CY8C21634-24LTXI [CYPRESS]

PSoC® Mixed-Signal Array; 的PSoC ™混合信号阵列
CY8C21634-24LTXI
型号: CY8C21634-24LTXI
厂家: CYPRESS    CYPRESS
描述:

PSoC® Mixed-Signal Array
的PSoC ™混合信号阵列

文件: 总43页 (文件大小:1151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
PSoC® Mixed-Signal Array  
Versatile Analog Mux  
Common Internal Analog Bus  
Features  
Powerful Harvard Architecture Processor  
M8C Processor Speeds to 24 MHz  
Low power at high speed  
2.4V to 5.25V Operating Voltage  
Operating Voltages Down to 1.0V using On-Chip Switch  
Mode Pump (SMP)  
Simultaneous Connection of IO Combinations  
Capacitive Sensing Application Capability  
Additional System Resources  
I2C™ Master, Slave and Multi-Master to 400 kHz  
Watchdog and Sleep Timers  
User-Configurable Low Voltage Detection  
Integrated Supervisory Circuit  
On-Chip Precision Voltage Reference  
Industrial Temperature Range: -40°C to +85°C  
Advanced Peripherals (PSoC Blocks)  
4 Analog Type “E” PSoC Blocks provide:  
• 2 Comparators with DAC Refs  
• Single or Dual 8-Bit 28 Channel ADC  
4 Digital PSoC Blocks provide:  
Block Diagram  
• 8 to 32-Bit Timers, Counters, and PWMs  
• CRC and PRS Modules  
• Full-Duplex UART, SPIMaster or Slave  
• Connectable to All GPIO Pins  
Complex Peripherals by Combining Blocks  
Flexible On-Chip Memory  
8K Flash Program Storage 50,000 Erase/Write Cycles  
512 Bytes SRAM Data Storage  
In-System Serial Programming (ISSP)  
Partial Flash Updates  
Flexible Protection Modes  
EEPROM Emulation in Flash  
Complete Development Tools  
Free Development Software  
(PSoC Designer™)  
Full-Featured, In-Circuit Emulator and Programmer  
Full Speed Emulation  
Complex Breakpoint Structure  
128K Trace Memory  
Precision, Programmable Clocking  
Internal ±2.5% 24/48 MHz Oscillator  
Internal Oscillator for Watchdog and Sleep  
Programmable Pin Configurations  
25 mA Drive on All GPIO  
Pull Up, Pull Down, High Z, Strong, or Open Drain Drive  
Modes on All GPIO  
Up to 8 Analog Inputs on GPIO  
Configurable Interrupt on All GPIO  
Cypress Semiconductor Corporation  
Document Number: 38-12025 Rev. *M  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 18, 2008  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
®
The Digital System  
PSoC Functional Overview  
The Digital System consists of 4 digital PSoC blocks. Each block  
is an 8-bit resource that is used alone or combined with other  
blocks to form 8, 16, 24, and 32-bit peripherals, which are called  
user module references. Digital peripheral configurations include  
the following.  
The PSoC® family consists of many Mixed-Signal Array with  
On-Chip Controller devices. These devices are designed to  
replace multiple traditional MCU-based system components with  
one low cost single-chip programmable component. A PSoC  
device includes configurable blocks of analog and digital logic,  
and programmable interconnect. This architecture enables the  
user to create customized peripheral configurations, to match  
the requirements of each individual application. Additionally, a  
fast CPU, Flash program memory, SRAM data memory, and  
configurable IO are included in a range of convenient pinouts.  
PWMs (8 to 32 bit)  
PWMs with Dead band (8 to 32 bit)  
Counters (8 to 32 bit)  
Timers (8 to 32 bit)  
The PSoC architecture, shown in Figure 1, consists of four main  
areas: the Core, the System Resources, the Digital System, and  
the Analog System. Configurable global bus resources allow  
combining all the device resources into a complete custom  
system. Each CY8C21x34 PSoC device includes four digital  
blocks and four analog blocks. Depending on the PSoC  
package, up to 28 general purpose IO (GPIO) are also included.  
The GPIO provide access to the global digital and analog inter-  
connects.  
UART 8 bit with selectable parity  
SPI master and slave  
I2C slave and multi-master  
Cyclical Redundancy Checker/Generator (8 to 32 bit)  
IrDA  
Pseudo Random Sequence Generators (8 to 32 bit)  
The PSoC Core  
The digital blocks are connected to any GPIO through a series  
of global buses that can route any signal to any pin. The buses  
also allow for signal multiplexing and for performing logic  
operations. This configurability frees your designs from the  
constraints of a fixed peripheral controller.  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO  
(internal main oscillator) and ILO (internal low speed oscillator).  
The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a four MIPS 8-bit Harvard  
architecture microprocessor.  
Digital blocks are provided in rows of four, where the number of  
blocks varies by PSoC device family. This allows the optimum  
choice of system resources for your application. Family  
resources are shown in Table 1 on page 4.  
System Resources provide the following additional capabilities:  
Digital clocks to increase the flexibility of the PSoC  
mixed-signal arrays.  
Figure 1. Digital System Block Diagram  
Port 3  
Port 1  
I2C functionality to implement an I2C master and slave.  
Port 2  
Port 0  
An internal voltage reference, MultiMaster, that provides an  
absolute value of 1.3V to a number of PSoC subsystems.  
DigitalClocks  
FromCore  
ToAnalog  
System  
To SystemBus  
A switch mode pump (SMP) that generates normal operating  
voltages off a single battery cell.  
DIGITAL SYSTEM  
Various system resets supported by the M8C.  
The Digital System consists of an array of digital PSoC blocks  
that may be configured into any number of digital peripherals.  
The digital blocks are connected to the GPIO through a series of  
global buses that can route any signal to any pin, freeing designs  
from the constraints of a fixed peripheral controller.  
DigitalPSoCBlockArray  
Row 0  
4
4
DBB00  
DBB01  
DCB02  
DCB03  
The Analog System consists of four analog PSoC blocks,  
supporting comparators and analog-to-digital conversion up to 8  
bits in precision.  
8
8
8
8
GIE[7:0]  
GIO[7:0]  
GOE[7:0]  
GOO[7:0]  
Global Digital  
Interconnect  
Document Number: 38-12025 Rev. *M  
Page 2 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
The Analog Multiplexer System  
The Analog System  
The Analog Mux Bus can connect to every GPIO pin. Pins may  
be connected to the bus individually or in any combination. The  
bus also connects to the analog system for analysis with  
comparators and analog-to-digital converters. An additional 8:1  
analog input multiplexer provides a second path to bring Port 0  
pins to the analog array.  
The Analog System consists of 4 configurable blocks that allow  
the creation of complex analog signal flows. Analog peripherals  
are very flexible and may be customized to support specific  
application requirements. Some of the common PSoC analog  
functions for this device (most available as user modules) are:  
Analog-to-digital converters (single or dual, with 8-bit  
resolution)  
Switch control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
Pin-to-pin comparator  
Single-ended comparators (up to 2) with absolute (1.3V)  
reference or 8-bit DAC reference  
Track pad, finger sensing.  
1.3V reference (as a System Resource)  
Chip-wide mux that allows analog input from any IO pin.  
Crosspoint connection between any IO pin combinations.  
In most PSoC devices, analog blocks are provided in columns of  
three, which includes one CT (Continuous Time) and two SC  
(Switched Capacitor) blocks. The CY8C21x34 devices provide  
limited functionality Type “E” analog blocks. Each column  
contains one CT Type E block and one SC Type E block. Refer  
to the PSoC Mixed-Signal Array Technical Reference Manual for  
detailed information on the CY8C21x34’s Type E analog blocks.  
When designing capacitive sensing applications, refer to the  
signal-to-noise system level requirement found in Application  
Note  
AN2403  
on  
the  
Cypress  
web  
site  
at  
http://www.cypress.com.  
Additional System Resources  
Figure 2. Analog System Block Diagram  
System Resources, some of which are listed in the previous  
sections, provide additional capability useful to complete  
systems. Additional resources include a switch mode pump, low  
voltage detection, and power on reset. Brief statements  
describing the merits of each system resource follow.  
Array Input  
Configuration  
Digital clock dividers provide three customizable clock  
frequencies for use in applications. The clocks may be routed  
to both the digital and analog systems. Additional clocks can  
be generated using digital PSoC blocks as clock dividers.  
TheI2Cmoduleprovides100and400kHzcommunicationover  
two wires. Slave, master, and multi-master modes are all  
supported.  
ACI0[1:0]  
ACI1[1:0]  
All IO  
Low Voltage Detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced POR  
(Power On Reset) circuit eliminates the need for a system  
supervisor.  
X
X
AC OL 1MU X  
X
X
An al o g MuxBus  
An internal 1.3 voltage reference provides an absolute  
reference for the analog system, including ADCs and DACs.  
X
Array  
An integrated switch mode pump (SMP) generates normal  
operating voltages from a single 1.2V battery cell, providing a  
low cost boost converter.  
ACE00  
ACE01  
ASE11  
ASE10  
Versatile analog multiplexer system.  
Document Number: 38-12025 Rev. *M  
Page 3 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
contains development kits, C compilers, and all accessories for  
PSoC development. Go to the Cypress Online Store web site at  
http://www.cypress.com, click the Online Store shopping cart  
icon at the bottom of the web page, and click PSoC (Program-  
mable System-on-Chip) to view a current list of available items.  
PSoC Device Characteristics  
Depending on your PSoC device characteristics, the digital and  
analog systems can have 16, 8, or 4 digital blocks and 12, 6, or  
4 analog blocks. Table 1 lists the resources available for specific  
PSoC device groups. The PSoC device covered by this data  
sheet is highlighted in this table.  
Technical Training Modules  
Table 1. PSoC Device Characteristics  
Free PSoC technical training modules are available for users  
new to PSoC. Training modules cover designing, debugging,  
advanced  
http://www.cypress.com/techtrain.  
analog  
and  
CapSense.  
Go  
to  
PSoC Part  
Number  
Consultants  
CY8C29x66 upto 4  
64  
16 12  
4
4
4
4
12 2K  
32K  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to http://www.cypress.com, click on Design  
Support located on the left side of the web page, and select  
CYPros Consultants.  
CY8C27x43 upto 2  
44  
8
12  
12 256 16K  
Bytes  
CY8C24x94 56  
1
4
4
48  
12  
2
2
2
2
6
6
1K  
16K  
CY8C24x23A upto 1  
24  
256 4K  
Bytes  
Technical Support  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a 4-hour guaranteed  
response at http://www.cypress.com/support.  
a
a
b
CY8C21x34 upto 1  
28  
4
4
0
28  
8
0
0
0
2
2
0
4
4
3
512 8K  
Bytes  
CY8C21x23 16  
1
256 4K  
Bytes  
Application Notes  
A long list of application notes can assist you in every aspect of  
your design effort. To view the PSoC application notes, go to the  
http://www.cypress.com web site and select Application Notes  
under the Design Resources list located in the center of the web  
page. Application notes are sorted by date by default.  
CY8C20x34 upto 0  
28  
28  
512 8K  
Bytes  
a. Limited analog functionality.  
b. Two analog blocks and one CapSense.  
Getting Started  
Development Tools  
PSoC Designer is a Microsoft® Windows-based, integrated  
The quickest path to understanding the PSoC silicon is by  
reading this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an overview  
of the PSoC integrated circuit and presents specific pin, register,  
and electrical specifications. For in-depth information with  
detailed programming information, refer the PSoC Mixed-Signal  
development  
environment  
for  
