CY8C21534-24SX [CYPRESS]

PSoC Mixed-Signal Array; PSoC混合信号阵列
CY8C21534-24SX
型号: CY8C21534-24SX
厂家: CYPRESS    CYPRESS
描述:

PSoC Mixed-Signal Array
PSoC混合信号阵列

文件: 总35页 (文件大小:377K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PSoC™ Mixed-Signal Array  
Final Data Sheet  
CY8C21234, CY8C21334,  
CY8C21434, CY8C21534, and CY8C21634  
Features  
Powerful Harvard Architecture Processor  
M8C Processor Speeds to 24 MHz  
Low Power at High Speed  
Flexible On-Chip Memory  
Programmable Pin Configurations  
25 mA Drive on All GPIO  
8K Flash Program Storage 50,000 Erase/Write  
Cycles  
Pull Up, Pull Down, High Z, Strong, or Open  
512 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Drain Drive Modes on All GPIO  
2.4V to 5.25V Operating Voltage  
Up to 8 Analog Inputs on GPIO  
Configurable Interrupt on All GPIO  
Versatile Analog Mux  
Operating Voltages Down to 1.0V Using  
On-Chip Switch Mode Pump (SMP)  
Industrial Temperature Range: -40°C to +85°C  
Flexible Protection Modes  
EEPROM Emulation in Flash  
Common Internal Analog Bus  
Advanced Peripherals (PSoC Blocks)  
4 Analog Type “E” PSoC Blocks Provide:  
Simultaneous Connection of IO Combinations  
Capacitive Sensing Application Capability  
Additional System Resources  
Complete Development Tools  
Free Development Software  
- 2 Comparators with DAC Refs  
- Single or Dual 8-Bit 28 Channel ADC  
4 Digital PSoC Blocks Provide:  
(PSoC™ Designer)  
Full-Featured, In-Circuit Emulator and  
I2C™ Master, Slave and Multi-Master to  
Programmer  
400 kHz  
- 8- to 32-Bit Timers, Counters, and PWMs  
- CRC and PRS Modules  
Full Speed Emulation  
Watchdog and Sleep Timers  
Complex Breakpoint Structure  
128K Trace Memory  
User-Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
- Full-Duplex UART, SPIMaster or Slave  
- Connectable to All GPIO Pins  
Complex Peripherals by Combining Blocks  
Precision, Programmable Clocking  
Internal ±2.5% 24/48 MHz Oscillator  
Internal Oscillator for Watchdog and Sleep  
On-Chip Precision Voltage Reference  
PSoC™ Functional Overview  
Port 3 Port 2 Port 1 Port 0  
PSoC  
The PSoC™ family consists of many Mixed-Signal Array with  
On-Chip Controller devices. These devices are designed to  
replace multiple traditional MCU-based system components  
with one, low cost single-chip programmable component. A  
PSoC device includes configurable blocks of analog and digital  
logic, as well as programmable interconnect. This architecture  
allows the user to create customized peripheral configurations,  
to match the requirements of each individual application. Addi-  
tionally, a fast CPU, Flash program memory, SRAM data mem-  
ory, and configurable IO are included in a range of convenient  
pinouts.  
CORE  
SystemBus  
Global Digital  
Interconnect  
Global Analog Interconnect  
Flash 8K  
CPUCore  
SRAM  
512 Bytes  
SROM  
Sleep and  
Watchdog  
Interrupt  
Controller  
(M8C)  
Clock Sources  
(Includes IMO and ILO)  
The PSoC architecture, as illustrated on the left, is comprised of  
four main areas: the Core, the System Resources, the Digital  
System, and the Analog System. Configurable global bus  
resources allow all the device resources to be combined into a  
complete custom system. Each CY8C21x34 PSoC device  
includes four digital blocks and four analog blocks. Depending  
on the PSoC package, up to 28 general purpose IO (GPIO) are  
also included. The GPIO provide access to the global digital  
and analog interconnects.  
ANALOG SYSTEM  
DIGITAL SYSTEM  
Analog  
Ref.  
Analog  
Digital  
PSoC  
Block  
Array  
PSoC  
Block  
Array  
The PSoC Core  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO (inter-  
nal main oscillator) and ILO (internal low speed oscillator). The  
POR and LVD  
System Resets  
Sw itch  
Mode  
Pump  
Internal  
Voltage  
Ref.  
Digital  
Clocks  
Analog  
Mux  
I2C  
SYSTEM RESOURCES  
April 20, 2005  
© Cypress Semiconductor Corp. 2004-2005 — Document No. 38-12025 Rev. *G  
1
CY8C21x34 Final Data Sheet  
PSoC™ Overview  
CPU core, called the M8C, is a powerful processor with speeds  
up to 24 MHz. The M8C is a four MIPS 8-bit Harvard architec-  
ture microprocessor.  
Port3  
Port1  
Port2  
Port0  
DigitalClocks  
FromCore  
ToAnalog  
System  
ToSystemBus  
System Resources provide additional capability, such as digital  
clocks to increase the flexibility of the PSoC mixed-signal  
arrays, I2C functionality for implementing an I2C master, slave,  
MultiMaster, an internal voltage reference that provides an  
absolute value of 1.3V to a number of PSoC subsystems, a  
switch mode pump (SMP) that generates normal operating volt-  
ages off a single battery cell, and various system resets sup-  
ported by the M8C.  
DIGITAL SYSTEM  
DigitalPSoCBlockArray  
Row 0  
4
The Digital System is composed of an array of digital PSoC  
blocks, which can be configured into any number of digital  
peripherals. The digital blocks can be connected to the GPIO  
through a series of global buses that can route any signal to any  
pin. Freeing designs from the constraints of a fixed peripheral  
controller.  
DBB00  
DBB01  
DCB02 DCB03  
4
8
8
8
8
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
GlobalDigital  
Interconnect  
The Analog System is composed of four analog PSoC blocks,  
supporting comparators and analog-to-digital conversion up to  
8 bits in precision.  
Digital System Block Diagram  
The Digital System  
The Analog System  
The Digital System is composed of 4 digital PSoC blocks. Each  
block is an 8-bit resource that can be used alone or combined  
with other blocks to form 8, 16, 24, and 32-bit peripherals, which  
are called user module references. Digital peripheral configura-  
tions include those listed below.  
The Analog System is composed of 4 configurable blocks,  
allowing the creation of complex analog signal flows. Analog  
peripherals are very flexible and can be customized to support  
specific application requirements. Some of the common PSoC  
analog functions for this device (most available as user mod-  
ules) are listed below.  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
Analog-to-digital converters (single or dual, with 8-bit resolu-  
tion)  
Timers (8 to 32 bit)  
Pin-to-pin comparator  
UART 8 bit with selectable parity  
SPI master and slave  
Single-ended comparators (up to 2) with absolute (1.3V) ref-  
erence or 8-bit DAC reference  
I2C slave and multi-master  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA  
1.3V reference (as a System Resource)  
In most PSoC devices, analog blocks are provided in columns  
of three, which includes one CT (Continuous Time) and two SC  
(Switched Capacitor) blocks. The CY8C21x34 devices provide  
limited functionality Type “E” analog blocks. Each column con-  
tains one CT Type E block and one SC Type E block. Refer to  
the PSoC Mixed-Signal Array Technical Reference Manual for  
detailed information on the CY8C21x34’s Type E analog blocks.  
Pseudo Random Sequence Generators (8 to 32 bit)  
The digital blocks can be connected to any GPIO through a  
series of global buses that can route any signal to any pin. The  
buses also allow for signal multiplexing and for performing logic  
operations. This configurability frees your designs from the con-  
straints of a fixed peripheral controller.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows you the opti-  
mum choice of system resources for your application. Family  
resources are shown in the table titled “PSoC Device Charac-  
teristics” on page 3.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
2
CY8C21x34 Final Data Sheet  
PSoC™ Overview  
Additional System Resources  
System Resources, some of which have been previously listed,  
provide additional capability useful to complete systems. Addi-  
tional resources include a switch mode pump, low voltage  
detection, and power on reset. Brief statements describing the  
merits of each system resource are presented below.  
Array Input  
Configuration  
Digital clock dividers provide three customizable clock fre-  
quencies for use in applications. The clocks can be routed to  
both the digital and analog systems. Additional clocks can be  
generated using digital PSoC blocks as clock dividers.  
ACI0[1:0]  
ACI1[1:0]  
AllIO  
The I2C module provides 100 and 400 kHz communication  
over two wires. Slave, master, and multi-master modes are  
all supported.  
X
X
X
X
ACOL1MUX  
Low Voltage Detection (LVD) interrupts can signal the appli-  
cation of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
AnalogMuxBus  
X
Array  
ACE00  
ACE01  
ASE11  
An internal 1.3 voltage reference provides an absolute refer-  
ence for the analog system, including ADCs and DACs.  
ASE10  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2V battery cell, providing a  
low cost boost converter.  
Versatile analog multiplexer system.  
