programmed to be sent to the device. The data insertion is serial and timed by  
the Write Enable cycles. Data is accepted only with Chip Enable low, Address Latch Enable low, Command Latch Enable low, Read  
Enable high, and Write Protect high and latched on the rising edge of Write Enable. See Figure 6.3 on page 41 and Table 5.5  
on page 36 for details of the timing requirements.  
2.4  
Data Output  
The Data Output bus operation allows data to be read from the memory array and to check the Status Register content, and the ID  
data. Data can be serially shifted out by toggling the Read Enable pin with Chip Enable low, Write Enable high, Address Latch  
Enable low, and Command Latch Enable low. See Figure 6.4 on page 41 and Table 5.5 on page 36 for details of the timings  
requirements.  
2.5  
Write Protect  
The Hardware Write Protection is activated when the Write Protect pin is low. In this condition, modify operations do not start and the  
content of the memory is not altered. The Write Protect pin is not latched by Write Enable to ensure the protection even during power  
up.  
2.6  
Standby  
In Standby, the device is deselected, outputs are disabled, and power consumption is reduced.  
Document Number: 002-00499 Rev. *N  
Page 15 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
3. Command Set  
Table 3.1 Command Set  
Acceptable  
Command  
during Busy  
Supported on  
S34ML01G2  
Command  
1st Cycle  
2nd Cycle  
3rd Cycle  
4th Cycle  
Page Read  
00h  
80h  
30h  
10h  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
Page Program  
Random Data Input  
85h  
Random Data Output  
05h  
E0h  
11h  
11h  
10h  
11h  
D0h  
60h  
D1h  
35h  
10h  
11h  
11h  
36h  
Multiplane Program  
80h  
81h  
80h  
10h  
10h  
ONFI Multiplane Program  
Page Reprogram  
80h  
No  
8Bh  
Yes  
No  
Multiplane Page Reprogram  
Block Erase  
8Bh  
8Bh  
10h  
60h  
Yes  
No  
Multiplane Block Erase  
ONFI Multiplane Block Erase  
Copy Back Read  
60h  
D0h  
60h  
60h  
D0h  
No  
00h  
Yes  
Yes  
No  
Copy Back Program  
85h  
Multiplane Copy Back Program  
ONFI Multiplane Copy Back Program  
Special Read For Copy Back  
Read Status Register  
85h  
81h  
85h  
10h  
10h  
85h  
No  
00h  
No  
70h  
Yes  
No  
Read Status Enhanced  
Reset  
78h  
FFh  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Read Cache  
31h  
Read Cache Enhanced  
Read Cache End  
00h  
31h  
3Fh  
Cache Program (End)  
Cache Program (Start) / (Continue)  
Multiplane Cache Program (Start/Continue)  
ONFI Multiplane Cache Program (Start/Continue)  
Multiplane Cache Program (End)  
ONFI Multiplane Cache Program (End)  
Read ID  
80h  
10h  
15h  
11h  
11h  
11h  
11h  
80h  
80h  
81h  
80h  
81h  
80h  
15h  
15h  
10h  
10h  
80h  
No  
80h  
No  
80h  
No  
90h  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Read ID2  
30h-65h-00h  
90h  
30h  
Read ONFI Signature  
Read Parameter Page  
Read Unique ID (Contact Factory)  
One-time Programmable (OTP) Area Entry  
ECh  
EDh  
29h-17h-04h-19h  
Document Number: 002-00499 Rev. *N  
Page 16 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
3.1  
Page Read  
Page Read is initiated by writing 00h and 30h to the command register along with five address cycles (four or five cycles for  
S34ML01G2). Two types of operations are available: random read and serial page read. Random read mode is enabled when the  
page address is changed. All data within the selected page are transferred to the data registers. The system controller may detect  
the completion of this data transfer (tR) by analyzing the output of the R/B pin. Once the data in a page is loaded into the data  
registers, they may be read out in 25 ns cycle time by sequentially pulsing RE#. The repetitive high to low transitions of the RE#  
signal makes the device output the data, starting from the selected column address up to the last column address.  
The device may output random data in a page instead of the sequential data by writing Random Data Output command. The column  
address of next data, which is going to be out, may be changed to the address that follows Random Data Output command. Random  
Data Output can be performed as many times as needed.  
After power up, the device is in read mode, so 00h command cycle is not necessary to start a read operation. Any operation other  
than read or Random Data Output causes the device to exit read mode.  
See Figure 6.6 on page 42 and Figure 6.12 on page 46 as references.  
3.2  
Page Program  
A page program cycle consists of a serial data loading period in which up to 2 KB (×8) or 1 kword (×16) of data may be loaded into  
the data register, followed by a non-volatile programming period where the loaded data is programmed into the appropriate cell.  
The serial data loading period begins by inputting the Serial Data Input command (80h), followed by the five cycle address inputs  
(four cycles for S34ML01G2) and then serial data. The words other than those to be programmed do not need to be loaded. The  
device supports Random Data Input within a page. The column address of next data, which will be entered, may be changed to the  
address that follows the Random Data Input command (85h). Random Data Input may be performed as many times as needed.  
The Page Program confirm command (10h) initiates the programming process. The internal write state controller automatically  
executes the algorithms and controls timings necessary for program and verify, thereby freeing the system controller for other tasks.  
Once the program process starts, the Read Status Register commands (70h or 78h) may be issued to read the Status Register. The  
system controller can detect the completion of a program cycle by monitoring the  
R/B# output, or the Status bit (I/O6) of the Status Register. Only the Read Status commands (70h or 78h) or Reset command are  
valid while programming is in progress. When the Page Program is complete, the Write Status Bit (I/O0) may be checked. The  
internal write verify detects only errors for 1’s that are not successfully programmed to 0’s. The command register remains in Read  
Status command mode until another valid command is written to the command register. Figure 6.9 on page 44 and Figure 6.11  
on page 45 detail the sequence.  
The device is programmable by page, but it also allows multiple partial page programming of a word or consecutive bytes up to 2 KB  
(×8) or 1 kword (×16) in a single page program cycle.  
The number of consecutive partial page programming operations (NOP) within the same page must not exceed the number  
indicated in Table 5.8 on page 38. Pages may be programmed in any order within a block.  
If a Page Program operation is interrupted by hardware reset, power failure or other means, the host must ensure that the  
interrupted page is not used for further reading or programming operations until the next uninterrupted block erase is complete.  
Document Number: 002-00499 Rev. *N  
Page 17 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
3.3  
Multiplane Program — S34ML02G2 and S34ML04G2  
The S34ML02G2 and S34ML04G2 devices support Multiplane Program, making it possible to program two pages in parallel, one  
page per plane.  
A Multiplane Program cycle consists of a double serial data loading period in which up to 4352 bytes (×8) or 2176 words (x16) of  
data may be loaded into the data register, followed by a non-volatile programming period where the loaded data is programmed into  
the appropriate cell. The serial data loading period begins with inputting the Serial Data Input command (80h), followed by the five  
cycle address inputs and serial data for the 1st page. The address for this page must be in the 1st plane (PLA0 = 0). The device  
supports Random Data Input exactly the same as in the case of page program operation. The Dummy Page Program Confirm  
command (11h) stops 1st page data input and the device becomes busy for a short time (tDBSY). Once it has become ready again,  
the ‘81h’ command must be issued, followed by 2nd page address (5 cycles) and its serial data input. The address for this page  
must be in the 2nd plane (PLA0 = 1). The Program Confirm command (10h) starts parallel programming of both pages.  
Figure 6.13 on page 46 describes the sequences using the legacy protocol. In this case, the block address bits for the first plane are  
all zero and the second address issued selects the block for both planes. Figure 6.14 on page 47 describes the sequences using the  
ONFI protocol. For both addresses issued in this protocol, the block address bits must be the same except for the bit(s) that select  
the plane.  
The user can check operation status by monitoring R/B# pin or reading the Status Register (command 70h or 78h). The Read Status  
Register command is also available during Dummy Busy time (tDBSY). In case of failure in either page program, the fail bit of the  
Status Register will be set. Refer to Section 3.8 on page 22 for further info.  
The number of consecutive partial page programming operations (NOP) within the same page must not exceed the number  
indicated in Table 5.8 on page 38. Pages may be programmed in any order within a block.  
If a Multiplane Program operation is interrupted by hardware reset, power failure or other means, the host must ensure that the  
interrupted pages are not used for further reading or programming operations until the next uninterrupted block erases are complete  
for the applicable blocks.  
3.4  
Page Reprogram  
Page Program may result in a fail, which can be detected by Read Status Register. In this event, the host may call Page Reprogram.  
This command allows the reprogramming of the same pattern of the last (failed) page into another memory location. The command  
sequence initiates with reprogram setup (8Bh), followed by the five cycle address inputs of the target page. If the target pattern for  
the destination page is not changed compared to the last page, the program confirm can be issued (10h) without any data input  
cycle, as described in Figure 3.1.  
Document Number: 002-00499 Rev. *N  
Page 18 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 3.1 Page Reprogram  
As defined for Page  
Program  
A
Din  
D0  
Din  
D1  
Din  
Din  
Dn  
CMD  
10h  
CMD  
ADDR ADDR  
ADDR  
R3  
ADDR  
ADDR  
R2  
Cycle Type  
I/Ox  
tADL  
00h  
C2  
. . .  
R1  
C1  
tWB  
tPROG  
SR[6]  
Page N  
A
Cycle Type  
Dout  
E1  
CMD  
10h  
CMD  
ADDR ADDR  
ADDR  
R3  
CMD  
70h  
ADDR  
R2  
ADDR  
C1  
8Bh  
C2  
R1  
I/Ox  
tWB  
tPROG  
SR[6]  
FAIL !  
Page M  
On the other hand, if the pattern bound for the target page is different from that of the previous page, data in cycles can be issued  
before program confirm ‘10h’, as described in Figure 3.2.  
Figure 3.2 Page Reprogram with Data Manipulation  
As defined for Page  
A
Program  
Din  
D0  
Din  
D1  
Din  
Din  
Dn  
CMD  
10h  
CMD  
70h  
Dout  
E1  
CMD  
80h  
ADDR  
C1  
ADDR ADDR ADDR  
ADDR  
R3  
Cycle Type  
IOx  
tADL  
. . .  
C2  
R1  
R2  
tWB  
tPROG  
SR[6]  
FAIL !  
Page N  
A
Cycle Type  
CMD  
8Bh  
ADDR ADDR ADDR ADDR ADDR  
Din  
D0  
Din  
D1  
Din  
Din  
Dn  
CMD  
10h  
tADL  
I/Ox  
. . .  
C1  
C2  
R1  
R2  
R3  
tWB  
tPROG  
SR[6]  
Page M  
The device supports Random Data Input within a page. The column address of next data, which will be entered, may be changed to  
the address which follows the Random Data Input command (85h). Random Data Input may be operated multiple times regardless  
of how many times it is done in a page.  
The Program Confirm command (10h) initiates the re-programming process. The internal write state controller automatically  
executes the algorithms and controls timings necessary for program and verify, thereby freeing the system controller for other tasks.  
Once the program process starts, the Read Status Register command may be issued to read the Status Register. The system  
controller can detect the completion of a program cycle by monitoring the R/B# output, or the Status bit (I/O6) of the Status Register.  
Only the Read Status command and Reset command are valid when programming is in progress. When the Page Program is  
Document Number: 002-00499 Rev. *N  
Page 19 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
complete, the Write Status Bit (I/O0) may be checked. The internal write verify detects only errors for 1’s that are not successfully  
programmed to 0’s. The command register remains in Read Status command mode until another valid command is written to the  
command register.  
The Page Reprogram must be issued in the same plane as the Page Program that failed. In order to program the data to a different  
plane, use the Page Program operation instead. The Multiplane Page Reprogram can re-program two pages in parallel, one per  
plane. The Multiplane Page Reprogram operation is performed after a failed Multiplane Page Program operation. The command  
sequence is very similar to Figure 6.13, Multiplane Page Program on page 46, except that it requires the Page Reprogram  
Command (8Bh) instead of 80h and 81h.  
If a Page Reprogram operation is interrupted by hardware reset, power failure or other means, the host must ensure that the  
interrupted page is not used for further reading or programming operations until the next uninterrupted block erase is complete.  
3.5  
Block Erase  
The Block Erase operation is done on a block basis. Block address loading is accomplished in three cycles (two cycles for  