the  
Programmable  
System-on-Chip (PSoC) devices. The PSoC Designer IDE and  
application runs on Windows NT 4.0, Windows 2000, Windows  
Millennium (Me), or Windows XP. (See Figure 3 on page 5)  
PSoC Designer helps the customer to select an operating  
configuration for the PSoC, write application code that uses the  
PSoC, and debug the application. This system provides design  
database management by project, an integrated debugger with  
In-Circuit Emulator, in-system programming support, and the  
CYASM macro assembler for the CPUs.  
Array  
Technical  
Reference  
Manual  
available  
at  
http://www.cypress.com/psoc.  
For up-to-date Ordering, Packaging, and Electrical Specification  
information, refer the latest PSoC device data sheets at  
http://www.cypress.com.  
PSoC Designer also supports a high-level C language compiler  
developed specifically for the devices in the family.  
Development Kits  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
Document Number: 38-12025 Rev. *M  
Page 4 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Figure 3. PSoC Designer Subsystems  
Design Browser  
The Design Browser enables users to select and import  
preconfigured designs into the user’s project. Users can easily  
browse  
a catalog of preconfigured designs to facilitate  
time-to-design. Examples provided in the tools include a  
300-baud modem, LIN Bus master and slave, fan controller, and  
magnetic card reader.  
Application Editor  
In the Application Editor you can edit your C language and  
Assembly language source code. You can also assemble,  
compile, link, and build.  
Assembler. The macro assembler allows the seamless  
merging of the assembly code with C code. The link libraries  
automatically use absolute addressing or are compiled in relative  
mode, and linked with other software modules to get absolute  
addressing.  
C Language Compiler. A C language compiler that supports  
the PSoC family of devices is available. Even if you have never  
worked in the C language before, the product quickly helps you  
create complete C programs for the PSoC family devices.  
The embedded, optimizing C compiler provides all the features  
of C tailored to the PSoC architecture. It comes complete with  
embedded libraries providing port and bus operations, standard  
keypad and display support, and extended math functionality.  
Debugger  
The PSoC Designer Debugger subsystem provides hardware  
in-circuit emulation, allowing the designer to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read the  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
PSoC Designer Software Subsystems  
Device Editor  
Online Help System  
The device editor subsystem enables the user to select different  
onboard analog and digital components called user modules  
using the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters.  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
The device editor also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration allows changing configurations at run time.  
Hardware Tools  
PSoC Designer sets up power on initialization tables for selected  
PSoC block configurations and creates source code for an  
application framework. The framework contains software to  
operate the selected components and, if the project uses more  
than one operating configuration, contains routines to switch  
between different sets of PSoC block configurations at run time.  
PSoC Designer can print out a configuration sheet for a given  
project configuration for use during application programming in  
conjunction with the Device Data Sheet. After the framework is  
generated, the user can add application-specific code to flesh  
out the framework. It is also possible to change the selected  
components and regenerate the framework.  
In-Circuit Emulator  
A low cost, high functionality ICE (In-Circuit Emulator) is  
available for development support. This hardware has the  
capability to program single devices.  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full speed  
(24 MHz) operation.  
Document Number: 38-12025 Rev. *M  
Page 5 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Figure 4. User Module and Source Code Development Flows  
Designing with User Modules  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Each block has several registers that determine its function and  
connectivity to other blocks, multiplexers, buses and to the IO  
pins. Iterative development cycles permit you to adapt the  
hardware and software. This substantially lowers the risk of  
having to select a different part to meet the final design  
requirements.  
Device Editor  
Placement  
User  
Module  
Selection  
Source  
Code  
Generator  
and  
Parameter  
-ization  
Generate  
Application  
Application Editor  
To speed the development process, the PSoC Designer  
Integrated Development Environment (IDE) provides a library of  
pre-built, pre-tested hardware peripheral functions, called “User  
Modules.” User modules make selecting and implementing  
peripheral devices simple, and come in analog, digital, and  
mixed signal varieties. The standard User Module library  
contains over 50 common peripherals such as ADCs, DACs  
Timers, Counters, UARTs, and other uncommon peripherals,  
such as DTMF Generators and Bi-Quad analog filter sections.  
Source  
Code  
Editor  
Project  
Manager  
Build  
Manager  
Build  
All  
Each user module establishes the basic register settings that  
implement the selected function. It also provides parameters that  
allow you to tailor its precise configuration to your particular  
application. For example, a Pulse Width Modulator User Module  
configures one or more digital PSoC blocks, one for each 8 bits  
of resolution. The user module parameters permit you to  
establish the pulse width and duty cycle. User modules also  
provide tested software to cut your development time. The user  
module application programming interface (API) provides  
high-level functions to control and respond to hardware events  
at run time. The API also provides optional interrupt service  
routines that you can adapt as needed.  
Debugger  
Event &  
Breakpoint  
Manager  
Interface  
to ICE  
Storage  
Inspector  
The next step is to write your main program, and any  
sub-routines using PSoC Designer’s Application Editor  
subsystem. The Application Editor includes a Project Manager  
that allows you to open the project source code files (including  
all generated code files) from a hierarchal view. The source code  
editor provides syntax coloring and advanced edit features for  
both C and assembly language. File search capabilities include  
simple string searches and recursive “grep-style” patterns. A  
single mouse click invokes the Build Manager. It employs a  
professional-strength “makefile” system to automatically analyze  
all file dependencies and run the compiler and assembler as  
necessary. Project-level options control optimization strategies  
used by the compiler and linker. Syntax errors are displayed in a  
console window. Double clicking the error message takes you  
directly to the offending line of source code. When all is correct,  
the linker builds a HEX file image suitable for programming.  
The API functions are documented in user module data sheets  
that are viewed directly in the PSoC Designer IDE. These data  
sheets explain the internal operation of the user module and  
provide performance specifications. Each data sheet describes  
the use of each user module parameter and documents the  
setting of each register controlled by the user module.  
The development process starts when you open a new project  
and bring up the Device Editor, a graphical user interface (GUI)  
for configuring the hardware. You can pick the user modules you  
need for your project and map them onto the PSoC blocks with  
point-and-click simplicity. Next, you build signal chains by inter-  
connecting user modules to each other and the IO pins. At this  
stage, you must also configure the clock source connections and  
enter parameter values directly or by selecting values from  
drop-down menus. When you are ready to test the hardware  
configuration or move on to developing code for the project,  
perform the “Generate Application” step. This causes PSoC  
Designer to generate source code that automatically configures  
the device to your specification and provides the high-level user  
module API functions.  
The last step in the development process takes place inside the  
PSoC Designer’s Debugger subsystem. The Debugger  
downloads the HEX image to the In-Circuit Emulator (ICE) where  
it runs at full speed. Debugger capabilities rival those of systems  
costing many times more. In addition to traditional single-step,  
run-to-breakpoint and watch-variable features, the Debugger  
provides a large trace buffer and enables you to define complex  
breakpoint events that include monitoring address and data bus  
values, memory locations, and external signals.  
Document Number: 38-12025 Rev. *M  
Page 6 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Units of Measure  
Document Conventions  
A units of measure table is located in the Electrical Specifications  
section. Table 2 on page 7 lists all the abbreviations used to  
measure the PSoC devices.  
Acronyms Used  
The following table lists the acronyms that are used in this  
document.  
Numeric Naming  
Table 2. Acronyms Used  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
Acronym  
AC  
Description  
alternating current  
ADC  
API  
analog-to-digital converter  
application programming interface  
central processing unit  
continuous time  
CPU  
CT  
DAC  
DC  
digital-to-analog converter  
direct current  
ECO  
EEPROM  
external crystal oscillator  
electrically erasable programmable read-only  
memory  
FSR  
GPIO  
GUI  
full scale range  
general purpose IO  
graphical user interface  
human body model  
in-circuit emulator  
HBM  
ICE  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
IMO  
IO  
IPOR  
LSb  
imprecise power on reset  
least-significant bit  
low voltage detect  
LVD  
MSb  
PC  
most-significant bit  
program counter  
PLL  
phase-locked loop  
POR  
PPOR  
PSoC®  
PWM  
SC  
power on reset  
precision power on reset  
Programmable System-on-Chip™  
pulse width modulator  
switched capacitor  
slow IMO  
SLIMO  
SMP  
SRAM  
switch mode pump  
static random access memory  
Document Number: 38-12025 Rev. *M  
Page 7 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Pin Information  
The CY8C21x34 PSoC device is available in a variety of packages which are listed in the following tables. Every port pin (labeled with  
a “P”) is capable of Digital IO and connection to the common analog bus. However, Vss, Vdd, SMP, and XRES are not capable of  
Digital IO.  
16-Pin Part Pinout  
Figure 5. CY8C21234 16-Pin PSoC Device  
A, I,M, P0[7]  
A, I,M, P0[5]  
A, I,M, P0[3]  
A, I,M, P0[1]  
SMP  
Vdd  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P0[6], A,I, M  
P0[4], A,I, M  
P0[2], A,I, M  
P0[0], A,I, M  
P1[4],EXTCLK,M  
P1[2],M  
SOIC  
Vss  
M,I2C SCL,P1[1]  
Vss  
P1[0],I2CSDA,M  
Table 3. Pin Definitions - CY8C21234 16-Pin (SOIC)  
Type  
Pin No.  
Name  
Description  
Digital  
IO  
Analog  
I, M  
1
P0[7]  
Analog column mux input.  
Analog column mux input.  
2
IO  
I, M  
I, M  
I, M  
P0[5]  
P0[3]  
P0[1]  
SMP  
Vss  
3
IO  
Analog column mux input, integrating input.  
Analog column mux input, integrating input.  
Switch Mode Pump (SMP) connection to required external components.  
Ground connection.  
4
IO  
5
Power  
Power  
IO  
6
7
M
P1[1]  
Vss  
I2C Serial Clock (SCL), ISSP-SCLK*.  
Ground connection.  
8
Power  
IO  
9
M
P1[0]  
P1[2]  
P1[4]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I2C Serial Data (SDA), ISSP-SDATA*.  
