CY8C20110_12 [CYPRESS]

CapSense® Express™ Button Capacitive Controllers; CapSense® Expressâ ?? ¢键电容式控制器
CY8C20110_12
型号: CY8C20110_12
厂家: CYPRESS    CYPRESS
描述:

CapSense® Express™ Button Capacitive Controllers
CapSense® Expressâ ?? ¢键电容式控制器

控制器
文件: 总43页 (文件大小:1510K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
CapSense® Express™ Button  
Capacitive Controllers  
CapSense® Express™ Button Capacitive Controllers  
Wide range of operating voltages  
2.4 V to 2.9 V  
3.10 V to 3.6 V  
4.75 V to 5.25 V  
I2C communication  
Features  
10/8/6/4 capacitive button input  
Robust sensing algorithm  
High sensitivity, low noise  
Immunity to RF and AC noise  
Low radiated EMC noise  
Supported from 1.8 V  
Internal pull-up resistor support option  
Data rate up to 400 kbps  
Configurable I2C addressing  
Supports wide range of input capacitance, sensor shapes,  
and sizes  
Target applications  
Printers  
Industrial temperature range: –40 °C to +85 °C.  
Cellular handsets  
LCD monitors  
Portable DVD players  
Available in 16-pin QFN, 8-pin, and 16-pin SOIC packages  
Overview  
Low operating current  
Active current: continuous sensor scan: 1.5 mA  
Deep sleep current: 4 µA  
These CapSense Express™ controllers support four to ten  
capacitive sensing (CapSense) buttons. The device functionality  
is configured through an I2C port and can be stored in onboard  
nonvolatile memory for automatic loading at power-on. The  
CY8C20110 is optimized for dimming LEDs in 15 selectable duty  
cycles for back light applications. The device can be configured  
to have up to 10 GPIOs connected to the PWM output. The PWM  
duty cycle is programmable for variable LED intensities.  
Industry's best configurability  
Custom sensor tuning, one optional capacitor  
Output supports strong drive for LED  
Output state can be controlled through I2C or directly from  
CapSense® input state  
The four key blocks that make up these devices are: a robust  
capacitive sensing core with high immunity against radiated and  
conductive noise, control registers with nonvolatile storage,  
configurable outputs, and I2C communications. The user can  
configure registers with parameters needed to adjust the  
operation and sensitivity of the CapSense buttons and outputs  
and permanently store the settings. The standard I2C serial  
communication interface enables the host to configure the  
device and read sensor information in real time. The I2C address  
is fully configurable without any external hardware strapping.  
Run time reconfigurable over I2C  
Advanced features  
All GPIOs support LED dimming with configurable delay  
option in CY8C20110  
Interrupt outputs  
User defined inputs  
Wake on interrupt input  
Sleep control pin  
Nonvolatile storage of custom settings  
Easy integration into existing products – configure output to  
match system  
No external components required  
World class free configuration tool  
Cypress Semiconductor Corporation  
Document Number: 001-54606 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 31, 2012  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Contents  
Pinouts ..............................................................................3  
Pin Definitions ..................................................................3  
Pinouts ..............................................................................4  
Pin Definitions ..................................................................4  
Pinouts ..............................................................................5  
Pin Definitions ..................................................................5  
Typical Circuits .................................................................6  
I2C Interface ......................................................................8  
I2C Device Addressing ................................................8  
I2C Clock Stretching ....................................................8  
Format for Register Write and Read ...........................9  
Operating Modes of I2C Commands .............................10  
Normal Mode .............................................................10  
Setup Mode ...............................................................10  
Device Operation Modes ................................................10  
Active Mode ...............................................................10  
Periodic Sleep Mode .................................................10  
Deep Sleep Mode ......................................................10  
Sleep Control Pin ............................................................10  
Interrupt Pin to Master ...................................................10  
LED Dimming ..................................................................10  
LED Dimming Mode 1: Change Intensity  
on ON/OFF Button Status ................................................11  
LED Dimming Mode 2: Flash Intensity  
on ON Button Status .........................................................11  
LED Dimming Mode 3: Hold Intensity  
After ON/OFF Button Transition .......................................12  
LED Dimming Mode 4: Toggle Intensity on ON/OFF  
or OFF/ON Button Transitions ..........................................12  
Registers .........................................................................13  
Register Map .............................................................13  
Device IDs .................................................................17  
CapSense Express Commands ................................17  
Register Conventions ................................................17  
Layout Guidelines and Best Practices .........................18  
CapSense Button Shapes .........................................18  
Button Layout Design ................................................18  
Recommended via Hole Placement ..........................18  
Example PCB Layout Design with  
Two CapSense Buttons and Two LEDs ...........................20  
Operating Voltages .........................................................21  
CapSense Constraints ...................................................21  
Absolute Maximum Ratings ..........................................22  
Operating Temperature ..................................................22  
Electrical Specifications ................................................23  
DC Electrical Specifications ......................................23  
CapSense Electrical Characteristics .........................26  
AC Electrical Specifications .......................................26  
Appendix .........................................................................29  
Examples of Frequently Used I2C Commands .........29  
Ordering Information ......................................................30  
Ordering Code Definitions .........................................30  
Thermal Impedances .....................................................31  
Solder Reflow Specifications ........................................31  
Package Diagrams ..........................................................32  
Acronyms ........................................................................35  
Reference Documents ....................................................35  
Document Conventions .................................................35  
Units of Measure .......................................................35  
Numeric Conventions ................................................35  
Glossary ..........................................................................36  
Document History Page .................................................41  
Sales, Solutions, and Legal Information ......................43  
Worldwide Sales and Design Support .......................43  
Products ....................................................................43  
PSoC Solutions .........................................................43  
Document Number: 001-54606 Rev. *G  
Page 2 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Pinouts  
Figure 1. 16-pin QFN (3 × 3 × 0.6 mm) (no e-pad) pinout [1]  
QFN  
Pin Definitions  
16-pin QFN (no e-pad) [1, 2]  
Pin No.  
Pin Name  
GP0[0]  
Description  
1
2
Configurable as CapSense or GPIO  
GP0[1]  
Configurable as CapSense or GPIO  
I2C clock  
I2C data  
3
I2C SCL  
I2C SDA  
GP1[0]  
4
5
Configurable as CapSense or GPIO  
6
GP1[1] [3] Configurable as CapSense or GPIO  
VSS Ground connection  