S34ML01G2) initiated by an Erase Setup command (60h). Only the block address bits are valid while the page address bits are  
ignored.  
The Erase Confirm command (D0h) following the block address loading initiates the internal erasing process. This two-step  
sequence of setup followed by the execution command ensures that memory contents are not accidentally erased due to external  
noise conditions.  
At the rising edge of WE# after the erase confirm command input, the internal write controller handles erase and erase verify. Once  
the erase process starts, the Read Status Register commands (70h or 78h) may be issued to read the Status Register.  
The system controller can detect the completion of an erase by monitoring the R/B# output, or the Status bit  
(I/O6) of the Status Register. Only the Read Status commands (70h or 78h) and Reset command are valid while erasing is in  
progress. When the erase operation is completed, the Write Status Bit (I/O0) may be checked. Figure 6.15 on page 47 details the  
sequence.  
If a Block Erase operation is interrupted by hardware reset, power failure or other means, the host must ensure that the interrupted  
block is erased under continuous power conditions before that block can be trusted for further programming and reading operations.  
3.6  
Multiplane Block Erase — S34ML02G2 and S34ML04G2  
Multiplane Block Erase allows the erase of two blocks in parallel, one block per memory plane.  
The Block erase setup command (60h) must be repeated two times, followed by 1st and 2nd block address respectively (3 cycles  
each). As for block erase, D0h command makes embedded operation start. In this case, multiplane erase does not need any  
Dummy Busy Time between 1st and 2nd block insertion. See Table 5.8 on page 38 for performance information.  
For the Multiplane Block Erase operation, the address of the first block must be within the first plane  
(PLA0 = 0) and the address of the second block in the second plane (PLA0 = 1). See Figure 6.16 on page 48 for a description of the  
legacy protocol. In this case, the block address bits for the first plane are all zero and the second address issued selects the block  
for both planes. Figure 6.17 on page 48 describes the sequences using the ONFI protocol. For both addresses issued in this  
protocol, the block address bits must be the same except for the bit(s) that select the plane.  
The user can check operation status by monitoring R/B# pin or reading the Status Register (command 70h or 78h). The Read Status  
Register command is also available during Dummy Busy time (tDBSY). In case of failure in either erase, the fail bit of the Status  
Register will be set. Refer to Section 3.7.2 on page 21 for further information.  
If a Multiplane Block Erase operation is interrupted by hardware reset, power failure or other means, the host must ensure that the  
interrupted blocks are erased under continuous power conditions before those blocks can be trusted for further programming and  
reading operations.  
Document Number: 002-00499 Rev. *N  
Page 20 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
3.7  
Copy Back Program  
The copy back feature is intended to quickly and efficiently rewrite data stored in one page without utilizing an external memory.  
Since the time-consuming cycles of serial access and re-loading cycles are removed, the system performance is greatly improved.  
The benefit is especially obvious when a portion of a block needs to be updated and the rest of the block also needs to be copied to  
the newly assigned free block. The operation for performing a copy back is a sequential execution of page-read (without mandatory  
serial access) and Copy Back Program with the address of destination page. A read operation with the ‘35h’ command and the  
address of the source page moves the whole page of data into the internal data register. As soon as the device returns to the Ready  
state, optional data read-out is allowed by toggling RE# (see Figure 6.18 on page 49), or the Copy Back Program command (85h)  
with the address cycles of the destination page may be written. The Program Confirm command (10h) is required to actually begin  
programming.  
The source and the destination pages in the Copy Back Program sequence must belong to the same device plane (same PLA0 for  
S34ML02G2 and S34ML04G2). Copy Back Read and Copy Back Program for a given plane must be between odd address pages or  
between even address pages for the device to meet the program time (tPROG) specification. Copy Back Program may not meet this  
specification when copying from an odd address page (source page) to an even address page (target page) or from an even  
address page (source page) to an odd address page (target page).  
The data input cycle for modifying a portion or multiple distinct portions of the source page is allowed as shown in Figure 6.19  
on page 49.  
If a Copy Back Program operation is interrupted by hardware reset, power failure or other means, the host must ensure that the  
interrupted page is not used for further reading or programming operations until the next uninterrupted block erase is complete.  
3.7.1  
Multiplane Copy Back Program — S34ML02G2 and S34ML04G2  
The device supports Multiplane Copy Back Program with exactly the same sequence and limitations as the Page Program.  
Multiplane Copy Back Program must be preceded by two single page Copy Back Read command sequences (1st page must be  
read from the 1st plane and 2nd page from the 2nd plane).  
Multiplane Copy Back cannot cross plane boundaries — the contents of the source page of one device plane can be copied only to  
a destination page of the same plane.  
The Multiplane Copy Back Program sequence represented in Figure 6.20 on page 50 shows the legacy protocol. In this case, the  
block address bits for the first plane are all zero and the second address issued selects the block for both planes. Figure 6.21  
on page 51 describes the sequence using the ONFI protocol. For both addresses issued in this protocol, the block address bits must  
be the same except for the bit(s) that select the plane.  
If a Multiplane Copy Back Program operation is interrupted by hardware reset, power failure or other means, the host must ensure  
that the interrupted pages are not used for further reading or programming operations until the next uninterrupted block erases are  
complete for the applicable blocks.  
3.7.2  
Special Read for Copy Back — S34ML02G2 and S34ML04G2  
The S34ML02G2 and S34ML04G2 devices support Special Read for Copy Back. If Copy Back Read (described in Section 3.7 and  
Section 3.7.1 on page 21) is triggered with confirm command ‘36h’ instead ‘35h’, Copy Back Read from target page(s) will be  
executed with an increased internal (VPASS) voltage.  
This special feature is used in order to minimize the number of read errors due to over-program or read disturb — it shall be used  
only if ECC read errors have occurred in the source page using Page Read or Copy Back Read sequences.  
Excluding the Copy Back Read confirm command, all other features described in Section 3.7 and Section 3.7.1 for standard copy  
back remain valid (including the figures referred to in those sections).  
Document Number: 002-00499 Rev. *N  
Page 21 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
3.8  
Read Status Register  
The Status Register is used to retrieve the status value for the last operation issued. After writing 70h command to the command  
register, a read cycle outputs the content of the Status Register to the I/O pins on the falling edge of CE# or RE#, whichever occurs  
last. This two-line control allows the system to poll the progress of each device in multiple memory connections even when R/B#  
pins are common-wired. Refer to Section 3.2 on page 23 for specific Status Register definition, and to Figure 6.22 on page 51 for  
timings.  
If the Read Status Register command is issued during multiplane operations then Status Register polling will return the combined  
status value related to the outcome of the operation in the two planes according to the following table:  
Status Register Bit  
Bit 0, Pass/Fail  
Composite Status Value  
OR  
OR  
Bit 1, Cache Pass/Fail  
In other words, the Status Register is dynamic; the user is not required to toggle RE# / CE# to update it.  
The command register remains in Status Read mode until further commands are issued. Therefore, if the Status Register is read  
during a random read cycle, the read command (00h) must be issued before starting read cycles.  
Note: The Read Status Register command shall not be used for concurrent operations in multi-die stack configurations (single CE#).  
“Read Status Enhanced” shall be used instead.  
3.9  
Read Status Enhanced — S34ML02G2 and S34ML04G2  
Read Status Enhanced is used to retrieve the status value for a previous operation in the specified plane.  
Figure 6.23 on page 52 defines the Read Status Enhanced behavior and timings. The plane and die address must be specified in  
the command sequence in order to retrieve the status of the die and the plane of interest.  
Refer to Table 3.2 for specific Status Register definitions. The command register remains in Status Read mode until further  
commands are issued.  
The Status Register is dynamic; the user is not required to toggle RE# / CE# to update it.  
3.10 Read Status Register Field Definition  
Table 3.2 below lists the meaning of each bit of the Read Status Register and Read Status Enhanced (S34ML02G2 and  
S34ML04G2).  
Document Number: 002-00499 Rev. *N  
Page 22 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Table 3.2 Status Register Coding  
Page  
Program /  
Page  
Cache  
Program /  
Cache  
ID  
Block Erase  
Read  
Read Cache  
Coding  
Reprogram  
Reprogram  
N Page  
Pass: 0  
Fail: 1  
0
1
Pass / Fail  
NA  
Pass / Fail  
NA  
NA  
NA  
NA  
NA  
Pass / Fail  
Pass / Fail  
N - 1 Page  
Pass: 0  
Fail: 1  
2
3
4
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
Internal Data Operation  
Active: 0  
5
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Ready / Busy  
Idle: 1  
Ready / Busy  
Busy: 0  
Ready: 1  
6
7
Ready / Busy  
Write Protect  
Ready / Busy  
Write Protect  
Ready / Busy  
NA  
Ready / Busy  
NA  
Ready / Busy  
Write Protect  
Protected: 0  
Not Protected: 1  
3.11 Reset  
The Reset feature is executed by writing FFh to the command register. If the device is in the Busy state during random read,  
program, or erase mode, the Reset operation will abort these operations. The contents of memory cells being altered are no longer  
valid, as the data may be partially programmed or erased. The command register is cleared to wait for the next command, and the  
Status Register is cleared to value E0h when WP# is high or value 60h when WP# is low. If the device is already in reset state a new  
Reset command will not be accepted by the command register. The R/B# pin transitions to low for tRST after the Reset command is  
written. Refer to Figure 6.24 on page 52 for further details. The Status Register can also be read to determine the status of a Reset  
operation.  
3.12 Read Cache  
Read Cache can be used to increase the read operation speed, as defined in Section 3.1 on page 17, and it cannot cross a block  
boundary. As soon as the user starts to read one page, the device automatically loads the next page into the cache register. Serial  
data output may be executed while data in the memory is read into the cache register. Read Cache is initiated by the Page Read  
sequence (00-30h) on a page M.  
After random access to the first page is complete (R/B# returned to high, or Read Status Register I/O6 switches to high), two  
command sequences can be used to continue read cache:  
Read Cache (command ‘31h’ only): once the command is latched into the command register (see Figure 6.26 on page 53),  
device goes busy for a short time (tCBSYR), during which data of the first page is transferred from the data register to the cache  
register. At the end of this phase, the cache register data can be output by toggling RE# while the next page (page address M+1)  
is read from the memory array into the data register.  
Read Cache Enhanced (sequence ‘00h’ <page N address> ‘31’): once the command is latched into the command register (see  
Figure 6.27 on page 54), device goes busy for a short time (tCBSYR), during which data of the first page is transferred from the  
data register to the cache register. At the end of this phase, cache register data can be output by toggling RE# while page N is  
read from the memory array into the data register.  
Subsequent pages are read by issuing additional Read Cache or Read Cache Enhanced command sequences. If serial data output  
time of one page exceeds random access time (tR), the random access time of the next page is hidden by data downloading of the  
previous page.  
Document Number: 002-00499 Rev. *N  
Page 23 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
On the other hand, if 31h is issued prior to completing the random access to the next page, the device will stay busy as long as  
needed to complete random access to this page, transfer its contents into the cache register, and trigger the random access to the  
following page.  
To terminate the Read Cache operation, 3Fh command should be issued (see Figure 6.28 on page 54). This command transfers  
data from the data register to the cache register without issuing next page read.  
During the Read Cache operation, the device doesn't allow any other command except for 00h, 31h, 3Fh, Read SR, or Reset (FFh).  
