GVT71256T18T-75 [CYPRESS]

256K x 18 Synchronous-Pipelined Cache Tag RAM; 256K ×18的同步流水线高速缓存RAM标签
GVT71256T18T-75
型号: GVT71256T18T-75
厂家: CYPRESS    CYPRESS
描述:

256K x 18 Synchronous-Pipelined Cache Tag RAM
256K ×18的同步流水线高速缓存RAM标签

文件: 总24页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
327  
CY7C1359A/GVT71256T18  
256K x 18 Synchronous-Pipelined Cache Tag RAM  
All synchronous inputs are gated by registers controlled by a  
positive-edge-triggered Clock Input (CLK). The synchronous  
Features  
• Fast match times: 3.5, 3.8, 4.0 and 4.5 ns  
• Fast clock speed: 166, 150, 133, and 100 MHz  
• Fast OE access times: 3.5, 3.8, 4.0 and 5.0 ns  
• Pipelined data comparator  
• Data input register load control by DEN  
• Optimal for depth expansion (one cycle chip deselect  
to eliminate bus contention)  
• 3.3V –5% and +10% core power supply  
• 2.5V or 3.3V I/O supply  
• 5V tolerant inputs except I/Os  
• Clamp diodes to VSS at all inputs and outputs  
• Common data inputs and data outputs  
• JTAG boundary scan  
inputs include all addresses, all data inputs, address-pipelin-  
ing Chip Enable (CE), depth-expansion Chip Enables (CE2  
and CE2), Burst Control Inputs (ADSC, ADSP, and ADV), Write  
Enables (WEL, WEH, and BWE), Global Write (GW), and Data  
Input Enable (DEN).  
Asynchronous inputs include the Burst Mode Control (MODE),  
the Output Enable (OE) and the Match Output Enable (MOE).  
The data outputs (Q) and Match Output (MATCH), enabled by  
OE and MOE respectively, are also asynchronous.  
Addresses and chip enables are registered with either Ad-  
dress Status Processor (ADSP) or Address status Controller  
(ADSC) input pins. Subsequent burst addresses can be inter-  
nally generated as controlled by the Burst Advance pin (ADV).  
Data inputs are registered with Data Input Enable (DEN) and  
chip enable pins (CE, CE2, and CE2). The outputs of the data  
input registers are compared with data in the memory array  
and a match signal is generated. The match output is gated  
into a pipeline register and released to the match output pin at  
the next rising edge of Clock (CLK).  
• Byte Write Enable and Global Write control  
• Three chip enables for depth expansion and address  
pipeline  
• Address, data, and control registers  
• Internally self-timed Write Cycle  
Address, data inputs, and write controls are registered on-chip  
to initiate self-timed WRITE cycle. WRITE cycles can be one  
to two bytes wide as controlled by the write control inputs. In-  
dividual byte write allows individual byte to be written. WEL  
controls DQ1DQ9. WEH controls DQ10DQ18. WEL and  
WEH can be active only with BWE being LOW. GW being LOW  
causes all bytes to be written.  
• Burst control pins (interleaved or linear burst se-  
quence)  
• Automatic power-down for portable applications  
• Low-profile JEDEC standard 100-pin TQFP package  
Functional Description  
The Cypress Synchronous Burst SRAM family employs  
high-speed, low power CMOS designs using advanced tri-  
ple-layer polysilicon, double-layer metal technology. Each  
memory cell consists of four transistors and two high valued  
resistors.  
The CY7C1359C/GVT71256T18 operates from a +3.3V pow-  
er supply with output power supply being +2.5V or +3.3V. All  
inputs and outputs are LVTTL compatible. The device is ideally  
suited for address tag RAM for up to 8 MB secondary cache.  
Selection Guide  
7C1359A-166  
71256T36-6  
7C1359A-150  
71256T36-6.7  
7C1359A-133  
71256T36-7.5  
7C1359A-100  
71256T36-10  
Maximum Access Time (ns)  
3.5  
310  
20  
3.8  
275  
20  
4.0  
250  
20  
4.5  
190  
20  
Maximum Operating Current (mA)  
Maximum CMOS Standby Current (mA)  
Cypress Semiconductor Corporation  
Document #: 38-05120 Rev. **  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Revised September 13, 2001  
CY7C1359A/GVT71256T18  
Functional Block Diagram256Kx18[1]  
HIGHER BYTE  
WRITE  
WEH#  
BWE#  
D
Q
D
Q
LOWER BYTE  
WRITE  
WEL#  
GW#  
D
Q
ENABLE  
CE#  
CE2  
D
Q
D
Q
Latch  
CE2#  
ZZ  
Power Down Logic  
OE#  
MATCH  
D
Q
ADSP#  
MOE#  
Compare  
Input  
Register  
DEN#  
Latch  
CLK  
16  
A
Address  
Register  
OUTPUT  
REGISTER  
ADSC#  
DQ1-  
DQ18  
D
Q
CLR  
ADV#  
A1-A0  
MODE  
Binary  
Counter  
& Logic  
Note:  
1. The Functional Block Diagram illustrates simplified device operation. See Truth Table, pin descriptions and timing diagrams for detailed information.  
Document #: 38-05120 Rev. **  
Page 2 of 24  
CY7C1359A/GVT71256T18  
Pin Configurations  
100-Pin TQFP  
Top View  
NC  
NC  
NC  
VCCQ  
VSSQ  
NC  
A
NC  
NC  
VCCQ  
VSSQ  
NC  
1
2
3
4
5
6
7
8
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
DQ9  
DQ8  
DQ7  
VSSQ  
VCCQ  
DQ6  
DQ5  
VSS  
NC  
VCC  
ZZ  
DQ4  
DQ3  
VCCQ  
VSSQ  
DQ2  
DQ1  
NC  
DQ10  
DQ11  
VSSQ  
VCCQ  
DQ12  
DQ13  
NC  
VCC  
NC  
VSS  
DQ14  
DQ15  
VCCQ  
VSSQ  
DQ16  
DQ17  
DQ18  
NC  
VSSQ  
VCCQ  
NC  
NC  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
CY7C1359A/GVT71256T18  
NC  
VSSQ  
VCCQ  
MATCH  
DEN  
MOE  
119-Lead BGA  
Top View  
1
2
A
3
A
4
ADSP  
ADSC  
VCC  
NC  
5
A
6
7
A
VCCQ  
NC  
A
VCCQ  
NC  
B
C
D
E
F
CE2  
A
A
A
CE2  
NC  