GP1[2] [3] Configurable as CapSense or GPIO  
7
8
9
GP1[3]  
GP1[4]  
XRES  
GP0[2]  
VDD  
Configurable as CapSense or GPIO  
Configurable as CapSense or GPIO  
10  
11  
12  
13  
14  
15  
Active high external reset with internal pull-down  
Configurable as CapSense or GPIO  
Supply voltage  
GP0[3]  
CSInt  
Configurable as CapSense or GPIO  
Integrating capacitor Input. The external capacitance is required only if 5:1 SNR cannot be achieved.  
Typical range is 1 nF to 4.7 nF  
16  
GP0[4]  
Configurable as CapSense or GPIO  
Notes  
1. CY8C20110 (10 Buttons) / CY8C20180 (8 Buttons) / CY8C20160 (6 Buttons) / CY8C20140 (4 Buttons)  
2. 8/6/4 available configurable IOs can be configured to any of the 10 IOs of the package. After any of the 8/6/4 IOs are chosen, the remaining 2/4/6 IOs of the package  
are not available for any functionality.  
3. Avoid using GP1[1] and GP1[2] for driving LEDs. These two pins have special functions during power-up which is used at factory. LEDs connected to these two pins  
blink during the power-up of the device.  
Document Number: 001-54606 Rev. *G  
Page 3 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Pinouts  
Figure 2. 16-pin SOIC (150 Mils) pinout [4]  
Pin Definitions  
16-pin SOIC [4, 5]  
Pin No.  
Name  
Description  
1
2
GP0[3]  
CSint  
Configurable as CapSense or GPIO  
Integrating capacitor input. The external capacitance is required only if 5:1 SNR cannot be achieved.  
Typical range is 1 nF to 4.7 nF.  
3
4
GP0[4]  
GP0[0]  
GP0[1]  
I2C SCL  
I2C SDA  
GP1[0]  
Configurable as CapSense or GPIO  
Configurable as CapSense or GPIO  
Configurable as CapSense or GPIO  
I2C clock  
5
6
7
I2C data  
8
Configurable as CapSense or GPIO  
9
GP1[1] [6] Configurable as CapSense or GPIO  
VSS Ground connection  
GP1[2] [6] Configurable as CapSense or GPIO  
10  
11  
12  
13  
14  
15  
16  
GP1[3]  
GP1[4]  
XRES  
GP0[2]  
VDD  
Configurable as CapSense or GPIO  
Configurable as CapSense or GPIO  
Active high external reset with internal pull-down  
Configurable as CapSense or GPIO  
Supply voltage  
Notes  
4. CY8C20110 (10 Buttons) / CY8C20180 (8 Buttons) / CY8C20160 (6 Buttons) / CY8C20140 (4 Buttons)  
5. 8/6/4 available configurable IOs can be configured to any of the 10 IOs of the package. After any of the 8/6/4 IOs are chosen, the remaining 2/4/6 IOs of the package  
are not available for any functionality.  
6. Avoid using GP1[1] and GP1[2] for driving LEDs. These two pins have special functions during power-up which is used at factory. LEDs connected to these two pins  
blink during the power-up of the device.  
Document Number: 001-54606 Rev. *G  
Page 4 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Pinouts  
Figure 3. 8-pin SOIC (150 Mils) pinout  
CY8C20142 (4 Button)  
Pin Definitions  
8-pin SOIC  
CY8C20142 (4 Button)  
Pin No.  
Name  
VSS  
I2C SCL  
Description  
1
2
3
4
5
6
7
8
Ground  
I2C Clock  
I2C Data  
I2C SDA  
GP1[0] [7] Configurable as CapSense or GPIO  
GP1[1] [7] Configurable as CapSense or GPIO  
GP0[0]  
GP0[1]  
VDD  
Configurable as CapSense or GPIO  
Configurable as CapSense or GPIO  
Supply voltage  
Important Note For information on the preferred dimensions for mounting QFN packages, see the "Application Notes for Surface  
Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com.  
Note  
7. Avoid using GP1[0] and GP1[1] for driving LED. These two pins have special functions during power up which is used at factory. LEDs connected to these two pins  
will blink during power up of the device.  
Document Number: 001-54606 Rev. *G  
Page 5 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Typical Circuits  
Figure 4. Circuit 1 – Five Buttons and Five LEDs with I2C Interface  
Capsense  
sensor  
B2  
B3  
VD D_C E  
VDD_CE  
C2  
R1  
C1  
R2  
560E  
1. 2nF 560E  
0.1uF  
VDD_CE  
U1  
D1  
D2  
LED  
Capsense  
sensor  
R5  
R7  
560E  
560E  
1
2
3
4
12  
11  
10  
9
R6  
560E  
B4  
GPO[0]  
GPO[2]  
XR E S  
VDD_CE  
R3  
4.7K  
R4  
4. 7K  
LED  
GPO[1]  
VDD_CE  
CY8C20110  
R8  
330E  
R9  
560E  
560E  
D3  
D4  
LED  
LED  
I2C_SCL  
I2C_SDA  
GP1[4]  
GP1[3]  
R10  
330E  
R11  
R12  
R13  
R14  
560E  
560E  
560E  
D5  
LED  
B1  
B0  
VDD_CE  
Capsense  
sensor  
Figure 5. Circuit 2 – Two Buttons and Two LEDs with I2C Interface  
Document Number: 001-54606 Rev. *G  
Page 6 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Typical Circuits (continued)  
Figure 6. Circuit 3 – Compatibility with 1.8 V I2C Signaling [8, 9]  
Figure 7. Circuit 4 – Powering Down CapSense Express Device for Low Power Requirements [10]  
Output  
enable  
Output  
VDD  
LDO  
I2C Pull  
UPs  
LED  
Master  
Or  
Host  
SDA  
SCL  
CapSense Express  
I2C  
BUS  
Notes  
8. 1.8 V VDD_I2C VDD_CE and 2.4 V VDD_CE 5.25 V.  
9. The I2C drive mode of the CapSense device should be configured properly before using in an I2C environment with external pull-ups. Please refer to I2C_ADDR_DM  
register and its factory setting.  
2
10. For low power requirements, if V is to be turned off, this concept can be used. The requirement is that the V  
of CapSense Express, I C pull-ups, and LEDs  
2
DD  
DDs  
should be from the same source such that turning off the V ensures that no signal is applied to the device while it is unpowered. The I C signals should not be  
DD  
driven high by the master in this situation. If a port pin or group of port pins of the master can cater to the power supply requirements of the circuit, the LDO can be  
avoided.  
Document Number: 001-54606 Rev. *G  
Page 7 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
2
I C Interface  
The CapSense Express devices support the industry standard I2C protocol, which can be used for:  
Configuring the device  
Reading the status and data registers of the device  
Controlling device operation  
Executing commands  
The I2C address can be modified during configuration.  
2
I C Device Addressing  
The device uses a seven bit addressing protocol. The I2C data transfer is always initiated by the master sending a one byte address:  
the first 7 bits contain the address and the LSB indicates the data transfer direction. Zero in the LSB bit indicates the write transaction  
from master and one indicates read transfer by the master. The following table shows examples for different I2C addresses.  
Table 1. I2C Address Examples  
7-bit Slave Address  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
8-bit Slave Address  
1
1
0(W)  
1(R)  
0(W)  
1(W)  
02  
03  
96  
97  
0
0
0
0
0
0
1
75  
75  
1
0
0
1
0
1
1
1
0
0
1
0
1
1
If the I2C master does not support clock stretching (a bit banged  
software I2C Master), the master must wait for a specific amount  
of time (as specified in Format for Register Write and Read on  
page 9) for each register write and read operation before the next  
bit is transmitted. The I2C master must check the SCL status (it  
should be high) before the I2C master initiates any data transfer  
with CapSense Express. If the master fails to do so and  
continues to communicate, the communication is erroneous.  
2
I C Clock Stretching  
‘Clock stretching’ or ‘bus stalling’ in I2C communication protocol  
is a state in which the slave holds the SCL line low to indicate  
that it is busy. In this condition, the master is expected to wait till  
the SCL is released by the slave.  
When an I2C master communicates with the CapSense Express  
device, the CapSense Express stalls the I2C bus after the  
reception of each byte (that is, just before the ACK/NAK bit) until  
processing of the byte is complete and critical internal functions  
are executed. Use a fully I2C compliant master to communicate  
with the CapSense Express device.  
The following diagrams represent the ACK time delays shown in  
Format for Register Write and Read on page 9 for write and read.  
Document Number: 001-54606 Rev. *G  
Page 8 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Figure 8. Write ACK Time Representation [11]  
Figure 9. Read ACK Time Representation [12]  
Format for Register Write and Read  
Register write format  
Start  
Slave Addr + W  
A
Reg Addr  
A
Data  
A
Data  
A
. . . . .  
Data  
A
Stop  
Register read format  
Start  
Start  
Slave Addr + W  
Slave Addr + R  
A
A
Reg Addr  
Data  
A
A
Stop  
Data  
A
. . . . .  
Data  
N
Stop  
Legends:  
Master  
Slave  
A – ACK  
N – NAK  
Notes  
11. Time to process the received data.  
12. Time taken for the device to send next byte.  
Document Number: 001-54606 Rev. *G  