Analog System Block Diagram  
PSoC Device Characteristics  
The Analog Multiplexer System  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks and 12, 6, or  
4 analog blocks. The following table lists the resources  
available for specific PSoC device groups. The PSoC device  
covered by this data sheet is highlighted below.  
The Analog Mux Bus can connect to every GPIO pin. Pins can  
be connected to the bus individually or in any combination. The  
bus also connects to the analog system for analysis with com-  
parators and analog-to-digital converters. An additional 8:1 ana-  
log input multiplexer provides a second path to bring Port 0 pins  
to the analog array.  
PSoC Device Characteristics  
Switch control logic enables selected pins to precharge continu-  
ously under hardware control. This enables capacitive mea-  
surement for applications such as touch sensing. Other  
multiplexer applications include:  
PSoC Part  
Number  
up to  
64  
CY8C29x66  
4
16  
12  
4
4
12  
2K  
32K  
Track pad, finger sensing.  
up to  
44  
256  
Bytes  
CY8C27x43  
CY8C24794  
CY8C24x23  
2
1
1
8
4
4
12  
48  
12  
4
2
2
4
2
2
12  
6
16K  
16K  
4K  
Chip-wide mux that allows analog input from any IO pin.  
Crosspoint connection between any IO pin combinations.  
50  
1K  
up to  
24  
256  
Bytes  
6
up to  
24  
256  
Bytes  
CY8C24x23A  
CY8C21x34  
CY8C21x23  
1
1
1
4
4
4
12  
28  
8
2
0
0
2
2
2
6
4K  
8K  
4K  
up to  
28  
512  
Bytes  
4a  
4a  
256  
Bytes  
16  
a. Limited analog functionality.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
3
CY8C21x34 Final Data Sheet  
PSoC™ Overview  
Getting Started  
Development Tools  
PSoC Designer is a Microsoft® Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows NT 4.0, Windows 2000, Windows Millennium  
(Me), or Windows XP. (Reference the PSoC Designer Func-  
tional Flow diagram below.)  
The quickest path to understanding the PSoC silicon is by read-  
ing this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an over-  
view of the PSoC integrated circuit and presents specific pin,  
register, and electrical specifications. For in-depth information,  
along with detailed programming information, reference the  
PSoC Mixed-Signal Array Technical Reference Manual, which  
can be found on http://www.cypress.com/psoc.  
PSoC Designer helps the customer to select an operating con-  
figuration for the PSoC, write application code that uses the  
PSoC, and debug the application. This system provides design  
database management by project, an integrated debugger with  
In-Circuit Emulator, in-system programming support, and the  
CYASM macro assembler for the CPUs.  
For up-to-date Ordering, Packaging, and Electrical Specification  
information, reference the latest PSoC device data sheets on  
the web at http://www.cypress.com.  
Development Kits  
PSoC Designer also supports a high-level C language compiler  
developed specifically for the devices in the family.  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
contains development kits, C compilers, and all accessories for  
PSoC development. Go to the Cypress Online Store web site at  
http://www.cypress.com, click the Online Store shopping cart  
icon at the bottom of the web page, and click PSoC (Program-  
mable System-on-Chip) to view a current list of available items.  
Context  
Sensitive  
Help  
Graphical Designer  
PSoCTM  
Interf ace  
Designer  
Technical Training  
Free PSoC technical training is available for beginners and is  
taught by a marketing or application engineer over the phone.  
PSoC training classes cover designing, debugging, advanced  
analog, as well as application-specific classes covering topics  
such as PSoC and the LIN bus. Go to http://www.cypress.com,  
click on Design Support located on the left side of the web  
page, and select Technical Training for more details.  
Importable  
Design  
Database  
PSoC  
Configuration  
Sheet  
Device  
Database  
TM  
PSoC  
Designer  
Core  
Application  
Database  
Manufacturing  
Information  
File  
Engine  
Consultants  
Project  
Database  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to http://www.cypress.com, click on Design  
Support located on the left side of the web page, and select  
CYPros Consultants.  
User  
Modules  
Library  
Technical Support  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a 4-hour guaranteed  
response at http://www.cypress.com/support/login.cfm.  
Emulation  
Pod  
In-Circuit  
Emulator  
Device  
Programmer  
PSoC Designer Subsystems  
Application Notes  
A long list of application notes will assist you in every aspect of  
your design effort. To view the PSoC application notes, go to  
the http://www.cypress.com web site and select Application  
Notes under the Design Resources list located in the center of  
the web page. Application notes are sorted by date by default.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
4
CY8C21x34 Final Data Sheet  
PSoC™ Overview  
PSoC Designer Software Subsystems  
Device Editor  
Debugger  
The device editor subsystem allows the user to select different  
onboard analog and digital components called user modules  
using the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters.  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing the designer to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read the  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic reconfig-  
uration allows for changing configurations at run time.  
PSoC Designer sets up power-on initialization tables for  
selected PSoC block configurations and creates source code  
for an application framework. The framework contains software  
to operate the selected components and, if the project uses  
more than one operating configuration, contains routines to  
switch between different sets of PSoC block configurations at  
run time. PSoC Designer can print out a configuration sheet for  
a given project configuration for use during application pro-  
gramming in conjunction with the Device Data Sheet. Once the  
framework is generated, the user can add application-specific  
code to flesh out the framework. It’s also possible to change the  
selected components and regenerate the framework.  
Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
Hardware Tools  
In-Circuit Emulator  
Design Browser  
A low cost, high functionality ICE (In-Circuit Emulator) is avail-  
able for development support. This hardware has the capability  
to program single devices.  
The Design Browser allows users to select and import precon-  
figured designs into the user’s project. Users can easily browse  
a catalog of preconfigured designs to facilitate time-to-design.  
Examples provided in the tools include a 300-baud modem, LIN  
Bus master and slave, fan controller, and magnetic card reader.  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and will operate  
with all PSoC devices. Emulation pods for each device family  
are available separately. The emulation pod takes the place of  
the PSoC device in the target board and performs full speed (24  
MHz) operation.  
Application Editor  
In the Application Editor you can edit your C language and  
Assembly language source code. You can also assemble, com-  
pile, link, and build.  
Assembler. The macro assembler allows the assembly code  
to be merged seamlessly with C code. The link libraries auto-  
matically use absolute addressing or can be compiled in relative  
mode, and linked with other software modules to get absolute  
addressing.  
C Language Compiler. A C language compiler is available  
that supports the PSoC family of devices. Even if you have  
never worked in the C language before, the product quickly  
allows you to create complete C programs for the PSoC family  
devices.  
The embedded, optimizing C compiler provides all the features  
of C tailored to the PSoC architecture. It comes complete with  
embedded libraries providing port and bus operations, standard  
keypad and display support, and extended math functionality.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
5
CY8C21x34 Final Data Sheet  
PSoC™ Overview  
Designing with User Modules  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture  
a unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Each block has several registers that determine its function and  
connectivity to other blocks, multiplexers, buses and to the IO  
pins. Iterative development cycles permit you to adapt the hard-  
ware as well as the software. This substantially lowers the risk  
of having to select a different part to meet the final design  
requirements.  
DeviceEditor  
Placement  
and  
Parameter  
-ization  
User  
Module  
Selection  
Source  
Code  
Generator  
Generate  
Application  
Application Editor  
Source  
Code  
Editor  
Project  
Manager  