10  
11  
12  
13  
14  
15  
16  
IO  
M
IO  
M
Optional External Clock Input (EXTCLK).  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
IO  
I, M  
I, M  
I, M  
I, M  
IO  
IO  
IO  
Power  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
Document Number: 38-12025 Rev. *M  
Page 8 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
20-Pin Part Pinout  
Figure 6. CY8C21334 20-Pin PSoC Device  
A, I,M, P0[7]  
A, I,M, P0[5]  
A, I,M, P0[3]  
A, I,M, P0[1]  
Vss  
Vdd  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
P0[6], A,I, M  
P0[4], A,I, M  
P0[2], A,I, M  
P0[0], A,I, M  
XRES  
P1[6],M  
P1[4],EXTCLK,M  
P1[2],M  
SSOP  
M,I2C SCL,P1[7]  
M,I2C SDA,P1[5]  
M,P1[3]  
M,I2C  
SCL,P1[1]  
Vss  
P1[0],I2C SDA,M  
10  
Table 4. Pin Definitions - CY8C21334 20-Pin (SSOP)  
Type  
Pin No.  
Name  
Description  
Digital  
IO  
Analog  
I, M  
1
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Vss  
Analog column mux input.  
Analog column mux input.  
2
IO  
I, M  
I, M  
I, M  
3
IO  
Analog column mux input, integrating input.  
Analog column mux input, integrating input.  
Ground connection.  
4
IO  
5
Power  
IO  
6
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL).  
7
IO  
I2C Serial Data (SDA).  
8
IO  
9
IO  
I2C Serial Clock (SCL), ISSP-SCLK*.  
Ground connection.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Power  
IO  
M
M
M
M
P1[0]  
P1[2]  
P1[4]  
P1[6]  
I2C Serial Data (SDA), ISSP-SDATA*.  
IO  
IO  
Optional External Clock Input (EXTCLK).  
IO  
Input  
IO  
XRES Active high external reset with internal pull down.  
I, M  
I, M  
I, M  
I, M  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
IO  
IO  
IO  
Power  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
Document Number: 38-12025 Rev. *M  
Page 9 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
28-Pin Part Pinout  
Figure 7. CY8C21534 28-Pin PSoC Device  
A, I,M, P0[7]  
A, I,M, P0[5]  
A, I,M, P0[3]  
A, I,M, P0[1]  
M,P2[7]  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Vdd  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
P0[6], A,I, M  
P0[4], A,I, M  
P0[2], A,I, M  
P0[0], A,I, M  
P2[6],M  
M,P2[5]  
M, P2[3]  
M, P2[1]  
P2[4],M  
P2[2],M  
SSOP  
Vss  
P2[0],M  
XRES  
P1[6],M  
M,I2C SCL,P1[7]  
M,I2C SDA,P1[5]  
M,P1[3]  
P1[4],EXTCLK,M  
P1[2],M  
P1[0],I2CSDA,M  
M,I2C SCL,P1[1]  
Vss  
Table 5. Pin Definitions - CY8C21534 28-Pin (SSOP)  
Type  
Pin No.  
Name  
Description  
Digital  
Analog  
I, M  
1
2
3
4
5
6
7
8
9
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P0[7]  
Analog column mux input.  
I, M  
I, M  
I, M  
M
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
Vss  
Analog column mux input and column output.  
Analog column mux input and column output, integrating input.  
Analog column mux input, integrating input.  
M
I, M  
I, M  
Direct switched capacitor block input.  
Direct switched capacitor block input.  
Ground connection.  
Power  
IO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
I2C Serial Clock (SCL).  
IO  
I2C Serial Data (SDA).  
IO  
IO  
I2C Serial Clock (SCL), ISSP-SCLK*.  
Ground connection.  
Power  
IO  
M
M
M
M
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I2C Serial Data (SDA), ISSP-SDATA*.  
IO  
IO  
Optional External Clock Input (EXTCLK).  
IO  
Input  
IO  
Active high external reset with internal pull down.  
Direct switched capacitor block input.  
I, M  
I, M  
M
IO  
Direct switched capacitor block input.  
IO  
IO  
M
IO  
I, M  
I, M  
I, M  
I, M  
Analog column mux input.  
Analog column mux input.  
Analog column mux input  
Analog column mux input.  
Supply voltage.  
IO  
IO  
IO  
Power  
LEGEND A: Analog, I: Input, O = Output, and M = Analog Mux Input.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
Document Number: 38-12025 Rev. *M  
Page 10 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
32-Pin Part Pinout  
Figure 9. CY8C21634 32-Pin PSoC Device  
Figure 8. CY8C21434 32-Pin PSoC Device  
Figure 10. CY8C21434 32-Pin Sawn PSoC Device  
Figure 11. CY8C21634 32-Pin Sawn PSoC Device  
A, I, M, P0[1]  
M, P2[7]  
M, P2[5]  
M, P2[3]  
M, P2[1]  
M, P3[3]  
A, I, M, P0[1]  
M, P2[7]  
M, P2[5]  
M, P2[3]  
M, P2[1]  
SMP  
1
2
3
4
5
6
7
8
P0[0], A, I, M  
1
2
3
4
5
6
7
8
P0[0], A, I, M  
24  
24  
23 P2[6], M  
22 P2[4], M  
P2[2], M  
20 P2[0], M  
P3[2], M  
23 P2[6], M  
22 P2[4], M  
P2[2], M  
20 P2[0], M  
P3[2], M  
21  
21  
QFN  
(Top View)  
QFN  
(Top View)  
19  
19  
M, P3[1]  
M, 12C SCL, P1[7]  
Vss  
18 P3[0], M  
17 XRES  
18 P3[0], M  
17 XRES  
M, 12C SCL, P1[7]  
Document Number: 38-12025 Rev. *M  
Page 11 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 6. Pin Definitions - CY8C21434/CY8C21634 32-Pin (QFN**)  
Type  
Analog  
I, M  
Pin  
No.  
Name  
P0[1]  
Description  
Digital  
IO  
1
2
3
4
5
6
6
Analog column mux input, integrating input.  
IO  
M
M
M
M
M
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
SMP  
IO  
IO  
IO  
IO  
In CY8C21434 part.  
Power  
Switch Mode Pump (SMP) connection to required external components in  
CY8C21634 part.  
7
7
8
9
IO  
M
P3[1]  
Vss  
In CY8C21434 part.  
Power  
IO  
Ground connection in CY8C21634 part.  
I2C Serial Clock (SCL).  
M
M
M
M
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
IO  
I2C Serial Data (SDA).  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
IO  
IO  
I2C Serial Clock (SCL), ISSP-SCLK*.  
Ground connection.  
Power  
IO  
M
M
M
M
P1[0]  
P1[2]  
P1[4]  
P1[6]  
XRES  
P3[0]  
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
I2C Serial Data (SDA), ISSP-SDATA*.  
IO  
IO  
Optional External Clock Input (EXTCLK).  
IO  
Input  
IO  
Active high external reset with internal pull down.  
M
IO  
M
IO  
M
IO  
M
IO  
M
IO  
M
IO  
I, M  
I, M  
I, M  
I, M  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Analog column mux input.  
Supply voltage.  
IO  
IO  
IO  
Power  
IO  
I, M  
I, M  
I, M  
P0[7]  
P0[5]  
P0[3]  
Vss  
Analog column mux input.  
Analog column mux input.  
Analog column mux input, integrating input.  
Ground connection.  
IO  
IO  
Power  
LEGEND A = Analog, I = Input, O = Output, and M = Analog Mux Input.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
** The center pad on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must  
be electrically floated and not connected to any other signal.  
Document Number: 38-12025 Rev. *M  
Page 12 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
56-Pin Part Pinout  
The 56-pin SSOP part is for the CY8C21001 On-Chip Debug (OCD) PSoC device.  
Note This part is only used for in-circuit debugging. It is NOT available for production.  
Figure 12. CY8C21001 56-Pin PSoC Device  
Vss  
56  
55  
Vdd  
1
2
AI, P0[7]  
AI, P0[5]  
AI, P0[3]  
P0[6], AI  
P0[4], AI  
P0[2], AI  
3
4
5
6
54  
53  
AI, P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
P0[0], AI  
P2[6]  
52  
51  
P2[4]  
P2[2]  
P2[0]  
NC  
7
8
9
50  
49  
48  
10  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
NC  
NC  
NC  
NC  
11  
12  
13  
P3[2]  
P3[0]  
CCLK  
HCLK  
XRES  
NC  
OCDE  
OCDO  
SMP  
14  
SSOP  
15  
16  
17  
Vss  
Vss  
NC  
NC  
NC  
18  
19  
20  
P3[3]  
P3[1]  
NC  
NC  
21  
22  
23  
NC  
NC  
P1[6]  
I2C SCL, P1[7]  
P1[4], EXTCLK  
P1[2]  
I2C SDA, P1[5]  
NC  
24  
25  
33  
32  
P1[3]  
SCLK, I2C SCL, P1[1]  
Vss  
P1[0], I2C  
NC  
SDA, SDATA  
26  
27  
28  
31  
30  
NC  
29  
Table 7. Pin Definitions - CY8C21001 56-Pin (SSOP)  
Type  
Pin No.  
Pin Name  
Description  
Digital  
Power  
Analog  
1
Vss  
Ground connection.  
Analog column mux input.  
2
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
3
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
4
5
6
7
8
I
I
Direct switched capacitor block input.  
Direct switched capacitor block input.  
No connection.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
NC  
No connection.  
NC  
No connection.  
NC  
No connection.  
OCD  
OCD  
Power  
Power  
Power  
IO  
OCDE  
OCDO  
SMP  
Vss  
OCD even data IO.  
OCD odd data output.  
Switch Mode Pump (SMP) connection to required external components.  
Ground connection.  
Vss  
Ground connection.  
P3[3]  
Document Number: 38-12025 Rev. *M  
Page 13 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 7. Pin Definitions - CY8C21001 56-Pin (SSOP) (continued)  
Type  
Pin No.  
20  
Pin Name  
Description  
Digital  
Analog  
IO  
P3[1]  
NC  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
No connection.  
No connection.  
NC  
IO  
IO  
P1[7]  
P1[5]  
NC  
I2C Serial Clock (SCL).  
I2C Serial Data (SDA).  
No connection.  
IO  
IO  
P1[3]  
P1[1]  
Vss  
I
.
FMTEST  
Crystal Input (XTALin), I2C Serial Clock (SCL), ISSP-SCLK*.  
Ground connection.  
Power  
NC  
No connection.  
NC  
No connection.  
IO  
IO  
IO  
IO  
P1[0]  
P1[2]  
P1[4]  
P1[6]  
NC  
Crystal Output (XTALout), I2C Serial Data (SDA), ISSP-SDATA*.  
V
.
FMTEST  
Optional External Clock Input (EXTCLK).  
No connection.  
NC  
No connection.  
NC  
No connection.  
NC  
No connection.  
NC  
No connection.  
NC  
No connection.  
Input  
OCD  
OCD  
IO  
XRES  
HCLK  
CCLK  
P3[0]  
P3[2]  
NC  
Active high external reset with internal pull down.  
OCD high-speed clock output.  
OCD CPU clock output.  
IO  
No connection.  
No connection.  
NC  
IO  
I
I
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
IO  
IO  
IO  
IO  
I
I
I
I
Analog column mux input.  
IO  
Analog column mux input and column output.  
Analog column mux input and column output.  
Analog column mux input.  
IO  
IO  
Power  
Supply voltage.  
LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.  
* These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Mixed-Signal Array Technical Reference Manual for details.  
Document Number: 38-12025 Rev. *M  
Page 14 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Register Reference  
This chapter lists the registers of the CY8C21x34 PSoC device. For detailed register information, refer the PSoC Mixed-Signal Array  
Technical Reference Manual.  
Register Conventions  
The register conventions specific to this section are listed in Table 8.  
Table 8. Register Conventions  
Convention  
Description  
Read register or bit(s)  
R
W
L
Write register or bit(s)  
Logical register or bit(s)  
Clearable register or bit(s)  
Access is bit specific  
C
#
Register Mapping Tables  
The PSoC device has a total register address space of 512 bytes. The register space is referred to as IO space and is divided into  
two banks. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set the user  
is in Bank 1.  
Note In the following register mapping tables, blank fields are Reserved and must not be accessed.  
Table 9. Register Map 0 Table: User Space  
PRT0DR  
PRT0IE  
PRT0GS  
PRT0DM2  
PRT1DR  
PRT1IE  
PRT1GS  
PRT1DM2  
PRT2DR  
PRT2IE  
PRT2GS  
PRT2DM2  
PRT3DR  
PRT3IE  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
ASE10CR0  
ASE11CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
PRT3GS  
PRT3DM2  
CUR_PP  
STK_PP  
RW  
RW  
IDX_PP  
RW  
RW  
RW  
RW  
#
RW  
#
RW  
RW  
MVR_PP  
MVW_PP  
I2C_CFG  
I2C_SCR  
I2C_DR  
I2C_MSCR  
INT_CLR0  
INT_CLR1  
INT_CLR3  
INT_MSK3  
RW  
RW  
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12025 Rev. *M  
Page 15 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 9. Register Map 0 Table: User Space (continued)  
DBB00DR0  
DBB00DR1  
DBB00DR2  
DBB00CR0  
DBB01DR0  
DBB01DR1  
DBB01DR2  
DBB01CR0  
DCB02DR0  
DCB02DR1  
DCB02DR2  
DCB02CR0  
DCB03DR0  
DCB03DR1  
DCB03DR2  
DCB03CR0  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
#
AMX_IN  
AMUXCFG  
PWM_CR  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
RW  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
INT_MSK0  
INT_MSK1  
INT_VC  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