A
A
A
DQ9  
NC  
NC  
DQ10  
NC  
NC  
VSS  
VSS  
VSS  
WEH  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
WEL  
VSS  
VSS  
VSS  
NC  
A
NC  
DQ11  
NC  
CE  
DQ8  
VCCQ  
DQ6  
NC  
VCCQ  
NC  
OE  
DQ7  
NC  
G
H
J
DQ12  
NC  
ADV  
GW  
VCC  
CLK  
NC  
DQ13  
VCCQ  
NC  
DQ5  
VCC  
NC  
VCC  
DQ14  
NC  
VCCQ  
DQ4  
NC  
K
L
DQ15  
VCCQ  
DQ17  
NC  
DQ3  
MATCH  
DQ2  
MOE  
A
M
N
P
R
T
DQ16  
NC  
BWE  
A1  
VCCQ  
DEN  
DQ1  
NC  
DQ18  
A
A0  
NC  
VCC  
NC  
NC  
A
A
ZZ  
U
VCCQ  
TMS  
TDI  
TCK  
TDO  
NC  
VCCQ  
Document #: 38-05120 Rev. **  
Page 3 of 24  
CY7C1359A/GVT71256T18  
Pin Descriptions  
BGA Pins  
TQFP Pins  
Name  
Type  
Description  
4P  
4N  
37  
36  
A0  
A1  
A
Input-  
Addresses: These inputs are registered and must meet the  
Synchronous set-up and hold times around the rising edge of CLK. The  
burst counter generates internal addresses associated with  
A0 and A1, during burst cycle and wait cycle.  
2A, 3A, 5A, 6A,  
3B, 5B, 2C, 3C,  
35, 34, 33, 32,  
100, 99, 82, 81,  
5C, 6C, 2R, 6R, 80,48, 47, 46, 45,  
2T, 3T, 5T, 6T  
44, 49, 50  
5L  
3G  
93  
94  
WEL  
WEH  
Input-  
Byte Write Enables: A byte write enable is LOW for a WRITE  
Synchronous cycle and HIGH for a READ cycle. WEL controls DQ1DQ9.  
WEH controls DQ10DQ18. Data I/O are high impedance if  
either of these inputs are LOW, conditioned by BWE being  
LOW.  
4M  
4H  
87  
88  
BWE  
GW  
Input-  
Write Enable: This active LOW input gates byte write opera-  
Synchronous tions and must meet the set-up and hold times around the  
rising edge of CLK.  
Input-  
Global Write: This active LOW input allows a full 18-bit  
Synchronous WRITE to occur independent of the BWE and WEn lines and  
must meet the set-up and hold times around the rising edge  
of CLK.  
4K  
89  
CLK  
Input-  
Clock: This signal registers the addresses, data, chip en-  
Synchronous ables, write control, and data input enable control input on its  
rising edge. All synchronous inputs must meet set-up and  
hold times around the clocks rising edge.  
4E  
6B  
2B  
4F  
4G  
98  
92  
97  
86  
83  
CE  
CE2  
CE2  
OE  
Input-  
Chip Enable: This active LOW input is used to enable the  
Synchronous device and to gate ADSP.  
Input-  
Synchronous device.  
Chip Enable: This active LOW input is used to enable the  
input-  
Chip Enable: This active HIGH input is used to enable the  
Synchronous device.  
Input  
Output Enable: This activeLOW asynchronousinput enables  
the data output drivers.  
ADV  
Input-  
Address Advance: This active LOW input is used to control  
Synchronous the internal burst counter. A HIGH on this pin generates wait  
cycle (no address advance).  
4A  
4B  
84  
85  
ADSP  
ADSC  
Input-  
Address Status Processor: This active LOW input, along with  
Synchronous CE being LOW, causes a new external address to be regis-  
tered and a READ cycle is initiated using the new address.  
Input-  
Address Status Controller: This active LOW input causes de-  
Synchronous vice to be deselected or selected along with new external  
address to be registered. A READ or WRITE cycle is initiated  
depending upon write control inputs.  
3R  
7T  
31  
64  
MODE  
ZZ  
Input-  
Static  
Mode: This input selects the burst sequence. A LOW on this  
pin selects Linear Burst. A NC or HIGH on this pin selects  
Interleaved Burst.  
Input-  
Snooze: This active HIGH input puts the device in low power  
Asynchronous consumption standby mode. For normal operation, this input  
has to be either LOW or NC (No Connect).  
7N  
6M  
52  
53  
DEN  
Input-  
Data Input Enable: This active LOW input is used to control  
Synchronous the update of data input registers.  
MATCH  
Output Match Output: MATCH will be HIGH if data in the data input  
registers match the data stored in the memory array, assum-  
ing MOE being LOW. MATCH will be LOW if data do not  
match.  
Document #: 38-05120 Rev. **  
Page 4 of 24  
CY7C1359A/GVT71256T18  
Pin Descriptions (continued)  
BGA Pins  
TQFP Pins  
Name  
Type  
Description  
6P  
51  
MOE  
Input  
Match Output Enable: This active LOW asynchronous input  
enables the MATCH output drivers.  
7P, 6N, 6L, 7K, 58,59, 62, 63, 68, DQ1–  
Input/  
Output  
Data Inputs/Outputs: Input data must meet setup and hold  
times around the rising edge of CLK.  
6H, 7G, 6F, 7E, 69, 72, 73, 74, 8,  
6D, 1D, 2E, 2G, 9, 12, 13, 18, 19,  
DQ18  
1H, 2K, 1L, 2M,  
22, 23, 24  
1N, 2P  
5U  
42  
TDO  
Output  
Input  
IEEE 1149.1 test output. LVTTL-level output.  
IEEE 1149.1 test inputs. LVTTL-level inputs.  
2U  
3U  
4U  
38  
39  
43  
TMS  
TDI  
TCK  
4C, 2J, 4J, 6J, 4R  
15, 41,65, 91  
VCC  
VSS  
Supply  
Ground  
Power Supply: +3.3V 5% and +10%  
3D, 5D, 3E, 5E, 5, 10, 17, 21, 26,  
3F, 5F, 5G, 3H, 40,55, 60, 67, 71,  
Ground: GND  
5H, 3K, 5K, 3L,  
3M, 5M, 3N, 5N,  
3P, 5P  
76, 90  
1A,7A,1F,7F,1J, 4, 11, 20, 27, 54,  
VCCQ  
I/O Supply  
-
Output Buffer Supply: +2.5V (from 2.375V to VCC)  
7J, 1M, 7M, 1U,  
7U  
61, 70, 77  
1B, 7B, 1C, 7C,  
1-3, 6, 7, 14, 16,  
NC  
No Connect: These signals are not internally connected.  
2D, 4D, 7D, 1E, 25, 28-30, 56, 57,  
6E, 2F, 1G, 6G, 66,75, 78, 79, 95,  