Build  
Manager  
To speed the development process, the PSoC Designer Inte-  
grated Development Environment (IDE) provides a library of  
pre-built, pre-tested hardware peripheral functions, called “User  
Modules.” User modules make selecting and implementing  
peripheral devices simple, and come in analog, digital, and  
mixed signal varieties. The standard User Module library con-  
tains over 50 common peripherals such as ADCs, DACs Tim-  
ers, Counters, UARTs, and other not-so common peripherals  
such as DTMF Generators and Bi-Quad analog filter sections.  
Build  
All  
Debugger  
Each user module establishes the basic register settings that  
implement the selected function. It also provides parameters  
that allow you to tailor its precise configuration to your particular  
application. For example, a Pulse Width Modulator User Mod-  
ule configures one or more digital PSoC blocks, one for each 8  
bits of resolution. The user module parameters permit you to  
establish the pulse width and duty cycle. User modules also  
provide tested software to cut your development time. The user  
module application programming interface (API) provides high-  
level functions to control and respond to hardware events at run  
time. The API also provides optional interrupt service routines  
that you can adapt as needed.  
Event &  
Breakpoint  
Manager  
Interface  
to ICE  
Storage  
Inspector  
User Module and Source Code Development Flows  
The next step is to write your main program, and any sub-rou-  
tines using PSoC Designer’s Application Editor subsystem.  
The Application Editor includes a Project Manager that allows  
you to open the project source code files (including all gener-  
ated code files) from a hierarchal view. The source code editor  
provides syntax coloring and advanced edit features for both C  
and assembly language. File search capabilities include simple  
string searches and recursive “grep-style” patterns. A single  
mouse click invokes the Build Manager. It employs a profes-  
sional-strength “makefile” system to automatically analyze all  
file dependencies and run the compiler and assembler as nec-  
essary. Project-level options control optimization strategies  
used by the compiler and linker. Syntax errors are displayed in  
a console window. Double clicking the error message takes you  
directly to the offending line of source code. When all is correct,  
the linker builds a HEX file image suitable for programming.  
The API functions are documented in user module data sheets  
that are viewed directly in the PSoC Designer IDE. These data  
sheets explain the internal operation of the user module and  
provide performance specifications. Each data sheet describes  
the use of each user module parameter and documents the set-  
ting of each register controlled by the user module.  
The development process starts when you open a new project  
and bring up the Device Editor, a graphical user interface (GUI)  
for configuring the hardware. You pick the user modules you  
need for your project and map them onto the PSoC blocks with  
point-and-click simplicity. Next, you build signal chains by inter-  
connecting user modules to each other and the IO pins. At this  
stage, you also configure the clock source connections and  
enter parameter values directly or by selecting values from  
drop-down menus. When you are ready to test the hardware  
configuration or move on to developing code for the project, you  
perform the “Generate Application” step. This causes PSoC  
Designer to generate source code that automatically configures  
the device to your specification and provides the high-level user  
module API functions.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger down-  
loads the HEX image to the In-Circuit Emulator (ICE) where it  
runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and allows you define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations and external signals.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
6
CY8C21x34 Final Data Sheet  
PSoC™ Overview  
Document Conventions  
Table of Contents  
For an in depth discussion and more information on your PSoC  
device, obtain the PSoC Mixed-Signal Array Technical Refer-  
ence Manual on http://www.cypress.com. This document  
encompasses and is organized into the following chapters and  
sections.  
Acronyms Used  
The following table lists the acronyms that are used in this doc-  
ument.  
Acronym  
AC  
Description  
alternating current  
1.  
Pin Information ............................................................. 8  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
1.1 Pinouts ................................................................... 8  
1.1.1 16-Pin Part Pinout ..................................... 8  
1.1.2 20-Pin Part Pinout ..................................... 9  
1.1.3 28-Pin Part Pinout ................................... 10  
1.1.4 32-Pin Part Pinout ................................... 11  
CPU  
CT  
DAC  
DC  
digital-to-analog converter  
direct current  
2.  
3.  
Register Reference ..................................................... 12  
ECO  
EEPROM  
FSR  
GPIO  
GUI  
external crystal oscillator  
electrically erasable programmable read-only memory  
full scale range  
2.1 Register Conventions ........................................... 12  
2.2 Register Mapping Tables ..................................... 12  
Electrical Specifications ............................................ 15  
general purpose IO  
graphical user interface  
human body model  
3.1 Absolute Maximum Ratings ................................. 16  
3.2 Operating Temperature ........................................ 16  
3.3 DC Electrical Characteristics ................................ 16  
3.3.1 DC Chip-Level Specifications ................... 16  
3.3.2 DC General Purpose IO Specifications .... 17  
3.3.3 DC Operational Amplifier Specifications ... 18  
3.3.4 DC Switch Mode Pump Specifications ..... 19  
3.3.5 DC Analog Mux Bus Specifications .......... 20  
3.3.6 DC POR and LVD Specifications ............. 20  
3.3.7 DC Programming Specifications ............... 21  
3.4 AC Electrical Characteristics ................................ 22  
3.4.1 AC Chip-Level Specifications ................... 22  
3.4.2 AC General Purpose IO Specifications .... 24  
3.4.3 AC Operational Amplifier Specifications ... 25  
3.4.4 AC Analog Mux Bus Specifications .......... 25  
3.4.5 AC Digital Block Specifications ................. 25  
3.4.6 AC External Clock Specifications ............. 27  
3.4.7 AC Programming Specifications ............... 28  
3.4.8 AC I2C Specifications ............................... 28  
HBM  
ICE  
in-circuit emulator  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
IMO  
IO  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
LVD  
low voltage detect  
MSb  
PC  
most-significant bit  
program counter  
PLL  
phase-locked loop  
POR  
PPOR  
PSoC™  
PWM  
SC  
power on reset  
precision power on reset  
Programmable System-on-Chip™  
pulse width modulator  
switched capacitor  
SLIMO  
SMP  
SRAM  
slow IMO  
4.  
Packaging Information ............................................... 30  
switch mode pump  
static random access memory  
4.1 Packaging Dimensions ......................................... 30  
4.2 Thermal Impedances .......................................... 32  
4.3 Solder Reflow Peak Temperature ........................ 33  
Units of Measure  
5.  
6.  
Ordering Information .................................................. 34  
5.1 Ordering Code Definitions .................................... 34  
A units of measure table is located in the Electrical Specifica-  
tions section. Table 3-1 on page 15 lists all the abbreviations  
used to measure the PSoC devices.  
Sales and Service Information .................................. 35  
6.1 Revision History ................................................... 35  
6.2 Copyrights and Code Protection .......................... 35  
Numeric Naming  
Hexidecimal numbers are represented with all letters in upper-  
case with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexidecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (e.g., 01010100b’ or ‘01000011b’).  
Numbers not indicated by an ‘h’, ‘b’, or 0x are decimal.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
7
1. Pin Information  
This chapter describes, lists, and illustrates the CY8C21x34 PSoC device pins and pinout configurations.  
1.1  
Pinouts  
The CY8C21x34 PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port  
pin (labeled with a “P”) is capable of Digital IO and connection to the common analog bus. However, Vss, Vdd, SMP, and XRES are  
not capable of Digital IO.  
1.1.1  
16-Pin Part Pinout  
Table 1-1. 16-Pin Part Pinout (SOIC)  
Type  
Pin  