RW  
RW  
RC  
W
W
RW  
#
RES_WDT  
#
CMP_CR0  
CMP_CR1  
#
W
RW  
#
RW  
DEC_CR0  
DEC_CR1  
RW  
RW  
#
#
#
ADC0_CR  
ADC1_CR  
W
RW  
#
#
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
W
RW  
#
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
DAC_D  
CPU_SCR1  
CPU_SCR0  
RW  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Table 10. Register Map 1 Table: Configuration Space  
PRT0DM0  
PRT0DM1  
PRT0IC0  
PRT0IC1  
PRT1DM0  
PRT1DM1  
PRT1IC0  
PRT1IC1  
PRT2DM0  
PRT2DM1  
PRT2IC0  
PRT2IC1  
PRT3DM0  
PRT3DM1  
PRT3IC0  
PRT3IC1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
ASE10CR0  
ASE11CR0  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
RW  
RW  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
GDI_O_IN  
GDI_E_IN  
GDI_O_OU  
GDI_E_OU  
RW  
RW  
RW  
RW  
12  
13  
14  
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12025 Rev. *M  
Page 16 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 10. Register Map 1 Table: Configuration Space (continued)  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
95  
96  
97  
98  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
MUX_CR0  
MUX_CR1  
MUX_CR2  
MUX_CR3  
RW  
RW  
RW  
RW  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
OSC_GO_EN DD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
OSC_CR4  
OSC_CR3  
OSC_CR0  
OSC_CR1  
OSC_CR2  
VLT_CR  
VLT_CMP  
ADC0_TR  
ADC1_TR  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
DBB00FN  
DBB00IN  
DBB00OU  
RW  
RW  
RW  
CLK_CR0  
CLK_CR1  
ABF_CR0  
AMD_CR0  
RW  
RW  
RW  
RW  
RW  
DBB01FN  
DBB01IN  
DBB01OU  
RW  
RW  
RW  
CMP_GO_EN 64  
65  
RW  
RW  
AMD_CR1  
ALT_CR0  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
RW  
RW  
DCB02FN  
DCB02IN  
DCB02OU  
RW  
RW  
RW  
IMO_TR  
ILO_TR  
BDG_TR  
ECO_TR  
W
W
RW  
W
CLK_CR3  
TMP_DR0  
TMP_DR1  
TMP_DR2  
TMP_DR3  
RW  
RW  
RW  
RW  
RW  
DCB03FN  
DCB03IN  
DCB03OU  
RW  
RW  
RW  
RDI0RI  
RDI0SYN  
RDI0IS  
RDI0LT0  
RDI0LT1  
RDI0RO0  
RDI0RO1  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
ACE00CR1  
ACE00CR2  
RW  
RW  
ACE01CR1  
ACE01CR2  
RW  
RW  
CPU_F  
RL  
FLS_PR1  
RW  
DAC_CR  
CPU_SCR1  
CPU_SCR0  
RW  
#
#
Blank fields are Reserved and must not be accessed.  
# Access is bit specific.  
Document Number: 38-12025 Rev. *M  
Page 17 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C21x34 PSoC device. For up to date electrical specifications,  
visit the web site http://www.cypress.com/psoc.  
o
o
o
Specifications are valid for -40 C T 85 C and T 100 C as specified, except where noted.  
A
J
Refer Table 25 on page 26 for the electrical specifications on the internal main oscillator (IMO) using SLIMO mode.  
Figure 13. Voltage versus CPU Frequency  
Figure 14. IMO Frequency Trim Options  
5.25  
4.75  
5.25  
4.75  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
3.60  
3.00  
2.40  
SLIMO  
Mode=1  
SLIMO  
Mode=0  
3.00  
2.40  
SLIMO SLIMO  
Mode=1 Mode=1  
93 kHz  
12 MHz  
CPUFrequency  
24 MHz  
3 MHz  
93 kHz  
6 MHz  
12 MHz  
24 MHz  
IMOFrequency  
Table 11 lists the units of measure that are used in this section.  
Table 11. Units of Measure  
Symbol  
Unit of Measure  
degree Celsius  
Symbol  
Unit of Measure  
microwatts  
o
C
μW  
mA  
ms  
mV  
nA  
ns  
dB  
decibels  
milli-ampere  
milli-second  
milli-volts  
fF  
femto farad  
hertz  
Hz  
KB  
Kbit  
kHz  
kΩ  
1024 bytes  
1024 bits  
nanoampere  
nanosecond  
nanovolts  
kilohertz  
nV  
W
kilohm  
ohm  
MHz  
MΩ  
μA  
μF  
μH  
μs  
μV  
μVrms  
megahertz  
megaohm  
pA  
pF  
pp  
ppm  
ps  
picoampere  
picofarad  
microampere  
microfarad  
microhenry  
microsecond  
microvolts  
peak-to-peak  
parts per million  
picosecond  
samples per second  
sps  
s
sigma: one standard deviation  
volts  
microvolts root-mean-square  
V
Document Number: 38-12025 Rev. *M  
Page 18 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Absolute Maximum Ratings  
Table 12. Absolute Maximum Ratings  
Symbol  
Description  
Storage Temperature  
Min  
-55  
Typ  
25  
Max  
Units  
Notes  
o
T
+100  
C
Higher storage temperatures  
STG  
reduce data retention time. Recom-  
mended storage temperature is  
o
o
+25 C ± 25 C. Extended duration  
o
storage temperatures above 65 C  
degrade reliability.  
o
T
Ambient Temperature with Power Applied  
Supply Voltage on Vdd Relative to Vss  
DC Input Voltage  
-40  
+85  
C
A
Vdd  
-0.5  
+6.0  
V
V
V
Vss -  
0.5  
Vdd +  
0.5  
IO  
V
DC Voltage Applied to Tri-state  
Vss -  
0.5  
Vdd +  
0.5  
V
IOZ  
I
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch-up Current  
-25  
2000  
+50  
mA  
V
MIO  
ESD  
LU  
Human Body Model ESD.  
200  
mA  
Operating Temperature  
Table 13. Operating Temperature  
Symbol  
Description  
Ambient Temperature  
Junction Temperature  
Min  
-40  
Typ  
Max  
+85  
Units  
Notes  
o
T
C
o
A
T
-40  
+100  
C
The temperature rise from ambient  
to junction is package specific. See  
Table 40 on page 38. The user must  
limit the power consumption to  
comply with this requirement.  
J
DC Electrical Characteristics  
DC Chip-Level Specifications  
Table 14 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 14. DC Chip-Level Specifications  
Symbol  
Description  
Min  
2.40  
Typ  
Max  
Units  
Notes  
Vdd  
Supply Voltage  
3
5.25  
V
See Table 23 on page 24.  
I
I
I
Supply Current, IMO = 24 MHz  
4
mA  
mA  
mA  
Conditions are Vdd = 5.0V,  
T = 25 C, CPU = 3 MHz, 48 MHz  
disabled. VC1 = 1.5 MHz,  
VC2 = 93.75 kHz, VC3 = 0.366 kHz.  
DD  
o
A
Supply Current, IMO = 6 MHz using SLIMO  
mode.  
1.2  
1.1  
2
Conditions are Vdd = 3.3V,  
T = 25 C, CPU = 3 MHz, clock  
doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz.  
DD3  
DD27  
o
A
Supply Current, IMO = 6 MHz using SLIMO  
mode.  
1.5  
Conditions are Vdd = 2.55V,  
T = 25 C, CPU = 3 MHz, clock  
o
A
doubler disabled. VC1 = 375 kHz,  
VC2 = 23.4 kHz, VC3 = 0.091 kHz.  
Document Number: 38-12025 Rev. *M  
Page 19 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 14. DC Chip-Level Specifications (continued)  
Symbol  
Description  
Min  
Typ  
2.6  
Max  
Units  
μA  
Notes  
o
o
I
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, WDT, and internal slow oscillator active.  
Mid temperature range.  
4.  
Vdd = 2.55V, 0 C T 40 C.  
SB27  
A
o
o
I
Sleep (Mode) Current with POR, LVD, Sleep  
Timer, WDT, and internal slow oscillator active.  
2.8  
5
μA  
V
Vdd = 3.3V, -40 C T 85 C.  
SB  
A
V
V
Reference Voltage (Bandgap)  
Reference Voltage (Bandgap)  
Analog Ground  
1.28  
1.16  
1.30  
1.30  
1.32  
1.33  
Trimmed for appropriate Vdd.  
Vdd = 3.0V to 5.25V.  
REF  
V
Trimmed for appropriate Vdd. Vdd =  
2.4V to 3.0V.  
REF27  
AGND  
V
V
V
REF  
V
REF  
REF  
- 0.003  
+ 0.003  
DC General Purpose IO Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V, 3.3V, and 2.7V at 25°C and are for design guidance only.  
Table 15. 5V and 3.3V DC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
5.6  
Max  
Units  
Notes  
R
Pull up Resistor  
4
4
8
8
kΩ  
PU  
PD  
OH  
R
Pull down Resistor  
High Output Level  
5.6  
kΩ  
V
Vdd -  
1.0  
V
IOH = 10 mA, Vdd = 4.75 to 5.25V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])).  
V
Low Output Level  
0.75  
0.8  
V
IOL = 25 mA, Vdd = 4.75 to 5.25V (8  
total loads, 4 on even port pins (for  
example, P0[2], P1[4]), 4 on odd port  
pins (for example, P0[3], P1[5])).  
OL  
V
V
V
I
Input Low Level  
V
Vdd = 3.0 to 5.25.  
Vdd = 3.0 to 5.25.  
IL  
IH  
H
Input High Level  
2.1  
V
Input Hysteresis  
60  
1
mV  
nA  
pF  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Gross tested to 1 μA.  
IL  
C
3.5  
10  
Package and pin dependent.  
IN  
o
Temp = 25 C.  
C
Capacitive Load on Pins as Output  
3.5  
10  
pF  
Package and pin dependent.  
Temp = 25 C.  
OUT  
o
Table 16. 2.7V DC GPIO Specifications  
Symbol Description  
Min  
Typ  
Max  
Units  
Notes  
R
Pull up Resistor  
4
4
5.6  
5.6  
8
8
kΩ  
kΩ  
V
PU  
PD  
OH  
R
Pull down Resistor  
High Output Level  
V
V
V
Vdd -  
0.4  
IOH = 2.5 mA (6.25 Typ), Vdd = 2.4  
to 3.0V (16 mA maximum, 50 mA Typ  
combined IOH budget).  
Low Output Level  
Input Low Level  
0.75  
0.75  
V
V
IOL = 10 mA, Vdd = 2.4 to 3.0V (90  
mA maximum combined IOL  
budget).  
OL  
IL  
Vdd = 2.4 to 3.0.  
Document Number: 38-12025 Rev. *M  
Page 20 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 16. 2.7V DC GPIO Specifications (continued)  
Symbol Description  
Min  
2.0  
Typ  
Max  
Units  
Notes  
Vdd = 2.4 to 3.0.  
V
Input High Level  
Input Hysteresis  
V
IH  
H
V
I
90  
1
mV  
nA  
pF  
Input Leakage (Absolute Value)  
Capacitive Load on Pins as Input  
Gross tested to 1 μA.  
IL  
C
3.5  
10  
Package and pin dependent.  
IN  
o
Temp = 25 C.  
C
Capacitive Load on Pins as Output  
3.5  
10  
pF  
Package and pin dependent.  
Temp = 25 C.  
OUT  
o
DC Operational Amplifier Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 17. 5V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
Max  
Units  
mV  
Notes  
V
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
15  
OSOA  
o
TCV  
10  
μV/ C  
pA  
OSOA  
a
I
200  
4.5  
Gross tested to 1 μA.  
EBOA  
C
9.5  
pF  
Package and pin dependent.  
Temp = 25 C.  
INOA  
o
V
Common Mode Voltage Range  
0.0  
Vdd - 1  
V
CMOA  
G
I
Open Loop Gain  
80  
10  
dB  
OLOA  
Amplifier Supply Current  
30  
μA  
SOA  
a. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
Table 18. 3.3V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
2.5  
Max  
15  
Units  
mV  
Notes  
V
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
OSOA  
o
TCV  
10  
μV/ C  
OSOA  
a
I
200  
4.5  
pA  
pF  
Gross tested to 1 μA.  
EBOA  
C
9.5  
Package and pin dependent.  
Temp = 25 C.  
INOA  
o
V
Common Mode Voltage Range  
Open Loop Gain  
0
Vdd - 1  
V
CMOA  
G
I
80  
10  
dB  
μA  
OLOA  
Amplifier Supply Current  
30  
SOA  
a.Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
Table 19. 2.7V DC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
15  
Units  
mV  
Notes  
V
Input Offset Voltage (absolute value)  
Average Input Offset Voltage Drift  
Input Leakage Current (Port 0 Analog Pins)  
Input Capacitance (Port 0 Analog Pins)  
2.5  
10  
OSOA  
o
TCV  
μV/ C  
OSOA  
a
I
200  
4.5  
pA  
pF  
Gross tested to 1 μA.  
EBOA  
C
9.5  
Package and pin dependent.  
Temp = 25 C.  
INOA  
o
Document Number: 38-12025 Rev. *M  
Page 21 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 19. 2.7V DC Operational Amplifier Specifications (continued)  
Symbol  
Description  
Common Mode Voltage Range  
Open Loop Gain  
Min  
Typ  
Max  
Vdd - 1  
Units  
Notes  
V
0
V
CMOA  
G
80  
10  
dB  
OLOA  
I
Amplifier Supply Current  
30  
μA  
SOA  
a. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25°C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA.  
DC Low Power Comparator Specifications  
Table 20 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V at 25°C and are for design guidance only.  
Table 20. DC Low Power Comparator Specifications  
Symbol  
Description  
Min  
0.2  
Typ  
Max  
Units  
Notes  
V
Low power comparator (LPC) reference  
voltage range  
Vdd - 1  
V
REFLPC  
I
LPC supply current  
LPC voltage offset  
10  
40  
30  
μA  
mV  
SLPC  
V
2.5  
OSLPC  
DC Switch Mode Pump Specifications  
Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 21. DC Switch Mode Pump (SMP) Specifications  
Symbol  
Description  
Min  
4.75  
Typ  
5.0  
Max  
Units  
Notes  
a
V
5V Output Voltage from Pump  
5.25  
3.60  
2.80  
V
V
V
Configuration of footnote.  
Average, neglecting ripple.  
SMP trip voltage is set to 5.0V.  
PUMP5V  
PUMP3V  
PUMP2V  
PUMP  
a
V
V
3.3V Output Voltage from Pump  
2.6V Output Voltage from Pump  
Available Output Current  
3.00  
2.45  
3.25  
2.55  
Configuration of footnote.  
Average, neglecting ripple.  
SMP trip voltage is set to 3.25V.  