Page 9 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
2
Deep Sleep Mode  
Operating Modes of I C Commands  
Deep sleep mode provides the lowest power consumption  
because there is no operation running. All CapSense scanning  
is disabled during this mode. In this mode, the device wakes up  
only using an external GPIO interrupt. A sleep timer interrupt  
cannot wake up a device from deep sleep mode. This is treated  
as a continuous sleep mode without periodic wakeups. Refer to  
the application note “CapSense Express Power and Sleep  
Considerations” - AN44209 for details on different sleep modes.  
To get the lowest power during this mode the sleep timer  
frequency should be set to 1 Hz.  
Normal Mode  
In normal mode of operation, the acknowledgment time is  
optimized. The timings remain approximately the same for  
different configurations of the slave. To reduce the  
acknowledgment times in normal mode, the registers  
0x06–0x09, 0x0C, 0x0D, 0x10–0x17, 0x50, 0x51, 0x57–0x60,  
0x7E are given only read access. Write to these registers can be  
done only in setup mode.  
Setup Mode  
Sleep Control Pin  
All registers have read and write access (except those which are  
read only) in this mode. The acknowledgment times are longer  
compared to normal mode. When CapSense scanning is  
disabled (command code 0x0A in command register 0xA0), the  
acknowledgment times can be improved to values similar to the  
normal mode of operation.  
The devices require a dedicated sleep control pin to enable  
reliable I2C communication in case any sleep mode is enabled.  
This is achieved by pulling the sleep control pin low to wake up  
the device and start I2C communication. The sleep control pin  
can be configured on any GPIO.  
Device Operation Modes  
Interrupt Pin to Master  
CapSense Express devices are configured to operate in any of  
the following three modes to meet different power consumption  
requirements:  
To inform the master of any button press a GPIO can be  
configured as interrupt output and all CapSense buttons can be  
connected to this GPIO with an OR logic operator. This can be  
configured using the software tool.  
Active Mode  
Periodic Sleep Mode  
Deep Sleep Mode  
LED Dimming  
To change the brightness and intensity of the LEDs, the host  
master (MCU, MPU, DSP, and so on) must send I2C commands  
and program the PWM registers to enable output pins, set duty  
cycle, and mode configuration. The single PWM source is  
connected to all GPIO pins and has a common user defined duty  
cycle. Each PWM enabled pin has two possible outputs: PWM  
and 0/1 (depending on the configuration). Four different modes  
of LED dimming are possible, as shown in LED Dimming Mode  
1: Change Intensity on ON/OFF Button Status on page 11 to LED  
Dimming Mode 4: Toggle Intensity on ON/OFF or OFF/ON  
Button Transitions on page 12. The operation mode and duty  
cycle of the PWM enabled pins is common. This means that one  
pin cannot behave as in Mode 1 and another pin as in Mode 2.  
Active Mode  
In the active mode, all the device blocks including the CapSense  
sub system are powered. Typical active current consumption of  
the device across the operating voltage range is 1.5 mA.  
Periodic Sleep Mode  
Sleep mode provides an intermediate power operation mode. It  
is enabled by configuring the corresponding device registers  
(0x7E, 0x7F). The device goes into sleep after there is no event  
for stay awake counter (Reg 0x80) number of sleep intervals.  
The device wakes up on sleep interval and It scans the  
capacitive sensors before going back to sleep again. If any  
sensor is active, then the device wakes up. The device can also  
wake up from sleep mode with a GPIO interrupt. The following  
sleep intervals are supported in CapSense Express. The sleep  
interval is configured through registers.  
1.95 ms (512 Hz)  
15.6 ms (64 Hz)  
125 ms (8 Hz)  
1 s (1 Hz)  
Document Number: 001-54606 Rev. *G  
Page 10 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
LED Dimming Mode 1: Change Intensity on ON/OFF Button Status  
LED Dimming Mode 2: Flash Intensity on ON Button Status  
Document Number: 001-54606 Rev. *G  
Page 11 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
LED Dimming Mode 3: Hold Intensity After ON/OFF Button Transition  
LED Dimming Mode 4: Toggle Intensity on ON/OFF or OFF/ON Button Transitions  
Note LED DIMMING is available only in CY8C20110.  
Document Number: 001-54606 Rev. *G  
Page 12 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Registers  
Register Map  
Register  
Address  
(in Hex)  
Factory Default  
I2C Max ACK  
I2C Max ACK  
Time in Setup  
Mode (ms)  
Writable Only in  
SETUP Mode [13]  
Name  
Access  
Values of Registers Time in Normal  
(in Hex)  
00  
Mode (ms)  
0.1  
0.1  
0.1  
0.1  
0.1  
0.1  
INPUT_PORT0  
INPUT_PORT1  
STATUS_POR0  
STATUS_POR1  
OUTPUT_PORT0  
OUTPUT_PORT1  
CS_ENABL0  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
R
R
00  
R
00  
R
00  
W
00  
W
00  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
YES  
YES  
YES  
YES  
00  
11  
11  
11  
11  
CS_ENABLE  
00  
GPIO_ENABLE0  
GPIO_ENABLE1  
INVERSION_MASK0  
INVERSION_MASK1  
INT_MASK0  
00  
00  
00  
0.11  
0.11  
00  
YES  
YES  
00  
11  
11  
INT_MASK1  
00  
STATUS_HOLD_MSK0  
STATUS_HOLD_MSK1  
DM_PULL_UP0  
DM_STRONG0  
DM_HIGHZ0  
03/1F [14]  
03/1F [14]  
00  
0.11  
0.11  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
11  
11  
11  
11  
11  
11  
11  
11  
00  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
00  
DM_OD_LOW0  
DM_PULL_UP1  
DM_STRONG1  
DM_HIGHZ1  
00  
00  
00  
00  
DM_OD_LOW1  
PWM_ENABLE0[15]  
PWM_ENABLE1[15]  
PWM_MODE_DC[15]  
PWM_DELAY[15]  
OP_SEL_00  
00  
00  
0.1  
0.1  
0.1  
0.1  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
00  
00  
00  
00  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
OPR1_PRT0_00  
OPR1_PRT1_00  
OPR2_PRT0_00  
OPR2_PRT1_00  
OP_SEL_01  
00  
00  
00  
00  
00  
OPR1_PRT0_01  
OPR1_PRT1_01  
OPR2_PRT0_01  
OPR2_PRT1_01  
OP_SEL_02  
00  
00  
00  
00  
00  
Notes  
13. These registers are writable only after entering into setup mode. All the other registers available for read and write in Normal as well as in Setup mode.  
14. The factory defaults of Reg 0x0E and 0x0F is 0x03 for 20142 device and 0x1F for 20140/60/80/10 devices.  
15. These registers are available only in CY8C20110.  
Document Number: 001-54606 Rev. *G  
Page 13 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Register Map (continued)  
Register  
Address  
(in Hex)  
Factory Default  
I2C Max ACK  
I2C Max ACK  
Time in Setup  
Mode (ms)  
Writable Only in  
SETUP Mode [13]  
Name  
Access  
Values of Registers Time in Normal  
(in Hex)  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
28  
64  
A0  
00  
0A  
03  
Mode (ms)  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.11  
0.11  
OPR1_PRT0_02  
OPR1_PRT1_02  
OPR2_PRT0_02  
OPR2_PRT1_02  
OP_SEL_03  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
35  
35  
11  
11  
OPR1_PRT0_03  
OPR1_PRT1_03  
OPR2_PRT0_03  
OPR2_PRT1_03  
OP_SEL_04  
OPR1_PRT0_04  
OPR1_PRT1_04  
OPR2_PRT0_04  
OPR2_PRT1_04  
OP_SEL_10  
OPR1_PRT0_10  
OPR1_PRT1_10  
OPR2_PRT0_10  
OPR2_PRT1_10  
OP_SEL_11  
OPR1_PRT0_11  
OPR1_PRT1_11  
OPR2_PRT0_11  
OPR2_PRT1_11  
OP_SEL_12  
OPR1_PRT0_12  
OPR1_PRT1_12  
OPR2_PRT0_12  
OPR2_PRT1_12  
OP_SEL_13  
OPR1_PRT0_13  
OPR1_PRT1_13  
OPR2_PRT0_13  
OPR2_PRT1_13  
OP_SEL_14  
OPR1_PRT0_14  
OPR1_PRT1_14  
OPR2_PRT0_14  
OPR2_PRT1_14  
CS_NOISE_TH  
CS_BL_UPD_TH  
CS_SETL_TIME  
CS_OTH_SET  
CS_HYSTERISIS  
CS_DEBOUNCE  
YES  
YES  
0.11  
0.11  
Document Number: 001-54606 Rev. *G  
Page 14 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Register Map (continued)  
Register  
Factory Default  
I2C Max ACK  
I2C Max ACK  
Time in Setup  
Mode (ms)  
Writable Only in  
SETUP Mode [13]  
Name  
Address  
(in Hex)  
Access  
Values of Registers Time in Normal  
(in Hex)  
14  
Mode (ms)  
0.11  
0.11  
0.11  
CS_NEG_NOISE_TH  
CS_LOW_BL_RST  
CS_FILTERING  
54  
55  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
14  
56  
20  
CS_SCAN_POS_00  
CS_SCAN_POS_01  
CS_SCAN_POS_02  
CS_SCAN_POS_03  
CS_SCAN_POS_04  
CS_SCAN_POS_10  
CS_SCAN_POS_11  
CS_SCAN_POS_12  
CS_SCAN_POS_13  
CS_SCAN_POS_14  
CS_FINGER_TH_00  
CS_FINGER_TH_01  
CS_FINGER_TH_02  
CS_FINGER_TH_03  
CS_FINGER_TH_04  
CS_FINGER_TH_10  
CS_FINGER_TH_11  
CS_FINGER_TH_12  
CS_FINGER_TH_13  
CS_FINGER_TH_14  
CS_IDAC_00  