CY8C21234 16-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
IO  
IO  
IO  
I, M  
I, M  
I, M  
P0[7] Analog column mux input.  
P0[5] Analog column mux input.  
A,I,M,P0[7]  
Vdd  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
A, I,M,P0[5]  
A, I,M,P0[3]  
A, I,M,P0[1]  
SMP  
P0[6],A,I,M  
P0[4],A,I,M  
P0[2],A,I,M  
P0[0],A,I,M  
P1[4],EXTCLK,M  
P1[2],M  
P0[3] Analog column mux input, integrating  
input.  
SOIC  
4
5
IO  
I, M  
P0[1] Analog column mux input, integrating  
input.  
Vss  
M,I2C SCL,P1[1]  
Vss  
Power  
Power  
SMP  
Switch Mode Pump (SMP) connection to  
required external components.  
P1[0],I2CSDA,M  
6
Vss  
Ground connection.  
7
IO  
M
P1[1] I2C Serial Clock (SCL), ISSP-SCLK.  
Vss Ground connection.  
8
Power  
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
M
M
P1[0] I2C Serial Data (SDA), ISSP-SDATA.  
P1[2]  
10  
11  
12  
13  
14  
15  
16  
M
P1[4] Optional External Clock Input (EXTCLK).  
P0[0] Analog column mux input.  
P0[2] Analog column mux input.  
P0[4] Analog column mux input.  
P0[6] Analog column mux input.  
I, M  
I, M  
I, M  
I, M  
Power  
Vdd  
Supply voltage.  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
8
CY8C21x34 Final Data Sheet  
1. Pin Information  
1.1.2  
20-Pin Part Pinout  
Table 1-2. 20-Pin Part Pinout (SSOP)  
Type  
Pin  
CY8C21334 20-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
IO  
IO  
IO  
I, M  
I, M  
I, M  
P0[7]  
P0[5]  
P0[3]  
Analog column mux input.  
Analog column mux input.  
A,I,M,P0[7]  
A, I,M,P0[5]  
A, I,M,P0[3]  
A, I,M,P0[1]  
Vss  
Vdd  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
P0[6],A,I,M  
P0[4],A,I,M  
P0[2],A,I,M  
P0[0],A,I,M  
XRES  
P1[6],M  
P1[4],EXTCLK,M  
P1[2],M  
Analog column mux input, integrating  
input.  
4
IO  
I, M  
P0[1]  
Analog column mux input, integrating  
input.  
SSOP  
M,I2C SCL,P1[7]  
M,I2C SDA,P1[5]  
M,P1[3]  
M,I2C SCL,P1[1]  
Vss  
5
6
Power  
Vss  
Ground connection.  
IO  
IO  
IO  
IO  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
7
P1[0],I2C SDA,M  
10  
8
9
I2C Serial Clock (SCL), ISSP-SCLK.  
Ground connection.  
10  
11  
12  
13  
Power  
IO  
IO  
IO  
M
M
M
P1[0]  
P1[2]  
P1[4]  
I2C Serial Data (SDA), ISSP-SDATA.  
Optional External Clock Input (EXT-  
CLK).  
14  
15  
IO  
M
P1[6]  
Input  
XRES  
Active high external reset with internal  
pull down.  
16  
17  
18  
19  
20  
IO  
IO  
IO  
IO  
I, M  
I, M  
I, M  
I, M  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
Power  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
9
CY8C21x34 Final Data Sheet  
1. Pin Information  
1.1.3  
28-Pin Part Pinout  
Table 1-3. 28-Pin Part Pinout (SSOP)  
Type  
Pin  
CY8C21534 28-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
2
IO  
IO  
I, M  
I, M  
P0[7]  
P0[5]  
Analog column mux input.  
A,I,M,P0[7]  
A, I,M,P0[5]  
A, I,M,P0[3]  
A, I,M,P0[1]  
M,P2[7]  
Vdd  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
Analog column mux input and column  
output.  
P0[6],A,I,M  
P0[4],A,I,M  
P0[2],A,I,M  
P0[0],A,I,M  
P2[6],M  
3
4
IO  
IO  
I, M  
I, M  
P0[3]  
P0[1]  
Analog column mux input and column  
output, integrating input.  
Analog column mux input, integrating  
input.  
M,P2[5]  
M,P2[3]  
M,P2[1]  
P2[4],M  
P2[2],M  
SSOP  
5
6
IO  
IO  
IO  
IO  
M
M
P2[7]  
P2[5]  
P2[3]  
P2[1]  
Vss  
Vss  
P2[0],M  
XRES  
P1[6],M  
P1[4],EXTCLK,M  
P1[2],M  
7
I, M  
I, M  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
Ground connection.  
M,I2C SCL,P1[7]  
M,I2C SDA,P1[5]  
M,P1[3]  
M,I2C SCL,P1[1]  
Vss  
8
9
Power  
Power  
10  
11  
12  
13  
14  
15  
16  
17  
IO  
IO  
IO  
IO  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL).  
P1[0],I2C SDA,M  
I2C Serial Data (SDA).  
I2C Serial Clock (SCL), ISSP-SCLK.  
Ground connection.  
IO  
IO  
IO  
M
M
M
P1[0]  
P1[2]  
P1[4]  
I2C Serial Data (SDA), ISSP-SDATA.  
Optional External Clock Input (EXT-  
CLK).  
18  
19  
IO  
M
P1[6]  
Input  
XRES  
Active high external reset with internal  
pull down.  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I, M  
I, M  
M
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
M
I, M  
I, M  
I, M  
I, M  
Analog column mux input.  
Analog column mux input.  
Analog column mux input  
Analog column mux input.  
Supply voltage.  
Power  
LEGEND A: Analog, I: Input, O = Output, and M = Analog Mux Input.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
10  
CY8C21x34 Final Data Sheet  
1. Pin Information  
1.1.4  
32-Pin Part Pinout  
Table 1-4. 32-Pin Part Pinout (MLF*)  
Type  
Pin  
CY8C21434 32-Pin PSoC Device  
Name  
Description  
No.  
Digital Analog  
1
IO  
I, M  
P0[1]  
Analog column mux input, integrating  
input.  
2
3
4
5
6
6
IO  
IO  
IO  
IO  
IO  
M
M
M
M
M
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
SMP  
A, I, M, P0[1]  
M, P2[7]  
1
2
3
4
5
6
7
8
P0[0], A, I, M  
P2[6], M  
P2[4], M  
P2[2], M  
P2[0], M  
P3[2], M  
P3[0], M  
XR ES  
24  
23  
22  
21  
20  
19  
18  
17  
In CY8C21434 part.  
M, P2[5]  
M, P2[3]  
M, P2[1]  
M, P3[3]  
Power  
Switch Mode Pump (SMP) connection to  
required external components in  
CY8C21634 part.  
MLF  
(Top View)  
7
IO  
M
P3[1]  
Vss  
In CY8C21434 part.  
M, P3[1]  
7
Power  
Power  
Input  
Ground connection in CY8C21634 part.  
I2C Serial Clock (SCL).  
M, I2C SCL, P1[7]  
8
IO  
IO  
IO  
IO  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
9
I2C Serial Data (SDA).  
10  
11  
12  
13  
14  
15  
16  
17  
I2C Serial Clock (SCL), ISSP-SCLK.  
Ground connection.  
IO  
IO  
IO  
IO  
M
M
M
M
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
I2C Serial Data (SDA), ISSP-SDATA.  
Optional External Clock Input (EXTCLK).  
Active high external reset with internal  
pull down.  
CY8C21634 32-Pin PSoC Device  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
M
M
M
M
M
M
P3[0]  
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
A, I, M, P0[1]  
M, P2[7]  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0[0], A, I, M  
P2[6], M  
I, M  
I, M  
I, M  
I, M  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
M, P2[5]  
M, P2[3]  
M, P2[1]  
SMP  
P2[4], M  
P2[2], M  
P2[0], M  
P3[2], M  
MLF  
(Top View)  
Vss  
P3[0], M  
XR ES  
Power  
M, I2C SCL, P1[7]  
IO  
IO  
IO  
I, M  
I, M  
I, M  
P0[7]  
P0[5]  
P0[3]  
Analog column mux input.  
Analog column mux input.  
Analog column mux input, integrating  
input.  
32  
Power  
Vss  
Ground connection.  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
* The MLF package has a center pad that must be connected to ground  
(Vss).  
April 20, 2005  
Document No. 38-12025 Rev. *G  
11  
2. Register Reference  
This chapter lists the registers of the CY8C21x34 PSoC device. For detailed register information, reference the  
PSoC™ Mixed-Signal Array Technical Reference Manual.  
2.1  
Register Conventions  
2.2  
Register Mapping Tables  
The register conventions specific to this section are listed in the  
following table.  
The PSoC device has a total register address space of 512  
bytes. The register space is referred to as IO space and is  
divided into two banks. The XOI bit in the Flag register (CPU_F)  
determines which bank the user is currently in. When the XOI  
bit is set the user is in Bank 1.  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
Note In the following register mapping tables, blank fields are  
Reserved and should not be accessed.  
C
#
April 20, 2005  
Document No. 38-12025 Rev. *G  
12  
CY8C21x34 Final Data Sheet  
2. Register Reference  
Register Map 0 Table: User Space  
PRT0DR  
PRT0IE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
ASE10CR0  
ASE11CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
PRT3GS  
PRT3DM2  
CUR_PP  
STK_PP  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
IDX_PP  
RW  
RW  
RW  
RW  
#
RW  
#
RW  
RW  
MVR_PP  
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
I2C_MSCR  
INT_CLR0  
INT_CLR1  
INT_CLR3  
INT_MSK3  
RW  
RW  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
#
AMX_IN  
AMUXCFG  
PWM_CR  
RW  
RW  
RW  
INT_MSK0  
INT_MSK1  
INT_VC  
RW  
RW  
RC  
W
W
RW  
#
RES_WDT  
#
CMP_CR0  
CMP_CR1  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
#
#
ADC0_CR  
ADC1_CR  
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
W
RW  
#
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
DAC_D  
CPU_SCR1  
CPU_SCR0  
RW  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
13  
CY8C21x34 Final Data Sheet  
2. Register Reference  
Register Map 1 Table: Configuration Space  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
ASE10CR0  
ASE11CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
RW  
RW  
RW  
RW  
OSC_GO_EN DD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
VLT_CMP  
ADC0_TR  
ADC1_TR  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
RW  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