a
Configuration of footnote.  
Average, neglecting ripple.  
SMP trip voltage is set to 2.55V.  
a
I
Configuration of footnote.  
V
V
V
= 1.8V, V  
= 1.5V, V  
= 1.3V, V  
= 5.0V  
= 3.25V  
= 2.55V  
5
8
8
mA  
mA  
mA  
SMP trip voltage is set to 5.0V.  
SMP trip voltage is set to 3.25V.  
SMP trip voltage is set to 2.55V.  
BAT  
BAT  
BAT  
PUMP  
PUMP  
PUMP  
a
V
V
V
V
Input Voltage Range from Battery  
Input Voltage Range from Battery  
Input Voltage Range from Battery  
1.8  
1.0  
1.0  
5
5.0  
3.3  
2.8  
V
Configuration of footnote.  
BAT5V  
BAT3V  
BAT2V  
BATSTA  
SMP trip voltage is set to 5.0V.  
a
V
Configuration of footnote.  
SMP trip voltage is set to 3.25V.  
a
V
Configuration of footnote.  
SMP trip voltage is set to 2.55V.  
a
o
Minimum Input Voltage from Battery to Start 1.2  
Pump  
V
Configuration of footnote. 0 C  
o
T 100. 1.25V at T = -40 C.  
RT  
A
A
a
ΔV  
Line  
Line Regulation (over Vi range)  
%V  
Configuration of footnote. V  
is the “Vdd Value for PUMP  
PUMP_  
O
O
Trip” specified by the VM[2:0]  
setting in the DC POR and LVD  
Specification, Table 23 on page  
24.  
Document Number: 38-12025 Rev. *M  
Page 22 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 21. DC Switch Mode Pump (SMP) Specifications (continued)  
Symbol  
Description  
Load Regulation  
Min  
Typ  
Max  
Units  
Notes  
a
ΔV  
5
%V  
Configuration of footnote. V  
is the “Vdd Value for PUMP  
PUMP_  
O
O
Load  
Trip” specified by the VM[2:0]  
setting in the DC POR and LVD  
Specification, Table 23 on page  
24.  
a
ΔV  
Ripple  
Output Voltage Ripple (depends on cap/load) –  
100  
50  
mVpp  
%
Configuration of footnote.  
Load is 5 mA.  
PUMP_  
a
E
Efficiency  
Efficiency  
35  
Configuration of footnote.  
3
Load is 5 mA. SMP trip voltage  
is set to 3.25V.  
E
35  
80  
%
For I load = 1mA, V  
=
2
PUMP  
2.55V, V  
= 1.3V,  
BAT  
10 uH inductor, 1 uF capacitor,  
and Schottky diode.  
F
Switching Frequency  
Switching Duty Cycle  
1.3  
50  
MHz  
%
PUMP  
DC  
PUMP  
a. L1 = 2 mH inductor, C1 = 10 mF capacitor, D1 = Schottky diode. See Figure 15.  
Figure 15. Basic Switch Mode Pump Circuit  
D1  
Vdd  
VPUMP  
L1  
SMP  
Vss  
+
C1  
VBAT  
Battery  
PSoC  
Document Number: 38-12025 Rev. *M  
Page 23 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
DC Analog Mux Bus Specifications  
Table 22 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 22. DC Analog Mux Bus Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
R
Switch Resistance to Common Analog Bus  
400  
800  
W
W
Vdd 2.7V  
2.4V Vdd 2.7V  
SW  
R
Resistance of Initialization Switch to Vdd  
800  
W
VDD  
DC POR and LVD Specifications  
Table 23 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 23. DC POR and LVD Specifications  
Symbol  
Description  
Vdd Value for PPOR Trip  
PORLEV[1:0] = 00b  
PORLEV[1:0] = 01b  
PORLEV[1:0] = 10b  
Min  
Typ  
2.36  
2.82  
4.55  
Max  
Units  
Notes  
Vdd must be greater than or equal  
to 2.5V during startup, reset from  
the XRES pin, or reset from  
Watchdog.  
V
2.40  
2.95  
4.70  
V
V
V
PPOR0  
PPOR1  
PPOR2  
V
V
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
a
b
V
V
V
V
V
V
V
V
2.40  
2.85  
2.95  
3.06  
4.37  
4.50  
4.62  
4.71  
2.45  
2.92  
3.02  
3.13  
4.48  
4.64  
4.73  
4.81  
2.51  
2.99  
3.09  
3.20  
4.55  
4.75  
4.83  
4.95  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
Vdd Value for PUMP Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
c
V
V
V
V
V
V
V
V
2.45  
2.96  
3.03  
3.18  
4.54  
4.62  
4.71  
4.89  
2.55  
3.02  
3.10  
3.25  
4.64  
4.73  
4.82  
5.00  
2.62  
3.09  
3.16  
3.32  
4.74  
4.83  
4.92  
5.12  
V
V
V
V
V
V
V
V
PUMP0  
PUMP1  
PUMP2  
PUMP3  
PUMP4  
PUMP5  
PUMP6  
PUMP7  
d
a. Always greater than 50 mV above VPPOR (PORLEV = 00) for falling supply.  
b. Always greater than 50 mV above VPPOR (PORLEV = 01) for falling supply.  
c. Always greater than 50 mV above VLVD0  
d. Always greater than 50 mV above VLVD3  
.
.
Document Number: 38-12025 Rev. *M  
Page 24 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
DC Programming Specifications  
Table 24 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 24. DC Programming Specifications  
Symbol  
Vdd  
Description  
Min  
2.70  
Typ  
Max  
Units  
Notes  
Supply Voltage for Flash Write Operations  
Supply Current During Programming or Verify  
5
V
IWRITE  
DDP  
I
25  
mA  
V
V
Input Low Voltage During Programming or  
Verify  
0.8  
ILP  
V
Input High Voltage During Programming or  
Verify  
2.2  
V
IHP  
I
I
Input Current when Applying Vilp to P1[0] or  
P1[1] During Programming or Verify  
0.2  
1.5  
mA  
mA  
V
Driving internal pull down resistor.  
Driving internal pull down resistor.  
ILP  
Input Current when Applying Vihp to P1[0] or  
P1[1] During Programming or Verify  
IHP  
V
V
Output Low Voltage During Programming or  
Verify  
Vss +  
0.75  
OLV  
Output High Voltage During Programming or Vdd -  
Vdd  
V
OHV  
Verify  
1.0  
Flash  
Flash  
Flash Endurance (per block)  
50,000 –  
Erase/write cycles per block.  
Erase/write cycles.  
ENPB  
ENT  
a
Flash Endurance (total)  
1,800,  
000  
Flash  
Flash Data Retention  
10  
Years  
DR  
a. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum  
cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles  
to 36x50,000 and that no single block ever sees more than 50,000 cycles).  
b
For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature  
argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more  
information.  
Document Number: 38-12025 Rev. *M  
Page 25 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
AC Electrical Characteristics  
AC Chip-Level Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 25. 5V and 3.3V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
24  
Max  
Units  
Notes  
a,b,  
a,b,  
a,b  
F
F
Internal Main Oscillator Frequency for 24 MHz 23.4  
24.6  
MHz  
Trimmed for 5V or 3.3V operation  
using factory trim values. See  
Figure 14 on page 18. SLIMO  
mode = 0.  
IMO24  
c
Internal Main Oscillator Frequency for 6 MHz 5.75  
6
6.35  
MHz  
MHz  
Trimmed for 5V or 3.3V operation  
using factory trim values. See  
Figure 14 on page 18. SLIMO  
mode = 1.  
IMO6  
c
F
F
F
CPU Frequency (5V Nominal)  
CPU Frequency (3.3V Nominal)  
0.93  
0.93  
0
24  
12  
48  
24.6  
24 MHz only for SLIMO mode = 0.  
CPU1  
CPU2  
BLK5  
12.3b,c MHz  
0
a,b,  
Digital PSoC Block Frequency (5V Nominal)  
49.2  
MHz  
Refer to the AC Digital Block  
Specifications.  
d
b,d  
F
F
Digital PSoC Block Frequency (3.3V Nominal) 0  
24  
24.6  
64  
200  
MHz  
kHz  
ns  
BLK33  
32K1  
Internal Low Speed Oscillator Frequency  
32 kHz RMS Period Jitter  
15  
32  
Jitter32k  
Jitter32k  
100  
1400  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
24 MHz Duty Cycle  
T
10  
40  
μs  
%
XRST  
DC24M  
50  
60  
Step24M  
Fout48M  
24 MHz Trim Step Size  
50  
kHz  
MHz  
a,c  
48 MHz Output Frequency  
46.8  
48.0  
49.2  
Trimmed. Using factory trim  
values.  
Jitter24M1 24 MHz Peak-to-Peak Period Jitter (IMO)  
600  
ps  
F
Maximum frequency of signal on row input or  
row output.  
12.3  
MHz  
MAX  
T
Supply Ramp Time  
0
μs  
RAMP  
a. 4.75V < Vdd < 5.25V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. 3.0V < Vdd < 3.6V. See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information  
on trimming for operation at 3.3V.  
d. See the individual user module data sheets for information on maximum frequencies for user modules.  
Table 26. 2.7V AC Chip-Level Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
0
a,b,  
F
F
Internal Main Oscillator Frequency for 12 MHz 11.5  
12  
12.7  
MHz  
Trimmedfor2.7Voperationusing  
factorytrimvalues. SeeFigure14  
on page 18. SLIMO mode = 1.  
IMO12  
c
a,b,  
Internal Main Oscillator Frequency for 6 MHz 5.75  
6
6.35  
MHz  
Trimmedfor2.7Voperationusing  
factorytrimvalues. SeeFigure14  
on page 18. SLIMO mode = 1.  
IMO6  
c
a,b  
F
F
CPU Frequency (2.7V Nominal)  
0.093  
3
3.15  
MHz  
MHz  
24 MHz only for SLIMO mode = 0.  
CPU1  
a,b,  
Digital PSoC Block Frequency (2.7V Nominal) 0  
12  
12.5  
Refer to the AC Digital Block  
Specifications.  
BLK27  
c
F
Internal Low Speed Oscillator Frequency  
8
32  
96  
kHz  
32K1  
Document Number: 38-12025 Rev. *M  
Page 26 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 26. 2.7V AC Chip-Level Specifications (continued)  
Symbol  
Jitter32k  
Jitter32k  
Description  
32 kHz RMS Period Jitter  
Min  
Typ  
150  
Max  
200  
Units  
ns  
Notes  
32 kHz Peak-to-Peak Period Jitter  
External Reset Pulse Width  
1400  
T
10  
μs  
MHz  
XRST  
F
Maximum frequency of signal on row input or  
row output.  
12.3  
MAX  
T
Supply Ramp Time  
0
μs  
RAMP  
a. 2.4V < Vdd < 3.0V.  
b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.  
c. See Application Note AN2012 “Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation” for information on maximum  
frequency for user modules.  
Figure 16. 24 MHz Period Jitter (IMO) Timing Diagram  
Jitter24M1  
F24M  
Figure 17. 32 kHz Period Jitter (ILO) Timing Diagram  
Jitter32k  
F32K1  
AC General Purpose IO Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 27. 5V and 3.3V AC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
Max  
12  
Units  
MHz  
ns  
Notes  
F
GPIO Operating Frequency  
0
Normal Strong Mode  
GPIO  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF 3  
Fall Time, Normal Strong Mode, Cload = 50 pF 2  
18  
18  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 4.5 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
Vdd = 3 to 5.25V, 10% - 90%  
ns  
Rise Time, Slow Strong Mode, Cload = 50 pF  
Fall Time, Slow Strong Mode, Cload = 50 pF  
7
7
27  
22  
ns  
ns  
Table 28. 2.7V AC GPIO Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
MHz  
ns  
Notes  
F
GPIO Operating Frequency  
0
3
Normal Strong Mode  
GPIO  
TRiseF  
TFallF  
TRiseS  
TFallS  
Rise Time, Normal Strong Mode, Cload = 50 pF 6  
Fall Time, Normal Strong Mode, Cload = 50 pF 6  
50  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
Vdd = 2.4 to 3.0V, 10% - 90%  
50  
ns  
Rise Time, Slow Strong Mode, Cload = 50 pF 18  
Fall Time, Slow Strong Mode, Cload = 50 pF 18  
40  
40  
120  
120  
ns  
ns  
Document Number: 38-12025 Rev. *M  
Page 27 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Figure 18. GPIO Timing Diagram  
90%  
GPIO  
Pin  
Output  
Voltage  
10%  
TRiseF  
TRiseS  
TFallF  
TFallS  
AC Operational Amplifier Specifications  
Table 29 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 29. AC Operational Amplifier Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
ns  
ns  
Notes  
T
Comparator Mode Response Time, 50 mV  
Overdrive  
100  
200  
Vdd 3.0V.  
2.4V < Vcc < 3.0V.  
COMP  
AC Low Power Comparator Specifications  
Table 30 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V at 25°C and are for design guidance only.  
Table 30. AC Low Power Comparator Specifications  
Symbol  
Description  
LPC response time  
Min  
Typ  
Max  
Units  
μs  
Notes  
T
50  
50 mV overdrive comparator  
reference set within V  
RLPC  
.
REFLPC  
AC Analog Mux Bus Specifications  
Table 31 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters apply to  
A
A
A
5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 31. AC Analog Mux Bus Specifications  
Symbol  
Description  
Min  
Typ  
Max  
3.17  
Units  
Notes  
F
Switch Rate  
MHz  
SW  
Document Number: 38-12025 Rev. *M  
Page 28 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
AC Digital Block Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 32. 5V and 3.3V AC Digital Block Specifications  
Function  
All  
Functions  
Description  
Min  
Typ  
Max  
49.2  
Units  
MHz  
MHz  
ns  
Notes  
4.75V < Vdd < 5.25V.  
3.0V < Vdd < 4.75V.  
Maximum Block Clocking Frequency (> 4.75V)  
Maximum Block Clocking Frequency (< 4.75V)  