To carry out other operations, Read Cache must be terminated by the Read Cache End command (3Fh) or the device must be reset  
by issuing FFh.  
Read Status command (70h) may be issued to check the status of the different registers and the busy/ready status of the cached  
read operations.  
The Cache-Busy status bit I/O6 indicates when the cache register is ready to output new data.  
The status bit I/O5 can be used to determine when the cell reading of the current data register contents is complete.  
Note: The Read Cache and Read Cache End commands reset the column counter, thus, when RE# is toggled to output the data of  
a given page, the first output data is related to the first byte of the page (column address 00h). Random Data Output command can  
be used to switch column address.  
3.13 Cache Program  
Cache Program can improve the program throughput by using the cache register. The Cache Program operation cannot cross a  
block boundary. The cache register allows new data to be input while the previous data that was transferred to the data register is  
programmed into the memory array.  
After the serial data input command (80h) is loaded to the command register, followed by five cycles of address, a full or partial page  
of data is latched into the cache register.  
Once the cache write command (15h) is loaded to the command register, the data in the cache register is transferred into the data  
register for cell programming. At this time the device remains in the Busy state for a short time (tCBSYW). After all data of the cache  
register is transferred into the data register, the device returns to the Ready state and allows loading the next data into the cache  
register through another Cache Program command sequence (80h-15h).  
The Busy time following the first sequence 80h - 15h equals the time needed to transfer the data from the cache register to the data  
register. Cell programming the data of the data register and loading of the next data into the cache register is consequently  
processed through a pipeline model.  
In case of any subsequent sequence 80h - 15h, transfer from the cache register to the data register is held off until cell programming  
of current data register contents is complete; till this moment the device will stay in a busy state (tCBSYW).  
Read Status commands (70h or 78h) may be issued to check the status of the different registers, and the pass/fail status of the  
cached program operations.  
The Cache-Busy status bit I/O6 indicates when the cache register is ready to accept new data.  
The status bit I/O5 can be used to determine when the cell programming of the current data register contents is complete.  
The Cache Program error bit I/O1 can be used to identify if the previous page (page N-1) has been successfully programmed or  
not in a Cache Program operation. The status bit is valid upon I/O6 status bit changing to 1.  
The error bit I/O0 is used to identify if any error has been detected by the program/erase controller while programming page N.  
The status bit is valid upon I/O5 status bit changing to 1.  
I/O1 may be read together with I/O0.  
If the system monitors the progress of the operation only with R/B#, the last page of the target program sequence must be  
programmed with Page Program Confirm command (10h). If the Cache Program command (15h) is used instead, the status bit I/O5  
must be polled to find out if the last programming is finished before starting any other operation. See Table 3.2 on page 23 and  
Figure 6.29 on page 55 for more details.  
If a Cache Program operation is interrupted by hardware reset, power failure or other means, the host must ensure that the  
interrupted pages are not used for further reading or programming operations until the next uninterrupted block erases are complete  
for the applicable blocks.  
Document Number: 002-00499 Rev. *N  
Page 24 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
3.14 Multiplane Cache Program — S34ML02G2 and S34ML04G2  
The Multiplane Cache Program enables high program throughput by programming two pages in parallel, while exploiting the data  
and cache registers of both planes to implement cache.  
The command sequence can be summarized as follows:  
Serial Data Input command (80h), followed by the five cycle address inputs and then serial data for the 1st page. Address for this  
page must be within 1st plane (PLA0 = 0). The data of 1st page other than those to be programmed do not need to be loaded. The  
device supports Random Data Input exactly like Page Program operation.  
The Dummy Page Program Confirm command (11h) stops 1st page data input and the device becomes busy for a short time  
(tDBSY).  
Once device returns to ready again, 81h command must be issued, followed by 2nd page address  
(5 cycles) and its serial data input. Address for this page must be within 2nd plane (PLA0 = 1). The data of 2nd page other than  
those to be programmed do not need to be loaded.  
Cache Program confirm command (15h). Once the cache write command (15h) is loaded to the command register, the data in the  
cache registers is transferred into the data registers for cell programming. At this time the device remains in the Busy state for a  
short time (tCBSYW). After all data from the cache registers are transferred into the data registers, the device returns to the Ready  
state, and allows loading the next data into the cache register through another Cache Program command sequence.  
The sequence 80h-...- 11h...-...81h...-...15h can be iterated, and each time the device will be busy for the tCBSYW time needed to  
complete programming the current data register contents, and transferring the new data from the cache registers. The sequence to  
end Multiplane Cache Program is 80h-...- 11h...-...81h...-...10h.  
The Multiplane Cache Program is available only within two paired blocks in separate planes. Figure 6.30 on page 56 shows the  
legacy protocol for the Multiplane Cache Program operation. In this case, the block address bits for the first plane are all zero and  
the second address issued selects the block for both planes. Figure 6.31 on page 57 shows the ONFI protocol for the Multiplane  
Cache Program operation. For both addresses issued in this protocol, the block address bits must be the same except for the bit(s)  
that select the plane.  
The user can check operation status by R/B# pin or Read Status Register commands (70h or 78h). If the user opts for 70h, Read  
Status Register will provide “global” information about the operation in the two planes.  
I/O6 indicates when both cache registers are ready to accept new data.  
I/O5 indicates when the cell programming of the current data registers is complete.  
I/O1 identifies if the previous pages in both planes (pages N-1) have been successfully programmed or not. This status bit is valid  
upon I/O6 status bit changing to 1.  
I/O0 identifies if any error has been detected by the program/erase controller while programming the two pages N. This status bit  
is valid upon I/O5 status bit changing to 1.  
See Table 3.2 on page 23 for more details.  
If the system monitors the progress of the operation only with R/B#, the last pages of the target program sequence must be  
programmed with Page Program Confirm command (10h). If the Cache Program command (15h) is used instead, the status bit I/O5  
must be polled to find out if the last programming is finished before starting any other operation. Refer to Section 3.8 on page 22 for  
further information.  
If a Multiplane Cache Program operation is interrupted by hardware reset, power failure or other means, the host must ensure that  
the interrupted pages are not used for further reading or programming operations until the next uninterrupted block erases are  
complete for the applicable blocks.  
3.15 Read ID  
The device contains a product identification mode, initiated by writing 90h to the command register, followed by an address input of  
00h.  
Note: If you want to execute Read Status command (0x70) after Read ID sequence, you should input dummy command (0x00)  
before Read Status command (0x70).  
Document Number: 002-00499 Rev. *N  
Page 25 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
For the S34ML02G2 and S34ML04G2 devices, five read cycles sequentially output the manufacturer code (01h), and the device  
code and 3rd, 4th, and 5th cycle ID, respectively. For the S34ML01G2 device, four read cycles sequentially output the manufacturer  
code (01h), and the device code and 80h, 4th cycle ID, respectively. The command register remains in Read ID mode until further  
commands are issued to it. Figure 6.32 on page 58 shows the operation sequence, while Table 3.3 to Table 3.8 explain the byte  
meaning.  
Table 3.3 Read ID for Supported Configurations  
Density  
1 Gb  
2 Gb  
4 Gb  
1 Gb  
2 Gb  
4 Gb  
Org  
V
1st  
01h  
01h  
01h  
01h  
01h  
01h  
2nd  
F1h  
3rd  
80h  
90h  
90h  
80h  
90h  
90h  
4th  
1Dh  
95h  
95h  
5Dh  
D5h  
D5h  
5th  
CC  
×8  
DAh  
DCh  
C1h  
CAh  
CCh  
46h  
56h  
3.3V  
×16  
46h  
56h  
Table 3.4 Read ID Bytes  
Device Identifier Byte  
Description  
1st  
2nd  
3rd  
4th  
Manufacturer Code  
Device Identifier  
Internal chip number, cell type, etc.  
Page Size, Block Size, Spare Size, Serial Access Time, Organization  
ECC, Multiplane information  
5th (S34ML02G2, S34ML04G2)  
3rd ID Data  
Table 3.5 Read ID Byte 3 Description  
Description  
I/O7  
I/O6  
I/O5 I/O4  
I/O3 I/O2  
I/O1 I/O0  
1
2
4
8
0 0  
0 1  
1 0  
1 1  
Internal Chip Number  
2-level cell  
4-level cell  
8-level cell  
16-level cell  
0 0  
0 1  
1 0  
1 1  
Cell type  
1
2
4
8
0 0  
0 1  
1 0  
11  
Number of simultaneously  
programmed pages  
Not supported  
Supported  
0
1
Interleave program  
Between multiple chips  
Not supported  
Supported  
0
1
Cache Program  
Document Number: 002-00499 Rev. *N  
Page 26 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
4th ID Data  
Table 3.6 Read ID Byte 4 Description — S34ML01G2  
Description  
I/O7  
I/O6  
I/O5 I/O4  
I/O3  
I/O2  
I/O1 I/O0  
1 kB  
2 kB  
4 kB  
8 kB  
0 0  
0 1  
1 0  
1 1  
Page Size  
(without spare area)  
64 kB  
128 kB  
256 kB  
512 kB  
0 0  
0 1  
1 0  
1 1  
Block Size  
(without spare area)  
8
0
1
Spare Area Size  
(byte / 512 byte)  
16  
45 ns  
25 ns  
0
0
1
1
0
1
0
1
Serial Access Time  
Organization  
Reserved  
Reserved  
×8  
0
1
×16  
Table 3.7 Read ID Byte 4 Description — S34ML02G2 and S34ML04G2  
Description  
I/O7  
I/O6  
I/O5 I/O4  
I/O3  
I/O2  
I/O1 I/O0  
1 kB  
2 kB  
4 kB  
8 kB  
0 0  
0 1  
1 0  
1 1  
Page Size  
(without spare area)  
64 kB  
128 kB  
256 kB  
512 kB  
0 0  
0 1  
1 0  
1 1  
Block Size  
(without spare area)  
16  
32  
0
1
Spare Area Size  
(byte / 512 byte)  
50 ns / 30 ns  
25 ns  
0
1
0
1
0
0
1
1
Serial Access Time  
Organization  
Reserved  
Reserved  
×8  
0
1
×16  
Document Number: 002-00499 Rev. *N  
Page 27 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
5th ID Data  
Table 3.8 Read ID Byte 5 Description — S34ML02G2 and S34ML04G2  
Description  
I/O7  
I/O6 I/O5 I/O4  
I/O3 I/O2  
I/O1 I/O0  
1 bit / 512 bytes  
2 bit / 512 bytes  
4 bit / 512 bytes  
8 bit / 512 bytes  
0 0  
0 1  
1 0  
1 1  
ECC Level  
1
2
4
8
0 0  
0 1  
1 0  
1 1  
Plane Number  
64 Mb  
128 Mb  
256 Mb  
512 Mb  
1 Gb  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
Plane Size  
(without spare area)  
2 Gb  
4 Gb  
Reserved  
0
3.16 Read ID2  
The device contains an alternate identification mode, initiated by writing 30h-65h-00h to the command register, followed by address  
inputs, followed by command 30h. The address for S34ML01G2 will be  
00h-02h-02h-00h. The address for S34ML02G2 and S34ML04G2 will be 00h-02h-02h-00h-00h. The ID2 data can then be read from  
the device by pulsing RE#. The command register remains in Read ID2 mode until further commands are issued to it. Figure 6.33  
on page 58 shows the Read ID2 command sequence. Read ID2 values are all 0xFs, unless specific values are requested when  
ordering.  
3.17 Read ONFI Signature  
To retrieve the ONFI signature, the command 90h together with an address of 20h shall be entered (i.e. it is not valid to enter an  
address of 00h and read 36 bytes to get the ONFI signature). The ONFI signature is the ASCII encoding of 'ONFI' where 'O' = 4Fh,  
'N' = 4Eh, 'F' = 46h, and 'I' = 49h. Reading beyond four bytes yields indeterminate values. Figure 6.34 on page 59 shows the  
operation sequence.  
Document Number: 002-00499 Rev. *N  
Page 28 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
3.18 Read Parameter Page  
The device supports the ONFI Read Parameter Page operation, initiated by writing ECh to the command register, followed by an  
address input of 00h. The host may monitor the R/B# pin or wait for the maximum data transfer time (tR) before reading the  
Parameter Page data. The command register remains in Parameter Page mode until further commands are issued to it. If the Status  
Register is read to determine when the data is ready, the Read Command (00h) must be issued before starting read cycles.  
Figure 6.35 on page 59 shows the operation sequence, while Table 3.9 explains the parameter fields.  
For x16 devices, the upper eight I/Os are not used and are 0xFF.  
Note: For 32 nm Cypress NAND, for a particular condition, the Read Parameter Page command does not give the correct values. To  
overcome this issue, the host must issue a Reset command before the Read Parameter Page command. Issuance of Reset before  