CMP_GO_EN 64  
65  
RW  
RW  
AMD_CR1  
ALT_CR0  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
DAC_CR  
CPU_SCR1  
CPU_SCR0  
RW  
#
#
Blank fields are Reserved and should not be accessed.  
# Access is bit specific.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
14  
3. Electrical Specifications  
This chapter presents the DC and AC electrical specifications of the CY8C21x34 PSoC device. For the most up to date electrical  
specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.  
Specifications are valid for -40oC T 85oC and T 100oC as specified, except where noted.  
A
J
Refer to Table 3-14 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.  
5.25  
4.75  
5.25  
4.75  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
3.60  
3.00  
2.40  
SLIMO  
Mode=1  
SLIMO SLIMO  
Mode=1 Mode=1  
SLIMO  
Mode=0  
3.00  
2.40  
93kHz  
12MHz  
CPUFrequency  
24MHz  
93kHz  
6MHz  
IMOFrequency  
3MHz  
12MHz  
24MHz  
Figure 3-1a. Voltage versus CPU Frequency  
Figure 3-1b. IMO Frequency Trim Options  
The following table lists the units of measure that are used in this chapter.  
Table 3-1: Units of Measure  
Symbol  
oC  
Unit of Measure  
Symbol  
µW  
mA  
ms  
mV  
nA  
Unit of Measure  
degree Celsius  
decibels  
microwatts  
dB  
milli-ampere  
milli-second  
milli-volts  
fF  
femto farad  
hertz  
Hz  
KB  
1024 bytes  
1024 bits  
nanoampere  
nanosecond  
nanovolts  
Kbit  
kHz  
kΩ  
ns  
kilohertz  
nV  
kilohm  
ohm  
MHz  
MΩ  
µA  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
pA  
picoampere  
picofarad  
pF  
pp  
peak-to-peak  
parts per million  
picosecond  
µF  
ppm  
ps  
µH  
µs  
sps  
σ
samples per second  
sigma: one standard deviation  
volts  
µV  
µVrms  
microvolts root-mean-square  
V
April 20, 2005  
Document No. 38-12025 Rev. *G  
15  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.1  
Absolute Maximum Ratings  
Table 3-2. Absolute Maximum Ratings  
Symbol  
Description  
Min  
-55  
Typ  
Max  
+100  
Units  
oC  
Notes  
TSTG  
Storage Temperature  
Higher storage temperatures will reduce data  
retention time.  
oC  
V
TA  
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
+85  
Vdd  
VIO  
VIOZ  
IMIO  
ESD  
LU  
-0.5  
+6.0  
Vss - 0.5  
Vss - 0.5  
-25  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
DC Voltage Applied to Tri-state  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch-up Current  
V
mA  
V
2000  
Human Body Model ESD.  
200  
mA  
3.2  
Operating Temperature  
Table 3-3. Operating Temperature  
Symbol  
TA  
Description  
Min  
-40  
Typ  
Max  
+85  
Units  
Notes  
oC  
oC  
Ambient Temperature  
Junction Temperature  
TJ  
-40  
+100  
The temperature rise from ambient to junction is  
package specific. See “Thermal Impedances”  
on page 32. The user must limit the power con-  
sumption to comply with this requirement.  
3.3  
DC Electrical Characteristics  
3.3.1  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-4. DC Chip-Level Specifications  
Symbol  
Description  
Min  
2.40  
Typ  
Max  
5.25  
Units  
Notes  
Vdd  
Supply Voltage  
3
V
See table titled “DC POR and LVD Specifica-  
tions” on page 20.  
Conditions are Vdd = 5.0V, TA = 25oC, CPU = 3  
MHz, 48 MHz disabled. VC1 = 1.5 MHz, VC2 =  
93.75 kHz, VC3 = 0.366 kHz.  
IDD  
Supply Current, IMO = 24 MHz  
4
mA  
mA  
mA  
Conditions are Vdd = 3.3V, TA = 25oC, CPU = 3  
MHz, clock doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz.  
IDD3  
Supply Current, IMO = 6 MHz using SLIMO mode.  
Supply Current, IMO = 6 MHz using SLIMO mode.  
1.2  
1.1  
2
Conditions are Vdd = 2.55V, TA = 25oC, CPU = 3  
MHz, clock doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz.  
IDD27  
1.5  
Vdd = 2.55V, 0oC TA 40oC.  
ISB27  
ISB  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and internal slow oscillator active. Mid temperature range.  
2.6  
4.  
µA  
µA  
V
Vdd = 3.3V, -40oC TA 85oC.  
Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT,  
and internal slow oscillator active.  
2.8  
5
VREF  
VREF27  
AGND  
Reference Voltage (Bandgap)  
Reference Voltage (Bandgap)  
Analog Ground  
1.28  
1.16  
1.30  
1.30  
VREF  
1.32  
1.33  
Trimmed for appropriate Vdd. Vdd = 3.0V to  
5.25V.  
V
Trimmed for appropriate Vdd. Vdd = 2.4V to  
3.0V.  
VREF  
VREF  
V
- 0.003  
+ 0.003  
April 20, 2005  
Document No. 38-12025 Rev. *G  
16  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.2  
DC General Purpose IO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, and 2.7V at 25°C and are for design guidance only.  
Table 3-5. 5V and 3.3V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
Typ  
5.6  
Max  
Units  
kΩ  
Notes  
Pull-up Resistor  
4
4
8
8
RPD  
Pull-down Resistor  
High Output Level  
5.6  
kΩ  
VOH  
Vdd - 1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads,  
4 on even port pins (for example, P0[2], P1[4]),  
4 on odd port pins (for example, P0[3], P1[5])).  
VOL  
Low Output Level  
0.75  
0.8  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads,  
4 on even port pins (for example, P0[2], P1[4]),  
4 on odd port pins (for example, P0[3], P1[5])).  
VIL  
Input Low Level  
Input High Level  
Input Hysteresis  
V
Vdd = 3.0 to 5.25.  
Vdd = 3.0 to 5.25.  
VIH  
VH  
2.1  
V
60  
1
mV  
nA  
pF  
pF  
IIL  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Capacitive Load on Pins as Output  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
CIN  
COUT  
3.5  
3.5  
10  
10  
Package and pin dependent. Temp = 25oC.  
Table 3-6. 2.7V DC GPIO Specifications  
Symbol  
RPU  
Description  
Min  
Typ  
Max  
Units  
Notes  
Pull-up Resistor  
4
5.6  
5.6  
8
8
kΩ  
kΩ  
V
RPD  
Pull-down Resistor  
High Output Level  
4
VOH  
Vdd - 0.4  
IOH = 2.5 mA (6.25 Typ), Vdd = 2.4 to 3.0V (16  
mA maximum, 50 mA Typ combined IOH bud-  
get).  
VOL  
Low Output Level  
0.75  
V
IOL = 10 mA, Vdd = 2.4 to 3.0V (90 mA maxi-  
mum combined IOL budget).  
VIL  
Input Low Level  
Input High Level  
Input Hysteresis  
0.75  
V
Vdd = 2.4 to 3.0.  
Vdd = 2.4 to 3.0.  
VIH  
VH  
2.0  
V
90  
1
mV  
nA  
pF  
pF  
IIL  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Capacitive Load on Pins as Output  
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
Package and pin dependent. Temp = 25oC.  
CIN  
COUT  
3.5  
3.5  
10  
10  
April 20, 2005  
Document No. 38-12025 Rev. *G  
17  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.3  
DC Operational Amplifier Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-7. 5V DC Operational Amplifier Specifications  
Symbol  
VOSOA  
Description  
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
Min  
Typ  
2.5  
Max  
Units  
mV  
Notes  
15  
µV/oC  
pA  
TCVOSOA  
10  
200  
4.5  
a
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
IEBOA  
CINOA  
9.5  
pF  
VCMOA  
0.0  
Vdd - 1  
V
GOLOA  
ISOA  
Open Loop Gain  
80  
10  
dB  
Amplifier Supply Current  
30  
µA  
a. Atypical behavior: I  
of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
EBOA  
Table 3-8. 3.3V DC Operational Amplifier Specifications  
Symbol  
VOSOA  
Description  
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
Open Loop Gain  
Min  
Typ  
2.5  
Max  
15  
Units  
mV  
Notes  
0
µV/oC  
pA  
TCVOSOA  
10  
200  
4.5  
a
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
IEBOA  
CINOA  
VCMOA  
GOLOA  
ISOA  
9.5  
pF  
Vdd - 1  
V
80  
10  
dB  
Amplifier Supply Current  
30  
µA  
a. Atypical behavior: I  
of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
EBOA  
Table 3-9. 2.7V DC Operational Amplifier Specifications  
Symbol  
VOSOA  
Description  
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
Common Mode Voltage Range  
Open Loop Gain  
Min  
Typ  
2.5  
Max  
15  
Units  
mV  
Notes  
0
µV/oC  
pA  
TCVOSOA  
10  
200  
4.5  
a
Gross tested to 1 µA.  
Package and pin dependent. Temp = 25oC.  
IEBOA  
CINOA  
VCMOA  
GOLOA  
ISOA  
9.5  
pF  
Vdd - 1  
V
80  
10  
dB  
Amplifier Supply Current  
30  
µA  
a. Atypical behavior: I  
of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
EBOA  
April 20, 2005  
Document No. 38-12025 Rev. *G  
18  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.4  
DC Switch Mode Pump Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-10. DC Switch Mode Pump (SMP) Specifications  
Symbol  
VPUMP5V  
Description  
Min  
4.75  
Typ  
5.0  
Max  
5.25  
Units  
Notes  
Configuration of footnote.a Average, neglecting  
ripple. SMP trip voltage is set to 5.0V.  
5V Output Voltage from Pump  
V
V
V
Configuration of footnote.a Average, neglecting  
ripple. SMP trip voltage is set to 3.25V.  
VPUMP3V  
VPUMP2V  
IPUMP  
3.3V Output Voltage from Pump  
2.6V Output Voltage from Pump  
3.00  
2.45  
3.25  
2.55  
3.60  
2.80  
Configuration of footnote.a Average, neglecting  
ripple. SMP trip voltage is set to 2.55V.  
Configuration of footnote.a  
Available Output Current  