2H, 7H, 3J, 5J,  
1K, 6K, 2L, 4L,  
7L, 2N, 1P, 1R,  
5R, 7R, 1T, 4T, 6U  
96  
Burst Address Table (MODE = GND)  
Burst Address Table (MODE = NC/V  
)
CC  
First  
Address  
(external)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)  
First  
Address  
(external)  
Second  
Address  
(internal)  
Third  
Address  
(internal)  
Fourth  
Address  
(internal)  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A10  
A...A11  
A...A00  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A00  
A...A01  
A...A10  
A...A00  
A...A01  
A...A10  
A...A11  
A...A01  
A...A00  
A...A11  
A...A10  
A...A10  
A...A11  
A...A00  
A...A01  
A...A11  
A...A10  
A...A01  
A...A00  
Partial Truth Table for MATCH[2, 3, 4, 5, 6]  
Operation  
READ Cycle  
E
L
WE  
H
L
DEN  
MOE  
OE  
MATCH  
DQ  
Q
X
L
X
X
X
L
L
H
H
H
X
X
-
WRITE Cycle  
L
-
-
D
Fill WRITE Cycle  
L
L
H
L
High-Z  
D
COMPARE Cycle  
L
H
X
Output  
H
Deselected Cycle (MATCH Out)  
H
H
X
X
L
High-Z  
High-Z  
Deselected Cycle  
X
H
High-Z  
Notes:  
2. X means dont care.H means logic HIGH. L means logic LOW. It is assumed in this table that ADSP is HIGH and ADSC is LOW.  
3. E=L is defined as CE=LOW and CE2=LOW and CE2=HIGH. E =H is defined as CE=HIGH or CE2=HIGH or CE2=LOW. WE is defined as [BWE + WEL*WEH]*GW.  
4. All inputs except OE and MOE must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.  
5. For a write operation following a read operation, OE must be HIGH before the input data required setup time plus High-Z time for OE and staying HIGH throughout  
the input data hold time.  
6. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.  
Document #: 38-05120 Rev. **  
Page 5 of 24  
CY7C1359A/GVT71256T18  
Truth Table[5, 6, 7, 8, 9, 10, 11]  
Address  
Used  
Operation  
CE CE2 CE2 ADSP ADSC  
ADV WRITE OE  
CLK  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
L-H  
DQ  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
Q
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
Deselected Cycle, Power Down  
READ Cycle, Begin Burst  
None  
None  
H
L
X
X
H
X
H
L
X
L
X
L
L
X
X
L
X
X
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
L
X
X
X
X
X
L
None  
L
X
L
L
None  
L
H
H
L
None  
L
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
L
External  
External  
External  
External  
External  
Next  
L
X
X
L
READ Cycle, Begin Burst  
L
L
L
H
X
L
High-Z  
D
WRITE Cycle, Begin Burst  
READ Cycle, Begin Burst  
L
L
H
H
H
H
H
X
X
H
X
H
H
X
X
H
X
L
L
L
H
H
H
H
H
H
L
Q
READ Cycle, Begin Burst  
L
L
L
H
L
High-Z  
Q
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
READ Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
WRITE Cycle, Continue Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
READ Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
WRITE Cycle, Suspend Burst  
X
X
H
H
X
H
X
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
Next  
L
H
L
High-Z  
Q
Next  
L
Next  
L
H
X
X
L
High-Z  
D
Next  
L
Next  
L
L
D
Current  
Current  
Current  
Current  
Current  
Current  
H
H
H
H
H
H
H
H
H
H
L
Q
H
L
High-Z  
Q
H
X
X
High-Z  
D
L
D
Partial Truth Table for READ/WRITE[12]  
Function  
READ  
GW  
BWE  
WEH  
WEL  
H
H
H
H
L
H
L
L
L
X
X
H
L
X
H
H
L
READ  
WRITE one byte  
WRITE all bytes  
L
WRITE all bytes  
X
X
Notes:  
7. X means Dont Care.H means logic HIGH. L means logic LOW. WRITE = L means [BWE + WEL*WEH]*GW equals LOW. WRITE = H means [BWE +  
WEL*WEH]*GW equals HIGH. It is assumed in this truth table that DEN is LOW.  
8. WEL enables write to DQ1DQ9. WEH enables write to DQ10DQ18.  
9. All inputs except OE must meet set-up and hold times around the rising edge (LOW to HIGH) of CLK.  
10. Suspending burst generates wait cycle.  
11. ADSP LOW along with chip being selected always initiates a READ cycle at the L-H edge of CLK. A WRITE cycle can be performed by setting WRITE LOW for  
the CLK L-H edge of the subsequent wait cycle. Refer to WRITE timing diagram for clarification.  
12. X means dont care.H means logic HIGH. L means logic LOW. It is assumed in this truth table that chip is selected and ADSP is HIGH along with DEN being LOW.  
Document #: 38-05120 Rev. **  
Page 6 of 24  
CY7C1359A/GVT71256T18  
Performing a TAP Reset  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The TAP circuitry does not have a Reset pin (TRST, which is  
optional in the IEEE 1149.1 specification). A RESET can be  
performed for the TAP controller by forcing TMS HIGH (VCC)  
for five rising edges of TCK and pre-loads the instruction reg-  
ister with the IDCODE command. This type of reset does not  
affect the operation of the system logic. The reset affects test  
logic only.  
Overview  
This device incorporates a serial boundary scan access port  
(TAP). This port is designed to operate in a manner consistent  
with IEEE Standard 1149.1-1990 (commonly referred to as  
JTAG), but does not implement all of the functions required for  
IEEE 1149.1 compliance. Certain functions have been modi-  
fied or eliminated because their implementation places extra  
delays in the critical speed path of the device. Nevertheless,  
the device supports the standard TAP controller architecture  