the Read Parameter Page command will provide the correct values and will not output 00h values.  
Table 3.9 Parameter Page Description (Sheet 1 of 3)  
Byte  
0-3  
O/M  
M
Description  
Values  
4Fh, 4Eh, 46h, 49h  
02h, 00h  
Revision Information and Features Block  
Parameter page signature  
Byte 0: 4Fh, “O”  
Byte 1: 4Eh, “N”  
Byte 2: 46h, “F”  
Byte 3: 49h, “I”  
Revision number  
2-15  
Reserved (0)  
4-5  
M
1
0
1 = supports ONFI version 1.0  
Reserved (0)  
Features supported  
S34ML01G200 (×8): 14h, 00h  
S34ML02G200 (×8): 1Ch, 00h  
S34ML04G200 (×8): 1Ch, 00h  
S34ML01G204 (×16): 15h, 00h  
S34ML02G204 (×16): 1Dh, 00h  
S34ML04G204 (×16): 1Dh, 00h  
5-15  
Reserved (0)  
4
3
2
1
0
1 = supports odd to even page Copyback  
1 = supports interleaved operations  
1 = supports non-sequential page programming  
1 = supports multiple LUN operations  
1 = supports 16-bit data bus width  
6-7  
8-9  
M
M
Optional commands supported  
6-15  
Reserved (0)  
5
4
3
2
1
0
1 = supports Read Unique ID (contact factory)  
1 = supports Copyback  
1 = supports Read Status Enhanced  
1 = supports Get Features and Set Features  
1 = supports Read Cache commands  
1 = supports Page Cache Program command  
S34ML01G2: 33h, 00h  
S34ML02G2: 3Bh, 00h  
S34ML04G2: 3Bh, 00h  
10-31  
32-43  
Reserved (0)  
00h  
Manufacturer Information Block  
53h, 50h, 41h, 4Eh, 53h, 49h,  
4Fh, 4Eh, 20h, 20h, 20h, 20h  
M
Device manufacturer (12 ASCII characters)  
S34ML01G2: 53h, 33h, 34h,  
4Dh, 4Ch, 30h, 31h, 47h, 32h,  
20h, 20h, 20h, 20h, 20h, 20h,  
20h, 20h, 20h, 20h, 20h  
S34ML02G2: 53h, 33h, 34h,  
4Dh, 4Ch, 30h, 32h, 47h, 32h,  
20h, 20h, 20h, 20h, 20h, 20h,  
20h, 20h, 20h, 20h, 20h  
44-63  
M
Device model (20 ASCII characters)  
S34ML04G2: 53h, 33h, 34h,  
4Dh, 4Ch, 30h, 34h, 47h, 32h,  
20h, 20h, 20h, 20h, 20h, 20h,  
20h, 20h, 20h, 20h, 20h  
64  
M
O
JEDEC manufacturer ID  
Date code  
01h  
00h  
00h  
65-66  
67-79  
Reserved (0)  
Document Number: 002-00499 Rev. *N  
Page 29 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Table 3.9 Parameter Page Description (Sheet 2 of 3)  
Byte  
O/M  
Description  
Values  
Memory Organization Block  
80-83  
84-85  
M
M
Number of data bytes per page  
00h, 08h, 00h, 00h  
S34ML01G2: 40h, 00h  
S34ML02G2: 80h, 00h  
S34ML04G2: 80h, 00h  
Number of spare bytes per page  
86-89  
90-91  
92-95  
M
M
M
Number of data bytes per partial page  
Number of spare bytes per partial page  
Number of pages per block  
00h, 00h, 00h, 00h  
00h, 00h  
40h, 00h, 00h, 00h  
S34ML01G2: 00h, 04h, 00h, 00h  
S34ML02G2: 00h, 08h, 00h, 00h  
S34ML04G2: 00h, 10h, 00h, 00h  
96-99  
100  
M
M
M
M
M
Number of blocks per logical unit (LUN)  
Number of logical units (LUNs)  
Number of address cycles  
01h  
S34ML01G2: 22h  
S34ML02G2: 23h  
S34ML04G2: 23h  
101  
4-7  
0-3  
Column address cycles  
Row address cycles  
102  
Number of bits per cell  
01h  
S34ML01G2: 14h, 00h  
S34ML02G2: 28h, 00h  
S34ML04G2: 50h, 00h  
103-104  
Bad blocks maximum per LUN  
105-106  
107  
M
M
M
M
Block endurance  
01h, 05h  
01h  
Guaranteed valid blocks at beginning of target  
Block endurance for guaranteed valid blocks  
Number of programs per page  
108-109  
110  
01h, 03h  
04h  
Partial programming attributes  
5-7  
4
Reserved  
1 = partial page layout is partial page data followed by  
partial page spare  
111  
M
00h  
1-3  
0
Reserved  
1 = partial page programming has constraints  
112  
113  
M
M
Number of bits ECC correctability  
04h  
S34ML01G2: 00h  
S34ML02G2: 01h  
S34ML04G2: 01h  
Number of interleaved address bits  
4-7  
0-3  
Reserved (0)  
Number of interleaved address bits  
Interleaved operation attributes  
4-7  
3
2
1
0
Reserved (0)  
S34ML01G2: 00h  
S34ML02G2: 04h  
S34ML04G2: 04h  
Address restrictions for program cache  
1 = program cache supported  
1 = no block address restrictions  
Overlapped / concurrent interleaving support  
114  
O
115-127  
128  
Reserved (0)  
00h  
0Ah  
Electrical Parameters Block  
M
M
I/O pin capacitance  
Timing mode support  
6-15  
Reserved (0)  
5
4
3
2
1
0
1 = supports timing mode 5  
1 = supports timing mode 4  
1 = supports timing mode 3  
1 = supports timing mode 2  
1 = supports timing mode 1  
1 = supports timing mode 0, shall be 1  
129-130  
1Fh, 00h  
Document Number: 002-00499 Rev. *N  
Page 30 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Table 3.9 Parameter Page Description (Sheet 3 of 3)  
Byte  
O/M  
Description  
Values  
Program cache timing mode support  
6-15  
Reserved (0)  
5
4
3
2
1
0
1 = supports timing mode 5  
1 = supports timing mode 4  
1 = supports timing mode 3  
1 = supports timing mode 2  
1 = supports timing mode 1  
1 = supports timing mode 0  
131-132  
O
1Fh, 00h  
133-134  
135-136  
M
M
t
t
Maximum page program time (µs)  
Maximum block erase time (µs)  
BCh, 02h  
10h, 27h  
PROG  
BERS  
S34ML01G2: 19h, 00h  
S34ML02G2: 1Eh, 00h  
S34ML04G2: 1Eh, 00h  
137-138  
M
M
t
t
Maximum page read time (µs)  
R
139-140  
141-163  
Minimum Change Column setup time (ns)  
C8h, 00h  
00h  
CCS  
Reserved (0)  
Vendor Block  
164-165  
166-253  
M
M
Vendor specific Revision number  
Vendor specific  
00h  
00h  
S34ML01G200 (×8): 68h, 4Eh  
S34ML02G200 (×8): 56h, EAh  
S34ML04G200 (×8): 28h, A1h  
S34ML01G204 (×16): 1Ah, 38h  
S34ML02G204 (×16): 24h, 9Ch  
S34ML04G204 (×16): 5Ah, D7h  
254-255  
Integrity CRC  
Redundant Parameter Pages  
256-511  
512-767  
768+  
M
M
O
Value of bytes 0-255  
Value of bytes 0-255  
Repeat Value of bytes 0-255  
Repeat Value of bytes 0-255  
FFh  
Additional redundant parameter pages  
Note:  
1. O” Stands for Optional, “M” for Mandatory.  
3.19 Read Unique ID (Contact Factory)  
The device supports the ONFI Read Unique ID function, initiated by writing EDh to the command register, followed by an address  
input of 00h. The host must monitor the R/B# pin or wait for the maximum data transfer time (tR) before reading the Unique ID data.  
The first sixteen bytes returned by the flash is a unique value. The next sixteen bytes returned are the bit-wise complement of the  
unique value. The host can verify the Unique ID was read correctly by performing an XOR of the two values. The result should be all  
ones. The command register remains in Unique ID mode until further commands are issued to it. Figure 6.36 on page 60 shows the  
operation sequence, while Table 3.10 shows the Unique ID data contents. Cypress guarantees unique id support feature with a  
special model number shown in the OPN combination in Section 10., Ordering Information on page 69.  
Note: For 32nm Cypress NAND, for a particular condition, the Read Unique ID command does not give the correct values. To  
overcome this issue, the host must issue a Reset command before the Read Unique ID command. Issuance of Reset before the  
Read Unique ID command will provide the correct values and will not output 00h values.  
Table 3.10 Unique ID Data Description (Contact Factory) (Sheet 1 of 2)  
Byte  
0-15  
Description  
Unique ID  
16-31  
32-47  
48-63  
64-79  
80-95  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Document Number: 002-00499 Rev. *N  
Page 31 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Table 3.10 Unique ID Data Description (Contact Factory) (Sheet 2 of 2)  
Byte  
Description  
Unique ID  
96-111  
112-127  
128-143  
144-159  
160-175  
176-191  
192-207  
208-223  
224-239  
240-255  
256-271  
272-287  
288-303  
304-319  
320-335  
336-351  
352-367  
368-383  
384-399  
400-415  
416-431  
432-447  
448-463  
464-479  
480-495  
496-511  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Unique ID  
ID Complement  
Note:  
1. For 32 nm NAND, for a particular condition, if read unique id does not give the correct values, the host must issue a Reset command before the read unique id  
command. Issuance of Reset before the read unique id command will provide the correct values and will not output false values.  
3.20 One-Time Programmable (OTP) Entry  
The device contains a one-time programmable (OTP) area, which is accessed by writing 29h-17h-04h-19h to the command register.  
The device is then ready to accept Page Read and Page Program commands (refer to Page Read and Page Program on page 17).  
The OTP area is of a single erase block size (64 pages), and hence only row addresses between 00h and 3Fh are allowed. The host  
must issue the Reset command (refer to Reset on page 23) to exit the OTP area and access the normal flash array. The Block Erase  
command is not allowed in the OTP area. Refer to Figure 6.37 on page 60 for more detail on the OTP Entry command sequence.  
4. Signal Descriptions  
4.1  
Data Protection and Power On / Off Sequence  
The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector  
disables all functions whenever VCC is below about 1.8V.  
The power-up and power-down sequence is shown in Figure 6.38 on page 61.  
The Ready/Busy signal shall be valid within 100 µs after the power supplies have reached the minimum values (as specified on),  
and shall return to one within 5 ms (max).  
Document Number: 002-00499 Rev. *N  
Page 32 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
During this busy time, the device executes the initialization process (cam reading), and dissipates a current ICC0 (30 mA max), in  
addition, it disregards all commands excluding Read Status Register (70h).  
At the end of this busy time, the device defaults into “read setup”, thus if the user decides to issue a page read command, the 00h  
command may be skipped.  
The WP# pin provides hardware protection and is recommended to be kept at VIL during power-up and power-down. A recovery time  
of minimum 100 µs is required before the internal circuit gets ready for any command sequences as shown in Figure 6.38  
on page 61. The two-step command sequence for  
program/erase provides additional software protection.  
4.2  
Ready/Busy  
The Ready/Busy output provides a method of indicating the completion of a page program, erase, copyback, or read completion.  
The R/B# pin is normally high and goes to low when the device is busy (after a reset, read, program, or erase operation). It returns to  
high when the internal controller has finished the operation. The pin is an open-drain driver thereby allowing two or more R/B#  
outputs to be Or-tied. Because the pull-up resistor value is related to tr (R/B#) and the current drain during busy (ibusy), and output  
load capacitance is related to tf, an appropriate value can be obtained with the reference chart shown in Figure 4.1.  
For example, for a particular system with 20 pF of output load, tf from VCC to VOL at 10% to 90% will be 10 ns, whereas for a  
particular load of 50 pF, Cypress measured it to be 20 ns as shown in Figure 4.1.  
Figure 4.1 Ready/Busy Pin Electrical Application  
Rp  
ibusy  
V
CC  
V
Ready  
CC  
R/B#  
open drain output  
V
OH  
VOL : 0.4V, VOH : 2.4V  
C
L
V
OL  
Busy  
t
t
f
r
GND  
Device  
Rp vs. tr, tf and Rp vs. ibusy  
@
V = 3.3V, Ta = 25°C, CL=50 pF  
CC  
ibusy [A]  
3m  
300n  
Legend  
= tr (ns)  
2.4  
= ibusy (mA  
= tf (ns)  
)
200  
200n  
100n  
2m  
1m  
150  
0.8  
20  
1.2  
100  
50  
0.6  
20  
20  
20  
tr,tf [s]  
1k  
2k  
3k  
4k  
Rp (ohm)  
Rp value guidence  
Vcc (Max.) - VOL (Max.)  
3.2V  
Rp (min.) =  
=
I
OL +I  
L
8mA + ∑I  
L
where IL is the sum of the input currents of all devices tied to the R/B# pin.  
Rp(max) is determined by maximum permissible limit of tr.  
Document Number: 002-00499 Rev. *N  
Page 33 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
4.3  
Write Protect Operation  
Erase and program operations are aborted if WP# is driven low during busy time, and kept low for about  
100 ns. Switching WP# low during this time is equivalent to issuing a Reset command (FFh). The contents of memory cells being  
altered are no longer valid, as the data will be partially programmed or erased. The  
R/B# pin will stay low for tRST (similarly to Figure 6.24 on page 52). At the end of this time, the command register is ready to process  
the next command, and the Status Register bit I/O6 will be cleared to 1, while I/O7 value will be related to the WP# value. Refer to  
Table 3.2 on page 23 for more information on device status.  
Erase and program operations are enabled or disabled by setting WP# to high or low respectively, prior to issuing the setup  
commands (80h or 60h). The level of WP# shall be set tWW ns prior to raising the WE# pin for the set up command, as explained in  
Figure 6.39 and Figure 6.40 on page 61.  
Figure 4.2 WP# Low Timing Requirements during Program/Erase Command Sequence  
WE#  
I/O[7:0]  
WP#  
Valid  
Sequence  
Aborted  
> 100 ns  
Document Number: 002-00499 Rev. *N  
Page 34 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
5. Electrical Characteristics  
5.1  
Valid Blocks  
Table 5.1 Valid Blocks  
Device  
Symbol  
Min  
1004  
2008  
4016  
Typ  
Max  
1024  
2048  
4096  
Unit  
S34ML01G2  
S34ML02G2  
S34ML04G2  
N
N
N
Blocks  
Blocks  
Blocks  
VB  
VB  
VB  
5.2  
Absolute Maximum Ratings  
Table 5.2 Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
°C  
°C  
°C  
V
Ambient Operating Temperature (Industrial Temperature Range)  
Temperature under Bias  
T
-40 to +85  
-50 to +125  
-65 to +150  
-0.6 to +4.6  
-0.6 to +4.6  
A
T
BIAS  
Storage Temperature  
T
STG  
Input or Output Voltage  
V
(2)  
IO  
Supply Voltage  
V
V
CC  
Notes:  
1. Except for the rating “Operating Temperature Range”, stresses above those listed in the table Absolute Maximum Ratings “Absolute Maximum Ratings” may cause  
permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating  
sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.  
2. Minimum Voltage may undershoot to -2V during transition and for less than 20 ns during transitions.  
3. Maximum Voltage may overshoot to V +2.0V during transition and for less than 20 ns during transitions.  
CC  
5.3  
Recommended Operating Conditions  
Table 5.3 Recommended Operating Conditions  
Parameter  
Symbol  
Vcc  
Min  
2.7  
0
Typ  
3.3  
0
Max  
3.6  
0
Units  
Vcc Supply Voltage  
V
V
Ground Supply Voltage  
Vss  
5.4  
AC Test Conditions  
Table 5.4 AC Test Conditions  
Parameter  
Value  
0.0V to V  
5 ns  
Input Pulse Levels  
CC  
Input Rise and Fall Times  
Input and Output Timing Levels  
Output Load (2.7V - 3.6V)  
V
/ 2  
CC  
1 TTL Gate and CL = 50 pF  
Document Number: 002-00499 Rev. *N  
Page 35 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
5.5  
AC Characteristics  
Table 5.5 AC Characteristics  
Parameter  
Symbol  
Min  
10  
5
Max  
30  
25  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ALE to RE# delay  
ALE hold time  
t
AR  
t
ALH  
ALE setup time  
t
10  
70  
10  
5
ALS  
ADL  
Address to data loading time  
CE# low to RE# low  
CE# hold time  
t
t
CR  
t
CH  
CE# high to output High-Z  
CLE hold time  
t
5
CHZ  
t
t
CLH  
CLR  
CLE to RE# delay  
CLE setup time  
10  
10  
15  
10  
20  
5
t
CLS  
CE# access time  
t
(4)  
(3)  
CEA  
COH  
CE# high to output hold  
CE# high to ALE or CLE don't care  
CE# setup time  
t
t
CSD  
t
CS  
Data hold time  
t
DH  
Data setup time  
t
10  
DS  
Data transfer from cell to register  
(S34ML01G2)  
t
t
25  
30  
µs  
µs  
R
R
Data transfer from cell to register (S34ML02G2,  
S34ML04G2)  
Output High-Z to RE# low  
Read cycle time  
t
0
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IR  
t
RC  
RE# access time  
t
20  
REA  
REH  
RE# high hold time  
t
10  
15  
100  
RE# high to output hold  
RE# high to WE# low  
RE# high to output High-Z  
RE# low to output hold  
RE# pulse width  
t
(3)  
RHOH  
t
RHW  
t
100  
RHZ  
t
5
RLOH  
t
12  
20  
RP  
RR  
Ready to RE# low  
t
Device resetting time (Read/Program/Erase)  
WE# high to busy  
t
5/10/500  
100  
RST  
t
WB  
WC  
WH  
Write cycle time  
t
t
25  
10  
60  
200  
12  
100  
WE# high hold time  
WE# high to RE# low  
WE# high to RE# low for Random Data Output  
WE# pulse width  
t
WHR  
t
WHR2  
t
WP  
Write protect time  
t
WW  
Notes:  
1. The time to Ready depends on the value of the pull-up resistor tied to R/B# pin.  
2. If Reset Command (FFh) is written at Ready state, the device goes into Busy for maximum 5 µs.  
3. CE# low to high or RE# low to high can be at different times and produce three cases. Depending on which signal comes high first, either t  
or t  
will be met.  
COH  
RHOH  
4. During data output, t  
depends partly on t (CE# low to RE# low). If t exceeds the minimum value specified, then the maximum time for t  
may also be  
CEA  
CR  
CR  
CEA  
exceeded (t  
= t + t  
).  
CEA  
CR  
REA  
Document Number: 002-00499 Rev. *N  
Page 36 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
5.6  
DC Characteristics  
Table 5.6 DC Characteristics and Operating Conditions  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
FFh command input  
after power on  
50 per  
device  
Power On Current  
Operating Current  
I
I
mA  
CC0  
CC1  
t
= t (min)  
RC  
RC  
Sequential Read  
15  
30  
mA  
CE# = V , Iout = 0 mA  
IL  
Normal  
Cache  
15  
15  
15  
30  
30  
30  
mA  
mA  
mA  
Program  
Erase  
I
I
I
CC2  
CC3  
CC4  
CE#=V  
,
IH  
Standby Current, (TTL)  
1
mA  
µA  
WP#=0V/Vcc  
CE# = V -0.2,  
CC  
Standby Current, (CMOS)  
I
10  
50  
CC5  
WP# = 0/V  
CC  
Input Leakage Current  
Output Leakage Current  
Input High Voltage  
I
V
= 0 to V (max)  
10  
1.8  
±10  
±10  
µA  
µA  
V
LI  
IN  
CC  
I
V
= 0 to V (max)  
LO  
OUT CC  
V
V
x 0.8  
V
+ 0.3  
CC  
IH  
CC  
Input Low Voltage  
V
-0.3  
2.4  
V
x 0.2  
CC  
V
IL  
Output High Voltage  
Output Low Voltage  
Output Low Current (R/B#)  
V
I
= -400 µA  
= 2.1 mA  
OL  
V
OH  
OH  
V
I
0.4  
V
OL  
OL(R/B#)  
I
V
= 0.4V  
8
mA  
V
OL  
Erase and Program Lockout Voltage  
V
LKO  
Notes:  
1. All V pins, and V pins respectively, are shorted together.  
CC  
SS  
2. Values listed in this table refer to the complete voltage range for V and to a single device in case of device stacking.  
CC  
3. All current measurements are performed with a 0.1 µF capacitor connected between the V Supply Voltage pin and the V Ground pin.  
CC  
SS  
4. Standby current measurement can be performed after the device has completed the initialization process at power up. Refer to Section 4.1 for more details.  
5.7  
Pin Capacitance  
Table 5.7 Pin Capacitance (TA = 25°C, f=1.0 MHz)  
Parameter  
Symbol  
Test Condition  
Min  
Max  
10  
Unit  
pF  
Input  
C
V
= 0V  
= 0V  
IN  
IO  
IN  
Input / Output  
C
V
10  
pF  
IL  
Note:  
1. For the stacked devices version the Input is 10 pF x [number of stacked chips] and the Input/Output is 10 pF x [number of stacked chips].  
Document Number: 002-00499 Rev. *N  
Page 37 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
5.8  
Program / Erase Characteristics  
Table 5.8 Program / Erase Characteristics  
Parameter  
Description  
Min  
Typ  
300  
0.5  
5
Max  
700  
1
Unit  
µs  
Program Time / Multiplane Program Time (2)  
t
PROG  
Dummy Busy Time for Multiplane Program (S34ML02G2, S34ML04G2)  
Cache Program short busy time  
t
µs  
DBSY  
t
t
µs  
CBSYW  
PROG  
Number of partial Program Cycles in the same page  
Block Erase Time / Multiplane Erase Time (S34ML02G2, S34ML04G2)  
Block Erase Time (S34ML01G2)  
Main + Spare  
NOP  
3.5  
3
4
Cycle  
ms  
ms  
µs  
t
t
10  
10  
BERS  
BERS  
Read Cache busy time (S34ML01G2)  
t
3
t
t
CBSYR  
CBSYR  
R
R
Read Cache busy time (S34ML02G2, S34ML04G2)  
t
5
µs  
Notes:  
1. Typical program time is defined as the time within which more than 50% of the whole pages are programmed (V = 3.3V, 25°C).  
CC  
2. Copy Back Read and Copy Back Program for a given plane must be between odd address pages or between even address pages for the device to meet the program  
time (t ) specification. Copy Back Program may not meet this specification when copying from an odd address page (source page) to an even address page  
PROG  
(target page) or from an even address page (source page) to an odd address page (target page).  
Document Number: 002-00499 Rev. *N  
Page 38 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6. Timing Diagrams  
6.1  
Command Latch Cycle  
Command Input bus operation is used to give a command to the memory device. Commands are accepted with Chip Enable low,  
Command Latch Enable High, Address Latch Enable low, and Read Enable High and latched on the rising edge of Write Enable.  
Moreover for commands that starts a modify operation  
(write/ erase) the Write Protect pin must be high.  
Figure 6.1 Command Latch Cycle  
tCL  
S
tCLH  
tCH  
CLE  
CE#  
tCS  
tWP  
WE#  
tALS  
tALH  
ALE  
I/Ox  
tDS  
tDH  
Command  
= Don’t Care  
Document Number: 002-00499 Rev. *N  
Page 39 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.2  
Address Latch Cycle  
Address Input bus operation allows the insertion of the memory address. To insert the 27 (×8 Device) addresses needed to access  
the 1 Gb, four write cycles are needed. Addresses are accepted with Chip Enable low, Address Latch Enable High, Command Latch  
Enable low, and Read Enable High and latched on the rising edge of Write Enable. Moreover, for commands that start a modify  
operation (write/ erase) the Write Protect pin must be high.  
Figure 6.2 Address Latch Cycle  
tCLS  
CLE  
tCS  
tWC  
tWC  
tWC  
tWC  
CE#  
tWP  
tWP  
tWP  
tWP  
WE#  
ALE  
tWH  
tWH  
tWH  
tWH  
tALH  
tALS  
tALS tALH  
tALS tALH  
tALS tALH  
tALS tALH  
tDH  
tDH  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
tDS  
tDS  
Col.  
Add2  
Col.  
Add1  
Row.  
Add1  
Row.  
Add2  
Row.  
Add3  
I/Ox  
= Don’t Care  
6.3  
Data Input Cycle Timing  
Data Input bus operation allows the data to be programmed to be sent to the device. The data insertion is serially, and timed by the  
Write Enable cycles. Data is accepted only with Chip Enable low, Address Latch Enable low, Command Latch Enable low, Read  
Enable High, and Write Protect High and latched on the rising edge of Write Enable.  
Document Number: 002-00499 Rev. *N  
Page 40 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 6.3 Input Data Latch Cycle  
tCLH  
CLE  
CE#  
ALE  
tCH  
tWC  
tALS  
tWP  
tWP  
tWP  
WE#  
I/Ox  
tWH  
tDH  
tWH  
tDH  
tDH  
tDS  
Din  
tDS  
tDS  
Din final  
Din 0  
= Don’t Care  
6.4  
Data Output Cycle Timing (CLE=L, WE#=H, ALE=L, WP#=H)  
Figure 6.4 Data Output Cycle Timing  
tRC  
tCHZ  
CE#  
tREH  
tREA  
tREA  
tREA  
tCOH  
tRHZ  
RE#  
tRHZ  
tRHOH  
I/Ox  
Dout  
Dout  
Dout  
tRR  
R/B#  
Notes:  
1. Transition is measured at ± 200 mV from steady state voltage with load.  
2. This parameter is sampled and not 100% tested.  
3.  
t
starts to be valid when frequency is lower than 33 MHz.  
RHOH  
Document Number: 002-00499 Rev. *N  
Page 41 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.5  
Data Output Cycle Timing (EDO Type, CLE=L, WE#=H, ALE=L)  
Figure 6.5 Data Output Cycle Timing (EDO)  
tCR  
CE#  
tRC  
tCHZ  
tCOH  
RE#  
tRP  
tREH  
tRHZ  
tREA  
tREA  
tRLOH  
tRHOH  
I/Ox  
Dout  
Dout  
tRR  
R/B#  
= Don’t Care  
Notes:  
1. Transition is measured at ± 200 mV from steady state voltage with load.  
2. This parameter is sampled and not 100% tested.  
3.  
4.  
t
t
is valid when frequency is higher than 33 MHz.  
RLOH  
RHOH  
starts to be valid when frequency is lower than 33 MHz.  
6.6  
Page Read Operation  
Figure 6.6 Page Read Operation (Read One Page)  
CLE  
tCLR  
CE#  
WE#  
ALE  
RE#  
tWC  
tCSD  
tWB  
tAR  
tR  
tRC  
tRHZ  
tRR  
Col.  
Add. 2  
Row  
Add. 2  
Dout  
N +1  
Row  
Add. 3  
Dout  
M
Col.  
Add. 1  
Row  
Add. 1  
00h  
30h  
Dout N  
I/Ox  
Column Address  
Row Address  
R/B#  
= Don’t Care  
Busy  
Note:  
1. If Status Register polling is used to determine completion of the read operation, the Read Command (00h) must be issued before data can be read from the page  
buffer.  
Document Number: 002-00499 Rev. *N  
Page 42 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.7  
Page Read Operation (Interrupted by CE#)  
Figure 6.7 Page Read Operation Interrupted by CE#  
CLE  
tCLR  
CE#  
WE#  
ALE  
RE#  
I/Ox  
tCSD  
tCHZ  
tCOH  
tWB  
tAR  
tRC  
tR  
tRR  
Dout  
N +1  
Dout  
N +2  
Col.  
Add. 2  
Row  
Add. 2  
Row  
Add. 3  
Col.  
Add. 1  
Row  
Add. 1  
00h  
Dout N  
30h  
Column Address  
Row Address  
R/B#  
Busy  
= Don’t Care  
Document Number: 002-00499 Rev. *N  
Page 43 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.8  
Page Read Operation Timing with CE# Don’t Care  
Figure 6.8 Page Read Operation Timing with CE# Don’t Care  
CE# don’t care  
CE#  
CLE  
ALE  
WE#  
tRC  
RE#  
tRR  
Dout  
N
Dout  
N + 1  
Dout  
Dout  
M
Dout  
M + 1  
Col.  
Col.  
Row  
Row  
Row  
Add. 1 Add. 2 Add. 1 Add. 2 Add. 3  
Dout  
N + 2  
Dout  
Dout  
N + 5  
Dout  
M + 2  
00h  
30h  
I/Ox  
N + 3 N + 4  
tR  
R/B#  
= Don’t Care (V or V  
IH  
)
IL  
tCR  
CE#  
tREA  
RE#  
I/Ox  
Dout  
6.9  
Page Program Operation  
Figure 6.9 Page Program Operation  
CLE  
CE#  
tWC  
tWC  
tWC  
WE#  
ALE  
RE#  
I/Ox  
tADL  
tWHR  
tWB  
tPROG  
Col.  
Add2  
Row.  
Add3  
Col.  
Add1  
Row.  
Add2  
Row.  
Add1  
Din  
Din  
M
80h  
10h  
70h  
I/O0  
N
Serial Data  
Input Command  
1 up to m byte  
Serial Input  
Program  
Command  
Read Status  
Command  
Column Address  
Row Address  
R/B#  
I/O0=0 Successful Program  
I/O0=1 Error in Program  
= Don’t Care  
Note:  
1.  
t
is the time from the WE# rising edge of final address cycle to the WE# rising edge of first data cycle.  
ADL  
Document Number: 002-00499 Rev. *N  
Page 44 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.10 Page Program Operation Timing with CE# Don’t Care  
Figure 6.10 Page Program Operation Timing with CE# Don’t Care  
CE# don’t care  
CE#  
CLE  
ALE  
WE#  
RE#  
Din  
M
Din  
P
Din  
P + 1  
Din  
R
Col.  
Add. 1  
Col.  
Row  
Row  
Row  
Din  
N
Din  
N + 1  
80h  
I/Ox  
10h  
Add. 2 Add. 1 Add. 2 Add. 3  
= Don’t Care  
tCH  
tCS  
tWP  
CE#  
WE#  
6.11 Page Program Operation with Random Data Input  
Figure 6.11 Random Data Input  
CLE  
CE#  
tWC  
tWC  
tWC  
WE#  
ALE  
tADL  
tADL  
tWHR  
tWB  
tPROG  
RE#  
I/Ox  
Col.  
Add1  
Col.  
Add2  
Col.  
Add1  
Col.  
Add2  
Row  
Add1  
Row  
Add2  
Row  
Add3  
Din  
M
Din  
Din  
Din  
K
85h  
10h  
80h  
70h  
IO0  
J
N
Read Status  
Command  
Serial Data  
Input Command  
Random Data  
Input Command  
Program  
Command  
Column Address  
Column Address  
Row Address  
Serial Input  
R/B#  
= Don’t Care  
Note:  
1.  
t
is the time from the WE# rising edge of final address cycle to the WE# rising edge of first data cycle.  
ADL  
Document Number: 002-00499 Rev. *N  
Page 45 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.12 Random Data Output In a Page  
Figure 6.12 Random Data Output  
CLE  
tCLR  
CE#  
WE#  
tWB  
tWHR2  
tAR  
tRHW  
ALE  
RE#  
tRC  
tR  
tREA  
tRR  
Dout  
N +1  
Dout  
M +1  
Col.  
Add. 2  
Row  
Add. 2  
Row  
Add. 3  
Col.  
Add. 2  
Col.  
Add. 1  
Row  
Add. 1  
Col.  
Add. 1  
00h  
05h  
Dout N  
E0h  
Dout M  
30h  
I/Ox  
Row Address  
Column Address  
Column Address  
R/B#  
= Don’t Care  
Busy  