57  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
YES  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
FF  
64  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
0.14  
62  
64  
63  
64  
64  
64  
65  
64  
66  
64  
67  
64  
68  
64  
69  
64  
6A  
6B  
6C  
6D  
6E  
6F  
64  
0A  
0A  
0A  
0A  
0A  
0A  
0A  
0A  
0A  
0A  
CS_IDAC_01  
CS_IDAC_02  
CS_IDAC_03  
CS_IDAC_04  
CS_IDAC_10  
70  
CS_IDAC_11  
71  
CS_IDAC_12  
72  
CS_IDAC_13  
73  
CS_IDAC_14  
74  
75 [16]  
76 [16]  
77 [16]  
78 [16]  
79  
I2C_ADDR_LOCK  
DEVICE_ID  
RW  
R
01  
0.11  
0.11  
0.11  
0.11  
11  
11  
11  
11  
7A  
7B  
7C  
42/40/60/80/10 [17]  
DEVICE_STATUS  
I2C_ADDR_DM  
R
03  
00  
RW  
Notes  
16. The register 0x75–0x78, 0x7D and 0x8A–0x8D are reserved.  
17. The Device ID for different devices are tabulated in Device IDs on page 17.  
Document Number: 001-54606 Rev. *G  
Page 15 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Register Map (continued)  
Register  
Address  
(in Hex)  
Factory Default  
I2C Max ACK  
I2C Max ACK  
Time in Setup  
Mode (ms)  
Writable Only in  
SETUP Mode [13]  
Name  
Access  
Values of Registers Time in Normal  
(in Hex)  
Mode (ms)  
7D [19]  
SLEEP_PIN  
7E  
RW  
RW  
RW  
RW  
R
YES  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0.1  
0.1  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
SLEEP_CTRL  
7F  
SLEEP_SA_CNTR  
CS_READ_BUTTON  
CS_READ_BLM  
80  
0.1  
81  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
82  
CS_READ_BLL  
83  
R
CS_READ_DIFFM  
CS_READ_DIFFL  
CS_READ_RAWM  
CS_READ_RAWL  
CS_READ_STATUSM  
CS_READ_STATUSL  
84  
R
85  
R
86  
R
87  
R
88  
R
89  
R
8A [19]  
8B [19]  
8C [19]  
8D [19]  
A0  
COMMAND_REG  
W
00  
0.1  
11  
Notes  
18. These registers are writable only after entering into setup mode. All the other registers available for read and write in Normal as well as in Setup mode.  
19. The register 0x75–0x78, 0x7D and 0x8A–0x8D are reserved.  
Document Number: 001-54606 Rev. *G  
Page 16 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Device IDs  
Part Number  
Device ID  
CY8C20142  
CY8C20140  
CY8C20160  
CY8C20180  
CY8C20110  
42  
40  
60  
80  
10  
Note All the Ack times specified are maximum values with all buttons enabled and filer enabled with maximum order.  
CapSense Express Commands  
Duration the Device is not accessible  
Command [20]  
Description  
Executable Mode  
after ACK (in ms)  
W 00 A0 00 Get firmware revision  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup  
0
120  
120  
120  
5
W 00 A0 01 Store current configuration to NVM  
W 00 A0 02 Restore factory configuration  
W 00 A0 03 Write NVM POR defaults  
W 00 A0 04 Read NVM POR defaults  
W 00 A0 05 Read current configurations (RAM)  
W 00 A0 06 Reconfigure device (POR)  
W 00 A0 07 Set normal mode of operation  
W 00 A0 08 Set setup mode of operation  
W 00 A0 09 Start scan  
5
5
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
0
0
10  
5
W 00 A0 0A Stop scan  
W 00 A0 0B Get CapSense scan status  
0
Register Conventions  
This table lists the register conventions that are specific to this section.  
Convention  
Description  
RW  
R
Register has both read and write access  
Register has only read access  
Note  
20. The ‘W’ indicates the write transfer. The next byte of data represents the 7-bit I2C address.  
Document Number: 001-54606 Rev. *G  
Page 17 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Layout Guidelines and Best Practices  
CapSense Button Shapes  
Button Layout Design  
X: Button to ground clearance (Refer to Table 2 on page 18)  
Y: Button to button clearance (Refer to Table 2 on page 18)  
Recommended via Hole Placement  
Table 2. Recommended Layout Guidelines and Best Practices  
S. No.  
Category  
Button shape  
Min  
Max  
Recommendations/Remarks  
1
Solid round pattern, round with LED hole, rectangle with round  
corners  
2
3
Button size  
5 mm  
15 mm 10 mm  
Button-button spacing  
Equal to  
button  
8 mm [X]  
ground  
clearance  
4
5
6
7
Button ground clearance  
Ground flood-top layer  
Ground flood-bottom layer  
0.5 mm  
2 mm  
Button ground clearance = Overlay thickness [Y]  
Hatched ground 7-mil trace and 45-mil grid (15% filling)  
Hatched ground 7-mil trace and 70-mil grid (10% filling)  
Trace length from sensor to  
PSoC-buttons  
200 mm < 100 mm  
8
Trace width  
0.17 mm  
0.20 mm 0.17 mm (7-mil)  
Document Number: 001-54606 Rev. *G  
Page 18 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Table 2. Recommended Layout Guidelines and Best Practices (continued)  
S. No.  
Category  
Trace routing  
Min  
Max  
Recommendations/Remarks  
9
Traces should be routed on the non sensor side. If any non  
CapSense trace crosses CapSense trace, ensure that  
intersection is orthogonal.  
10  
Via position for the sensors  
Via should be placed near the edge of the button/slider to  
reduce trace length thereby increasing sensitivity.  
11  
12  
13  
Via hole size for sensor traces  
Number of vias on sensor trace  
1
2
10-mil  
1
CapSense series resistor  
placement  
10 mm Place CapSense series resistors close to PSoC for noise  
suppression. CapSense resistors have highest priority place  
them first.  
14  
15  
DistancebetweenanyCapSense  
trace to ground flood  
10-mil  
20-mil  
20-mil  
Device placement  
Mount the device on the layer opposite to sensor. The  
CapSense trace length between the device and sensors should  
be minimum  
16  
17  
Placement of components in  
2-layer PCB  
Top layer – sensor pads and  
bottom layer – PSoC, other components, and traces.  
Placement of components in  
4-layer PCB  
Top layer – sensor pads,  
second layer – CapSense traces,  
third layer – hatched ground,  
bottom layer – PSoC, other components, and non CapSense  
traces  
18  
19  
Overlay material  
Should to be non conductive material. Glass, ABS plastic,  
Formica  
Overlay adhesives  
Adhesive should be non conductive and dielectrically  
homogenous. 467MP and 468MP adhesives made by 3M are  
recommended.  
20  
21  
LED back lighting  
Board thickness  
Cut a hole in the sensor pad and use rear mountable LEDs.  
Refer the PCB layout below.  
Standard board thickness for CapSense FR4 based designs is  
1.6 mm.  
The recommended maximum overlay thickness is 5 mm (with external CSInt)/ 2 mm (without external CSInt). For more details refer  
to the section “The Integrating Capacitor (Cint)” in AN53490.  
Note Some device packages does not have CSInt pin and external capacitor cannot be connected.  
Document Number: 001-54606 Rev. *G  
Page 19 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Example PCB Layout Design with Two CapSense Buttons and Two LEDs  
Figure 10. Top Layer  
Figure 11. Bottom Layer  
Document Number: 001-54606 Rev. *G  
Page 20 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Operating Voltages  
For details on I2C 1x ACK time, refer to Register Map on page 13 and CapSense Express Commands on page 17. I2C 4x ACK time  
is approximately four times the values mentioned in these tables.  
CapSense Constraints  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
Parasitic capacitance (CP) of the CapSense  
sensor  
30  
pF  
Supply voltage variation (VDD  
)
±5%  
Document Number: 001-54606 Rev. *G  
Page 21 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Absolute Maximum Ratings  
Parameter  
TSTG  
Description  
Min  
Typ  
Max  
Unit  
Notes  
Storage temperature  
–55  
25  
+100  
°C Higher storage temperatures  
reduce data retention time.  
Recommended storage  
temperature is +25 °C ± 25 °C (0 °C  
to 50 °C). Extended duration  
storage temperatures above 65 °C  
degrade reliability  
TBAKETEMP  
Bake temperature  
Bake time  
125  
See  
Package  
label  
°C  
tBAKETIME  
See  
package  
label  
72  
Hours  
TA  
Ambient temperature with power  
applied  
–40  
+85  
°C  
V
VDD  
Supply voltage on VDD relative to  
VSS  
–0.5  
+6.0  
VIO  
DC input voltage  
VSS – 0.5  
VSS – 0.5  
–25  
VDD + 0.5  
VDD + 0.5  
+50  
V
V
VIOZ  
IMIO  
DC voltage applied to tristate  
Maximum current into any GPIO  
pin  
mA  
ESD  
LU  
Electro static discharge voltage  
Latch-up current  
2000  
V
Human body model ESD  
200  
mA  
Operating Temperature  
Parameter  
TA  
TJ  
Description  
Min  
–40  
–40  
Typ  
Max  
+85  
Unit  
°C  
Notes  
Ambient temperature  
Junction temperature  
+100  
°C  
Document Number: 001-54606 Rev. *G  
Page 22 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Electrical Specifications  