(the TAP controller is the state machine that controls the TAPs  
operation) and can be expected to function in a manner that  
does not conflict with the operation of devices with IEEE Stan-  
dard 1149.1 compliant TAPs. The TAP operates using  
LVTTL/LVCMOS logic level signaling.  
At power-up, the TAP is reset internally to ensure that TDO is  
in a High-Z state.  
Test Access Port (TAP) Registers  
Overview  
The various TAP registers are selected (one at a time) via the  
sequences of ones and zeros input to the TMS pin as the TCK  
is strobed. Each of the TAPs registers are serial shift registers  
that capture serial input data on the rising edge of TCK and  
push serial data out on subsequent falling edge of TCK. When  
a register is selected, it is connected between the TDI and  
TDO pins.  
Disabling the JTAG Feature  
It is possible to use this device without using the JTAG feature.  
To disable the TAP controller without interfering with normal  
operation of the device, TCK should be tied LOW (VSS) to  
prevent clocking the device. TDI and TMS are internally pulled  
up and may be unconnected. They may alternately be pulled  
up to VCC through a resistor. TDO should be left unconnected.  
Upon power-up the device will come up in a reset state which  
will not interfere with the operation of the device.  
Instruction Register  
The instruction register holds the instructions that are execut-  
ed by the TAP controller when it is moved into the run test/idle  
or the various data register states. The instructions are three  
bits long. The register can be loaded when it is placed between  
the TDI and TDO pins. The parallel outputs of the instruction  
register are automatically preloaded with the IDCODE instruc-  
tion upon power-up or whenever the controller is placed in the  
test-logic reset state. When the TAP controller is in the Cap-  
ture-IR state, the two least significant bits of the serial instruc-  
tion register are loaded with a binary 01pattern to allow for  
fault isolation of the board-level serial test data path.  
Test Access Port (TAP)  
TCK - Test Clock (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
TMS - Test Mode Select (INPUT)  
The TMS input is sampled on the rising edge of TCK. This is  
the command input for the TAP controller state machine. It is  
allowable to leave this pin unconnected if the TAP is not used.  
The pin is pulled up internally, resulting in a logic HIGH level.  
Bypass Register  
The bypass register is a single-bit register that can be placed  
between TDI and TDO. It allows serial test data to be passed  
through the device TAP to another device in the scan chain  
with minimum delay. The bypass register is set LOW (VSS  
when the BYPASS instruction is executed.  
)
TDI - Test Data In (INPUT)  
The TDI input is sampled on the rising edge of TCK. This is the  
input side of the serial registers placed between TDI and TDO.  
The register placed between TDI and TDO is determined by  
the state of the TAP controller state machine and the instruc-  
tion that is currently loaded in the TAP instruction register (re-  
fer to Figure 1, TAP Controller State Diagram). It is allowable  
to leave this pin unconnected if it is not used in an application.  
The pin is pulled up internally, resulting in a logic HIGH level.  
TDI is connected to the most significant bit (MSB) of any reg-  
ister. (See Figure 2.)  
Boundary Scan Register  
The Boundary scan register is connected to all the input and  
bidirectional I/O pins (not counting the TAP pins) on the device.  
This also includes a number of NC pins that are reserved for  
future needs. There are a total of 70 bits for a x36 device and  
51 bits for a x18 device. The boundary scan register, under the  
control of the TAP controller, is loaded with the contents of the  
device I/O ring when the controller is in Capture-DR state and  
then is placed between the TDI and TDO pins when the con-  
troller is moved to Shift-DR state. The EXTEST, SAMPLE/  
PRELOAD and SAMPLE-Z instructions can be used to cap-  
ture the contents of the I/O ring.  
TDO - Test Data Out (OUTPUT)  
The TDO output pin is used to serially clock data-out from the  
registers. The output that is active depending on the state of  
the TAP state machine (refer to Figure 1, TAP Controller State  
Diagram). Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed be-  
tween TDI and TDO. TDO is connected to the least significant  
bit (LSB) of any register. (See Figure 2.)  
The Boundary Scan Order table describes the order in which  
the bits are connected. The first column defines the bits posi-  
tion in the boundary scan register. The MSB of the register is  
connected to TDI, and LSB is connected to TDO. The second  
column is the signal name and the third column is the bump  
number. The third column is the TQFP pin number and the  
fourth column is the BGA bump number.  
Document #: 38-05120 Rev. **  
Page 7 of 24  
CY7C1359A/GVT71256T18  
Identification (ID) Register  
Capture-DR mode and places the ID register between the TDI  
and TDO pins in Shift-DR mode. The IDCODE instruction is  
the default instruction loaded in the instruction upon power-up  