6.13 Multiplane Page Program Operation — S34ML02G2 and S34ML04G2  
Figure 6.13 Multiplane Page Program  
CLE  
CE#  
tWC  
WE#  
tDBSY  
tWB  
tWB  
tPROG  
tWHR  
ALE  
RE#  
I/Ox  
tADL  
tADL  
Row  
Row  
Row  
Col.  
Col.  
Col.  
Row  
Col.  
Din  
Din  
Row  
Din  
N
Din  
Row  
81h  
80h  
11h  
Program  
Command  
(Dummy)  
10h  
IO  
70h  
Add1  
Add3  
Add2  
Add1  
M
Add1  
M
Add2 Add1  
Add2  
N
Add2  
Add3  
1 up to full page  
Serial Data  
Program Confirm  
Read Staus  
Command  
Column Address  
Page Row Address  
Data Serial Input  
Input Command  
Command (True)  
R/B#  
Ex.) Address Restriction for Multiplane Page Program  
tDBSY  
tPROG  
R/B#  
I/O0~7  
Address & Data Input  
10h  
80h  
Address & Data Input  
11h  
81h  
70h  
Col Add 1,2 and Row Add 1,2,3  
and Data  
Col Add 1,2 and Row Add 1,2,3  
and Data  
(Note 1)  
A0 ~ A11: Valid  
A0 ~ A11: Valid  
A12 ~ A17: Valid  
A18: Fixed ‘High’  
A19 ~ A28: Valid  
A12 ~ A17: Fixed ‘Low’  
A18: Fixed ‘Low’  
A19 ~ A28: Fixed ‘Low’  
Notes:  
1. Any command between 11h and 81h is prohibited except 70h, 78h, and FFh.  
2. A18 is the plane address bit for ×8 devices. A17 is the plane address bit for ×16 devices.  
Document Number: 002-00499 Rev. *N  
Page 46 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 6.14 Multiplane Page Program (ONFI 1.0 Protocol)  
ADDR ADDR ADDR  
Cycle Type  
ADDR ADDR  
DIN  
...  
CMD  
11h  
CMD  
80h  
DIN  
D0A  
DIN  
D1A  
DIN  
DnA  
tADL  
C1A  
C2A  
R2A  
R3A  
DQx  
R1A  
tADL  
tIPBSY  
SR[6]  
A
Cycle Type  
DQx  
DIN  
...  
ADDR ADDR ADDR  
DIN  
D0B  
DIN  
D1B  
DIN  
DnB  
CMD  
10h  
CMD  
80h  
ADDR ADDR  
tADL  
C1B  
C2B  
R1B  
R2B  
R3B  
tADL  
tPROG  
SR[6]  
Notes:  
1. C1A-C2A Column address for page A. C1A is the least significant byte.  
2. R1A-R3A Row address for page A. R1A is the least significant byte.  
3. D0A-DnA Data to program for page A.  
4. C1B-C2B Column address for page B. C1B is the least significant byte.  
5. R1B-R3B Row address for page B. R1B is the least significant byte.  
6. D0B-DnB Data to program for page B.  
7. The block address bits must be the same except for the bit(s) that select the plane.  
6.14 Block Erase Operation  
Figure 6.15 Block Erase Operation (Erase One Block)  
CLE  
CE#  
WE#  
tWC  
tWHR  
tBERS  
tWB  
ALE  
RE#  
70h  
Row Add1 Row Add2  
Row Address  
Row Add3  
D0h  
I/O0  
60h  
I/Ox  
BUSY  
R/B#  
Auto Block Erase  
Setup Command  
I/O0=0 Successful Erase  
I/O0=1 Error in Erase  
Erase Command  
Read Status  
Command  
= Don’t Care  
Document Number: 002-00499 Rev. *N  
Page 47 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.15 Multiplane Block Erase — S34ML02G2 and S34ML04G2  
Figure 6.16 Multiplane Block Erase  
CLE  
CE#  
tWC  
tWC  
WE#  
ALE  
tWHR  
tWB  
tBERS  
RE#  
I/Ox  
60h Row Add1 Row Add2  
D0h  
Row Add3  
Row Add3  
I/O0  
60h  
Row Add1 Row Add2  
70h  
Row Address  
Row Address  
Busy  
R/B#  
Block Erase Setup Command1  
Block Erase Setup Command2  
Erase Confirm Command  
Read Status Command  
I/O 1 = 0 Successful Erase  
I/O 1 = 1 Error in plane  
Ex.) Address Restriction for Multiplane Block Erase Operation  
R/B#  
tBERS  
I/O0~7  
Address  
Row Add1,2,3  
Address  
60h  
60h  
D0h  
70h  
Row Add1,2,3  
A12 ~ A17 : Fixed ‘Low’  
A12 ~ A17 : Fixed ‘Low’  
A18  
: Fixed ‘Low’  
A18  
: Fixed ‘High’  
A19 ~ A28 : Fixed ‘Low’  
A19 ~ A28 : Valid  
Note:  
1. A18 is the plane address bit for ×8 devices. A17 is the plane address bit for ×16 devices.  
Figure 6.17 Multiplane Block Erase (ONFI 1.0 Protocol)  
CLE  
WE#  
ALE  
RE#  
IOx  
R2B R3B  
R1A  
R1B  
D0h  
60h  
R2A R3A  
60h  
D1h  
t
IEBSY  
t
BERS  
SR[6]  
Notes:  
1. R1A-R3A Row address for block on plane 0. R1A is the least significant byte.  
2. R1B-R3B Row address for block on plane 1. R1B is the least significant byte.  
3. The block address bits must be the same except for the bit(s) that select the plane.  
Document Number: 002-00499 Rev. *N  
Page 48 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.16 Copy Back Read with Optional Data Readout  
Figure 6.18 Copy Back Read with Optional Data Readout  
Source  
Add Inputs  
Target  
Add Inputs  
SR0  
Read Status Register  
10h  
00h  
35h  
Data Outputs  
85h  
70h  
I/O  
tR  
(Read Busy time)  
tPROG  
(Program Busy time)  
R/B#  
Busy  
Busy  
6.17 Copy Back Program Operation With Random Data Input  
Figure 6.19 Copy Back Program with Random Data Input  
Source  
Add Inputs  
Target  
Add Inputs  
2 Cycle  
Add Inputs  
85h  
10h  
70h  
Read Status Register  
I/O  
00h  
35h  
85h  
SR0  
Data  
Data  
Unlimited number of repetitions  
tR  
(Read Busy time)  
tPROG  
(Program Busy time)  
R/B#  
Busy  
Busy  
Document Number: 002-00499 Rev. *N  
Page 49 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.18 Multiplane Copy Back Program — S34ML02G2 and S34ML04G2  
Figure 6.20 Multiplane Copy Back Program  
tR  
tR  
R/B#  
I/Ox  
35h  
35h  
00h  
00h  
Add. (5 cycles)  
Add. (5 cycles)  
Col. Add. 1, 2 and Row Add. 1, 2, 3  
Source Address on Plane 0  
Col. Add. 1, 2 and Row Add. 1, 2, 3  
Source Address on Plane 1  
1
tDBSY  
tPROG  
R/B#  
I/Ox  
85h  
Add. (5 cycles)  
81h  
Add. (5 cycles)  
10h  
11h  
70h  
(Note 2)  
Col. Add. 1, 2 and Row Add. 1, 2, 3  
Destination Address  
Col. Add. 1, 2 and Row Add. 1, 2, 3  
Destination Address  
1
A0 ~ A11 : Fixed ‘Low’  
A12 ~ A17 : Fixed ‘Low’  
A0 ~ A11 : Fixed ‘Low’  
A12 ~ A17 : Valid  
A18  
: Fixed ‘Low’  
A18  
: Fixed ‘High’  
A19 ~ A28 : Fixed ‘Low’  
A19 ~ A28 : Valid  
Plane 0  
Plane 1  
Source Page  
Source Page  
Target Page  
(1) : Copy Back Read on Plane 0  
(2) : Copy Back Read on Plane 1  
(3) : Multiplane Copy Back Program  
Target Page  
(1)  
(2)  
(3)  
(3)  
Data Field  
Data Field  
Spare Field  
Spare Field  
Notes:  
1. Copy Back Program operation is allowed only within the same memory plane.  
2. Any command between 11h and 81h is prohibited except 70h, 78h, and FFh.  
3. A18 is the plane address bit for ×8 devices. A17 is the plane address bit for ×16 devices.  
Document Number: 002-00499 Rev. *N  
Page 50 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 6.21 Multiplane Copy Back Program (ONFI 1.0 Protocol)  
CLE  
WE#  
ALE  
RE#  
IOx  
C2B  
C1B  
85h  
C2A R1A  
R3A  
85h  
R1B  
C1A  
R2A  
11h  
R2B  
R3B 10h  
t
t
IPBSY  
PROG  
SR[6]  
A
Notes:  
1. C1A-C2A Column address for page A. C1A is the least significant byte.  
2. R1A-R3A Row address for page A. R1A is the least significant byte.  
3. C1B-C2B Column address for page B. C1B is the least significant byte.  
4. R1B-R3B Row address for page B. R1B is the least significant byte.  
5. The block address bits must be the same except for the bit(s) that select the plane.  
6.19 Read Status Register Timing  
Figure 6.22 Read Status Cycle  
tCLR  
CLE  
CE#  
tCLS  
tCLH  
tCS  
tCH  
tWP  
WE#  
tCEA  
tCHZ  
tCOH  
tWHR  
RE#  
I/Ox  
tRHZ  
tDH  
tREA  
tDS  
70h  
tIR  
tRHOH  
Status Output  
= Don’t Care  
Document Number: 002-00499 Rev. *N  
Page 51 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.20 Read Status Enhanced Timing  
Figure 6.23 Read Status Enhanced Timing  
CLE  
WE#  
ALE  
tWHR  
RE#  
tAR  
I/O0-7  
R3  
R1  
R2  
SR  
78h  
6.21 Reset Operation Timing  
Figure 6.24 Reset Operation Timing  
WE#  
ALE  
CLE  
RE#  
FF  
I/O7:0  
R/B#  
t
RST  
Document Number: 002-00499 Rev. *N  
Page 52 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.22 Read Cache  
Figure 6.25 Read Cache Operation Timing  
A
CE#  
CLE  
tWC  
ALE  
WE#  
tWB  
tWB  
tWB  
tRC  
tRC  
RE#  
tRR  
tRR  
Col.  
Add 1  
Col.  
Add 2  
Row  
Add 1  
Row  
Add 2  
Row  
Add 3  
Dout  
1
Dout  
1
Dout  
0
Dout  
0
00h  
30h  
31h  
31h  
Dout  
I/Ox  
Page N + 1  
Col. Add. 0  
Page N  
Column Address 00h  
Page Address N  
Col. Add. 0  
tCBSYR  
tCBSYR  
tR  
R/B#  
5
1
2
3
4
A
CE#  
CLE  
ALE  
WE#  
tWB  
tWB  
tRC  
tRC  
RE#  
I/Ox  
tRR  
tRR  
Dout  
1
Dout  
1
Dout  
0
Dout  
0
Dout  
Dout  
3Fh  
Dout  
31h  
Page N + 2  
Page N + 3  
Col. Add. 0  
Col. Add. 0  
tCBSYR  
tCBSYR  
R/B#  
5
6
7
8
9
= Don’t Care  
Page N  
Page N + 1  
Page N + 2  
Page N + 3  
Data Cache  
Page Buffer  
8
2
4
9
1
6
3
5
7
Page N + 3  
Page N + 1  
Page N + 2  
Page N + 2  
Page N  
3
5
1
7
Cell Array  
Page N  
Page N + 1  
Page N + 3  
Figure 6.26 “Sequential” Read Cache Timing, Start (and Continuation) of Cache Operation  
As defined for  
Read  
CMD  
31h  
Cycle Type  
Dout  
Dn  
Dout  
D0  
CMD  
Dout  
D0  
Dout  
...  
CMD  
31h  
30h  
I/Ox  
tWB  
tWB  
tWB  
tRR  
tRR  
tCBSYR  
tR  
tCBSYR  
SR[6]  
Document Number: 002-00499 Rev. *N  
Page 53 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 6.27 “Random” Read Cache Timing, Start (and Continuation) of Cache Operation  
As defined  
for Read  
A
Dout  
D0  
Dout  
CMD  
30h  
ADDR ADDR ADDR  
ADDR  
R3  
Dout  
CMD  
00h  
CMD  
31h  
ADDR  
C1  
Cycle Type  
Page N  
C2  
R1  
R2  
. . .  
Dn  
I/Ox  
tRR  
tR  
tRR  
tWB  
tWB  
SR[6]  
tCBSYR  
A
ADDR ADDR ADDR  
Dout  
D0  
CMD  
ADDR  
R3  
CMD  
31h  
ADDR  
C1  
Cycle Type  
Page R  
C2  
R1  
R2  
00h  
I/Ox  
tRR  
tCBSYR  
tWB  
SR[6]  
Figure 6.28 Read Cache Timing, End Of Cache Operation  
As defined for  
Read Cache  
(Sequential or Random)  
Dout  
Dn  
CMD  
3Fh  
Dout  
D0  
CMD  
Dout  
Dout  
D0  
Dout  
Dout  
Cycle Type  
31h  
. . .  
. . .  
Dn  
I/Ox  
tRR  
tRR  
tCBSYR  
tWB  
tWB  
tCBSYR  
SR[6]  
Document Number: 002-00499 Rev. *N  
Page 54 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.23 Cache Program  
Figure 6.29 Cache Program  
CLE  
CE#  
tWC  
tWC  
WE#  
ALE  
tWB  
RE#  
Col.  
Add1  
Col.  
Add1  
Col.  
Add2 Add1  
Row.  
Row.  
Add2 Add3  
Row.  
Col.  
Add2 Add1  
Row.  
Row.  
Add2 Add3  
Row.  
Din  
N
Din  
M
Din  
N
Din  
M
80h  
15h  
15h  
80h  
I/Ox  
Column Address  
Row Address  
Row Address  
Column Address  
R/B#  
tCBSYW  
tCBSYW  
1
CLE  
CE#  
tWC  
WE#  
ALE  
RE#  
I/Ox  
tADL  
Col.  
Add1 Add2  
Col.  
Row.  
Add2  
Row.  
Add3  
Row.  
Add1  
Din  
Din  
70h  
Status  
10h  
80h  
N
M
Column Address  
Row Address  
R/B#  
1
tPROG  
Document Number: 002-00499 Rev. *N  
Page 55 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.24 Multiplane Cache Program — S34ML02G2 and S34ML04G2  
Figure 6.30 Multiplane Cache Program  
Command Input  
11h  
Address Input  
Data Input  
81h  
Address Input  
Data Input  
15h  
80h  
A13~A17: Fixed ‘Low’  
A18: Fixed ‘Low’  
A19~A31: Fixed ‘Low’  
A13~A17: Valid  
A18: Fixed ‘High’  
A19~A31: Valid  
t
t
CBSYW  
DBSY  
RY/BY#  
1
Return to 1  
Repeat a max of 63 times  
Command Input  
80h  
11h  
Address Input  
Data Input  
81h  
Address Input  
Data Input  
10h  
A13~A17: Fixed ‘Low’  
A18: Fixed ‘Low’  
A19~A31: Fixed ‘Low’  
A13~A17: Valid  
A18: Fixed ‘High’  
A19~A31: Valid  
t
t
PROG  
DBSY  
RY/BY#  
1
CLE  
CE#  
tWC  
tWB  
WE#  
ALE  
tWB  
RE#  
I/Ox  
tADL  
tADL  
Din  
N
Din  
M
Din  
N
Din  
M
Col.  
Col.  
Row  
Row  
Row  
Col.  
Add1  
Col.  
Row  
Row  
Row  
80h  
11h  
15h  
81h  
Add1  
Add2  
Add1  
Add2  
Add3  
Add2  
Add1  
Add2  
Add3  
Column Address  
Row Address  
Row Address  
Column Address  
R/B#  
1
tDBSY  
tCBSYW  
CLE  
CE#  
tWC  
tWB  
WE#  
ALE  
RE#  
I/Ox  
Col.  
Add1  
Col.  
Row  
Row  
Row  
Col.  
Col.  
Row  
Row  
Row  
Din  
N
Din  
M
Din  
N
Din  
M
80h  
81h  
11h  
10h  
Status  
70h  
Add2  
Add1  
Add2  
Add3  
Add1  
Add2  
Add1  
Add2  
Add3  
Column Address  
Row Address  
Row Address  
Column Address  
R/B#  
1
tPROG  
tDBSY  
Notes:  
1. Read Status Register (70h) is used in the figure. Read Status Enhanced (78h) can be also used.  
2. A18 is the plane address bit for ×8 devices. A17 is the plane address bit for ×16 devices.  
Document Number: 002-00499 Rev. *N  
Page 56 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 6.31 Multiplane Cache Program (ONFI 1.0 Protocol)  
Command Input  
80h  
11h  
Address Input  
Data Input  
80h  
Address Input  
Data Input  
15h  
t
t
CBSYW  
DBSY  
RY/BY#  
RY/BY#  
1
Return to 1  
Repeat a max of 63 times  
Command Input  
11h  
80h  
Address Input  
Data Input  
10h  
Address Input  
Data Input  
80h  
t
t
PROG  
DBSY  
1
CLE  
CE#  
tWC  
tWB  
WE#  
ALE  
tWB  
RE#  
IOx  
tADL  
tADL  
Din  
Din  
M
Din  
N
Din  
M
Col.  
Add1  
Col.  
Row  
Row  
Row  
Col.  
Add1  
Col.  
Row  
Row  
Row  
80h  
11h  
15h  
80h  
N
Add2  
Add1  
Add2  
Add3  
Add2  
Add1  
Add2  
Add3  
Column Address  
Row Address  
Row Address  
Column Address  
R/B#  
1
tDBSY  
tCBSYW  
CLE  
CE#  
tWC  
tWB  
WE#  
ALE  
RE#  
IOx  
Col.  
Col.  
Row  
Row  
Row  
Din  
Din  
Din  
N
Din  
M
Col.  
Add1  
Col.  
Row  
Row  
Row  
80h  
80h  
11h  
10h  
Status  
70h  
Add1  
Add2  
Add1  
Add2  
Add3  
N
M
Add2  
Add1  
Add2  
Add3  
Column Address  
Row Address  
Row Address  
Column Address  
R/B#  
1
tPROG  
tDBSY  
Notes:  
1. The block address bits must be the same except for the bit(s) that select the plane.  
2. Read Status register (70h) is used in the figure. Read Status Enhanced (78h) can be also used.  
Document Number: 002-00499 Rev. *N  
Page 57 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.25 Read ID Operation Timing  
Figure 6.32 Read ID Operation Timing  
CLE  
CE#  
WE#  
tWHR  
tAR  
ALE  
RE#  
tREA  
1 Gb Device  
90h  
90h  
00h  
00h  
00h  
01h  
01h  
01h  
F1h  
DAh  
DCh  
80h  
90h  
1Dh  
95h  
I/Ox  
2 Gb Device  
4 Gb Device  
46h  
I/Ox  
I/Ox  
90h  
90h  
95h  
56h  
Read ID  
Command  
Address 1  
Cycle  
Maker  
Code  
Device  
Code  
3rd Cycle  
4th Cycle  
5th Cycle  