Capture Pulse Width  
24.6  
a
Timer  
50  
Maximum Frequency, No Capture  
49.2  
24.6  
MHz  
MHz  
ns  
4.75V < Vdd < 5.25V.  
4.75V < Vdd < 5.25V.  
Maximum Frequency, With or Without Capture –  
Counter  
Enable Pulse Width  
50  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
49.2  
24.6  
MHz  
MHz  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
50  
50  
ns  
Synchronous Restart Mode  
Disable Mode  
ns  
ns  
Maximum Frequency  
49.2  
49.2  
MHz  
MHz  
4.75V < Vdd < 5.25V.  
4.75V < Vdd < 5.25V.  
CRCPRS Maximum Input Clock Frequency  
(PRS  
Mode)  
CRCPRS Maximum Input Clock Frequency  
(CRC  
Mode)  
24.6  
8.2  
MHz  
MHz  
SPIM  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
Maximum data rate at 4.1 MHz  
due to 2 x over clocking.  
SPIS  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions 50  
Transmitter Maximum Input Clock Frequency  
24.6  
MHz  
Maximum data rate at 3.08 MHz  
due to 8 x over clocking.  
Maximum data rate at 6.15 MHz  
due to 8 x over clocking.  
Maximum Input Clock Frequency with Vdd ≥  
4.75V, 2 Stop Bits  
49.2  
MHz  
Receiver  
Maximum Input Clock Frequency  
24.6  
49.2  
MHz  
MHz  
Maximum data rate at 3.08 MHz  
due to 8 x over clocking.  
Maximum data rate at 6.15 MHz  
due to 8 x over clocking.  
Maximum Input Clock Frequency with Vdd ≥  
4.75V, 2 Stop Bits  
a. 50 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
Document Number: 38-12025 Rev. *M  
Page 29 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 33. 2.7V AC Digital Block Specifications  
Function  
All  
Description  
Min  
Typ  
Max  
12.7  
Units  
Notes  
Maximum Block Clocking Frequency  
MHz  
2.4V < Vdd < 3.0V.  
Functions  
a
Timer  
Capture Pulse Width  
100  
ns  
Maximum Frequency, With or Without Capture –  
12.7  
MHz  
ns  
Counter  
Enable Pulse Width  
100  
Maximum Frequency, No Enable Input  
Maximum Frequency, Enable Input  
12.7  
12.7  
MHz  
MHz  
Dead Band Kill Pulse Width:  
Asynchronous Restart Mode  
20  
100  
100  
ns  
Synchronous Restart Mode  
Disable Mode  
ns  
ns  
Maximum Frequency  
12.7  
12.7  
MHz  
MHz  
CRCPRS Maximum Input Clock Frequency  
(PRS  
Mode)  
CRCPRS Maximum Input Clock Frequency  
(CRC  
Mode)  
12.7  
6.35  
MHz  
MHz  
SPIM  
Maximum Input Clock Frequency  
Maximum Input Clock Frequency  
Maximum data rate at 3.17 MHz  
due to 2 x over clocking.  
SPIS  
4.1  
MHz  
ns  
Width of SS_ Negated Between Transmissions 100  
Transmitter Maximum Input Clock Frequency  
12.7  
MHz  
Maximum data rate at 1.59 MHz  
due to 8 x over clocking.  
Receiver Maximum Input Clock Frequency  
12.7  
MHz  
Maximum data rate at 1.59 MHz  
due to 8 x over clocking.  
a. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).  
AC External Clock Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C T 85°C, or 3.0V to 3.6V and -40°C T 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C  
A
A
and are for design guidance only.  
Table 34. 5V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
MHz  
ns  
F
Frequency  
High Period  
Low Period  
0.093  
20.6  
20.6  
150  
24.6  
5300  
OSCEXT  
ns  
Power Up IMO to Switch  
μs  
Document Number: 38-12025 Rev. *M  
Page 30 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 35. 3.3V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
12.3  
Units  
Notes  
F
Frequency with CPU Clock divide by 1  
0.093  
MHz  
Maximum CPU frequency is 12  
MHz at 3.3V. With the CPU clock  
divider set to 1, the external clock  
must adhere to the maximum  
frequency and duty cycle  
OSCEXT  
requirements.  
F
Frequency with CPU Clock divide by 2 or  
greater  
0.186  
24.6  
MHz  
Ifthefrequencyoftheexternalclock  
is greater than 12 MHz, the CPU  
clock divider must be set to 2 or  
greater. In this case, the CPU clock  
divider ensures that the fifty percent  
duty cycle requirement is met.  
OSCEXT  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
41.7  
41.7  
150  
5300  
ns  
ns  
μs  
Table 36. 2.7V AC External Clock Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
0
F
Frequency with CPU Clock divide by 1  
0.093  
3.08  
MHz  
Maximum CPU frequency is 3 MHz  
at 2.7V. With the CPU clock divider  
set to 1, the external clock must  
adhere to the maximum frequency  
and duty cycle requirements.  
OSCEXT  
F
Frequency with CPU Clock divide by 2 or  
greater  
0.186  
6.35  
MHz  
Ifthefrequencyoftheexternalclock  
is greater than 3 MHz, the CPU  
clock divider must be set to 2 or  
greater. In this case, the CPU clock  
divider ensures that the fifty percent  
duty cycle requirement is met.  
OSCEXT  
High Period with CPU Clock divide by 1  
Low Period with CPU Clock divide by 1  
Power Up IMO to Switch  
160  
160  
150  
5300  
ns  
ns  
μs  
AC Programming Specifications  
Table 37 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C  
T 85°C, or 3.0V to 3.6V and -40°C T 85°C, respectively. Typical parameters apply to 5V, 3.3V, or 2.7V at 25°C and are for  
A
A
design guidance only.  
Table 37. AC Programming Specifications  
Symbol  
Description  
Rise Time of SCLK  
Fall Time of SCLK  
Min  
Typ  
Max  
20  
Units  
ns  
Notes  
T
T
T
T
F
T
1
1
RSCLK  
FSCLK  
SSCLK  
HSCLK  
SCLK  
20  
ns  
Data Set up Time to Falling Edge of SCLK 40  
Data Hold Time from Falling Edge of SCLK 40  
ns  
ns  
Frequency of SCLK  
0
8
MHz  
ms  
Flash Erase Time (Block)  
15  
ERASEB  
Document Number: 38-12025 Rev. *M  
Page 31 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 37. AC Programming Specifications (continued)  
Symbol  
Description  
Flash Block Write Time  
Min  
Typ  
30  
Max  
Units  
ms  
Notes  
T
T
T
T
WRITE  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
Data Out Delay from Falling Edge of SCLK  
45  
50  
70  
ns  
ns  
ns  
3.6 < Vdd  
DSCLK  
DSCLK3  
DSCLK2  
3.0 Vdd 3.6  
2.4 Vdd 3.0  
AC I2C Specifications  
The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V  
and -40°C T 85°C, 3.0V to 3.6V and -40°C T 85°C, or 2.4V to 3.0V and -40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V, 3.3V, or 2.7V at 25°C and are for design guidance only.  
Table 38. AC Characteristics of the I2C SDA and SCL Pins for Vdd 3.0V  
Standard Mode  
Min Max  
Fast Mode  
Symbol  
Description  
SCL Clock Frequency  
Units  
Min  
Max  
F
T
0
100  
0
400  
kHz  
SCLI2C  
Hold Time (repeated) START Condition.  
After this period, the first clock pulse is  
generated.  
4.0  
0.6  
μs  
HDSTAI2C  
T
T
T
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
μs  
μs  
μs  
LOWI2C  
HIGHI2C  
SUSTAI2C  
Set-up Time for a Repeated START  
Condition  
T
T
T
T
Data Hold Time  
0
0
μs  
ns  
μs  
μs  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
a
Data Set-up Time  
250  
4.0  
100  
0.6  
1.3  
Set-up Time for STOP Condition  
Bus Free Time Between a STOP and START 4.7  
Condition  
T
Pulse Width of spikes are suppressed by the –  
input filter.  
0
50  
ns  
SPI2C  
a. A Fast-Mode I2C-bus device may be used in a Standard-Mode I2C-bus system, but the requirement tSU;DAT 250 ns must then be met. This  
is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the  
SCL signal, it must output the next data bit to the SDA line trmax + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus  
specification) before the SCL line is released.  
Table 39. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode not Supported)  
Standard Mode  
Fast Mode  
Symbol  
Description  
Units  
Min  
Max  
Min  
Max  
F
T
SCL Clock Frequency  
0
100  
kHz  
SCLI2C  
Hold Time (repeated) START Condition.  
After this period, the first clock pulse is  
generated.  
4.0  
μs  
HDSTAI2C  
T
T
T
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
4.7  
4.0  
4.7  
μs  
μs  
μs  
LOWI2C  
HIGHI2C  
SUSTAI2C  
Set up Time for a Repeated START  
Condition  
T
Data Hold Time  
0
μs  
HDDATI2C  
Document Number: 38-12025 Rev. *M  
Page 32 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Table 39. 2.7V AC Characteristics of the I2C SDA and SCL Pins (Fast Mode not Supported) (continued)  
Standard Mode  
Min Max  
Fast Mode  
Symbol  
Description  
Units  
ns  
Min  
Max  
T
T
T
Data Set-up Time  
Set up Time for STOP Condition  
250  
4.0  
SUDATI2C  
SUSTOI2C  
BUFI2C  
μs  
μs  
Bus Free Time Between a STOP and START 4.7  
Condition  
T
Pulse Width of spikes are suppressed by the –  
input filter.  
ns  
SPI2C  
Figure 19. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
T
LOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Document Number: 38-12025 Rev. *M  
Page 33 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Packaging Information  
This section shows the packaging specifications for the CY8C21x34 PSoC device with the thermal impedances for each package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Packaging Dimensions  
Figure 20. 16-Pin (150-Mil) SOIC  
PIN 1 ID  
8
1
DIMENSIONS IN INCHES[MM] MIN.  
MAX.  
REFERENCE JEDEC MS-012  
PACKAGE WEIGHT 0.15gms  
0.150[3.810]  
0.157[3.987]  
0.230[5.842]  
0.244[6.197]  
PART #  
S16.15 STANDARD PKG.  
SZ16.15 LEAD FREE PKG.  
9
16  
0.010[0.254]  
0.016[0.406]  
X 45°  
0.386[9.804]  
0.393[9.982]  
SEATING PLANE  
0.061[1.549]  
0.068[1.727]  
0.004[0.102]  
0.050[1.270]  
BSC  
0.0075[0.190]  
0.0098[0.249]  
0.016[0.406]  
0.035[0.889]  
0°~8°  
0.0138[0.350]  
0.0192[0.487]  
0.004[0.102]  
0.0098[0.249]  
51-85068 *B  
Figure 21. 20-Pin (210-MIL) SSOP  
51-85077 *C  
Document Number: 38-12025 Rev. *M  
Page 34 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Figure 22. 28-Pin (210-Mil) SSOP  
51-85079 *C  
Figure 23. 32-Pin (5x5 mm 0.93 MAX) QFN  
E-PAD X, Y for this product is 3.53 mm, 3.53 mm (+/-0.11 mm)  
51-85188 *B  
Document Number: 38-12025 Rev. *M  
Page 35 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Figure 24. 32-Pin (5x5 mm 0.60 MAX) QFN  
E-PAD X, Y for this product is 3.53 mm, 3.53 mm (+/-0.11 mm)  
001-06392 *A  
Important Note For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Figure 25. 32-Pin Sawn QFN Package  
SIDE VIEW  
TOP VIEW  
BOTTOM VIEW  
3.50  
0.50  
4.90  
5.10  
(0.93 MAX)  
PIN #1 CORNER  
0.20 DIA TYP.  
0.23±0.05  
0.20 REF  
PIN #1 I.D.  
R0.20  
N
N
1
2
1
2
0.45  
SOLDERABLE  
EXPOSED  
4.90  
5.10  
3.50  
3.50  
PAD  
-0.20  
2X  
(0.05 MAX)  
2X  
3.50  
001-30999 **  
Document Number: 38-12025 Rev. *M  
Page 36 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Figure 26. 32-Pin Thin Sawn QFN Package  
SIDE VIEW  
TOP VIEW  
BOTTOM VIEW  
3.55  
0.50  
4.90  
5.10  
R
PIN #1 CORNER  
0.20 DIA TYP.  
0.23 +/-0.05  
R0.30  
N
N
1
2
1
2
0.45  
SOLDERABLE  
EXPOSED  
PAD  
4.90  
5.10  
3.55  
3.5  
2X  
-0.20  
(0.05 MAX)  
2X  
3.5  
NOTES:  
1.  
HATCH AREA IS SOLDERABLE EXPOSED PAD  
2. BASED ON REF JEDEC # MO-248  
3. PACKAGE WEIGHT: 0.0388g  
4. DIMENSIONS ARE IN MILLIMETERS [MIN/MAX]  
5. MAXIMUM ALLOWABLE BURRS IS 0.076mm  
IN ALL DIRECTIONS.  
6. PACKAGE CODE  
PART NO.  
LR32D  
DESCRIPTION  
STANDARD  
PB-FREE  
001-42168 *A  
LQ32D  
Figure 27. 56-Pin (300-Mil) SSOP  
51-85062 *C  
Document Number: 38-12025 Rev. *M  
Page 37 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Thermal Impedances  
Table 40. Thermal Impedances per Package  
Package  
Typical θ  
*
Typical θ  
JA  
JC  
o
o
16 SOIC  
123 C/W  
55 C/W  
o
o
20 SSOP  
117 C/W  
41 C/W  
o
o
28 SSOP  
96 C/W  
39 C/W  
o
o
32 QFN** 5x5 mm 0.60 MAX  
32 QFN** 5x5 mm 0.93 MAX  
27 C/W  
15 C/W  
o
o
22 C/W  
12 C/W  
* TJ = TA + Power x θ  
JA  
** To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 41. Solder Reflow Peak Temperature  
Package  
Minimum Peak Temperature*  
Maximum Peak Temperature  
o
o
16 SOIC  
20 SSOP  
28 SSOP  
32 QFN  
240 C  
260 C  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
*Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5oC with Sn-Pb or 245 ± 5oC with  
Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.  