DC Electrical Specifications  
DC Chip Level Specifications  
Table 3. DC Chip Level Specifications  
Parameter  
VDD  
Description  
Supply voltage  
Min  
2.40  
Typ  
Max  
5.25  
2.5  
Unit  
Notes  
V
IDD  
ISB  
ISB  
ISB  
Supply current  
1.5  
mA Conditions are VDD = 3.10 V,  
TA = 25 °C  
Deep sleep mode current with  
POR and LVD active  
2.6  
2.8  
5.2  
4
5
µA VDD = 2.55 V, 0 °C < TA < 40 °C  
µA VDD = 3.3 V, –40 °C < TA < 85 °C  
µA VDD = 5.25 V, –40 °C < TA < 85 °C  
Deep sleep mode current with  
POR and LVD active  
Deep sleep mode current with  
POR and LVD active  
6.4  
DC GPIO Specifications  
This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C < TA < 85 °C, 3.10 V to 3.6 V and –40 °C < TA < 85 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design  
guidance only.  
Table 4. 5-V and 3.3-V DC GPIO Specifications  
Parameter  
VOH1  
Description  
Min  
Typ  
Max  
Unit  
Notes  
High output voltage on Port 0 pins VDD – 0.2  
High output voltage on Port 0 pins VDD – 0.9  
High output voltage on Port 1 pins VDD – 0.2  
High output voltage on Port 1 pins VDD – 0.9  
V
IOH < 10 µA, VDD > 3.10 V, maximum  
of 20 mA source current in all I/Os.  
VOH2  
VOH3  
VOH4  
VOL  
V
V
V
V
IOH = 1 mA, VDD > 3.10 V, maximum  
of 20 mA source current in all I/Os.  
IOH < 10 µA, VDD > 3.10 V, maximum  
of 20 mA source current in all I/Os.  
IOH = 5 mA, VDD > 3.10 V, maximum  
of 20 mA source current in all I/Os.  
Low output voltage  
0.75  
IOL = 20 mA/pin, VDD > 3.10,  
maximum of 40/60 mA sink current  
on even port pins and of 40/60 mA  
sink current on odd port pins.[21]  
IOH1  
IOH2  
IOL  
High output current on Port 0 pins  
High output current on Port 1 pins  
Low output current  
0.01  
0.01  
1
5
mA VDD 3.1 V, maximum of 20 mA  
source current in all IOs  
mA VDD 3.1 V, maximum of 20 mA  
source current in all IOs  
20  
mA VDD 3.1 V, maximum of 60 mA sink  
current on pins P0_2, P1_2, P1_3,  
P1_4 and 60 mA sink current on  
pins P0_0, P0_1, P0_3, P0_4,  
P1_0, P1_1  
VIL  
VIH  
VIL  
VIH  
Input low voltage  
Input high voltage  
Input low voltage  
Input high voltage  
0.75  
V
V
V
V
VDD = 3.10 V to 3.6 V.  
VDD = 3.10 V to 3.6 V.  
VDD = 4.75 V to 5.25 V.  
VDD = 4.75 V to 5.25 V.  
1.6  
0.8  
2.0  
Note  
21. The maximum sink current is 40 mA for 20140 and 20142 devices and for all other devices the maximum sink current is 60 mA.  
Document Number: 001-54606 Rev. *G  
Page 23 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Table 4. 5-V and 3.3-V DC GPIO Specifications (continued)  
Parameter  
VH  
Description  
Input hysteresis voltage  
Input leakage  
Min  
Typ  
140  
1
Max  
Unit  
mV  
Notes  
5
IIL  
nA Gross tested to 1 µA.  
CIN  
Capacitive load on pins as input  
0.5  
1.7  
pF Package and pin dependent.  
Temp = 25 °C.  
COUT  
Capacitive load on pins as output  
0.5  
1.7  
5
pF Package and pin dependent.  
Temp = 25 °C.  
This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 2.90 V and  
–40 °C < TA < 85 °C, respectively. Typical parameters apply to 2.7 V at 25 °C and are for design guidance only.  
Table 5. 2.7-V DC GPIO Specifications  
Parameter  
VOH1  
Description  
Min  
Typ  
Max  
Unit  
Notes  
High output voltage on Port 0 pins VDD – 0.2  
High output voltage on Port 0 pins VDD – 0.5  
High output voltage on Port 1 pins VDD – 0.2  
High output voltage on Port 1 pins VDD – 0.5  
V
IOH <10 µA, maximum of 10 mA  
source current in all I/Os.  
VOH2  
VOH3  
VOH4  
VOL1  
V
V
V
V
IOH = 0.2 mA, maximum of 10 mA  
source current in all I/Os.  
IOH <10 µA, maximum of 10 mA  
source current in all I/Os.  
IOH = 2 mA, maximum of 10 mA  
source current in all I/Os.  
Low output voltage  
0.75  
IOL = 10 mA/pin, VDD > 3.10,  
maximum of 20/30 mA sink current  
on even port pins and of 20/30 mA  
sink current on odd port pins. [22]  
IOH  
High output current  
0.01  
2
mA VDD < 2.9 V, maximum of 10 mA  
source current in all I/Os  
IOL1  
Low output current on Port 0 pins  
10  
mA VDD < 2.9V, maximum of30mA sink  
current on pins P0_2, P1_2, P1_3,  
P1_4 and 30 mA sink current on  
pins P0_0, P0_1, P0_3, P0_4,  
P1_0, P1_1  
IOL2  
Low output current  
20  
mA VDD < 2.9V, maximum of50mA sink  
current on pins P0_2, P1_2, P1_3,  
P1_4 and 50 mA sink current on  
pins P0_0, P0_1, P0_3, P0_4,  
P1_0, P1_1  
VIL  
Input low voltage  
0.75  
V
VDD = 2.4 to 2.90 V and 3.10 V to  
3.6 V.  
VIH1  
VIH2  
Input high voltage  
Input high voltage  
1.4  
1.6  
V
V
VDD = 2.4 to 2.7 V.  
VDD = 2.7 to 2.90 V and 3.10 V to  
3.6 V.  
VH  
IIL  
Input hysteresis voltage  
Input leakage  
60  
1
5
mV  
nA Gross tested to 1 µA.  
CIN  
Capacitive load on pins as input  
0.5  
1.7  
pF Package and pin dependent.  
Temp = 25 °C.  
COUT  
Capacitive load on pins as output  
0.5  
1.7  
5
pF Package and pin dependent.  
Temp = 25 °C  
Note  
22. The maximum sink current per port is 20 mA for 20140 and 20142 devices and for all other devices the maximum sink current is 30 mA.  
Document Number: 001-54606 Rev. *G  
Page 24 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
DC POR and LVD Specifications  
Table 6. DC POR and LVD Specifications  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Notes  
VDD value for PPOR trip  
V
DD must be greater than or equal  
VPPOR0  
VPPOR1  
V
DD = 2.7 V  
DD = 3.3 V, 5 V  
2.36  
2.60  
2.40  
2.65  
V
V
to 2.5 V during startup or internal  
reset.  
V
VLVD0  
VLVD2  
VLVD6  
VDD value for LVD trip  
V
V
DD = 2.7 V  
DD = 3.3 V  
2.39  
2.75  
3.98  
2.45  
2.92  
4.05  
2.51  
2.99  
4.12  
V
V
V
VDD = 5 V  
DC Flash Write Specifications  
This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C < TA < 85 °C, 3.10 V to 3.6 V and –40 °C < TA < 85 °C or 2.4 V to 2.90 V and –40 °C < TA < 85 °C, respectively. Typical  
parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only. Flash Endurance and Retention specifications  
are valid only within the range: 25 °C ± 20 °C during the flash write operation. It is at the user’s own risk to operate out of this  
temperature range. If flash writing is done out of this temperature range, the endurance and data retention reduces.  
Table 7. DC Flash Write Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
VDDIWRITE  
Supply voltage for flash write  
operations  
2.7  
V
IDDP  
Supply current for flash write  
operations  
5
25  
mA  
FlashENPB  
FlashDR  
Flash endurance  
50,000[23]  
10  
Erase/write cycles  
Flash data retention  
Years  
DC I2C Specifications  
This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C < TA < 85 °C, 3.10 V to 3.6 V and –40 °C < TA < 85 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design  
guidance only.  
Table 8. DC I2C Specifications  
Symbol [24]  
VILI2C  
Description  
Input low level  
Min  
Typ  
Max  
Units  
Notes  
0.3 × VDD  
V
2.4 V VDD 2.9 V  
3.1 V VDD 3.6 V  
0.7 × VDD  
0.25 × VDD  
V
V
V
4.75 V VDD 5.25 V  
2.4 V VDD 5.25 V  
IOL = 5 mA/pin  
VIHI2C  
VOLP  
CI2C  
Input high level  
0.4  
5
Low output voltage  
Capacitive load on I2C pins  
0.5  
1.7  
pF Package and pin dependent. Temp  
= 25 °C.  
RPU  
Pull-up resistor  
4
5.6  
8
k  
Notes  
23. Commands involving flash writes (0x01, 0x02, 0x03) and flash read (0x04) must be executed only within the same V voltage range detected at POR (power on, or  
CC  
command 0x06) and above 2.7 V.  
2
24. All GPIO meet the DC GPIO V and V specifications found in the DC GPIO Specifications sections. The I C GPIO pins also meet the above specs.  
IL  
IH  
Document Number: 001-54606 Rev. *G  
Page 25 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
CapSense Electrical Characteristics  
Conditions for  
Supply Voltage  
Max (V)  
Typ (V)  
Min (V)  
Result  
3.6  
3.3  
3.1  
< 2.9  
The device automatically reconfigures itself to work in 2.7 V mode  
of operation.  
> 2.9 or < 3.10  
< 2.45 V  
This range is not recommended for CapSense usage.  
2.90  
5.25  
2.7  
5.0  
2.45  
The scanning for CapSense parameters shuts down until the  
voltage returns to over 2.45 V.  
> 3.10  
The device automatically reconfigures itself to work in 3.3 V mode  
of operation.  
< 2.4 V  
The device goes into reset.  
4.75  
< 4.73 V  
The scanning for CapSense parameters shuts down until the  
voltage returns to over 4.73 V.  
AC Electrical Specifications  
AC Chip-Level Specifications  
Table 9. 5-V and 3.3-V AC Chip-Level Specifications  
Parameter  
F32K1  
Description  
Min  
Typ  
Max  
Units  
Notes  
during  
operations are done based on ILO  
frequency.  