6.26 Read ID2 Operation Timing  
Figure 6.33 Read ID2 Operation Timing  
CLE  
CE#  
WE#  
tR  
ALE  
RE#  
I/Ox  
30h 65h 00h 00h  
ID2 Data  
ID2 Data  
ID2 Data  
ID2 Data  
ID2 Data  
02h 02h 00h 30h  
Read ID2  
Commands  
4 Cycle Address Read ID2  
1st Cycle  
2nd Cycle  
3rd Cycle  
4th Cycle  
5th Cycle  
Confirm  
Command  
R/B#  
(Note 1)  
Busy  
Notes:  
1. 4-cycle address is shown for the S34ML01G2. For S34ML02G2 and S34ML04G2, insert an additional address cycle of 00h.  
2. If Status Register polling is used to determine completion of the Read ID2 operation, the Read Command (00h) must be issued before ID2 data can be read from the  
flash.  
Document Number: 002-00499 Rev. *N  
Page 58 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.27 Read ONFI Signature Timing  
Figure 6.34 ONFI Signature Timing  
CLE  
WE#  
ALE  
RE#  
t
WHR  
IO0~7  
90h  
20h  
4Fh  
4Eh  
46h  
49h  
tREA  
6.28 Read Parameter Page Timing  
Figure 6.35 Read Parameter Page Timing  
CLE  
WE#  
ALE  
RE#  
IO0-7  
R/B#  
...  
...  
00h  
P10  
ECh  
P00  
P01  
P1  
1
t
R
Note:  
1. If Status Register polling is used to determine completion of the read operation, the Read Command (00h) must be issued before data can be read from the page  
buffer.  
Document Number: 002-00499 Rev. *N  
Page 59 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.29 Read Unique ID Timing (Contact Factory)  
Figure 6.36 Read Unique ID Timing  
CLE  
WE#  
ALE  
RE#  
IO0-7  
R/B#  
...  
...  
00h  
U10  
EDh  
U00  
U01  
U1  
1
t
R
6.30 OTP Entry Timing  
Figure 6.37 OTP Entry Timing  
CLE  
WE#  
ALE  
I/O0-7  
29h 17h 04h 19h  
Document Number: 002-00499 Rev. *N  
Page 60 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
6.31 Power On and Data Protection Timing  
Figure 6.38 Power On and Data Protection Timing  
Vcc(min)  
Vcc(min)  
VTH  
VTH  
VCC  
0V  
don’t  
care  
don’t  
care  
CE  
V
IH  
Operation  
5 ms max  
V
IL  
V
IL  
WP  
100 µs max  
Invalid  
don’t  
care  
Ready/Busy  
Note:  
1.  
V
= 1.8 Volts.  
TH  
6.32 WP# Handling  
Figure 6.39 Program Enabling / Disabling Through WP# Handling  
WE#  
WE#  
t
WW  
t
WW  
I/Ox  
80h  
10h  
I/Ox  
80h  
10h  
WP#  
R/B#  
WP#  
R/B#  
Figure 6.40 Erase Enabling / Disabling Through WP# Handling  
WE#  
WE#  
t
WW  
t
WW  
I/Ox  
60h  
D0h  
I/Ox  
60h  
D0h  
WP#  
R/B#  
WP#  
R/B#  
Document Number: 002-00499 Rev. *N  
Page 61 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
7. Physical Interface  
7.1  
Physical Diagram  
7.1.1  
48-Pin Thin Small Outline Package (TSOP1)  
Figure 7.1 TS/TSR 48 — 48-lead Plastic Thin Small Outline, 12 x 20 mm, Package Outline  
NOTES:  
PACKAGE  
TS/TSR 48  
JEDEC  
MO-142 (D) DD  
1. DIMENSIONS ARE IN MILLIMETERS (mm).  
(DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y14.5M-1994).  
SYMBOL  
MIN  
---  
NOM  
---  
MAX  
1.20  
0.15  
1.05  
0.23  
0.27  
0.16  
0.21  
20.20  
18.50  
12.10  
2. PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).  
A
A1  
A2  
b1  
b
3. PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.  
0.05  
0.95  
0.17  
0.17  
0.10  
0.10  
19.80  
18.30  
11.90  
---  
4. TO BE DETERMINED AT THE SEATING PLANE -C- . THE SEATING PLANE IS  
DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS  
ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.  
1.00  
0.20  
0.22  
---  
5. DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD  
PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.  
c1  
c
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF b DIMENSION AT MAX.  
MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR THE  
FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07mm.  
---  
D
20.00  
18.40  
12.00  
0.50 BASIC  
0.60  
---  
D1  
E
7. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN  
0.10mm AND 0.25mm FROM THE LEAD TIP.  
e
8. LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM  
THE SEATING PLANE.  
L
0.50  
0˚  
0.70  
8
O
R
9. DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.  
0.08  
---  
0.20  
N
48  
5006 \ f16-038 \ 6.5.13  
Document Number: 002-00499 Rev. *N  
Page 62 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
7.1.2  
63-Ball, Ball Grid Array (BGA)  
Figure 7.2 VBM063 — 63-Pin BGA, 11 mm x 9 mm Package  
NOTES:  
PACKAGE  
JEDEC  
VBM 063  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
M0-207(M)  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
11.00 mm x 9.00 mm NOM  
PACKAGE  
3. BALL POSITION DESIGNATION PER JEP95, SECTION  
3, SPP-020.  
SYMBOL  
A
MIN  
---  
NOM  
---  
MAX  
1.00  
---  
NOTE  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE  
"D" DIRECTION.  
A1  
D
0.25  
---  
BALL HEIGHT  
11.00 BSC.  
9.00 BSC.  
8.80 BSC.  
7.20 BSC.  
12  
BODY SIZE  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE  
"E" DIRECTION.  
E
BODY SIZE  
D1  
E1  
MD  
ME  
n
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
n IS THE TOTAL NUMBER OF POPULATED SOLDER  
BALL POSITIONS FOR MATRIX SIZE MD X ME.  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
10  
“SD” AND “SE” ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
63  
ꢀꢀꢀb  
eE  
eD  
SD  
SE  
0.40  
0.45  
0.50  
BALL DIAMETER  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN  
THE OUTER ROW “SD” OR “SE” = 0.  
0.80 BSC.  
0.80 BSC.  
0.40 BSC.  
0.40 BSC.  
BALL PITCH  
BALL PITCH  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN  
THE OUTER ROW, “SD” = eD/2 AND “SE” = eE/2.  
SOLDER BALL PLACEMENT  
SOLDER BALL PLACEMENT  
8. "+" INDICATES THE THEORETICAL CENTER OF  
DEPOPULATED BALLS.  
A3-A8,B2-B8,C1,C2,C9,C10 DEPOPULATED SOLDER BALLS  
D1,D2,D9,D10,E1,E2,E9,E10  
F1,F2,F9,F10,G1,G2,G9,G10  
H1,H2,H9,H10,J1,J2,J9,J10  
K1,K2,K9,K10  
9
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
L3-L8,M3-M8  
g5011\ 16-038.25 \ 6.5.13  
Document Number: 002-00499 Rev. *N  
Page 63 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
7.1.3  
67-Ball, Ball Grid Array (BGA)  
Figure 7.3 VBT067 — 67-Ball BGA, 8 x 6.5 mm Package  
NOTES:  
PACKAGE  
JEDEC  
VBT 067  
N/A  
1. DIMENSIONING AND TOLERANCING METHODS PER  
ASME Y14.5M-1994.  
NOTE  
2. ALL DIMENSIONS ARE IN MILLIMETERS.  
D X E  
8.00 mm x 6.50 mm  
PACKAGE  
3. BALL POSITION DESIGNATION PER JEP95, SECTION 3,  
SPP-020.  
SYMBOL  
A
MIN  
NOM  
---  
MAX  
4.  
e REPRESENTS THE SOLDER BALL GRID PITCH.  
---  
1.00  
---  
PROFILE  
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.  
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.  
A1  
D
0.22  
---  
BALL HEIGHT  
BODY SIZE  
BODY SIZE  
8.00 BSC  
6.50 BSC  
7.20 BSC  
5.60 BSC  
10  
n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS  
FOR MATRIX SIZE MD X ME.  
E
D1  
E1  
MD  
ME  
n
MATRIX FOOTPRINT  
MATRIX FOOTPRINT  
MATRIX SIZE D DIRECTION  
MATRIX SIZE E DIRECTION  
BALL COUNT  
6
7
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL  
DIAMETER IN A PLANE PARALLEL TO DATUM C.  
“SD” AND “SE” ARE MEASURED WITH RESPECT TO DATUMS  
A AND B AND DEFINE THE POSITION OF THE CENTER  
SOLDER BALL IN THE OUTER ROW.  
8
67  
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, “SD” OR “SE” = 0.  
Øb  
eE  
eD  
SD  
SE  
0.41  
0.46  
0.51  
BALL DIAMETER  
0.80 BSC  
0.80 BSC  
0.40 BSC  
0.40 BSC  
BALL PITCH  
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE  
OUTER ROW, “SD” = eD/2 AND “SE” = eE/2.  
BALL PITCH  
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED  
BALLS.  
SOLDER BALL PLACEMENT  
SOLDER BALL PLACEMENT  
DEPOPULATED SOLDER BALLS  
9
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK  
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.  
A1,D1,E1,F1,G1  
A4,K4,A5,K5  
D8,E8,F8,G8  
g5019 \ f16-038.25 \ 10.11.13  
Document Number: 002-00499 Rev. *N  
Page 64 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
8. System Interface  
To simplify system interface, CE# may be unasserted during data loading or sequential data reading as shown in Figure 8.1. By  
operating in this way, it is possible to connect NAND flash to a microprocessor.  
Figure 8.1 Program Operation with CE# Don't Care  
CLE  
CE# don’t care  
CE#  
WE#  
ALE  
80h  
Start Add. (5 Cycle)  
Data Input  
Data Input  
10h  
I/Ox  
Figure 8.2 Read Operation with CE# Don't Care  
CLE  
CE# don’t care  
CE#  
RE#  
ALE  
R/B#  
tR  
WE#  
I/Ox  
00h  
Start Add. (5 Cycle)  
30h  
Data Output(sequential)  
Document Number: 002-00499 Rev. *N  
Page 65 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Figure 8.3 Page Programming Within a Block  
Page 63  
Page 31  
(64)  
(1)  
(64)  
Page 63  
(32)  
Page 31  
(3)  
(32)  
(1)  
(3)  
(2)  
(1)  
Page 2  
Page 1  
Page 0  
Page 2  
Page 1  
Page 0  
Data Register  
Data Register  
Ex.) Random page program (Optional)  
DATA IN : Data (1) Data (64)  
From the LSB page to MSB page  
DATA IN : Data (1) Data (64)  
Document Number: 002-00499 Rev. *N  
Page 66 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
9. Error Management  
9.1  
System Bad Block Replacement  
Over the lifetime of the device, additional Bad Blocks may develop. In this case, each bad block has to be replaced by copying any  
valid data to a new block. These additional Bad Blocks can be identified whenever a program or erase operation reports “Fail” in the  
Status Register.  
The failure of a page program operation does not affect the data in other pages in the same block, thus the block can be replaced by  
re-programming the current data and copying the rest of the replaced block to an available valid block. Refer to Table 9.1 and  
Figure 9.1 for the recommended procedure to follow if an error occurs during an operation.  
Table 9.1 Block Failure  
Operation  
Erase  
Recommended Procedure  
Block Replacement  
Program  
Read  
Block Replacement  
ECC (4 bit / 512+16 byte)  
Figure 9.1 Bad Block Replacement  
Block A  
Block B  
(2)  
Data  
Data  
th  
(1)  
th  
N page  
Failure  
N page  
(3)  
FFh  
FFh  
buffer memory of the controller  
Notes:  
1. An error occurs on the Nth page of Block A during a program operation.  
2. Data in Block A is copied to the same location in Block B, which is a valid block.  
3. The Nth page of block A, which is in controller buffer memory, is copied into the Nth page of Block B.  
4. Bad block table should be updated to prevent from erasing or programming Block A.  
Document Number: 002-00499 Rev. *N  
Page 67 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
9.2  
Bad Block Management  
Devices with Bad Blocks have the same quality level and the same AC and DC characteristics as devices where all the blocks are  
valid. A Bad Block does not affect the performance of valid blocks because it is isolated from the bit line and common source line by  
a select transistor. The devices are supplied with all the locations inside valid blocks erased (FFh). The Bad Block Information is  
written prior to shipping. Any block where the 1st byte in the spare area of the 1st or 2nd or last page does not contain FFh is a Bad  
Block. That is, if the first page has an FF value and should have been a non-FF value, then the non-FF value in the second page or  
the last page will indicate a bad block.The Bad Block Information must be read before any erase is attempted, as the Bad Block  
Information may be erased. For the system to be able to recognize the Bad Blocks based on the original information, it is  
recommended to create a Bad Block table following the flowchart shown in Figure 9.2. The host is responsible to detect and track  
bad blocks, both factory bad blocks and blocks that may go bad during operation. Once a block is found to be bad, data should not  
be written to that block.The 1st block, which is placed on 00h block address is guaranteed to be a valid block.  
Figure 9.2 Bad Block Management Flowchart  
Start  
Block Address=  
Block 0  
Increment  
Block Address  
Data(1)  
=FFh?  
No  
Update  
Bad Block Table  
Yes  
No  
Last  
Block?  
Yes  
End  
Note:  
1. Check for FFh at the 1st byte in the spare area of the 1st, 2nd, and last pages.  
Document Number: 002-00499 Rev. *N  
Page 68 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
10. Ordering Information  
The ordering part number is formed by a valid combination of the following:  
S34ML  
04G  
2
00  
T
F
I
00  
0
Packing Type  
0
3
=
=
Tray  
13” Tape and Reel  
Model Number  
00  
00  
01  
=
=
=
Standard Interface / ONFI (×8)  
Standard Interface (×16)  
ONFI (×16)  
Temperature Range  
I
=
=
=
=
Industrial (-40°C to + 85°C)  
A
V
B
Industrial with AECQ-100 and GT Grade (-40˚C to +85˚C)  
Industrial Plus (-40°C to + 105°C)  
Industrial Plus with AECQ-100 and GT Grade (-40˚C to +105˚C)  
Materials Set  
F
H
=
=
Lead (Pb)-free  
Lead (Pb)-free and Low Halogen  
Package  
B
G
T
=
=
=
63-Ball BGA  
67-Ball BGA  
TSOP  
Bus Width  
00  
04  
=
=
×8 NAND, single die  
×16 NAND, single die  
Technology  
2
=
Cypress NAND Revision 2 (32 nm)  
Density  
01G =  
02G =  
04G =  
1 Gb  
2 Gb  
4 Gb  
Device Family  
S34ML  
Cypress SLC NAND Flash Memory for Embedded  
Valid Combinations  
Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm  
availability of specific valid combinations and to check on newly released combinations.  
Device  
Family  
Density  
Technology Bus Width Package Type Temperature Range Additional Ordering Options Packing Type Package Description  
01G  
01G  
02G  
02G  
04G  
04G  
04  
00  
04  
00  
00  
04  
TF  
BH, GH, TF  
TF  
I
00, 01  
I, A, V, B  
Unique ID Support guaranteed:  
90 _ Standard  
I
S34ML  
2
0, 3  
TSOP, BGA (1)  
BH, GH, TF  
BH, TF  
BH  
I, A, V, B(2)  
I, A, V, B  
I