Document Number: 38-12025 Rev. *M  
Page 38 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Mini-Eval Programming Board  
Development Tool Selection  
110 ~ 240V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
This section presents the development tools available for all  
current PSoC device families including the CY8C21x34 family.  
Software  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
PSoC Designer™  
At the core of the PSoC development software suite is PSoC  
Designer. Used by thousands of PSoC developers, this robust  
software has been facilitating PSoC designs for half a decade.  
PSoC Designer is available free of charge at  
http://www.cypress.com under DESIGN RESOURCES >>  
Software and Drivers.  
CY3210-ExpressDK PSoC Express Development Kit  
The CY3210-ExpressDK is for advanced prototyping and  
development with PSoC Express (may be used with ICE-Cube  
2
In-Circuit Emulator). It provides access to I C buses, voltage  
reference, switches, upgradeable modules and more. The kit  
includes:  
PSoC Express™  
As the newest addition to the PSoC development software suite,  
PSoC Express is the first visual embedded system design tool  
that allows a user to create an entire PSoC project and generate  
a schematic, BOM, and data sheet without writing a single line  
of code. Users work directly with application objects such as  
LEDs, switches, sensors, and fans. PSoC Express is available  
free of charge at http://www.cypress.com/psocexpress.  
PSoC Express Software CD  
Express Development Board  
4 Fan Modules  
2 Proto Modules  
MiniProg In-System Serial Programmer  
MiniEval PCB Evaluation Board  
Jumper Wire Kit  
PSoC Programmer  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or operates  
directly from PSoC Designer or PSoC Express. PSoC  
Programmer software is compatible with both PSoC ICE-Cube  
In-Circuit Emulator and PSoC MiniProg. PSoC programmer is  
available free ofcharge at http://www.cypress.com/psocpro-  
grammer.  
USB 2.0 Cable  
Serial Cable (DB9)  
110 ~ 240V Power Supply, Euro-Plug Adapter  
2 CY8C24423A-24PXI 28-PDIP Chip Samples  
2 CY8C27443-24PXI 28-PDIP Chip Samples  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
CY3202-C iMAGEcraft C Compiler  
CY3202 is the optional upgrade to PSoC Designer that enables  
the iMAGEcraft C compiler. It can be purchased from the  
Cypress Online Store. At http://www.cypress.com, click the  
Online Store shopping cart icon at the bottom of the web page,  
and click PSoC (Programmable System-on-Chip) to view a  
current list of available items.  
Evaluation Tools  
All evaluation tools can be purchased from the Cypress Online  
Store.  
CY3210-MiniProg1  
Development Kits  
The CY3210-MiniProg1 kit allows a user to program PSoC  
devices through the MiniProg1 programming unit. The MiniProg  
is a small, compact prototyping programmer that connects to the  
PC through a provided USB 2.0 cable. The kit includes:  
All development kits can be purchased from the Cypress Online  
Store.  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface allows users to run, halt, and single step the processor  
and view the content of specific memory locations. Advance  
emulation features also supported through PSoC Designer. The  
kit includes:  
MiniProg Programming Unit  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
PSoC Designer Software CD  
ICE-Cube In-Circuit Emulator  
ICE Flex-Pod for CY8C29x66 Family  
Cat-5 Adapter  
Getting Started Guide  
USB 2.0 Cable  
Document Number: 38-12025 Rev. *M  
Page 39 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
CY3210-PSoCEval1  
Device Programmers  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
All device programmers can be purchased from the Cypress  
Online Store.  
CY3216 Modular Programmer  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
Modular Programmer Base  
3 Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
CY3214-PSoCEvalUSB  
The CY3214-PSoCEvalUSB evaluation kit features  
a
USB 2.0 Cable  
development board for the CY8C24794-24LFXI PSoC device.  
Special features of the board include both USB and capacitive  
sensing development and debugging support. This evaluation  
board also includes an LCD module, potentiometer, LEDs, an  
enunciator and plenty of bread boarding space to meet all of your  
evaluation needs. The kit includes:  
CY3207ISSP In-System Serial Programmer (ISSP)  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
Note CY3207ISSP needs special software and is not compatible  
with PSoC Programmer. The kit includes:  
PSoCEvalUSB Board  
LCD Module  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
MIniProg Programming Unit  
Mini USB Cable  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
PSoC Designer and Example Projects CD  
Getting Started Guide  
Wire Pack  
Accessories (Emulation and Programming)  
Table 42. Emulation and Programming Accessories  
Part #  
Pin Package  
16 SOIC  
Flex-Pod Kita  
CY3250-21X34  
Foot Kitb  
Adapter  
CY8C21234-24S  
CY3250-16SOIC-FK  
CY3250-20SSOP-FK  
CY3250-32QFN-FK  
CY3250-28SSOP-FK  
CY3250-32QFN-FK  
Programmingadapterconverts  
non-DIP package to DIP  
footprint. Specific details and  
orderinginformationforeachof  
the adapters can be found at  
http://www.emulation.com.  
CY8C21334-24PVXI  
CY8C21434-24LFXI  
CY8C21534-24PVXI  
CY8C21634-24LFXI  
20 SSOP  
32 QFN  
28 SSOP  
32 QFN  
CY3250-21X34  
CY3250-21X34QFN  
CY3250-21X34  
CY3250-21X34QFN  
a. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
b. Foot kit includes surface mount feet that can be soldered to the target PCB.  
3rd-Party Tools  
Build a PSoC Emulator into Your Board  
Several tools have been specially designed by the following  
3rd-party vendors to accompany PSoC devices during devel-  
opment and production. Specific details for each of these tools  
can be found at http://www.cypress.com under DESIGN  
RESOURCES >> Evaluation Boards.  
For details on how to emulate your circuit before going to volume  
production using an on-chip debug (OCD) non-production PSoC  
device, see Application Note AN2323 “Debugging - Build a PSoC  
Emulator into Your Board”.  
Document Number: 38-12025 Rev. *M  
Page 40 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Ordering Information  
a
16 Pin (150-Mil) SOIC  
CY8C21234-24SXI  
CY8C21234-24SXIT  
8K  
8K  
512 Yes -40°C to +85°C  
512 Yes -40°C to +85°C  
4
4
4
4
12  
12  
12  
12  
0
0
No  
No  
a
16 Pin (150-Mil) SOIC  
(Tape and Reel)  
a
a
20 Pin (210-Mil) SSOP  
CY8C21334-24PVXI  
8K  
512 No  
512 No  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
16  
16  
16  
16  
0
0
Yes  
Yes  
20 Pin (210-Mil) SSOP  
(Tape and Reel)  
CY8C21334-24PVXIT 8K  
a
a
28 Pin (210-Mil) SSOP  
CY8C21534-24PVXI  
8K  
512 No  
512 No  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
24  
24  
24  
24  
0
0
Yes  
Yes  
28 Pin (210-Mil) SSOP  
(Tape and Reel)  
CY8C21534-24PVXIT 8K  
a
a
a
a
a
a
a
a
a
a
32 Pin (5x5 mm 0.93 MAX)  
QFN  
CY8C21434-24LFXI  
CY8C21434-24LFXIT 8K  
CY8C21434-24LKXI 8K  
CY8C21434-24LKXIT 8K  
CY8C21634-24LFXI 8K  
CY8C21634-24LFXIT 8K  
CY8C21434-24LTXI 8K  
CY8C21434-24LTXIT 8K  
8K  
512 No  
512 No  
512 No  
512 No  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
28  
28  
28  
28  
26  
26  
28  
28  
28  
28  
28  
28  
28  
28  
26  
26  
28  
28  
28  
28  
0
0
0
0
0
0
0
0
0
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
b
32 Pin (5x5 mm 0.93 MAX)  
QFN b (Tape and Reel)  
32 Pin (5x5 mm 0.60 MAX)  
b
QFN  
32 Pin (5x5 mm 0.60 MAX)  
b
QFN (Tape and Reel)  
32 Pin (5x5 mm 0.93 MAX)  
512 Yes -40°C to +85°C  
512 Yes -40°C to +85°C  
b
QFN  
32 Pin (5x5 mm 0.93 MAX)  
b
QFN (Tape and Reel)  
32 Pin (5x5 mm 0.93 MAX)  
SAWN QFN  
512 No  
512 No  
512 No  
512 No  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
32 Pin (5x5 mm 0.93 MAX)  
b
SAWN QFN (Tape and Reel)  
32 Pin (5x5 mm 0.60 MAX)  
THIN SAWN QFN  
CY8C21434-24LQXI  
8K  
32 Pin (5x5 mm 0.60 MAX)  
THIN SAWN QFN  
CY8C21434-24LQXIT 8K  
(Tape and Reel)  
a
a
a
32 Pin (5x5 mm 0.93 MAX)  
SAWN QFN  
CY8C21634-24LTXI  
8K  
512 Yes -40°C to +85°C  
512 Yes -40°C to +85°C  
512 Yes -40°C to +85°C  
4
4
4
4
4
4
26  
26  
26  
26  
26  
26  
0
0
0
Yes  
Yes  
Yes  
b
32 Pin (5x5 mm 0.93 MAX)  
CY8C21634-24LTXIT 8K  
b
SAWN QFN (Tape and Reel)  
56 Pin OCD SSOP  
CY8C21001-24PVXI  
8K  
a. All Digital IO Pins also connect to the common analog mux.  
b. Refer to the section 32-Pin Part Pinout on page 11 for pin differences.  
Document Number: 38-12025 Rev. *M  
Page 41 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Ordering Code Definitions  
CY 8 C 21 xxx-24xx  
Package Type:  
Thermal Rating:  
C = Commercial  
I = Industrial  
PX = PDIP Pb-Free  
SX = SOIC Pb-Free  
PVX = SSOP Pb-Free  
LFX/LKX = QFN Pb-Free  
AX = TQFP Pb-Free  
E = Extended  
Speed: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress PSoC  
Company ID: CY = Cypress  
Document Number: 38-12025 Rev. *M  
Page 42 of 43  
[+] Feedback  
CY8C21634, CY8C21534  
CY8C21434, CY8C21334, CY8C21234  
Document History Page  
Document Title: CY8C21234/CY8C21334/CY8C21434/CY8C21534/CY8C21634 PSoC® Mixed-Signal Array  
Document Number: 38-12025  
Orig. of  
Change  
Revision  
ECN  
Description of Change  
**  
227340  
235992  
HMT  
New silicon and document (Revision **).  
*A  
*B  
SFV  
Updated Overview and Electrical Spec. chapters, along with revisions to the 24-pin pinout part.  
Revised the register mapping tables. Added a SSOP 28-pin part.  
248572  
277832  
SFV  
Changed title to include all part #s. Changed 28-pin SSOP from CY8C21434 to CY8C21534.  
Changed pin 9 on the 28-pin SSOP from SMP pin to Vss pin. Added SMP block to architecture  
diagram. Update Electrical Specifications. Added another 32-pin MLF part: CY8C21634.  
*C  
HMT  
Verify data sheet standards from SFV memo. Add Analog Input Mux to applicable pin outs.  
Update PSoC Characteristics table. Update diagrams and specs. Final.  
*D  
*E  
*F  
285293  
301739  
329104  
HMT  
HMT  
HMT  
Update 2.7V DC GPIO spec. Add Reflow Peak Temp. table.  
DC Chip-Level Specification changes. Update links to new CY.com Portal.  
Re-add pinout ISSP notation. Fix TMP register names. Clarify ADC feature. Update Electrical  
Specifications. Update Reflow Peak Temp. table. Add 32 MLF E-PAD dimensions. Add ThetaJC  
to Thermal Impedance table. Fix 20-pin package order number. Add CY logo. Update CY  
copyright.  
*G  
352736  
HMT  
Add new color and logo. Add URL to preferred dimensions for mounting MLF packages. Update  
Transmitter and Receiver AC Digital Block Electrical Specifications.  
*H  
*I  
390152  
413404  
430185  
HMT  
HMT  
HMT  
Clarify MLF thermal pad connection info. Replace 16-pin 300-MIL SOIC with correct 150-MIL.  
Update 32-pin QFN E-Pad dimensions and rev. *A. Update CY branding and QFN convention.  
*J  
Add new 32-pin 5x5 mm 0.60 thickness QFN package and diagram, CY8C21434-24LKXI.  
Update thermal resistance data. Add 56-pin SSOP on-chip debug non-production part,  
CY8C21001-24PVXI. Update typical and recommended Storage Temperature per industrial  
specs. Update copyright and trademarks.  
*K  
677717  
HMT  
Add CapSense SNR requirement reference. Add new Dev. Tool section. Add CY8C20x34 to  
PSoC Device Characteristics table. Add Low Power Comparator (LPC) AC/DC electrical spec.  
tables. Update rev. of 32-Lead (5x5 mm 0.60 MAX) QFN package diagram.  
*L  
2147847 UVS/PYRS Added 32-Pin QFN Sawn pin diagram, package diagram, and ordering information.  
2273246 UVS/AESA Added 32 pin thin sawn package diagram.  
*M  
© Cypress Semiconductor Corporation, 2004-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-12025 Rev. *M  
Revised April 18, 2008  
Page 43 of 43  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY8C21634-24LTXIT