and at any time the TAP controller is placed in the test-logic  
reset state.  
The ID Register is a 32-bit register that is loaded with a device  
and vendor specific 32-bit code when the controller is put in  
Capture-DR state with the IDCODE command loaded in the  
instruction register. The register is then placed between the  
TDI and TDO pins when the controller is moved into Shift-DR  
state. Bit 0 in the register is the LSB and the first to reach TDO  
when shifting begins. The code is loaded from a 32-bit on-chip  
ROM. It describes various attributes of the device as described  
in the Identification Register Definitions table.  
SAMPLE-Z  
If the High-Z instruction is loaded in the instruction register, all  
output pins are forced to a High-Z state and the boundary scan  
register is connected between TDI and TDO pins when the  
TAP controller is in a Shift-DR state.  
TAP Controller Instruction Set  
SAMPLE/PRELOAD  
Overview  
SAMPLE/PRELOAD is an IEEE 1149.1 mandatory instruction.  
The PRELOAD portion of the command is not implemented in  
this device, so the device TAP controller is not fully IEEE  
1149.1-compliant.  
There are two classes of instructions defined in the IEEE Stan-  
dard 1149.1-1990; the standard (public) instructions and de-  
vice specific (private) instructions. Some public instructions  
are mandatory for IEEE 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
When the SAMPLE/PRELOAD instruction is loaded in the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snap shot of the data in the devices input and I/O  
buffers is loaded into the boundary scan register. Because the  
device system clock(s) are independent from the TAP clock  
(TCK), it is possible for the TAP to attempt to capture the input  
and I/O ring contents while the buffers are in transition (i.e., in  
a metastable state). Although allowing the TAP to sample  
metastable inputs will not harm the device, repeatable results  
can not be expected. To guarantee that the boundary scan  
register will capture the correct value of a signal, the device  
input signals must be stabilized long enough to meet the TAP  
controllers capture setup plus hold time (tCS plus tCH). The  
device clock input(s) need not be paused for any other TAP  
operation except capturing the input and I/O ring contents into  
the boundary scan register.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not IEEE 1149.1 compliant because  
some of the mandatory instructions are not fully implemented.  
The TAP on this device may be used to monitor all input and  
I/O pads, but can not be used to load address, data, or control  
signals into the device or to preload the I/O buffers. In other  
words, the device will not perform IEEE 1149.1 EXTEST, IN-  
TEST, or the preload portion of the SAMPLE/PRELOAD com-  
mand.  
When the TAP controller is placed in Capture-IR state, the two  
least significant bits of the instruction register are loaded with  
01. When the controller is moved to the Shift-IR state the in-  
struction is serially loaded through the TDI input (while the  
previous contents are shifted out at TDO). For all instructions,  
the TAP executes newly loaded instructions only when the  
controller is moved to Update-IR state. The TAP instruction  
sets for this device are listed in the following tables.  
Moving the controller to Shift-DR state then places the bound-  
ary scan register between the TDI and TDO pins. Because the  
PRELOAD portion of the command is not implemented in this  
device, moving the controller to the Update-DR state with the  
SAMPLE/PRELOAD instruction loaded in the instruction reg-  
ister has the same effect as the Pause-DR command.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It is  
to be executed whenever the instruction register is loaded with  
all 0s. EXTEST is not implemented in this device.  
BYPASS  
When the BYPASS instruction is loaded in the instruction reg-  
ister and the TAP controller is in the Shift-DR state, the bypass  
register is placed between TDI and TDO. This allows the board  
level scan path to be shortened to facilitate testing of other  
devices in the scan path.  
The TAP controller does recognize an all-0 instruction. When  
an EXTEST instruction is loaded into the instruction register,  
the device responds as if a SAMPLE/PRELOAD instruction  
has been loaded. There is one difference between two instruc-  
tions. Unlike SAMPLE/PRELOAD instruction, EXTEST places  
the device outputs in a High-Z state.  
Reserved  
Do not use these instructions. They are reserved for future  
use.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the ID register when the controller is in  
Document #: 38-05120 Rev. **  
Page 8 of 24  
CY7C1359A/GVT71256T18  
TEST-LOGIC  
RESET  
1
0
0
1
1
1
REUN-TEST/  
IDLE  
SELECT  
SELECT  
DR-SCAN  
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
1
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Figure 1. TAP Controller State Diagram[13]  
Note:  
13. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-05120 Rev. **  
Page 9 of 24  
CY7C1359A/GVT71256T18  
0
Bypass Register  
Selection  