VBAT = 1.8V, VPUMP = 5.0V  
VBAT = 1.5V, VPUMP = 3.25V  
VBAT = 1.3V, VPUMP = 2.55V  
5
8
8
mA  
mA  
mA  
SMP trip voltage is set to 5.0V.  
SMP trip voltage is set to 3.25V.  
SMP trip voltage is set to 2.55V.  
Configuration of footnote.a SMP trip voltage is  
set to 5.0V.  
VBAT5V  
Input Voltage Range from Battery  
1.8  
1.0  
1.0  
1.2  
5.0  
3.3  
2.8  
V
V
V
V
Configuration of footnote.a SMP trip voltage is  
set to 3.25V.  
VBAT3V  
Input Voltage Range from Battery  
Configuration of footnote.a SMP trip voltage is  
set to 2.55V.  
VBAT2V  
Input Voltage Range from Battery  
Configuration of footnote.a 0oC TA 100.  
VBATSTART  
Minimum Input Voltage from Battery to Start Pump  
1.25V at TA = -40oC.  
Configuration of footnote.a VO is the “Vdd Value  
for PUMP Trip” specified by the VM[2:0] setting  
in the DC POR and LVD Specification, Table 3-  
12 on page 20.  
VPUMP_Line  
Line Regulation (over Vi range)  
5
%VO  
Configuration of footnote.a VO is the “Vdd Value  
for PUMP Trip” specified by the VM[2:0] setting  
in the DC POR and LVD Specification, Table 3-  
12 on page 20.  
VPUMP_Load  
Load Regulation  
5
%VO  
Configuration of footnote.a Load is 5 mA.  
VPUMP_Ripple Output Voltage Ripple (depends on cap/load)  
100  
50  
mVpp  
%
Configuration of footnote.a Load is 5 mA. SMP  
trip voltage is set to 3.25V.  
E3  
Efficiency  
35  
E2  
Efficiency  
35  
80  
%
For I load = 1mA, VPUMP = 2.55V, VBAT = 1.3V,  
10 uH inductor, 1 uF capacitor, and Schottky  
diode.  
FPUMP  
Switching Frequency  
Switching Duty Cycle  
1.3  
50  
MHz  
%
DCPUMP  
a. L = 2 µH inductor, C = 10 µF capacitor, D = Schottky diode. See Figure 3-2.  
1
1
1
D1  
Vdd  
VPUMP  
L1  
SMP  
V ss  
+
C1  
VBAT  
PSoCTM  
Battery  
Figure 3-2. Basic Switch Mode Pump Circuit  
April 20, 2005  
Document No. 38-12025 Rev. *G  
19  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.5  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-11. DC Analog Mux Bus Specifications  
Symbol  
RSW  
Description  
Min  
Typ  
Max  
400  
800  
Units  
Notes  
Switch Resistance to Common Analog Bus  
Vdd 2.7V  
2.4V Vdd 2.7V  
RVDD  
Resistance of Initialization Switch to Vdd  
800  
3.3.6  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-12. DC POR and LVD Specifications  
Symbol  
Description  
Vdd Value for PPOR Trip  
Min  
Typ  
Max  
Units  
Notes  
Vdd must be greater than or equal to 2.5V  
during startup, reset from the XRES pin, or  
reset from Watchdog.  
VPPOR0  
VPPOR1  
VPPOR2  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
2.36  
2.40  
V
V
V
2.82  
4.55  
2.95  
4.70  
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.51a  
2.99b  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
V
V
V
V
V
V
V
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.45  
2.92  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
Vdd Value for PUMP Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
2.62c  
3.09  
3.16  
3.32d  
4.74  
4.83  
4.92  
5.12  
VPUMP0  
VPUMP1  
VPUMP2  
VPUMP3  
VPUMP4  
VPUMP5  
VPUMP6  
VPUMP7  
2.45  
2.96  
3.03  
3.18  
4.54  
4.62  
4.71  
4.89  
2.55  
3.02  
3.10  
3.25  
4.64  
4.73  
4.82  
5.00  
V
V
V
V
V
V
V
V
a. Always greater than 50 mV above V  
(PORLEV = 00) for falling supply.  
PPOR  
b. Always greater than 50 mV above V  
(PORLEV = 01) for falling supply.  
PPOR  
c. Always greater than 50 mV above VLVD0  
d. Always greater than 50 mV above VLVD3  
.
.
April 20, 2005  
Document No. 38-12025 Rev. *G  
20  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.3.7  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-13. DC Programming Specifications  
Symbol  
VddIWRITE  
IDDP  
Description  
Min  
2.70  
Typ  
Max  
Units  
Notes  
Supply Voltage for Flash Write Operations  
Supply Current During Programming or Verify  
Input Low Voltage During Programming or Verify  
Input High Voltage During Programming or Verify  
5
V
25  
0.8  
mA  
V
VILP  
VIHP  
2.2  
V
IILP  
Input Current when Applying Vilp to P1[0] or P1[1] During  
Programming or Verify  
0.2  
mA  
Driving internal pull-down resistor.  
Driving internal pull-down resistor.  
IIHP  
Input Current when Applying Vihp to P1[0] or P1[1] During  
Programming or Verify  
1.5  
mA  
VOLV  
VOHV  
Output Low Voltage During Programming or Verify  
Output High Voltage During Programming or Verify  
Vss + 0.75  
Vdd  
V
V
Vdd - 1.0  
FlashENPB  
FlashENT  
FlashDR  
Flash Endurance (per block)  
Flash Endurance (total)a  
Flash Data Retention  
50,000  
1,800,000  
10  
Erase/write cycles per block.  
Erase/write cycles.  
Years  
a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of  
25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than  
50,000 cycles).  
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to  
the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
21  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4  
AC Electrical Characteristics  
3.4.1  
AC Chip-Level Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-14. 5V and 3.3V AC Chip-Level Specifications  
Symbol  
FIMO24  
Description  
Min  
23.4  
Typ  
Max  
Units  
MHz  
Notes  
24.6a,b,c  
Internal Main Oscillator Frequency for 24 MHz  
24  
6
Trimmed for 5V or 3.3V operation using  
factory trim values. See Figure 3-1b on  
page 15. SLIMO mode = 0.  
6.35a,b,c  
FIMO6  
Internal Main Oscillator Frequency for 6 MHz  
5.75  
MHz  
Trimmed for 5V or 3.3V operation using  
factory trim values. See Figure 3-1b on  
page 15. SLIMO mode = 1.  
24.6a,b  
12.3b,c  
FCPU1  
FCPU2  
FBLK5  
CPU Frequency (5V Nominal)  
0.93  
0.93  
0
24  
12  
48  
MHz  
MHz  
MHz  
24 MHz only for SLIMO mode = 0.  
CPU Frequency (3.3V Nominal)  
Digital PSoC Block Frequency0(5V Nominal)  
49.2a,b,d  
Refer to the AC Digital Block Specifica-  
tions below.  
24.6b,d  
64  
FBLK33  
F32K1  
Digital PSoC Block Frequency (3.3V Nominal)  
Internal Low Speed Oscillator Frequency  
0
24  
32  
MHz  
kHz  
ns  
15  
Jitter32k  
Jitter32k  
TXRST  
32 kHz RMS Period Jitter  
100  
1400  
200  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
10  
40  
µs  
DC24M  
Step24M  
Fout48M  
Jitter24M1  
FMAX  
24 MHz Duty Cycle  
50  
60  
%
24 MHz Trim Step Size  
50  
kHz  
MHz  
ps  
49.2a,c  
48 MHz Output Frequency  
46.8  
48.0  
600  
Trimmed. Utilizing factory trim values.  
24 MHz Peak-to-Peak Period Jitter (IMO)  
Maximum frequency of signal on row input or row output.  
Supply Ramp Time  
12.3  
MHz  
µs  
TRAMP  
0
a. 4.75V < Vdd < 5.25V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. 3.0V < Vdd < 3.6V. See Application Note AN2012 Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on trimming for operation at 3.3V.  
d. See the individual user module data sheets for information on maximum frequencies for user modules.  
Table 3-15. 2.7V AC Chip-Level Specifications  
Symbol  
FIMO12  
Description  
Min  
11.5  
Typ  
120  
Max  
Units  
MHz  
Notes  
12.7a,b,c  
Internal Main Oscillator Frequency for 12 MHz  
Trimmed for 2.7V operation using factory  
trim values. See Figure 3-1b on page 15.  
SLIMO mode = 1.  
6.35a,b,c  
FIMO6  
Internal Main Oscillator Frequency for 6 MHz  
5.75  
6
MHz  
Trimmed for 2.7V operation using factory  
trim values. See Figure 3-1b on page 15.  
SLIMO mode = 1.  
3.15a,b  
FCPU1  
CPU Frequency (2.7V Nominal)  
0.093  
0
3
MHz  
MHz  
24 MHz only for SLIMO mode = 0.  
12.5a,b,c  
FBLK27  
Digital PSoC Block Frequency (2.7V Nominal)  
12  
Refer to the AC Digital Block Specifica-  
tions below.  
F32K1  
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
8
32  
150  
1400  
96  
200  
kHz  
ns  
Jitter32k  
Jitter32k  
TXRST  
FMAX  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
10  
µs  
Maximum frequency of signal on row input or row output.  
Supply Ramp Time  
12.3  
MHz  
µs  
TRAMP  
0
a. 2.4V < Vdd < 3.0V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. See Application Note AN2012 Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on maximum frequency for user modules.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
22  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
Jitter24M1  
F24M  
Figure 3-3. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter32k  
F32K1  
Figure 3-4. 32 kHz Period Jitter (ILO) Timing Diagram  
April 20, 2005  
Document No. 38-12025 Rev. *G  
23  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4.2  
AC General Purpose IO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-16. 5V and 3.3V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
GPIO Operating Frequency  
Min  
Typ  
Max  
Units  
MHz  
Notes  
Normal Strong Mode  
0
3
2
7
7
12  
18  
18  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
ns  
ns  
ns  
ns  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
27  
22  
Table 3-17. 2.7V AC GPIO Specifications  
Symbol  
FGPIO  
Description  
GPIO Operating Frequency  