PSoC® Mixed-Signal Array
CYPRESS

CY8C21634-24PVX

PSoC Mixed-Signal Array
CYPRESS

CY8C21634-24PX

PSoC Mixed-Signal Array
CYPRESS

CY8C21634-24SX

PSoC Mixed-Signal Array
CYPRESS

CY8C21634B

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS

CY8C21634B-24LCXI

Multifunction Peripheral, CMOS, 5 X 5 MM 0.40 MM HEIGHT, LEAD FREE, MO-220, QFN-32
CYPRESS

CY8C21634B-24LQXI

Multifunction Peripheral, CMOS, 5 X 5 MM 0.60 MM HEIGHT, LEAD FREE, MO-248, QFN-32
CYPRESS

CY8C21634B-24LQXIT

Multifunction Peripheral, CMOS, 5 X 5 MM 0.60 MM HEIGHT, LEAD FREE, MO-248, QFN-32
CYPRESS

CY8C21634B-24LTXI

Multifunction Peripheral, CMOS, 5 X 5 MM 1.00 MM HEIGHT, LEAD FREE, MO-220, QFN-32
CYPRESS

CY8C21634_10

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS

CY8C21645

Automotive PSoC? Programmable System-on-Chip?
CYPRESS

CY8C21645-12PVXE

Automotive PSoC? Programmable System-on-Chip?
CYPRESS