Interface / ONFI 1.0 (×8)  
91 _ ONFI 1.0 (×16)  
Notes:  
1. BGA package marking omits the leading “S34” and the Packing Type designator from the ordering part number.  
2. Contact sales regarding the availability of S34ML02G2 products in A,V and B temperature ranges.  
Document Number: 002-00499 Rev. *N  
Page 69 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
11. Document History  
Document Title:S34ML01G2, S34ML02G2, S34ML04G2  
1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded  
Document Number: 002-00499  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
**  
-
-
XILA  
08/03/2012 Initial release  
*A  
XILA  
11/27/2012  
Global:  
Upgraded data sheet designation from Advance Information to Preliminary  
Note the S34ML02G2 is in the Advance Information designation  
Added x16 I/O bus width data  
Performance  
Reliability: changed “with 1 bit ECC” to “with 4 bit ECC”  
Connection Diagram: Added 63-VFBGA Contact, x16 Device (Balls  
Down, Top View) figure  
Array Organization : Added Array Organization — x16 figure  
Addressing:  
Address Cycle Map 1G/2G/4G Device tables: added x16 data  
Multiplane Program — S34ML02G2 and S34ML04G2  
Added text  
Multiplane Block Erase — S34ML02G2 and S34ML04G2  
Added text  
Multiplane Copy Back Program —S34ML02G2 and S34ML04G2  
Added text  
Read ID  
Read ID for Supported Configurations table: corrected x8 information  
Added x16 information:  
Read ID for Supported Configurations table  
Read ID Byte 4 Description — S34ML01G2 table  
Read ID Byte 4 Description — S34ML02G2 and S34ML04G2  
Read Parameter Page  
Parameter Page Description table: updated values for Bytes 254-255  
Absolute Maximum Ratings  
Absolute Maximum Ratings table:  
updated Input or Output Voltage, and Supply Voltage values  
added note  
AC Characteristics  
AC Characteristics table:  
added CE# access time  
added note for tCOH and tRHOH  
Document Number: 002-00499 Rev. *N  
Page 70 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
11. Document History (Continued)  
Document Title:S34ML01G2, S34ML02G2, S34ML04G2  
1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded  
Document Number: 002-00499  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
*A  
-
XILA  
11/27/2012  
Multiplane Page Program Operation S34ML02G2 and S34ML04G2  
Added note to Multiplane Page Program figure  
Added note to Multiplane Page Program (ONFI 1.0 Protocol) figure  
Multiplane Block Erase — S34ML02G2 and S34ML04G2  
Added note to Multiplane Block Erase figure  
Added note to Multiplane Block Erase (ONFI 1.0 Protocol) figure  
Multiplane Copy Back Program —S34ML02G2 and S34ML04G2  
Added note to Multiplane Copy Back Program figure  
Multiplane Copy Back Program (ONFI 1.0 Protocol) figure:  
Changed IOx values  
Updated notes  
Error Management :Block Failure table: Changed ECC 1 bit to 4 bit  
Multiplane Cache Program —S34ML02G2 and S34ML04G2  
Multiplane Cache Program figure:  
Removed A13-A31 Address Input values  
Added note  
Ordering Information :  
Added x16 Model Numbers  
*B  
-
XILA  
12/19/2012  
Command Set  
Added Page Reprogram command  
Reorganized Command Set table  
Page Reprogram  
Moved section  
Added paragraph  
Copy Back Program :Added paragraph  
Reset: Updated paragraph  
Read ID2: Added text  
Read Parameter Page  
Parameter Page Description table:  
fixed Values of Bytes 6-7 and 254-255  
fixed Description of Bytes 129-130 and 131-132  
Absolute Maximum Ratings Fixed Value for VIO and VCC  
DC Characteristics  
DC Characteristics and Operating Conditions table: Changed Power On  
Current Test Conditions  
and Typ/Max values  
AC Characteristics  
AC Characteristics table: added note  
Page Read Operation Page Read Operation (Read One Page) figure:  
added note  
Read ID2 Operation Timing  
Read ID2 Operation Timing figure:  
replaced tWHR with tR and added R/B# timing signal added note  
Bad Block Management  
Added text  
Bad Block Management Flowchart: updated note  
Document Number: 002-00499 Rev. *N  
Page 71 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
11. Document History (Continued)  
Document Title:S34ML01G2, S34ML02G2, S34ML04G2  
1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded  
Document Number: 002-00499  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
*C  
XILA  
-
02/14/2013  
Distinctive Characteristics:  
Corrected Plane Size for x16  
Page Program Added paragraph  
Multiplane Program — S34ML02G2 andS34ML04G2  
Added paragraph  
Page Reprogram: Added paragraph  
Block Erase Added paragraph  
Multiplane Block Erase — S34ML02G2 and S34ML04G2  
Added paragraph  
Copy Back Program Added paragraph  
Multiplane Copy Back Program —S34ML02G2 and S34ML04G2  
Added paragraph  
Multiplane Cache Program —S34ML02G2 and S34ML04G2  
Added paragraph  
Read Parameter Page  
Added paragraphs  
Parameter Page Description table: corrected value for bytes 129-130, 131-  
132, and 254-255  
Valid Blocks Updated table  
AC Characteristics  
AC Characteristics table:  
corrected Min value for tALS, tCLS, and tDS  
corrected Max value for tCEA  
*D  
-
XILA  
06/19/2013  
Distinctive Characteristics Operating Temperature: removed  
Commercial and Extended temperatures  
Performance Updated Page Read / Program and Reliability sections  
General Description Updated section  
Block Diagram Updated Functional Block Diagram figure  
Array Organization  
Updated figures  
Added two figures:  
Array Organization — S34ML02G2 and S34ML04G2 (x8)  
Array Organization — S34ML02G2 and S34ML04G2 (x16)  
Addressing  
Appended Note in all Address Cycle Map tables  
Added text to Bus Cycle column in all Address Cycle Map tables  
Page Read Updated section  
Page Program Updated section  
Multiplane Program — S34ML02G2 andS34ML04G2  
Updated section  
Page Reprogram  
Corrected Page Reprogram figure  
Corrected Page Reprogram with Data Manipulation figure  
Copy Back Program Updated section  
Read Status Register Field Definition Updated Status Register Coding  
table  
Document Number: 002-00499 Rev. *N  
Page 72 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
11. Document History (Continued)  
Document Title:S34ML01G2, S34ML02G2, S34ML04G2  
1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded  
Document Number: 002-00499  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
*D  
-
XILA  
06/19/2013  
Read ID  
Read ID for Supported Configurations table: corrected 2nd cycle for 1 Gb  
x16  
Read ID Byte 5 Description — S34ML02G2 and S34ML04G2 table:  
corrected Description for Plane Size  
Read Parameter Page  
Parameter Page Description table: corrected value for bytes 8-9, 114, 137-  
138, 139-140, and 254-255  
Read Unique ID Added section  
Ready/Busy  
Updated section  
Updated Ready/Busy Pin Electrical Application figure  
Electrical Characteristics  
Absolute Maximum Ratings table: removed Ambient Operating  
Temperature (Commercial  
Temperature Range) and Ambient Operating Temperature (Extended  
Temperature Range)  
AC Characteristics  
AC Characteristics table: updated ‘Data transfer from cell to register’  
Parameter  
Program / Erase Characteristics  
Program / Erase Characteristics table: added Dummy Busy Time for  
Multiplane Program(S34MS02G2, S34MS04G2)  
Multiplane Page Program Operation —S34MS02G2 and S34MS04G2  
Updated Multiplane Page Program figure  
Updated Multiplane Page Program (ONFI 1.0 Protocol) figure  
Copy Back Read with Optional Data Readout  
Corrected Copy Back Read with Optional Data Readout figure  
Copy Back Program Operation With Random Data Input  
Corrected Copy Back Program Operation With Random Data Input figure  
Read Status Register Timing : Removed Read Status Enhanced Cycle  
figure  
Read Status Enhanced Timing: Removed Read Status Timing figure  
Read Cache  
Corrected Read Cache Operation Timing figure  
Removed Cache Timing heading  
Cache Program: Updated Cache Program figure  
Read Parameter Page Timing  
Added Note to Read Parameter Page Timing figure  
Read Unique ID Timing Added section  
Read Parameter Page Timing Added Note to Read Parameter Page  
Timing figure  
Document Number: 002-00499 Rev. *N  
Page 73 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
11. Document History (Continued)  
Document Title:S34ML01G2, S34ML02G2, S34ML04G2  
1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded  
Document Number: 002-00499  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
*D  
-
XILA  
06/19/2013  
Read Unique ID Timing Added section  
Physical Interface  
Updated figures:  
TS/TSR 48 — 48-lead Plastic Thin Small Outline, 12 x 20 mm, Package  
Outline  
VBM063 — 63-Pin BGA, 11 mm x 9 mm Package  
Ordering Information  
Clarified Bus Width and Technology  
Added Note to Valid Combinations table  
*E  
*F  
-
-
XILA  
XILA  
08/09/2013  
11/01/2013  
Mode Selection: Changed ‘Busy Time in Read’ WE# from X to High  
System Interface:  
Updated paragraph  
Updated Read Operation with CE# Don’t Care figure  
Performance  
Package Options: added 67-Ball BGA 8 x 6 x 1 mm  
Connection Diagram :Added figure: 67-BGA Contact (Balls Down, Top  
View)  
Physical Diagram : Added figure: 67-Ball, Ball Grid Array (BGA)  
Ordering Information: Added to ‘Package’  
Valid Combinations  
Added ‘GH’ to Package Type  
Added ‘Unique ID support guaranteed’ to Additional Ordering Options  
*G  
*H  
*I  
-
-
-
XILA  
XILA  
XILA  
01/06/2014  
07/03/2014  
09/05/2014  
Global  
Upgraded data sheet designation from Preliminary to Full Production  
Note the S34ML02G2 is in the Advance Information designation  
Ordering Information  
Added A, V, B to Temperature Range  
Valid Combinations table: added A to Temperature Range of 01G Density  
Ordering Information  
Valid Combinations table:  
added Package Type BH and TF for 01G Density  
corrected Package Type for 02G Density  
*J  
-
XILA  
XILA  
04/17/2015  
12/02/2015  
Distinctive Characteristics  
Operating Temperature: added Industrial Plus  
Read Parameter :Page Updated Note  
Read Unique ID (Contact Factory):  
Unique ID Data Description (Contact Factory) table: added Note  
Ordering Information: Valid Combinations table: updated table  
*K  
5030732  
Updated to Cypress template  
Document Number: 002-00499 Rev. *N  
Page 74 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
11. Document History (Continued)  
Document Title:S34ML01G2, S34ML02G2, S34ML04G2  
1 Gb, 2 Gb, 4 Gb, 3 V, 4-bit ECC, SLC NAND Flash Memory for Embedded  
Document Number: 002-00499  
Orig. of Submission  
Rev.  
ECN No.  
Description of Change  
Change  
Date  
*L  
5160512  
XILA  
04/25/2016  
Added Recommended Operating Conditions section.  
Updated DC Characteristics section - updated “VCC supply Voltage (erase  
and program lockout)” to "Erase and Program Lockout voltage”.  
Updated Ordering Information.  
Updated “Read Parameter Page” section.  
Updated copyright information at the end of the document.  
*M  
*N  
5290473  
5409174  
XILA  
XILA  
05/31/2016  
08/30/2016  
Updated the part numbers under Package Options in the ‘Performance”  
section.  
Updated “Valid Combinations”.  
Updated Reliability features in Performance.  
Document Number: 002-00499 Rev. *N  
Page 75 of 76  
S34ML01G2  
S34ML02G2  
S34ML04G2  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC® Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/powerpsoc  
cypress.com/memory  
cypress.com/psoc  
cypress.com/psoc  
Automotive  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Community | Forums | Blogs | Video | Training  
Lighting & Power Control  
Memory  
Technical Support  
cypress.com/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation 2012-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify  
and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either  
directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right  
to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum  
extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software  
is prohibited.  
CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or  
programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application  
made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of  
weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or  
hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any  
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole  
or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify  
and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress  
products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 002-00499 Rev. *N  
Revised August 30, 2016  
Page 76 of 76  
Cypress®, Spansion®, MirrorBit®, MirrorBit® Eclipse™, ORNAND™, EcoRAM™, HyperBus™, HyperFlash™, and combinations thereof, are trademarks and registered trademarks of Cypress  
Semiconductor Corp. All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

S34ML04G1

Spansion® SLC NAND Flash Memory for Embedded
SPANSION

S34ML04G1

1 Gb/2 Gb/4 Gb, 3 V, SLC NAND Flash for Embedded
CYPRESS

S34ML04G100BFI000

Spansion® SLC NAND Flash Memory for Embedded
SPANSION

S34ML04G100BFI003

Spansion® SLC NAND Flash Memory for Embedded
SPANSION

S34ML04G100BFI010

Spansion® SLC NAND Flash Memory for Embedded
SPANSION

S34ML04G100BFI013

Spansion® SLC NAND Flash Memory for Embedded
SPANSION

S34ML04G100BHI000

Spansion® SLC NAND Flash Memory for Embedded
SPANSION

S34ML04G100BHI003

Spansion® SLC NAND Flash Memory for Embedded
SPANSION

S34ML04G100BHI010

Spansion® SLC NAND Flash Memory for Embedded
SPANSION

S34ML04G100BHI013

Spansion® SLC NAND Flash Memory for Embedded
SPANSION