Min  
Typ  
Max  
Units  
Notes  
Normal Strong Mode  
0
3
MHz  
ns  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF  
Fall Time, Normal Strong Mode, Cload = 50 pF  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
6
50  
50  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
6
ns  
18  
18  
40  
40  
120  
120  
ns  
ns  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRi seS  
TFallF  
TFallS  
Figure 3-5. GPIO Timing Diagram  
April 20, 2005  
Document No. 38-12025 Rev. *G  
24  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4.3  
AC Operational Amplifier Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-18. AC Operational Amplifier Specifications  
Symbol  
TCOMP  
Description  
Min  
Typ  
Max  
100  
200  
Units  
ns  
ns  
Notes  
Comparator Mode Response Time, 50 mV Overdrive  
Vdd 3.0V.  
2.4V < Vcc < 3.0V.  
3.4.4  
AC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-19. AC Analog Mux Bus Specifications  
Symbol  
FSW  
Description  
Min  
Typ  
Max  
3.17  
Units  
MHz  
Notes  
Switch Rate  
3.4.5  
AC Digital Block Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-20. 5V and 3.3V AC Digital Block Specifications  
Function  
Description  
Maximum Block Clocking Frequency (> 4.75V)  
Maximum Block Clocking Frequency (< 4.75V)  
Capture Pulse Width  
Min  
Typ  
Max  
49.2  
Units  
MHz  
Notes  
4.75V < Vdd < 5.25V.  
All  
Functions  
Timer  
24.6  
MHz  
ns  
3.0V < Vdd < 4.75V.  
50a  
Maximum Frequency, No Capture  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
49.2  
24.6  
MHz  
MHz  
ns  
4.75V < Vdd < 5.25V.  
Counter  
50  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
49.2  
24.6  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
50  
50  
ns  
Synchronous Restart Mode  
Disable Mode  
ns  
ns  
Maximum Frequency  
49.2  
49.2  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
4.75V < Vdd < 5.25V.  
CRCPRS  
Maximum Input Clock Frequency  
(PRS Mode)  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
24.6  
8.2  
MHz  
MHz  
SPIM  
Maximum data rate at 4.1 MHz due to 2 x over  
clocking.  
SPIS  
Maximum Input Clock Frequency  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions  
50  
April 20, 2005  
Document No. 38-12025 Rev. *G  
25  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
Table 3-20. 5V and 3.3V AC Digital Block Specifications (continued)  
Transmitter Maximum Input Clock Frequency  
24.6  
49.2  
MHz  
MHz  
Maximum data rate at 3.08 MHz due to 8 x over  
clocking.  
Maximum data rate at 6.15 MHz due to 8 x over  
clocking.  
Maximum Input Clock Frequency with Vdd 4.75V, 2  
Stop Bits  
Receiver  
Maximum Input Clock Frequency  
24.6  
49.2  
MHz  
MHz  
Maximum data rate at 3.08 MHz due to 8 x over  
clocking.  
Maximum data rate at 6.15 MHz due to 8 x over  
clocking.  
Maximum Input Clock Frequency with Vdd 4.75V, 2  
Stop Bits  
a. 50 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Table 3-21. 2.7V AC Digital Block Specifications  
Function  
Description  
Min  
Typ  
Max  
12.7  
Units  
MHz  
Notes  
All  
Maximum Block Clocking Frequency  
2.4V < Vdd < 3.0V.  
Functions  
Timer  
100a  
Capture Pulse Width  
ns  
Maximum Frequency, With or Without Capture  
Enable Pulse Width  
12.7  
MHz  
ns  
Counter  
100  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
12.7  
12.7  
MHz  
MHz  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
100  
100  
ns  
Synchronous Restart Mode  
Disable Mode  
ns  
ns  
Maximum Frequency  
12.7  
12.7  
MHz  
MHz  
CRCPRS  
Maximum Input Clock Frequency  
(PRS Mode)  
CRCPRS  
(CRC Mode)  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
12.7  
6.35  
MHz  
MHz  
SPIM  
SPIS  
Maximum data rate at 3.17 MHz due to 2 x over  
clocking.  
Maximum Input Clock Frequency  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions  
100  
Transmitter Maximum Input Clock Frequency  
12.7  
MHz  
Maximum data rate at 1.59 MHz due to 8 x over  
clocking.  
Receiver Maximum Input Clock Frequency  
12.7  
MHz  
Maximum data rate at 1.59 MHz due to 8 x over  
clocking.  
a. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
April 20, 2005  
Document No. 38-12025 Rev. *G  
26  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4.6  
AC External Clock Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
and are for design guidance only.  
Table 3-22. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
0.093  
Typ  
Max  
24.6  
Units  
MHz  
Notes  
FOSCEXT  
Frequency  
High Period  
Low Period  
20.6  
20.6  
150  
5300  
ns  
ns  
µs  
Power Up IMO to Switch  
Table 3-23. 3.3V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
FOSCEXT  
Frequency with CPU Clock divide by 1  
0.093  
MHz  
Maximum CPU frequency is 12 MHz at 3.3V.  
With the CPU clock divider set to 1, the external  
clock must adhere to the maximum frequency  
and duty cycle requirements.  
12.3  
FOSCEXT  
Frequency with CPU Clock divide by 2 or greater  
0.186  
24.6  
MHz  
If the frequency of the external clock is greater  
than 12 MHz, the CPU clock divider must be set  
to 2 or greater. In this case, the CPU clock  
divider will ensure that the fifty percent duty  
cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
µs  
Table 3-24. 2.7V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
3.080  
FOSCEXT  
Frequency with CPU Clock divide by 1  
0.093  
MHz  
Maximum CPU frequency is 3 MHz at 2.7V.  
With the CPU clock divider set to 1, the external  
clock must adhere to the maximum frequency  
and duty cycle requirements.  
FOSCEXT  
Frequency with CPU Clock divide by 2 or greater  
0.186  
6.35  
MHz  
If the frequency of the external clock is greater  
than 3 MHz, the CPU clock divider must be set  
to 2 or greater. In this case, the CPU clock  
divider will ensure that the fifty percent duty  
cycle requirement is met.  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
160  
160  
150  
5300  
ns  
ns  
µs  
April 20, 2005  
Document No. 38-12025 Rev. *G  
27  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
3.4.7  
AC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, or 3.0V to 3.6V and -40°C TA 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
and are for design guidance only.  
Table 3-25. AC Programming Specifications  
Symbol  
TRSCLK  
TFSCLK  
TSSCLK  
THSCLK  
FSCLK  
Description  
Min  
Typ  
Max  
Units  
ns  
Notes  
Rise Time of SCLK  
Fall Time of SCLK  
1
20  
20  
1
ns  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
TERASEB Flash Erase Time (Block)  
15  
30  
TWRITE  
TDSCLK  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK  
45  
50  
3.6 < Vdd  
TDSCLK3 Data Out Delay from Falling Edge of SCLK  
TDSCLK2 Data Out Delay from Falling Edge of SCLK  
ns  
3.0 Vdd 3.6  
70  
ns  
2.4 Vdd 3.0  
2
3.4.8  
AC I C Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C TA 85°C, 3.0V to 3.6V and -40°C TA 85°C, or 2.4V to 3.0V and -40°C TA 85°C, respectively. Typical parameters  
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 3-26. AC Characteristics of the I2C SDA and SCL Pins for Vdd 3.0V  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
Description  
SCL Clock Frequency  
Units  
kHz  
Notes  
FSCLI2C  
0
0
400  
THDSTAI2C Hold Time (repeated) START Condition. After this  
period, the first clock pulse is generated.  
4.0  
0.6  
µs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
TSUSTAI2C Set-up Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
100a  
0.6  
1.3  
0
TSUDATI2C Data Set-up Time  
250  
4.0  
TSUSTOI2C Set-up Time for STOP Condition  
TBUFI2C  
TSPI2C  
Bus Free Time Between a STOP and START Condition 4.7  
Pulse Width of spikes are suppressed by the input fil-  
ter.  
50  
a. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t  
250 ns must then be met. This will automatically be  
SU;DAT  
the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data  
bit to the SDA line t + t = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax SU;DAT  
Table 3-27. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode not Supported)  
Standard Mode  
Min Max  
100  
Fast Mode  
Min Max  
Symbol  
Description  
SCL Clock Frequency  
Units  
kHz  
Notes  
FSCLI2C  
0
THDSTAI2C Hold Time (repeated) START Condition. After this  
period, the first clock pulse is generated.  
4.0  
µs  
TLOWI2C  
THIGHI2C  
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
0
µs  
µs  
µs  
µs  
TSUSTAI2C Set-up Time for a Repeated START Condition  
THDDATI2C Data Hold Time  
April 20, 2005  
Document No. 38-12025 Rev. *G  
28  
CY8C21x34 Final Data Sheet  
3. Electrical Specifications  
Table 3-27. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode not Supported) (continued)  
Standard Mode  
Fast Mode  
Min Max  
Symbol  
Description  
Min  
250  
4.0  
Bus Free Time Between a STOP and START Condition 4.7  
Max  
Units  
ns  
Notes  
TSUDATI2C Data Set-up Time  