Circuitry  
Selection  
Circuitry  
2
1
0
TDO  
TDI  
Instruction Register  
29  
Identification Register  
31 30  
.
.
2
1
1
0
0
.
x
.
.
.
2
Boundary Scan Register [14]  
TDI  
TDI  
TAP Controller  
Figure 2. TAP Controller Block Diagram  
TAP DC Electrical Characteristics (20°C < Tj < 110°C; VCC = 3.3V 0.2V and +0.3V unless otherwise noted)  
Parameter  
Description  
Test Conditions  
Min.  
2.0  
Max.  
VCC + 0.3  
0.8  
Unit  
VIH  
VIl  
Input High (Logic 1) Voltage[15, 16]  
Input Low (Logic 0) Voltage[15, 16]  
Input Leakage Current  
V
V
0.3  
5.0  
5.0  
ILI  
0V < VIN < VCC  
5.0  
µA  
µA  
ILO  
Output Leakage Current  
Output disabled,  
0V < VIN < VCCQ  
5.0  
VOLC  
VOHC  
VOLT  
LVCMOS Output Low Voltage[15, 17] IOLC = 100 µA  
LVCMOS Output High Voltage[15, 17] IOHC = 100 µA  
0.2  
0.4  
V
V
V
V
VCC 0.2  
LVTTL Output Low Voltage[15]  
LVTTL Output High Voltage[15]  
IOLT = 8.0 mA  
IOHT = 8.0 mA  
VOHT  
2.4  
Notes:  
14. X = 53 for this device.  
15. All Voltage referenced to VSS (GND).  
16. Overshoot: VIH(AC)<VCC+1.5V for t<tKHKH/2, Undershoot: VIL(AC)<0.5V for t<tKHKH/2, Power-up: VIH<3.6V and VCC<3.135V and VCCQ<1.4V for t<200 ms.  
During normal operation, VCCQ must not exceed VCC. Control input signals (such as GW, ADSC, etc.) may not have pulse widths less than tKHKL (min.).  
17. This parameter is sampled.  
Document #: 38-05120 Rev. **  
Page 10 of 24  
CY7C1359A/GVT71256T18  
TAP AC Switching Characteristics Over the Operating Range[18, 19]  
Parameter  
Clock  
Description  
Min.  
Max  
Unit  
tTHTH  
Clock Cycle Time  
Clock Frequency  
Clock HIGH Time  
Clock LOW Time  
20  
ns  
MHz  
ns  
fTF  
50  
tTHTL  
8
8
tTLTH  
ns  
Output Times  
tTLQX  
TCK LOW to TDO Unknown  
TCK LOW to TDO Valid  
TDI Valid to TCK HIGH  
TCK HIGH to TDI Invalid  
0
ns  
ns  
ns  
ns  
tTLQV  
10  
tDVTH  
5
5
tTHDX  
Set-up Times  
tMVTH  
TMS Set-up  
5
5
ns  
ns  
tCS  
Capture Set-up  
Hold Times  
tTHMX  
TMS Hold  
5
5
ns  
ns  
tCH  
Capture Hold  
Notes:  
18. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.  
19. Test conditions are specified using the load in TAP AC Test Conditions.  
Document #: 38-05120 Rev. **  
Page 11 of 24  
CY7C1359A/GVT71256T18  
TAP Timing and Test Conditions  
ALL INPUT PULSES  
3.0V  
1.5V  
TDO  
Z0 = 50  
50Ω  
20 pF  
V
SS  
1.0 ns  
1.0 ns  
Vt = 1.5V  
(a)  
t
t
THTL  
TLTH  
t
THTH  
TEST CLOCK  
(TCK)  
t
t
MVTH  
THMX  
TEST MODE SELECT  
(TMS)  
t
t
DVTH  
THDX  
TEST DATA IN  
(TDI)  
t
TLQV  
t
TLQX  
TEST DATA OUT  
(TDO)  
Document #: 38-05120 Rev. **  
Page 12 of 24  
CY7C1359A/GVT71256T18  
Identification Register Definitions  
Instruction Field  
512K x 18  
Description  
REVISION NUMBER  
(31:28)  
XXXX  
Reserved for revision number.  
DEVICE DEPTH  
(27:23)  
00111  
00011  
Defines depth of 256K words.  
Defines width of x18 bits.  
Reserved for future use.  
DEVICE WIDTH  
(22:18)  
RESERVED  
(17:12)  
XXXXXX  
CYPRESS JEDEC ID CODE (11:1)  
00011100100  
1
Allows unique identification of DEVICE vendor.  
Indicates the presence of an ID register.  
ID Register Presence  
Indicator (0)  
Scan Register Sizes  
Register Name  
Instruction  
Bit Size  
3
1
Bypass  
ID  
32  
54  
Boundary Scan  
Instruction Codes  
Instruction  
Code  
Description  
EXTEST  
000  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. Forces all device outputs to High-Z state. This instruction is not  
IEEE 1149.1-compliant.  
IDCODE  
001  
010  
Preloads ID register with vendor ID code and places it between TDI and  
TDO. This instruction does not affect device operations.  
SAMPLE-Z  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. Forces all device outputs to High-Z state.  
RESERVED  
011  
100  
Do not use these instructions; they are reserved for future use.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI  
and TDO. This instruction does not affect device operations. This instruction  
does not implement IEEE 1149.1 PRELOAD function and is therefore not  
1149.1-compliant.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Places the bypass register between TDI and TDO. This instruction does not  
affect device operations.  
Document #: 38-05120 Rev. **  
Page 13 of 24  
CY7C1359A/GVT71256T18  
Boundary Scan Order (continued)  
Boundary Scan Order  
Bit#  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
Signal Name  
CE  
TQFP  
98  
99  
100  
8
Bump ID  
4E  
Bit#  
1
Signal Name  
A
TQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
58  
59  
62  
63  
64  
68  
69  
72  
73  
74  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
92  
93  
94  
97  
Bump ID  
2R  
2T  
A
3A  
2
A
A
2A  
3
A
3T  
DQ10  
DQ11  
DQ12  
DQ13  
NC  
ID  
4
A
5T  
9
2E  
5
A
6R  
3B  
5B  
6P  
7N  
6M  
7P  
6N  
6L  
12  
13  
14  
18  
19  
22  
23  
24  
31  
32  
33  
34  
35  
36  
37  
2G  
1H  
5R  
2K  
6
A
7
A
8
MOE  
DEN  
MATCH  
DQ1  
DQ2  
DQ3  
DQ4  
ZZ  
DQ14  
DQ15  
DQ16  
DQ17  
DQ18  
MODE  
A
9
1L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
2M  
1N  
2P  
3R  
2C  
3C  
5C  
6C  
4N  
4P  
7K  
7T  
A
DQ5  
DQ6  
DQ7  
DQ8  
DQ9  
A
6H  
7G  
6F  
A
A
A1  
7E  
6D  
6T  
A0  
Maximum Ratings  
A