Internal low-speed oscillator  
(ILO) frequency  
15  
32  
64  
kHz Calculations  
sleep  
tXRST  
External reset pulse width  
10  
Us  
ms  
tPOWERUP  
Time from end of POR to CPU  
executing code  
150  
SRPOWER_UP Power supply slew rate  
250  
V/ms  
Table 10. 2.7-V AC Chip-Level Specifications  
Parameter  
F32K1  
Description  
Min  
Typ  
Max  
Units  
Notes  
Internal low-speed oscillator  
(ILO) frequency  
8
32  
96  
kHz Calculations  
during  
sleep  
operations are done based on ILO  
frequency.  
tXRST  
External reset pulse width  
10  
Us  
ms  
tPOWERUP  
Time from end of POR to CPU  
executing code  
600  
SRPOWER_UP Power supply slew rate  
250  
V/ms  
Document Number: 001-54606 Rev. *G  
Page 26 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
AC GPIO Specifications  
Table 11. 5-V and 3.3-V AC GPIO Specifications  
Parameter  
tRise0  
Description  
Min  
Max  
Unit  
Notes  
Rise time, strong mode,  
Cload = 50 pF, Port 0  
15  
80  
ns VDD = 3.10 V to 3.6 V and 4.75 V to 5.25 V, 10%  
to 90%  
tRise1  
tFall  
Rise time, strong mode,  
Cload = 50 pF, Port 1  
15  
10  
50  
50  
ns VDD = 3.10 V to 3.6 V, 10% to 90%  
Fall time, strong mode,  
Cload = 50 pF, all ports  
ns VDD = 3.10 V to 3.6 V and 4.75 V to 5.25 V, 10%  
to 90%  
Table 12. 2.7-V AC GPIO Specifications  
Parameter  
tRise0  
Description  
Min  
Max  
Unit  
Notes  
Rise time, strong mode,  
Cload = 50 pF, Port 0  
15  
100  
ns VDD = 2.4 V to 2.90 V, 10% to 90%  
ns VDD = 2.4 V to 2.90 V, 10% to 90%  
ns VDD = 2.4 V to 2.90 V, 10% to 90%  
tRise1  
tFall  
Rise time, strong mode,  
Cload = 50 pF, Port 1  
15  
10  
70  
70  
Fall time, strong mode,  
Cload = 50 pF  
AC I2C Specifications  
Table 13. AC I2C Specifications  
Standard Mode  
Fast Mode  
Parameter  
FSCLI2C  
Description  
Units  
Notes  
Min  
Max  
Min  
Max  
SCL clock frequency  
0
100  
0
400  
kbps Fast mode not  
supported for  
VDD < 3.0 V.  
tHDSTAI2C  
Hold time (repeated) START  
condition. After this period, the  
first clock pulse is generated  
4.0  
0.6  
µs  
t
LOWI2C  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
µs  
µs  
µs  
tHIGHI2C  
tSUSTAI2C  
Setup time for a repeated START  
condition  
t
HDDATI2C  
Data hold time  
0
0
µs  
ns  
µs  
µs  
tSUDATI2C  
tSUSTOI2C  
tBUFI2C  
Data setup time  
250  
4.0  
4.7  
100  
0.6  
1.3  
Setup time for STOP condition  
BUS free time between a STOP  
and START condition  
tSPI2C  
Pulse width of spikes suppressed  
by the input filter  
0
50  
ns  
Document Number: 001-54606 Rev. *G  
Page 27 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Figure 12. Definition of Timing for Fast/Standard Mode on the I2C Bus  
I2C_SDA  
I2C_SCL  
TSUDATI2C  
TSPI2C  
TSUSTAI2C  
TBUFI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C TLOWI2C  
TSUSTOI2C  
P
S
S
Sr  
Repeated START Condition  
STOP Condition  
START Condition  
Document Number: 001-54606 Rev. *G  
Page 28 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Appendix  
2
Examples of Frequently Used I C Commands  
S. No.  
Requirement  
Enter into setup mode  
Enter into normal mode  
I2C commands [25]  
Comment  
1
2
3
W 00 A0 08  
W 00 A0 07  
Load factory defaults to RAM  
registers  
W 00 A0 02  
4
5
6
Do a software reset  
W 00 A0 08  
W 00 A0 06  
Enter into setup mode  
Do software reset  
Save current configuration to  
flash  
W 00 A0 01  
Load factory defaults to RAM  
registers and save as user  
configuration  
W 00 A0 08  
W 00 A0 02  
W 00 A0 01  
W 00 A0 06  
Enter into setup mode  
Load factory defaults to SRAM  
Save the configuration to flash. Wait for time specified in  
CapSense Express Commands on page 17.  
Do software reset  
7
Enable GP00 as CapSense  
button  
W 00 A0 08  
W 00 06 01  
W 00 A0 01  
W 00 A0 06  
Enter into setup mode  
Configuring CapSense buttons  
Save the configuration to flash. Wait for time specified in  
CapSense Express Commands on page 17.  
Do software reset  
8
9
Read CapSense button(GP00)  
scan results  
W 00 81 01  
W 00 82  
R 00 RD. RD. RD.  
Select CapSense button for reading scan result  
Set the read point to 82h  
Consecutive 6 reads get baseline, difference count and raw  
count (all two byte each)  
Read CapSense button status  
register  
W 00 88  
R 00 RD  
Set the read pointer to 88  
Reading a byte gets status CapSense inputs  
Note  
25. The ‘W’ indicates the write transfer and the next byte of data represents the 7-bit I2C address. The I2C address is assumed to be ‘0’ in the above examples. Similarly  
‘R’ indicates the read transfer followed by 7-bit address and data byte read operations.  
Document Number: 001-54606 Rev. *G  
Page 29 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Ordering Information  
Table 14. Key Features and Ordering Information  
Package  
Operating  
Temperature  
CapSense  
Block  
Ordering Code  
Package Type  
GPIOs  
XRES Pin  
Diagram  
CY8C20110-LDX2I  
001-09116 16-pin QFN [26]  
51-85068 16-pin SOIC  
001-09116 16-pin QFN [26]  
51-85068 16-pin SOIC  
001-09116 16-pin QFN [26]  
51-85068 16-pin SOIC  
001-09116 16-pin QFN [26]  
51-85068 16-pin SOIC  
51-85066 8-pin SOIC  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
10  
10  
08  
08  
06  
06  
04  
04  
04  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
CY8C20110-SX2I  
CY8C20180-LDX2I  
CY8C20180-SX2I  
CY8C20160-LDX2I  
CY8C20160-SX2I  
CY8C20140-LDX2I  
CY8C20140-SX2I  
CY8C20142-SX1I  
Note For die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).  
Ordering Code Definitions  
CY  
8
C
201 XX - XX  
X
X
I
Temperature Range:  
I = Industrial  
X = 2 or 1  
2 = 16-pin device; 1 = 8-pin device  
Pb-free  
Package Type: XX = LD or S  
LD = 16-pin QFN; S = 16-pin SOIC  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Controllers  
Company ID: CY = Cypress  
Note  
26. Earlier termed as QFN package.  
Document Number: 001-54606 Rev. *G  
Page 30 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Thermal Impedances  
Table 15. Thermal Impedances by Package  
[27]  
Package  
16-pin QFN[1]  
Typical JA  
46 °C/W  
79.96 °C/W  
127.22 °C/W  
16-pin SOIC  
8-pin SOIC  
Solder Reflow Specifications  
Table 16. Solder Reflow Specifications  
Package  
16-pin QFN[1]  
Maximum Peak Temperature (TC)  
Maximum Time above TC – 5 °C  
30 seconds  
260 C  
260 C  
260 C  
16-pin SOIC  
30 seconds  
8-pin SOIC  
30 seconds  
Note  
27. T = T + Power ×   
J
A
JA.  
Document Number: 001-54606 Rev. *G  
Page 31 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Package Diagrams  
Figure 13. 16-pin Chip On Lead (3 × 3 × 0.6 mm) LG16A/LD16A (Sawn) Package Outline, 001-09116  
001-09116 *F  
Document Number: 001-54606 Rev. *G  
Page 32 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Package Diagrams (continued)  
Figure 14. 16-pin SOIC (150 Mils) S16.15/SZ16.15 Package Outline, 51-85068  
51-85068 *D  
Document Number: 001-54606 Rev. *G  
Page 33 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Package Diagrams (continued)  
Figure 15. 8-pin SOIC (150 Mils) S08.15/SZ08.15 Package Outline, 51-85066  
51-85066 *E  
Document Number: 001-54606 Rev. *G  
Page 34 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Acronyms  
Table 17 lists the acronyms that are used in this document.  
Table 17. Acronyms Used in this Datasheet  
Acronym  
AC  
Description  
Acronym  
LVD  
Description  
alternating current  
low voltage detect  
CMOS  
DC  
complementary metal oxide semiconductor  
direct current  
MCU  
PCB  
POR  
microcontroller unit  
printed circuit board  
power on reset  
EEPROM electrically erasable programmable read-only  
memory  
EMC  
GPIO  
I/O  
electromagnetic compatibility  
general-purpose I/O  
input/output  
PPOR  
PSoC®  
PWM  
QFN  
precision power on reset  
Programmable System-on-Chip  
pulse width modulator  
quad flat no leads  
IDAC  
ILO  
current DAC  
internal low speed oscillator  
liquid crystal display  
low dropout regulator  
light-emitting diode  
least-significant bit  
RF  
radio frequency  
LCD  
LDO  
LED  
LSB  
SOIC  
SRAM  
XRES  
small-outline integrated circuit  
static random access memory  
external reset  
Reference Documents  
CapSense Express Power and Sleep Considerations – AN44209 (001-44209)  
Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.  
Document Conventions  
Units of Measure  
Table 18 lists the units of measures.  
Table 18. Units of Measure  
Symbol  
C  
Unit of Measure  
Symbol  
mm  
Unit of Measure  
degree Celsius  
hertz  
millimeter  
millisecond  
millivolt  