TSUSTOI2C Set-up Time for STOP Condition  
TBUFI2C  
TSPI2C  
µs  
µs  
ns  
Pulse Width of spikes are suppressed by the input fil-  
ter.  
SDA  
TSPI2C  
T
LOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
SCL  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
T
HIGHI2C  
S
Sr  
P
S
Figure 3-6. Definition for Timing for Fast/Standard Mode on the I2C Bus  
April 20, 2005  
Document No. 38-12025 Rev. *G  
29  
4. Packaging Information  
This chapter illustrates the packaging specifications for the CY8C21x34 PSoC device, along with the thermal impedances for each  
package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/support/link.cfm?mr=poddim.  
4.1  
Packaging Dimensions  
PIN 1 ID  
8
1
MIN.  
MAX.  
DIMENSIONS IN INCHES[MM]  
REFERENCE JEDEC MO-119  
*
0.291[7.391]  
0.299[7.594]  
*
0.394[10.007]  
0.419[10.642]  
PART #  
9
16  
S16.3 STANDARD PKG.  
SZ16.3 LEAD FREE PKG.  
0.026[0.660]  
0.032[0.812]  
SEATING PLANE  
0.397[10.083]  
0.413[10.490]  
0.092[2.336]  
0.105[2.667]  
*
0.004[0.101]  
0.0091[0.231]  
0.0125[0.317]  
*
0.050[1.270]  
TYP.  
0.004[0.101]  
0.0118[0.299]  
0.015[0.381]  
0.050[1.270]  
0.013[0.330]  
0.019[0.482]  
51-85022 *B  
Figure 4-1. 16-Lead (150-Mil) SOIC  
April 20, 2005  
Document No. 38-12025 Rev. *G  
30  
CY8C21x34 Final Data Sheet  
4. Packaging Information  
51-85077 *C  
Figure 4-2. 20-Lead (210-MIL) SSOP  
51-85079 - *C  
Figure 4-3. 28-Lead (210-Mil) SSOP  
April 20, 2005  
Document No. 38-12025 Rev. *G  
31  
CY8C21x34 Final Data Sheet  
4. Packaging Information  
51-85188 **  
E-PAD X, Y for this product is 3.71 mm, 3.71 mm (+/-0.08 mm)  
Figure 4-4. 32-Lead (5x5 mm) MLF  
Important Note For information on the preferred dimensions for mounting MLF packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
4.2  
Thermal Impedances  
Table 4-1. Thermal Impedances per Package  
Package  
16 SOIC  
20 SSOP  
28 SSOP  
32 MLF  
Typical θJA  
*
Typical θJC  
123 oC/W  
117 oC/W  
96 oC/W  
22 oC/W  
55 oC/W  
41 oC/W  
39 oC/W  
12 oC/W  
* TJ = TA + Power x θJA  
April 20, 2005  
Document No. 38-12025 Rev. *G  
32  
CY8C21x34 Final Data Sheet  
4. Packaging Information  
4.3  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 4-2. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature*  
Maximum Peak Temperature  
240oC  
240oC  
240oC  
240oC  
260oC  
260oC  
260oC  
260oC  
16 SOIC  
20 SSOP  
28 SSOP  
32 MLF  
*Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220+/-5oC  
with Sn-Pb or 245+/-5oC with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.  
April 20, 2005  
Document No. 38-12025 Rev. *G  
33  
5. Ordering Information  
The following table lists the CY8C21x34 PSoC device’s key package features and ordering codes.  
CY8C21x34 PSoC Device Key Features and Ordering Information  
a
a
a
a
a
a
a
16 Pin (150-Mil) SOIC  
CY8C21234-24SXI  
CY8C21234-24SXIT  
CY8C21334-24PVXI  
CY8C21334-24PVXIT  
CY8C21534-24PVXI  
CY8C21534-24PVXIT  
CY8C21434-24LFXI  
CY8C21434-24LFXIT  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
512  
512  
512  
512  
512  
512  
512  
512  
Yes -40°C to +85°C  
Yes -40°C to +85°C  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
12  
12  
16  
16  
24  
24  
28  
28  
0
0
0
0
0
0
0
0
No  
No  
12  
12  
16  
16  
24  
24  
28  
28  
26  
16 Pin (150-Mil) SOIC  
(Tape and Reel)  
20 Pin (210-Mil) SSOP  
No  
No  
No  
No  
No  
No  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
20 Pin (210-Mil) SSOP  
(Tape and Reel)  
28 Pin (210-Mil) SSOP  
28 Pin (210-Mil) SSOP  
(Tape and Reel)  
b
32 Pin (5x5) MLF  
b
32 Pin (5x5) MLF  
a
a
a
(Tape and Reel)  
b
CY8C21634-24LFXI  
CY8C21634-24LFXIT  
8K  
8K  
512  
512  
Yes -40°C to +85°C  
Yes -40°C to +85°C  
4
4
4
4
26  
26  
0
0
Yes  
Yes  
32 Pin (5x5) MLF  
b
32 Pin (5x5) MLF  
26  
(Tape and Reel)  
a. All Digital IO Pins also connect to the common analog mux.  
b. Refer to the 32-Pin Part Pinout” on page 11 for pin differences.  
5.1  
Ordering Code Definitions  
CY 8 C 21 xxx-24xx  
Package Type:  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
Thermal Rating:  
C = Commercial  
I = Industrial  
PVX = SSOP Pb-Free  
LFX = MLF Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress MicroSystems  
Company ID: CY = Cypress  
April 20, 2005  
Document No. 38-12025 Rev. *G  
34  
6. Sales and Service Information  
To obtain information about Cypress Semiconductor or PSoC sales and technical support, reference the following information.  
Cypress Semiconductor  
2700 162nd Street SW, Building D  
Lynnwood, WA 98037  
Phone: 800.669.0557  
Facsimile: 425.787.4641  
Web Sites:  
Company Information – http://www.cypress.com  
Sales – http://www.cypress.com/aboutus/sales_locations.cfm  
Technical Support – http://www.cypress.com/support/login.cfm  
6.1  
Revision History  
Document Title:  
CY8C21234, CY8C21334, CY8C21434, CY8C21534, and CY8C21634 PSoC Mixed-Signal Array Final Data Sheet  
Document Number: 38-12025  
Originof  
Change  
Revision ECN # Issue Date  
Description of Change  
New silicon and document (Revision **).  
**  
5/19/2004  
HMT  
227340  
Updated Overview and Electrical Spec. chapters, along with revisions to the 24-pin pinout part.  
Revised the register mapping tables. Added a SSOP 28-pin part.  
*A  
235992 See ECN  
SFV  
Changed title to include all part #s. Changed 28-pin SSOP from CY8C21434 to CY8C21534.  
Changed pin 9 on the 28-pin SSOP from SMP pin to Vss pin. Added SMP block to architecture  
diagram. Update Electrical Specifications. Added another 32-pin MLF part: CY8C21634.  
*B  
*C  
248572 See ECN  
277832 See ECN  
SFV  
HMT  
Verify data sheet standards from SFV memo. Add Analog Input Mux to applicable pin outs.  
Update PSoC Characteristics table. Update diagrams and specs. Final.  
*D  
*E  
285293 See ECN  
301739 See ECN  
329104 See ECN  
HMT  
HMT  
HMT  
Update 2.7V DC GPIO spec. Add Reflow Peak Temp. table.  
DC Chip-Level Specification changes. Update links to new CY.com Portal.  
Re-add pinout ISSP notation. Fix TMP register names. Clarify ADC feature. Update Electrical  
Specifications. Update Reflow Peak Temp. table. Add 32 MLF E-PAD dimensions. Add ThetaJC to  
Thermal Impedance table. Fix 20-pin package order number. Add CY logo. Update CY copyright.  
*F  
352736 See ECN  
HMT  
Add new color and logo. Add URL to preferred dimensions for mounting MLF packages. Update  
Transmitter and Receiver AC Digital Block Electrical Specifications.  
*G  
Distribution: External/Public  
Posting: None  
6.2  
Copyrights and Code Protection  
Copyrights © Cypress Semiconductor Corp. 2004-2005. All rights reserved. PSoC™, PSoC Designer™, and Programmable System-on-Chip™ are PSoC-related trade-  
marks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations.  
The information contained herein is subject to change without notice. Cypress Semiconductor assumes no responsibility for the use of any circuitry other than circuitry  
embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its prod-  
ucts for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclu-  
sion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies  
Cypress Semiconductor against all charges. Cypress Semiconductor products are not warranted nor intended to be used for medical, life-support, life-saving, critical con-  
trol or safety applications, unless pursuant to an express written agreement with Cypress Semiconductor.  
Flash Code Protection Note the following details of the Flash code protection features on Cypress Semiconductor PSoC devices.  
Cypress Semiconductor products meet the specifications contained in their particular data sheets. Cypress Semiconductor believes that its PSoC family of products is one  
of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress Semiconductor, that can breach  
the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress Semiconductor nor any other semicon-  
ductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."  
Cypress Semiconductor is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress  
Semiconductor are committed to continuously improving the code protection features of our products.  
April 20, 2005  
© Cypress Semiconductor Corp. 2004-2005 — Document No. 38-12025 Rev. *G  
35  

相关型号:

CY8C21534B

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS

CY8C21534B-24PVXI

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS
CYPRESS

CY8C21634

PSoC Mixed-Signal Array
CYPRESS

CY8C21634-24AX

PSoC Mixed-Signal Array
CYPRESS

CY8C21634-24C

PSoC Mixed-Signal Array
CYPRESS

CY8C21634-24E

PSoC Mixed-Signal Array
CYPRESS

CY8C21634-24I

PSoC Mixed-Signal Array
CYPRESS

CY8C21634-24LFX

PSoC Mixed-Signal Array
CYPRESS

CY8C21634-24LFXI

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C21634-24LFXIT

PSoC㈢ Mixed-Signal Array
CYPRESS

CY8C21634-24LTXI

PSoC® Mixed-Signal Array
CYPRESS