6A  
5A  
4G  
4A  
4B  
4F  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
A
ADV  
ADSP  
ADSC  
OE  
Voltage on VCC Supply Relative to VSS..........0.5V to +4.6V  
VIN .......................................................... 0.5V to VCC+0.5V  
Storage Temperature (plastic) ................... 55°C to +150°C  
Junction Temperature ............................................... +150°C  
Power Dissipation.......................................................... 1.0W  
Short Circuit Output Current........................................ 50 mA  
BWE  
GW  
CLK  
CE2  
WEL  
WEH  
CE2  
4M  
4H  
4K  
6B  
5L  
Operating Range  
Ambient  
Range  
Coml  
Temperature[20]  
VCC  
3G  
2B  
0°C to +70°C  
3.3V 5%/+10%  
Note:  
20. TA is the case temperature.  
Document #: 38-05120 Rev. **  
Page 14 of 24  
CY7C1359A/GVT71256T18  
Electrical Characteristics Over the Operating Range  
Parameter  
VIHD  
VIH  
Description  
Input High (Logic 1) Voltage[15, 21]  
Test Conditions  
Data Inputs (DQxx)  
Min.  
1.7  
1.7  
0.3  
2  
Max.  
Unit  
V
VCC+0.3  
All Other Inputs  
4.6  
0.8  
2
V
VIl  
Input Low (Logic 0) Voltage[15, 21]  
Input Leakage Current[22]  
Output Leakage Current  
V
ILI  
0V < VIN < VCC  
µA  
µA  
V
ILO  
Output(s) disabled, 0V < VOUT < VCC  
IOH = 4.0 mA at VCCQ = 3.135V  
IOH = 4.0 mA at VCCQ = 2.375V  
IOL = 8.0 mA  
2  
2
VOH  
VOH  
VOL  
Output High Voltage[15, 23]  
2.4  
1.7  
Output Low Voltage[15, 23]  
Supply Voltage[15]  
I/O Supply Voltage[15]  
0.4  
3.6  
V
V
V
VCC  
3.135  
2.375  
VCCQ  
VCC  
166  
150  
133  
100  
MHz/ MHz/ MHz/ MHz/  
Parameter  
Description  
Conditions  
Typ.  
-6  
-6.7  
-7.5  
-10  
Unit  
ICC  
Power Supply  
Current:  
Device selected; all inputs < VILor > VIH;  
cycle time > tKC min.; VCC = Max.;  
outputs open  
100  
310  
275  
250  
190  
mA  
Operating[24, 25, 26]  
ISB2  
ISB3  
ISB4  
CMOS Standby[25, 26] Device deselected; VCC = Max.;  
all inputs < VSS + 0.2 or > VCC 0.2;  
5
10  
20  
80  
10  
20  
70  
10  
20  
60  
10  
20  
50  
mA  
mA  
mA  
all inputs static; CLK frequency = 0  
TTL Standby[25, 26]  
Device deselected; all inputs < VIL  
or > VIH; all inputs static;  
10  
40  
VCC = Max.; CLK frequency = 0  
Clock Running[25, 26] Device deselected;  
all inputs < VIL or > VIH; VCC = Max.;  
CLK cycle time > tKC min.  
Capacitance[17]  
Parameter  
Description  
Test Conditions  
Typ.  
Max.  
Unit  
CI  
Input Capacitance  
Input/Output Capacitance (DQ)  
TA = 25°C, f = 1 MHz,  
4
7
5
8
pF  
pF  
VCC = 3.3V  
CO  
Thermal Resistance  
Description  
Test Conditions  
Symbol BGA Typ. TQFP Typ. Unit  
Thermal Resistance (Junction to Ambient) Still Air, soldered on a 4.25 x 1.125 inch,  
ΘJA  
ΘJC  
19  
9
25  
9
°C/W  
°C/W  
4-layer PCB  
Thermal Resistance (Junction to Case)  
Note:  
21. Overshoot: VIH +6.0V for t tKC /2.  
Undershoot:VIL 2.0V for t tKC /2.  
22. MODE pin has an internal pull-up and ZZ pin has an internal pull-down. These two pins exhibit an input leakage current of ±30 µA.  
23. AC I/O curves are available upon request.  
24. ICC is given with no output current. ICC increases with greater output loading and faster cycle times.  
25. Device Deselectedmeans the device is in Power-Down mode as defined in the truth table. Device Selectedmeans the device is active.  
26. Typical values are measured at 3.3V, 25°C, and 8.5-ns cycle time.  
Document #: 38-05120 Rev. **  
Page 15 of 24  
CY7C1359A/GVT71256T18  
AC Test Loads and Waveforms  
ALL INPUT PULSES  
+2.5v  
1,667  
DQ  
2.5V  
0V  
90%  
10%  
90%  
Z = 50  
50Ω  
30 pF  
0
10%  
DQ  
Vt = 1.25V  
(a)  
1.8 ns  
1.8 ns  
1,538Ω  
5 pF  
(c)  
(b)  
Switching Characteristics Over the Operating Range[27]  
-6  
-6.7  
150 MHz  
-7.5  
133 MHz  
-10  
100 MHz  
166 MHz  
Parameter  
Clock  
tKC  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Clock Cycle Time  
6.0  
6.7  
7.5  
8.5  
ns  
Clock Frequency  
Clock HIGH Time  
Clock LOW Time  
tKF  
tKH  
2.4  
2.4  
2.6  
2.6  
2.8  
2.8  
3.4  
3.4  
ns  
ns  
tKL  
Output Times  
tKQ  
Clock to Output Valid  
3.5  
3.8  
4.0  
4.0  
ns  
ns  
tKM  
Clock to MATCH Valid  
tKQX  
Clock to Output Invalid  
1.5  
1.5  
1.5  
1.5  
tKMX  
Clock to MATCH Invalid  
tKQLZ  
Clock to Output in Low-Z[17, 28, 29]  
Clock to Output in High-Z[17, 28, 29]  
OE to Output Valid[30]  
0
0
0
0
ns  
ns  
ns  
tKQHZ  
tOEQ  
tMOEM  
tOELZ  
1.5  
6.0  
3.5  
1.5  
6.7  
3.5  
1.5  
7.5  
3.8  
1.5  
8.5  
3.8  
MOE to MATCH Valid[30]  
OE to Output in Low-Z[17, 28, 29]  
MOE to MATCH in Low-Z[17, 28, 29]  
OE to Output in High-Z[17, 28, 29]  
MOE to MATCH in High-Z[17, 28, 29]  
0
0
0
0
ns  
ns  
tMOELZ  
tOEHZ  
tMOEHZ  
Set-up Times  
tS  
3.5  
3.5  
3.8  
3.8  
Address, Controls, and Data In[31]  
Address, Controls, and Data In[31]  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
2.0  
0.5  
ns  
ns  
Hold Times  
tH  
Notes:  
27. Test conditions as specified with the output loading as shown in part (a) of AC Test Loads unless otherwise noted.  
28. Output loading is specified with CL = 5 pF as in AC Test Loads.  
29. At any given temperature and voltage condition, tKQHZ is less than tKQLZ, tOEHZ is less than tOELZ and tMOEHZ is less than tMOELZ  
30. OE is a Dont Careafter a write cycle begins To prevent bus contention, OE should be negated prior before the start of write cycle.  
31. This is a synchronous device. All synchronous inputs must meet specified set-up and hold time, except for dont careas defined in the truth table.  
.
Document #: 38-05120 Rev. **  
Page 16 of 24  
CY7C1359A/GVT71256T18  
Typical Output Buffer Characteristics  
Output High Voltage  
Pull-Up Current  
Output Low Voltage  
Pull-Down Current  
VOH (V)  
0.5  
0
IOH (mA) Min. IOH (mA) Max.  
VOL (V)  
0.5  
0
IOL (mA) Min. IOL(mA) Max.  
38  
38  
38  
26  
20  
0
105  
105  
105  
83  
70  
30  
10  
0
0
0
0
0
0.8  
0.4  
10  
20  
31  
40  
40  
40  
40  
20  
40  
63  
80  
80  
80  
80  
1.25  
1.5  
0.8  
1.25  
1.6  
2.3  
2.7  
0
2.8  
2.9  
0
3.2  
3.4  
0
0
3.4  
Document #: 38-05120 Rev. **  
Page 17 of 24  
CY7C1359A/GVT71256T18  
Switching Waveforms  
Read Timing with Burst Feature[32, 33]  
tKC  
tKL  
CLK  
tKH  
tS  
ADSP#  
tH  
ADSC#  
tS  
ADDRESS  
A1  
A2  
tH  
WEL#, WEH#,  
BWE#, GW#  
tS  
CE#  
ADV#  
OE#  
DQ  
tS  
tH  
tKQ  
tKQ  
tOEQ  
tOELZ  
tKQLZ  
Q(A1)  
Q(A2)  
Q(A2+1)  
Q(A2+2)  
Q(A2+3)  
Q(A2)  
Q(A2+1)  
SINGLE READ  
BURST READ  
Notes:  
32. CE active in this timing diagram means that all Chip Enables CE, CE2, and CE2 are active.  
33. In this timing diagram, it is assumed that DEN is tied to LOW (VSS).  
Document #: 38-05120 Rev. **  
Page 18 of 24  
CY7C1359A/GVT71256T18  
Switching Waveforms (continued)  
Write Timing with Burst Feature[32, 33]  
CLK  
tS  
ADSP#  
tH  
ADSC#  
tS  
ADDRESS  
A1  
A2  
A3  
tH  
WEL#, WEH#,  
BWE#  
GW#  
CE#  
tS  
ADV#  
OE#  
DQ  
tH  
tOEHZ  
tKQX  
Q
D(A1)  
D(A2) D(A2+1) D(A2+1)  
D(A2+2)  
D(A2+3)  
D(A3)  
D(A3+1) D(A3+2)  
SINGLE WRITE  
BURST WRITE  
BURST WRITE  
Document #: 38-05120 Rev. **  
Page 19 of 24  
CY7C1359A/GVT71256T18  
Switching Waveforms (continued)  
Read/Write Timing with Burst Feature[32, 33]  
CLK  
tS  
ADSP#  
tH  
ADSC#  
tS  
ADDRESS  
A2  
A3  
A4  
A5  
A1  
tH  
WEL#, WEH#,  
BWE#, GW#  
CE#  
ADV#  
OE#  
DQ  
Q(A1)  
Single Reads  
Q(A2)  
D(A3)  
Single Write  
Q(A4)  
Q(A4+1) Q(A4+2)  
D(A5)  
D(A5+1)  
Burst Read  
Burst Write  
Document #: 38-05120 Rev. **  
Page 20 of 24  
CY7C1359A/GVT71256T18  
Switching Waveforms (continued)  
Read/Write Timing without Burst Feature[32, 34, 35]  
tKH  
tKC  
tKL  
CLK  
tS  
ADDRESS  
WE#  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A1  
tH  
CE#  
DEN#  
OE#  
tOEQ  
tOEHZ  
tKQHZ  
tOELZ  
tKQLZ  
tKQX  
tKQ  
Q(A1)  
Q(A2)  
Q(A3)  
Q(A4)  
D(A5)  
D(A6)  
D(A7)  
D(A8)  
DQ  
Reads  
Writes  
Notes:  
34. In this timing diagram, it is assumed that burst feature is not used and therefore ADSP is tied to HIGH (VCC) and ADSC is tied to LOW (VSS). The logic state  
of ADV is a Dont Care.  
35. In this timing diagram, it is assumed that WE = [BWE + WEL*WEH]*GW.  
Document #: 38-05120 Rev. **  
Page 21 of 24  
CY7C1359A/GVT71256T18  
Switching Waveforms (continued)  
Compare/Fill Write Timing[32, 34, 35]  
tKH  
tKC  
tKL  
CLK  
tS  
ADDRESS  
WE#  
A1  
A1  
A2  
tH  
CE#  
DEN#  
OE#  
D(A1)  
D(A2)  
DQ  
tMOEHZ  
tMOEM  
tKM  
MOE#  
MATCH  
MATCH HIGH  
CHIP DESELECTED  
tMOELZ  
tKMX  
FILL  
WRITE  
MISS  
HIT  
Document #: 38-05120 Rev. **  
Page 22 of 24  
CY7C1359A/GVT71256T18  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
166  
CY7C1359A-166AC/  
GVT71256T18T-6  
A101  
A101  
A101  
A101  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
Commercial  
150  
133  
100  
CY7C1359A-150AC/  
GVT71256T18T-6.7  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
100-Lead 14 x 20 x 1.4 mm Thin Quad Flat Pack  
CY7C1359A-133AC/  
GVT71256T18T-7.5  
CY7C1359A-100AC/  
GVT71256T18T-10  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
51-85050-A  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C1359A/GVT71256T18  
Document Title: CY7C1359A/GVT71256T18 256K x 18 Synchronous-Pipelined Cache Tag RAM  
Document Number: 38-05120  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
**  
108311  
09/25/01  
BRI  
New Cypress specconverted from Galvantech format  
Document #: 38-05120 Rev. **  
Page 24 of 24  

相关型号:

GVT71256ZB36-7.5

ZBT SRAM, 256KX36, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71256ZB36-7.5I

ZBT SRAM, 256KX36, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71256ZB36B-7.5I

ZBT SRAM, 256KX36, 7.5ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

GVT71256ZB36B-7I

ZBT SRAM, 256KX36, 7ns, CMOS, PBGA119, 14 X 22 MM, 2.40 MM HEIGHT, FBGA-119
CYPRESS

GVT71256ZC36

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36-10

ZBT SRAM, 256KX36, 5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71256ZC36-10I

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36-5

ZBT SRAM, 256KX36, 3.2ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
CYPRESS

GVT71256ZC36-6

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36-6I

暂无描述
CYPRESS

GVT71256ZC36-7.5I

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS

GVT71256ZC36B-10I

256K x 36/512K x 18 Pipelined SRAM with NoBL Architecture
CYPRESS