Hz  
ms  
mV  
nA  
ns  
%
kbps  
kHz  
k  
kilo bits per second  
kilohertz  
nanoampere  
nanosecond  
percent  
kilohm  
LSB  
µA  
least significant bit  
microampere  
microfarad  
pF  
V
picofarad  
volt  
µF  
µs  
microsecond  
milliampere  
W
watt  
mA  
Numeric Conventions  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimals.  
Document Number: 001-54606 Rev. *G  
Page 35 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Glossary  
active high  
1. A logic signal having its asserted state as the logic 1 state.  
2. A logic signal having the logic 1 state as the higher voltage of the two states.  
analog blocks  
The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks.  
These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.  
analog-to-digital A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts  
(ADC)  
a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.  
Application  
programming  
interface (API)  
A series of software routines that comprise an interface between a computer application and lower level services  
and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that  
create software applications.  
asynchronous  
A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.  
Bandgap  
reference  
A stable voltage reference design that matches the positive temperature coefficient of VT with the negative  
temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.  
bandwidth  
1. The frequency range of a message or information processing system measured in hertz.  
2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is  
sometimes represented more specifically as, for example, full width at half maximum.  
bias  
1. A systematic deviation of a value from a reference value.  
2. The amount by which the average of a set of values departs from a reference value.  
3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to  
operate the device.  
block  
buffer  
1. A functional unit that performs a single function, such as an oscillator.  
2. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or  
an analog PSoC block.  
1. A storage area for data that is used to compensate for a speed difference, when transferring data from one  
device to another. Usually refers to an area reserved for I/O operations, into which data is read, or from which  
data is written.  
2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received  
from an external device.  
3. An amplifier used to lower the output impedance of a system.  
bus  
1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing  
patterns.  
2. A set of signals performing a common function and carrying similar data. Typically represented using vector  
notation; for example, address[7:0].  
3. One or more conductors that serve as a common connection for a group of related devices.  
clock  
The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to  
synchronize different logic blocks.  
comparator  
compiler  
An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy  
predetermined amplitude requirements.  
A program that translates a high level language, such as C, into machine language.  
Document Number: 001-54606 Rev. *G  
Page 36 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Glossary (continued)  
configuration  
space  
In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to ‘1’.  
crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less  
sensitive to ambient temperature than other circuit components.  
cyclicredundancy A calculation used to detect errors in data communications, typically performed using a linear feedback shift  
check (CRC)  
register. Similar calculations may be used for a variety of other purposes such as data compression.  
data bus  
A bi-directional set of signals used by a computer to convey information from a memory location to the central  
processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.  
debugger  
A hardware and software system that allows you to analyze the operation of the system under development. A  
debugger usually allows the developer to step through the firmware one step at a time, set break points, and  
analyze memory.  
dead band  
A period of time when neither of two or more signals are in their active state or in transition.  
digital blocks  
The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator,  
pseudo-random number generator, or SPI.  
digital-to-analog A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC)  
(DAC)  
converter performs the reverse operation.  
duty cycle  
emulator  
The relationship of a clock period high time to its low time, expressed as a percent.  
Duplicates (provides an emulation of) the functions of one system with a different system, so that the second  
system appears to behave like the first system.  
External Reset  
(XRES)  
An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop  
and return to a pre-defined state.  
Flash  
An electrically programmable and erasable, non-volatile technology that provides you the programmability and  
data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is  
OFF.  
Flash block  
The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash  
space that may be protected. A Flash block holds 64 bytes.  
frequency  
gain  
The number of cycles or events per unit of time, for a periodic function.  
The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually  
expressed in dB.  
I2C  
A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated  
Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in  
the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building  
control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high  
with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.  
ICE  
The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging  
device activity in a software environment (PSoC Designer).  
input/output (I/O) A device that introduces data into or extracts data from a system.  
Document Number: 001-54606 Rev. *G  
Page 37 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Glossary (continued)  
interrupt  
A suspension of a process, such as the execution of a computer program, caused by an event external to that  
process, and performed in such a way that the process can be resumed.  
interrupt service A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many  
routine (ISR)  
interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends  
with the RETI instruction, returning the device to the point in the program where it left normal program execution.  
jitter  
1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on  
serial data streams.  
2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval between  
successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.  
low-voltage  
detect (LVD)  
A circuit that senses VDD and provides an interrupt to the system when VDD falls lower than a selected threshold.  
M8C  
An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by  
interfacing to the Flash, SRAM, and register space.  
master device  
A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in  
width, the master device is the one that controls the timing for data exchanges between the cascaded devices  
and an external interface. The controlled device is called the slave device.  
microcontroller  
An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a  
microcontroller typically includes memory, timing circuits, and I/O circuitry. The reason for this is to permit the  
realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This  
in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for  
general-purpose computation as is a microprocessor.  
mixed-signal  
modulator  
noise  
The reference to a circuit containing both analog and digital techniques and components.  
A device that imposes a signal on a carrier.  
1. A disturbance that affects a signal and that may distort the information carried by the signal.  
2. The random variations of one or more characteristics of any entity such as voltage, current, or data.  
oscillator  
parity  
A circuit that may be crystal controlled and is used to generate a clock frequency.  
A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the  
digits of the binary data either always even (even parity) or always odd (odd parity).  
Phase-locked  
loop (PLL)  
An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference  
signal.  
pinouts  
The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their  
physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between  
schematic and PCB design (both being computer generated files) and may also involve pin names.  
port  
A group of pins, usually eight.  
Power on reset  
(POR)  
A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is a type of  
hardware reset.  
PSoC®  
Cypress Semiconductor’s PSoC® is a registered trademark and Programmable System-on-Chip™ is a trademark  
of Cypress.  
Document Number: 001-54606 Rev. *G  
Page 38 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Glossary (continued)  
PSoCDesigner™ The software for Cypress’ Programmable System-on-Chip technology.  
pulse width  
An output in the form of duty cycle which varies as a function of the applied measurand  
modulator (PWM)  
RAM  
An acronym for random access memory. A data-storage device from which data can be read out and new data  
can be written in.  
register  
reset  
A storage device with a specific capacity, such as a bit or byte.  
A means of bringing a system back to a know state. See hardware reset and software reset.  
ROM  
An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot  
be written in.  
serial  
1. Pertaining to a process in which all events occur one after the other.  
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or  
channel.  
settling time  
shift register  
slave device  
The time it takes for an output signal or value to stabilize after the input has changed from one value to another.  
A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.  
A device that allows another device to control the timing for data exchanges between two devices. Or when  
devices are cascaded in width, the slave device is the one that allows another device to control the timing of data  
exchanges between the cascaded devices and an external interface. The controlling device is called the master  
device.  
SRAM  
SROM  
An acronym for static random access memory. A memory device where you can store and retrieve data at a high  
rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged  
until it is explicitly altered or until power is removed from the device.  
An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate  
circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code,  
operating from Flash.  
stop bit  
A signal following a character or block that prepares the receiving device to receive the next character or block.  
synchronous  
1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.  
2. A system whose operation is synchronized by a clock signal.  
tri-state  
A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any  
value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit,  
allowing another output to drive the same net.  
UART  
A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.  
user modules  
Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower  
level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming  
Interface) for the peripheral function.  
user space  
The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal  
program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during  
the initialization phase of the program.  
Document Number: 001-54606 Rev. *G  
Page 39 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Glossary (continued)  
VDD  
A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.  
A name for a power net meaning "voltage source." The most negative power supply signal.  
VSS  
watchdog timer  
A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.  
Document Number: 001-54606 Rev. *G  
Page 40 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Document History Page  
Document Title: CY8C20110/CY8C20180/CY8C20160/CY8C20140/CY8C20142, CapSense® Express™ Button Capacitive  
Controllers  
Document Number: 001-54606  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
**  
2741726  
SLAN /  
FSU  
07/21/2009 New data sheet.  
*A  
*B  
2821828  
2892629  
SSHH /  
FSU  
12/4/2009 Added Contents.  
Updated Absolute Maximum Ratings (Added F32k u, tPOWERUP parameters  
and their details).  
Updated Electrical Specifications (Updated DC Electrical Specifications  
(Updated DC Flash Write Specifications (Updated Note 23))).  
NJF  
03/15/2010 Updated Pin Definitions (Added a Note “For information on the preferred  
dimensions for mounting QFN packages, see the "Application Notes for  
Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages"  
available at http://www.amkor.com.” below the column).  
Updated Absolute Maximum Ratings (Added TBAKETEMP and TBAKETIME  
parameters and their details).  
Updated Package Diagrams (Updated Figure 1 (Changed 16-pin COL to  
16-pin QFN).  
*C  
*D  
3002214  
3042142  
SLAN  
ARVM  
07/29/2010 Updated Features (Changed the part number from CY8C21110 to  
CY8C20110).  
Added Acronyms and Units of Measure.  
Minor edits across the document.  
09/30/10  
Updated Pin Definitions (Added Note 3 and referred the same Note in all  
GP1[1] and GP1[2] pins).  
Updated Pin Definitions (Added Note 6 and referred the same Note in all  
GP1[1] and GP1[2] pins).  
Updated Pin Definitions (Added Note 7 and referred the same Note in all  
GP1[1] and GP1[2] pins).  
Updated Absolute Maximum Ratings (Removed F32k u, tPOWERUP parameters  
and their details).  
Updated Electrical Specifications (Updated AC Electrical Specifications  
(Added AC Chip-Level Specifications section)).  
Updated Typical Circuits (Updated Figure 4 (Replaced with updated one)).  
Updated in new template.  
*E  
3085081  
NJF  
11/12/10  
Updated Electrical Specifications (Updated DC Electrical Specifications  
(Updated DC GPIO Specifications (Removed sub-section “2.7-V DC Spec for  
I2C Line with 1.8 V External Pull-up”), added DC I2C Specifications)), updated  
AC Electrical Specifications (Updated AC I2C Specifications (Updated  
Figure 12 (No specific changed were made to I2C Timing Diagram. Updated  
for clearer understanding.)))).  
Updated Solder Reflow Specifications (Updated Table 16).  
Added Reference Documents and Glossary.  
Updated in new template.  
*F  
3276234  
ARVM  
06/07/11  
Updated Layout Guidelines and Best Practices (Updated Table 2 (Removed  
“Overlay thickness-buttons” category),  
added the following statement after Table 2 –  
“The Recommended maximum overlay thickness is 5 mm (with external CSInt)  
2 mm (without external CSInt). For more details refer to the section “The  
Integrating Capacitor (Cint)” in AN53490.  
/
Note Some device packages does not have CSInt pin and external capacitor  
cannot be connected.”).  
Updated CapSense Constraints (Removed the parameter “Overlay  
thickness”).  
Updated Solder Reflow Specifications (Updated Table 16).  
Document Number: 001-54606 Rev. *G  
Page 41 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Document History Page (continued)  
Document Title: CY8C20110/CY8C20180/CY8C20160/CY8C20140/CY8C20142, CapSense® Express™ Button Capacitive  
Controllers  
Document Number: 001-54606  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN  
Description of Change  
*G  
3631370  
VAIR /  
SLAN  
05/31/2012 Updated Pin Definitions (Updated description of XRES pin).  
Updated Pin Definitions (Updated description of XRES pin).  
Updated Typical Circuits (Updated Figure 6 (Added Note 9 and referred the  
same Note in Figure 6)).  
Updated Package Diagrams (spec 001-09116 (Changed revision from *E to  
*F), spec 51-85068 (Changed revision from *C to *D)).  
Updated in new template.  
Document Number: 001-54606 Rev. *G  
Page 42 of 43  
CY8C20110, CY8C20180  
CY8C20160, CY8C20140  
CY8C20142  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-54606 Rev. *G  
Revised May 31, 2012  
Page 43 of 43  
All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

CY8C20110_13

CapSense® Express™ Button Capacitive Controllers
CYPRESS

CY8C20111

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20111-SX1I

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20111-SX1IT

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20111_11

CapSense Express – One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20111_12

CapSense® Express™ – One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20121

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20121-SX1I

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20121-SX1IT

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20134

PSoC? Programmable System-on-Chip?
CYPRESS

CY8C20134-12SXI

PSoC? Programmable System-on-Chip?
CYPRESS

CY8C20134_1106

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS