CY8C20111_11 [CYPRESS]

CapSense Express – One Button and Two Button Capacitive Controllers; 的CapSense Express的 - 一个按键,两个按键电容式控制器
CY8C20111_11
型号: CY8C20111_11
厂家: CYPRESS    CYPRESS
描述:

CapSense Express – One Button and Two Button Capacitive Controllers
的CapSense Express的 - 一个按键,两个按键电容式控制器

控制器
文件: 总43页 (文件大小:919K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C20111, CY8C20121  
CapSense® Express™ – One Button and  
Two Button Capacitive Controllers  
I2C communication  
Supported from 1.8 V  
1. Features  
Capacitive button input tied to a configurable output  
Robust sensing algorithm  
Internal pull-up resistor support option  
Data rate up to 400 kbps.  
High sensitivity, low noise  
Configurable I2C addressing  
Immunity to RF and AC noise  
Low radiated EMC noise  
Industrial temperature range: –40 °C to +85 °C  
Available in 8-Pin SOIC package  
Supports wide range of input capacitance, sensor shapes,  
and sizes  
2. Overview  
Target Applications  
Printers  
The CapSense® Express™ controllers support two capacitive  
sensing (CapSense) buttons and two general purpose outputs in  
CY8C20121 and one CapSense button and one general  
purpose output in CY8C20111. The device functionality is  
configured through the I2C port and can be stored in on-board  
nonvolatile memory for automatic loading at power on. The  
digital outputs are controlled from CapSense inputs in factory  
default settings, but are user configurable for direct control  
through I2C.  
Cellular handsets  
LCD monitors  
Portable DVD players  
Industry's best configurability  
Custom sensor tuning  
Output supports strong 20 mA sink current  
Output state can be controlled through I2C or directly from  
The four key blocks that make up the CY8C20111 and  
CY8C20121 controllers are: a robust capacitive sensing core  
with high immunity against radiated and conductive noise,  
control registers with nonvolatile storage, configurable outputs,  
and I2C communications. The user can configure registers with  
parameters needed to adjust the operation and sensitivity of the  
CapSense buttons and outputs and permanently store the  
settings. The standard I2C serial communication interface allows  
the host to configure the device and read sensor information in  
real time. I2C address is fully configurable without any external  
hardware strapping.  
CapSense input state  
Run time reconfigurable over I2C  
Advanced features  
Plug-and-play with factory defaults – tuned to support up to  
1 mm overlay  
Nonvolatile storage of custom settings  
Easy integration into existing products – configure output to  
match system  
No external components required  
World class free configuration tool  
Wide range of operating voltages  
2.45 V to 2.9 V  
3.10 V to 3.6 V  
4.75 V to 5.25 V  
Cypress Semiconductor Corporation  
Document Number: 001-53516 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 24, 2011  
[+] Feedback  
CY8C20111, CY8C20121  
3. Contents  
Pinouts ..............................................................................3  
Typical Circuits .................................................................4  
Circuit-1: One Button and One LED[1] ........................4  
Circuit-2: One Button and One LED with  
CS_READ_BLx .........................................................21  
CS_READ_DIFFx ......................................................21  
CS_READ_RAWx .....................................................21  
CS_READ_STATUS .................................................22  
COMMAND_REG ......................................................22  
Layout Guidelines and Best Practices .........................24  
Example PCB Layout Design with  
I2C Interface ................................................................4  
Circuit-3: Two Buttons and Two LEDs with  
I2C Interface ................................................................5  
Circuit-4: Compatibility with 1.8 V I2C Signaling[2] .....5  
Circuit-5: Powering Down CapSense Express  
Two CapSense Buttons and Two LEDs ....................26  
Operating Voltages .........................................................27  
CapSense Constraints ...................................................27  
Electrical Specifications ................................................28  
Absolute Maximum Ratings .......................................28  
Operating Temperature .............................................28  
DC Electrical Characteristics .....................................28  
DC Chip Level Specifications ....................................28  
DC GPIO Specifications ............................................28  
DC POR and LVD Specifications ..............................29  
DC Flash Write Specifications ...................................29  
DC I2C Specifications ...............................................30  
CapSense Electrical Characteristics .........................30  
AC Electrical Specifications .......................................31  
AC Chip-Level Specifications ....................................31  
AC GPIO Specifications ............................................31  
AC I2C Specifications ................................................31  
Examples of Frequently Used I2C Commands ............33  
Ordering Information ......................................................34  
Ordering Code Definitions .........................................34  
Thermal Impedances ......................................................34  
Solder Reflow Specifications ........................................34  
Package Diagram ............................................................35  
Acronyms ........................................................................36  
Acronyms Used ..............................................................36  
Document Conventions .................................................36  
Units of Measure .......................................................36  
Numeric Conventions ................................................36  
Glossary ..........................................................................37  
Document History Page .................................................42  
Sales, Solutions, and Legal Information ......................43  
Worldwide Sales and Design Support .......................43  
Products ....................................................................43  
PSoC Solutions .........................................................43  
Device for Low Power Requirements ..........................6  
Operating Modes ..............................................................6  
Normal Mode ...............................................................6  
Setup Mode .................................................................6  
I2C Interface ......................................................................6  
I2C Device Addressing ................................................6  
I2C Clock Stretching ....................................................7  
Format for Register Write and Read ...........................7  
Registers ...........................................................................7  
OUTPUT_STATUS ...................................................10  
OUTPUT_PORT ........................................................10  
CS_ENABLE .............................................................10  
DIG_ENABLE ............................................................11  
SET_STRONG_DM ..................................................11  
OP_SEL_x .................................................................13  
LOGICAL_OPR_INPUTx ..........................................13  
CS_NOISE_TH .........................................................14  
CS_BL_UPD_TH .......................................................14  
CS_SETL_TIME ........................................................14  
CS_OTH_SET ...........................................................15  
CS_HYSTERISIS ......................................................15  
CS_DEBOUNCE .......................................................16  
CS_NEG_NOISE_TH ................................................16  
CS_LOW_BL_RST ....................................................16  
CS_FILTERING .........................................................17  
CS_SCAN_POS_x ....................................................17  
CS_FINGER_TH_x ...................................................18  
CS_IDAC_x ...............................................................18  
I2C_ADDR_LOCK .....................................................18  
DEVICE_ID ...............................................................19  
DEVICE_STATUS .....................................................19  
I2C_ADDR_DM .........................................................20  
CS_READ_BUTTON .................................................20  
Document Number: 001-53516 Rev. *G  
Page 2 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
4. Pinouts  
Figure 1. CY8C20111 Pin Diagram - 8 SOIC - 1 Button  
Table 1. Pin Definitions – 8 SOIC- 1 Button  
Pin No  
Name  
VSS  
Description  
1
2
3
4
5
6
7
8
Ground  
I2C Clock  
I2C Data  
I2C SCL  
I2C SDA  
CS0  
CapSense Input  
No Connect  
Digital Output  
No Connect  
Supply Voltage  
NC  
DIG0  
NC  
VDD  
Figure 2. CY8C20121 Pin Diagram – 8 SOIC- 2 Button  
Table 2. Pin Definitions – 8 SOIC- 2 Button  
Pin No  
Name  
VSS  
Description  
1
2
3
4
5
6
7
8
Ground  
I2C Clock  
I2C Data  
I2C SCL  
I2C SDA  
CS0  
CapSense Input  
CapSense Input  
Digital Output  
Digital Output  
Supply Voltage  
CS1  
DIG0  
DIG1  
VDD  
Document Number: 001-53516 Rev. *G  
Page 3 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
5. Typical Circuits  
[1]  
5.1 Circuit-1: One Button and One LED  
2
5.2 Circuit-2: One Button and One LED with I C Interface  
Note  
1. The sensors are factory tuned to work with 1 mm plastic or glass overlay.  
Document Number: 001-53516 Rev. *G  
Page 4 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
2
5.3 Circuit-3: Two Buttons and Two LEDs with I C Interface  
2
[2]  
5.4 Circuit-4: Compatibility with 1.8 V I C Signaling  
Note  
2. 1.8 V V _I2C V _CE and 2.4 V V _CE 5.25 V.  
DD  
DD  
DD  
Document Number: 001-53516 Rev. *G  
Page 5 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
5.5 Circuit-5: Powering Down CapSense Express Device for Low Power Requirements  
Output  
enable  
Output  
VDD  
LDO  
I2C Pull  
UPs  
LED  
Master  
Or  
Host  
SDA  
SCL  
CapSense Express  
I2C  
BUS  
2
For low power requirements, if VDD is to be turned off, the above  
concept can be used. The VDDs of CapSense Express, I2C  
pull-ups, and LEDs must be from the same source. Turning off  
the VDD ensures that no signal is applied to the device while it is  
unpowered. The I2C signals should not be driven high by the  
master in this situation. If a port pin or group of port pins can cater  
to the power supply requirement of the circuit, the LDO can be  
avoided.  
7. I C Interface  
The CapSense Express devices support the industry standard  
I2C protocol, which can be used to:  
Configure the device  
Read the status and data registers of the device  
Control device operation  
6. Operating Modes  
Execute commands  
The I2C address can be modified during configuration.  
6.1 Normal Mode  
2
In normal mode of operation, the acknowledgment time is  
optimized. The timings remain approximately the same for  
different configurations of the slave. To reduce the acknowl-  
edgment times in normal mode, the registers 0x07, 0x08, 0x11,  
0x50, 0x51, 0x5C, 0x5D are given only read access. Writing to  
these registers can be done only in setup mode.  
7.1 I C Device Addressing  
The device uses a seven bit addressing protocol. The I2C data  
transfer is always initiated by the master sending one byte  
address; first 7-bit contains address and LSb indicates the data  
transfer direction. Zero in the LSb indicates the write transaction  
form master and one indicates read transfer by the master.  
Table 3 shows example for different I2C addresses.  
6.2 Setup Mode  
All registers have read and write access (except those which are  
read only) in this mode. The acknowledgment times are longer  
compared to normal mode. When CapSense scanning is  
disabled (command code 0x0A in command register 0xA0), the  
acknowledgment times can be improved to values similar to the  
normal mode of operation.  
Table 3. I2C Addresses  
7 Bit Slave Address (in Dec)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
8 Bit Slave Address (in Hex)  
1
1
0(W)  
1(R)  
0(W)  
1(W)  
02  
03  
96  
97  
0
0
0
0
0
0
1
75  
75  
1
0
0
1
0
1
1
1
0
0
1
0
1
1
Document Number: 001-53516 Rev. *G  
Page 6 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
An I2C master which does not support clock stretching (a bit  
banged software I2C Master) must wait for a specific amount of  
time specified (as shown in the section Format for Register Write  
and Read) for each register write and read operation before the  
next bit is transmitted. It is mandatory to check the SCL status (it  
should be high) before I2C master initiates any data transfer with  
CapSense Express. If the master fails to do so and continues to  
communicate, the communication is erroneous.  
2
7.2 I C Clock Stretching  
“Clock stretching” or “bus stalling” in I2C communication protocol  
is a state in which the slave holds the SCL line low to indicate  
that it is busy. In this condition, the master is expected to wait  
until the SCL is released by the slave.  
When an I2C master communicates with the CapSense Express  
device, the CapSense Express stalls the I2C bus after the  
reception of each byte (that is, just before the ACK/NAK bit) until  
processing of the byte is complete and critical internal functions  
are executed. Use a fully I2C compliant master to communicate  
with the CapSense Express device.  
The following diagrams represent the ACK time delays shown in  
the Register Map on page 7.  
Figure 3. Write ACK Time Representation  
Figure 4. Read ACK Time Representation  
7.3 Format for Register Write and Read  
Register write format.  
Start Slave Addr + W  
Register read format.  
A
Reg Addr  
A
Data  
A
A
Data  
A
. . . . .  
Data  
Stop  
A
Stop  
Start  
Slave Addr + W  
A
Reg Addr  
A
A
Stop  
Data  
Start  
Slave Addr + R  
A
Data  
. . . . .  
Data  
N
Legends:  
Master  
Slave  
A - ACK  
N- NAK  
8. Registers  
Table 4. Register Conventions  
Convention  
Description  
RW  
R
Register have both read and write access  
Register have only read access  
Write register with pass code  
Factory defaults  
WPR  
FD  
Document Number: 001-53516 Rev. *G  
Page 7 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
Table 5. Register Map  
Name  
Factory Default  
Values of Registers  
(in Hex)  
I2C Max  
Writable  
Only in  
Setup  
Register  
Address  
(in Hex)  
I2C Max ACK  
Time in Normal  
Mode (ms)[5]  
ACKTimein  
Setup  
Access  
Page No.  
Mode  
Mode[3]  
(ms)[5]  
1 Button  
2 Button  
03  
OUTPUT_PORT  
CS_ENABLE  
04  
07  
08  
11  
W
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
01  
01  
01  
01  
82  
01  
0.10  
10  
10  
11  
11  
13  
13  
13  
13  
14  
14  
14  
15  
15  
16  
16  
16  
17  
17  
17  
18  
18  
18  
18  
18  
19  
19  
20  
20  
21  
21  
21  
21  
21  
21  
22  
22  
Yes  
Yes  
Yes  
03  
11  
11  
11  
11  
11  
11  
11  
11  
11  
35  
35  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
DIG_ENABLE  
03  
SET_STRONG_DM  
OP_SEL_0  
03  
1C  
1E  
21  
23  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
5C  
5D  
66  
67  
70  
71  
79  
7A  
7B  
7C  
81  
82  
83  
84  
85  
86  
87  
88  
A0  
82  
0.12  
0.12  
0.12  
0.12  
0.11  
0.11  
LOGICAL_OPR_INPUT0  
OP_SEL_1[4]  
LOGICAL_OPR_INPUT1[4]  
01  
82  
02  
CS_NOISE_TH  
28  
64  
A0  
00  
0A  
03  
14  
14  
20  
00  
28  
CS_BL_UPD_TH  
CS_SETL_TIME  
CS_OTH_SET  
64  
Yes  
Yes  
A0  
00  
CS_HYSTERISIS  
CS_DEBOUNCE  
CS_NEG_NOISE_TH  
CS_LOW_BL_RST  
CS_FILTERING  
0A  
03  
0.11  
0.11  
0.11  
0.11  
0.11  
14  
14  
20  
CS_SCAN_POS_0  
CS_SCAN_POS_1[4]  
CS_FINGER_TH_0  
CS_FINGER_TH_1[4]  
CS_IDAC_0  
Yes  
Yes  
00  
01  
64  
0A  
64  
0.14  
0.14  
0.14  
0.14  
0.11  
0.11  
0.11  
0.11  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.12  
0.10  
64  
0A  
0A  
01  
CS_IDAC_1[4]  
I2C_ADDR_LOCK  
DEVICE_ID  
01  
11  
21  
DEVICE_STATUS  
I2C_ADDR_DM  
R
03  
03  
RW  
RW  
R
80  
80  
CS_READ_BUTTON  
CS_READ_BLM  
CS_READ_BLL  
81  
81  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
00  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
00  
R
CS_READ_DIFFM  
CS_READ_DIFFL  
CS_READ_RAWM  
CS_READ_RAWL  
CS_READ_STATUS  
COMMAND_REG  
R
R
R
R
R
W
Notes  
3. These registers are writable only after entering into setup mode. All other registers are available for read and write in normal and setup mode.  
4. These registers are available only in CY8C20121 device.  
5. The Ack times specified are 1x I2C Ack times.  
Document Number: 001-53516 Rev. *G  
Page 8 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
Table 6. CapSense Express Commands  
Executable  
Mode  
Duration the Device is NOT Ac-  
cessible after ACK (in ms)[5]  
Command [6]  
Description  
W 00 A0 00  
W 00 A0 01  
W 00 A0 02  
W 00 A0 03  
W 00 A0 04  
W 00 A0 05  
W 00 A0 06  
W 00 A0 07  
W 00 A0 08  
W 00 A0 09  
W 00 A0 0A  
W 00 A0 0B  
Get firmware revision  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup  
0
120  
120  
120  
5
Store current configuration to NVM  
Restore factory configuration  
Write NVM POR defaults  
Read NVM POR defaults  
Read current configurations (RAM)  
Reconfigure device (POR)  
Set Normal mode of operation  
Set Setup mode of operation  
Start scan  
5
5
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
Setup/Normal  
0
0
10  
5
Stop scan  
Get CapSense scan status  
0
Note  
2
6. ‘W’ indicates the write transfer. The next byte of data represents the 7 bit I C address.  
Document Number: 001-53516 Rev. *G  
Page 9 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.1 OUTPUT_STATUS  
Output Status Register  
OUTPUT_STATUS: 00h  
1 Button  
Access: FD  
Bit Name  
7
6
6
5
5
4
4
3
3
2
2
1
1
0
R:01  
STS[0]  
2 Button  
Access: FD  
Bit Name  
7
0
R:03  
STS[1:0]  
The Output Status register represents the actual logical levels on the output pins.  
Bit  
Name  
Description  
1:0  
STS [1:0]  
Used to represent the output status  
0
1
Output low  
Output high  
8.2 OUTPUT_PORT  
Output Port Register  
OUTPUT_PORT: 04h  
1 Button  
Access: FD  
Bit Name  
7
6
6
5
5
4
3
3
2
2
1
1
0
W:01  
DIG[0]  
2 Button  
Access: FD  
Bit Name  
7
4
0
W:03  
DIG[1:0]  
This register is used to write data to DIG output port. Pins defined as output of combinational logic (in OP_SEL_x register) cannot be  
changed using this register.  
Bit  
Name  
Description  
1:0  
DIG [1:0]  
A bit set in this register sets the logic level of the output.  
0
1
Logic ‘0’  
Logic ‘1’  
8.3 CS_ENABLE  
Select CapSense Input Register  
CS_ENABLE: 07h  
(Writable only in Setup mode)  
1 Button  
Access: FD  
Bit Name  
7
6
5
5
4
3
3
2
2
1
1
0
RW:01  
CS[0]  
2 Button  
Access: FD  
Bit Name  
7
6
4
0
RW:03  
CS[1:0]  
Document Number: 001-53516 Rev. *G  
Page 10 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
This register is used to enable CapSense inputs. This register should be set before setting finger threshold (0x66, 0x67) and  
IDAC setting (0x70, 0x71) registers.  
Bit  
Name  
Description  
1:0  
CS [1:0]  
These bits are used to enable CapSense inputs.  
0
1
Disable CapSense input  
Enable CapSense input  
8.4 DIG_ENABLE  
Select DIG Output Register  
GPO_ENABLE: 08h  
(Writable only in Setup mode)  
1 Button  
Access: FD  
Bit Name  
7
6
6
5
5
4
4
3
3
2
2
1
1
0
RW:01  
DIG[0]  
2 Button  
Access: FD  
Bit Name  
7
0
RW:03  
DIG [1:0]  
This register is used to enable DIG (Digital) outputs. If DIG output is enabled, the strong drive mode register (11h) should also be set.  
If DIG output is disabled the drive mode of these pins is High Z.  
Bit  
Name  
Description  
1:0  
DIG [1:0]  
These bits are used to enable DIG outputs.  
0
1
Disable DIG output  
Enable DIG output  
8.5 SET_STRONG_DM  
Sets Strong Drive Mode for DIG Outputs.  
SET_STRONG_DM: 11h  
(Writable only in Setup mode)  
1 Button  
Access: FD  
Bit Name  
7
6
5
5
4
4
3
3
2
2
1
1
0
RW:01  
DM [0]  
2 Button  
Access: FD  
Bit Name  
7
6
0
RW:03  
DM [1:0]  
This register sets strong drive mode for DIG (Digital) outputs. To set strong drive mode the pin should be enabled as GP output.  
Bit  
Name  
Description  
1:0  
DM [1:0]  
These bits are used to set the strong drive mode to DIG outputs.  
0
1
Strong drive mode not set  
Strong drive mode set  
Document Number: 001-53516 Rev. *G  
Page 11 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
Figure 5. CY8C20111 Digital Logic Diagram  
OUTPUT_PORT [0]  
LOGICAL_OPR_INPUT0 [0]  
A
INVERSION  
LOGIC  
DIG0  
CS0  
AND / OR  
Logic selection  
B
S
OP_SEL_0 [0]  
OP_SEL_0 [7]  
OP_SEL_0 [1]  
Figure 6. CY8C20121 Digital Logic Diagram  
LOGICAL_OPR_INPUTx [0]  
OUTPUT_PORT [x]  
A
CS0  
A
INVERSION  
LOGIC  
DIGx  
AND / OR  
Logic selection  
AND / OR  
Logic selection  
B
S
LOGICAL_OPR_INPUTx [1]  
B
S
CS1  
OP_SEL_x [7]  
OP_SEL_x [0]  
OP_SEL_x [1]  
INPUT SELECTION LOGIC  
Document Number: 001-53516 Rev. *G  
Page 12 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.6 OP_SEL_x  
Logic Operation Selection Registers  
OP_SEL_0: 1Ch  
OP_SEL_1: 21h (Not available for 1 Button)  
1/2Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW: 0  
Op_En  
RW: 0  
InvOp  
RW: 0  
Operator  
This register is used to enable logic operation on GP outputs. OP_SEL_0 should be configured to get the logic operation output on  
DIG0 output and OP_SEL_1 for DIG1 output. Write to these registers during the disable state of respective DIG output pins does not  
have any effect.  
The input to the logic operation can be selected in LOGIC_OPRX registers. The selected inputs can be ORed or ANDed. The output  
of logic operation can also be inverted.  
Bit  
Name  
Description  
7
Op_En  
This bit enables or disables logic operation.  
0
1
Disable logic operation  
Enable logic operation  
1
0
InvOp  
This bit enables or disables logic operation output inversion.  
0
1
Logic operation output not inverted  
Logic operation output inverted  
Operator  
This bit selects which operator should be used to compute logic operation.  
0
1
Logic operator OR is used on inputs  
Logic operator AND is used on inputs  
8.7 LOGICAL_OPR_INPUTx  
Selects Input for Logic Operation  
LOGICAL_OPR_INPUT0: 1Eh LOGICAL_OPR_INPUT1: 23h (Not available for 1 button)  
LOGICAL_OPR_INPUT0  
1 Button  
Access: FD  
Bit Name  
7
7
6
6
6
5
5
5
4
4
4
3
3
3
2
2
2
1
1
1
0
RW:01  
CSL[0]  
2 Button  
Access: FD  
Bit Name  
0
RW:01  
CSL [1:0]  
LOGICAL_OPR_INPUT1  
2 Button  
Access: FD  
Bit Name  
7
0
RW:02  
CSL [1:0]  
These registers are used to give the input to logic operation block. The inputs can be only CapSense input status.  
Bit  
Name  
Description  
1:0  
CSL [1:0]  
These bits selects the input for logic operation block.  
Document Number: 001-53516 Rev. *G  
Page 13 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.8 CS_NOISE_TH  
Noise Threshold Register  
CS_NOISE_TH: 4Eh  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW:28  
NT[7:0]  
This register sets the noise threshold value. For individual sensors, count values above this threshold do not update the baseline.  
This count is relative to baseline. This parameter is common for all sensors.  
The range is 3 to 255 and it should satisfy the equation NT < Min (Finger Threshold – Hysteresis – 5). Recommended value is 40%  
of finger threshold.  
Bit  
Name  
Description  
7:0  
NT [7:0]  
These bits are used to set the noise threshold value.  
8.9 CS_BL_UPD_TH  
Baseline Update Threshold Register  
CS_BL_UPD_TH: 4Fh  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW:64  
BLUT[7:0]  
When the new raw count value is above the current baseline and the difference is below the noise threshold, the difference between  
the current baseline and the raw count is accumulated into a “bucket.” When the bucket fills, the baseline increments and the bucket  
is emptied. This parameter sets the threshold that the bucket must reach for the baseline to increment. In other words, lower value  
provides faster baseline update rate and vice versa. This parameter is common for all sensors.  
The range is 0 to 255.  
Bit  
Name  
Description  
7:0  
BLUT [7:0]  
These bits set the threshold that the bucket must reach for baseline to increment.  
8.10 CS_SETL_TIME  
Settling Time Register  
CS_SETL_TIME: 50h  
(Writable only in Setup mode)  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW:A0  
STLNG_TM[7:0]  
The settling time parameter controls the duration of the capacitance-to-voltage conversion phase. The parameter setting controls a  
software delay that allows the voltage on the integrating capacitor to stabilize. This parameter is common for all sensors.  
This register should be set before setting finger threshold (0x66, 0x67) and IDAC setting (0x70, 0x71) registers.  
The range is 2 to 255.  
Bit  
Name  
Description  
7:0  
STLNG_TM [7:0]  
These bits are used to set the settling time value.  
Document Number: 001-53516 Rev. *G  
Page 14 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.11 CS_OTH_SET  
CapSense Clock Select, Sensor Auto Reset Register  
CS_OTH_SET: 51h  
(Writable only in Setup mode)  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW: 00  
CS_CLK[1:0]  
RW: 0  
Sns_Ar  
The registers set the CapSense module frequency of operation and enables or disables the sensor auto reset.  
CS_CLK bits provides option to select variable clock input for the CapSense block. A sensor design having higher paratactic requires  
lower clock for better performance and vice versa.  
Sensor Auto Reset determines whether the baseline is updated at all times or only when the signal difference is below the noise  
threshold. When set to ‘1’ (enabled), the baseline is updated constantly. This setting limits the maximum time duration of the sensor,  
but it prevents the sensors from permanently turning on when the raw count suddenly rises without anything touching the sensor. This  
sudden rise can be caused by a large power supply voltage fluctuation, a high energy RF noise source, or a very quick temperature  
change. When the parameter is set to ‘0’ (disabled), the baseline is updated only when raw count and baseline difference is below  
the noise threshold parameter. This parameter may be enabled unless there is a demand to keep the sensors in the on state for a  
long time. This parameter is common for all sensors.  
Bit  
Name  
Description  
6:5  
CS_CLK[1:0]  
These bits selects the CapSense clock.  
CS_CLK[1:0]  
00  
Frequency of Operation  
IMO  
01  
10  
11  
IMO/2  
IMO/4  
IMO/8  
3
Sns_Ar  
This bit is used to enable or disable sensor auto reset.  
0
1
Disable Sensor auto reset  
Enable Sensor auto reset  
8.12 CS_HYSTERISIS  
Hysteresis Register  
CS_HYSTERISIS: 52h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
RW:0A  
2
1
0
HYS[7:0]  
The Hysteresis parameter adds to or subtracts from the finger threshold depending on whether the sensor is currently active or  
inactive. If the sensor is off, the difference count must overcome the ‘finger threshold + hysteresis’. If the sensor is on, the difference  
count must go below the ‘finger threshold – hysteresis’. It is used to add debouncing and “stickiness” to the finger detection algorithm.  
This parameter is common for all sensors.  
Possible values are 0 to 255. However, the setting must be lower than the finger threshold parameter setting. Recommended value  
for hysteresis is 15 percent of finger threshold.  
Bit  
Name  
Description  
7:0  
HYS [7:0]  
These bits are used to set the hysteresis value.  
Document Number: 001-53516 Rev. *G  
Page 15 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.13 CS_DEBOUNCE  
Debounce Register.  
CS_DEBOUNCE: 53h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW:0A  
DB[7:0]  
The Debounce parameter adds a debounce counter to the ‘sensor active transition’. For the sensor to transition from inactive to active,  
the consecutive samples of difference count value must stay above the ‘finger threshold + hysteresis’ for the number specified. This  
parameter is common for all sensors.  
Possible values are 1 to 255. A setting of ‘1’ provides no debouncing.  
Bit  
Name  
Description  
7:0  
DB [7:0]  
These bits are used to set the debounce value.  
8.14 CS_NEG_NOISE_TH  
Negative Noise Threshold Register  
CS_NEG_NOISE_TH: 54h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW:0A  
NNT[7:0]  
This parameter adds a negative difference count threshold. If the current raw count is below the baseline and the difference between  
them is greater than this threshold, the baseline is not updated. However, if the current raw count stays in the low state (difference  
greater than the threshold) for the number of samples specified by the Low Baseline Reset parameter, the baseline is reset. This  
parameter is common for all sensors.  
Bit  
Name  
Description  
7:0  
NNT [7:0]  
These bits are used to set the negative noise value.  
8.15 CS_LOW_BL_RST  
Low Baseline Reset Register  
CS_LOW_BL_RST: 55h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW:0A  
LBR[7:0]  
This parameter works together with the Negative Noise Threshold parameter. If the sample count values are below the baseline minus  
the negative noise threshold for the specified number of samples, the baseline is set to the new raw count value. It essentially counts  
the number of abnormally low samples required to reset the baseline. It is generally used to correct the finger-on-at-startup condition.  
This parameter is common for all sensors.  
Bit  
Name  
Description  
7:0  
LBR [7:0]  
These bits are used to set the Low Baseline Reset value.  
Document Number: 001-53516 Rev. *G  
Page 16 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.16 CS_FILTERING  
CapSense Filtering Register  
CS_FILTERING: 56h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW: 0  
RstBl  
RW: 1  
I2C_DS  
RW: 0  
Avg_En  
RW: 00  
Avg_Order[1:0]  
This register provides an option for forced baseline reset and to enable and configure two different types of software filters.  
Bit  
Name  
Description  
7
RstBl  
This bit resets all the baselines and it is auto cleared to ‘0’.  
0
1
All Baselines are not reset  
All baselines are reset  
5
I2C_DS  
Avg_En  
When this bit is set to ‘1’ the CapSense scan sample is dropped if I2C communication  
was active during scanning.  
0
1
Disable the I2C drop sample filer  
Enable the I2C drop sample filter  
4
This bit enables average filter on raw counts.  
0
1
Disable the average filter  
Enable the average filter  
[1:0]  
Avg_Order[1:0]  
These bits are used to select the number of CapSense samples to average:  
Avg_Order[1:0] in Hex  
Samples to Average  
00  
01  
10  
11  
2
4
8
16  
8.17 CS_SCAN_POS_x  
Scan Position Registers  
CS_SCAN_POS_0: 5Ch  
(Writable only in Setup mode)  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
4
3
3
2
2
1
1
0
RW: 0  
Scan_Pstn  
CS_SCAN_POS_1: 5Dh (Not available for 1 Button)  
(Writable only in Setup mode)  
2 Button  
Access: FD  
Bit Name  
7
6
5
0
RW: 1  
Scan_Pstn  
This register is used to set the position of the sensors in the switch table for proper scanning sequence because the CapSense sensors  
are scanned in sequence.  
This register should be set after setting 0x07, 0x50, and 0x51 registers.  
Bit  
Name  
Description  
0
Scan_Pstn  
This bit sets the scan position.  
Document Number: 001-53516 Rev. *G  
Page 17 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.18 CS_FINGER_TH_x  
Finger Threshold Registers  
CS_FINGER_TH_0: 66h  
CS_FINGER_TH_1: 67h (Not available in 1 Button)  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW: 64  
FT[7:0]  
This register sets the finger threshold value for CapSense inputs. Possible values are 3 to 255. This parameter should be configured  
individually for each CapSense inputs.  
This register should be set after setting 0x07, 0x50, and 0x51 registers.  
Bit  
Name  
Description  
[7:0]  
FT [7:0]  
These bit set the finger threshold for CapSense inputs.  
8.19 CS_IDAC_x  
IDAC Setting Registers  
CS_IDAC_0: 70h CS_IDAC_1: 71h (Not available in 1 Button)  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW: 0A  
IDAC[7:0]  
The IDAC register controls the sensitivity of the CapSense algorithm. This register is used to tune the CapSense input for specific  
design or overlays. Decreasing the value of this register increases the sensitivity of the CapSense buttons and vice versa. Decreasing  
the value of IDAC increases noise and vice versa.  
Possible values are 1 to 255. If the value is set to 0 then the value is reset to default value 10.  
The recommended value is greater than 4. Setting value 4 creates excessive amount of noise.  
This register should be set after setting 0x07, 0x50, and 0x51 registers.  
Bit  
Name  
Description  
[7:0]  
IDAC [7:0]  
These bit set the IDAC values.  
8.20 I2C_ADDR_LOCK  
I2C Address Lock Registers  
I2C_ADDR_LOCK: 79h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
WPR: 0  
I2CAL  
This register is used to unlock and lock the I2C address register (7Ch) access. The device I2C address should be modified by writing  
new address to register 7Ch after unlocking the access using this register. Write to the 7C register during the locked state does not  
have any effect and the new address take effect only after the access is locked.  
To lock or unlock the I2C AL bit, the following three bytes must be written to register 79h:  
unlock I2CAL: 3Ch A5h 69h  
lock I2CAL: 96h 5Ah C3h  
Reading the I2CAL bit from register 79h indicates the current access state.  
Bit  
0
Name  
I2CAL  
Description  
This bit gives the lock/unlock status of I2C address.  
0
1
Unlocked  
Locked  
Document Number: 001-53516 Rev. *G  
Page 18 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.21 DEVICE_ID  
Device ID Register  
DEVICE_ID: 7Ah  
1 Button  
7
6
6
5
5
4
3
2
2
1
1
0
0
Access: FD  
Bit Name  
R: 11  
DEV_ID[7:0]  
2 Button  
Access: FD  
Bit Name  
7
4
3
R: 21  
DEV_ID[7:0]  
This register contains the device and product ID. The device and product ID corresponds to “xx” in CY8C201xx.  
Bit  
Name  
Description  
7:0  
DEV_ID [7:0]  
These bits contain the device and product ID.  
Part No  
Device/Product ID  
CY8C20111  
CY8C20121  
11  
21  
8.22 DEVICE_STATUS  
Device Status Register  
DEVICE_STATUS: 7Bh  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
R : 00  
R: 0  
IRES  
R : 0  
R: 0  
R: 0  
CSE  
R: 0  
Ip_Volt[1:0]  
Load_FD  
No_NVM_Wr  
DIGE  
This register contains the device status.  
Bit  
Name  
Description  
7:6  
Ip_Volt [1:0]  
Supply voltage is automatically detected and these bits are set accordingly.  
Ip_Volt[1:0]  
Supply Voltage  
00  
01  
10  
11  
5
3.3  
2.7  
Reser ed  
5
4
IRES  
When set to ‘1’, this bit indicates that an internal reset occurred.  
0
1
indicates the last system reset was not internal reset  
indicates the last system reset was internal reset  
This bit indicates whether factory defaults are loaded during power-up.  
Load_FD  
0
1
User default configuration is loaded during power-up  
Factory default configuration is loaded during power-up  
3
1
No_NVM_Wr  
CSE  
When set to ‘1’, this bit indicates that the supply voltage applied to the device Is too  
low for a write to nonvolatile memory operation, and no write is performed. This bit  
must be checked before any Store or Write POR command.  
This bit indicates whether CapSense function is enabled or disabled.  
0
1
Functionality of CapSense block is disabled  
Functionality of CapSense block is enabled  
0
DIGE  
This bit indicates whether GP Output function is enabled or disabled.  
0
1
Functionality of Digital output block is disabled  
Functionality of Digital output block is enabled  
Document Number: 001-53516 Rev. *G  
Page 19 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.23 I2C_ADDR_DM  
Device I2C Address and I2C Pin Drive Mode Register  
I2C_ADDR_DM: 7Ch  
1 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
RW: 0  
RW: 00  
I2CIP_EN  
I2C_ADDR[6:0]  
This register sets the drive mode of I2C pins and I2C slave address. To write to this register, register 79h must first be unlocked. The  
value written to register 7Ch is applied only after locking register 79h again.  
Bit  
7
Name  
I2CIP_EN  
Description  
This bit is used to set the I2C pins drive mode.  
0
1
Internal pull-up enabled  
Internal pull-up disabled  
6:0  
I2C_ADDR [6:0]  
Used to set the device I2C address.  
8.24 CS_READ_BUTTON  
Button Select Register  
I2C_ADDR_DM: 81h  
1 Button  
Access: FD  
Bit Name  
7
6
6
5
5
4
4
3
3
2
2
1
1
0
RW: 0  
RD_EN  
RW: 0  
CSBN[0]  
2 Button  
Access: FD  
Bit Name  
7
0
RW: 0  
RD_EN  
RW: 00  
CSBN[1:0]  
The scan result of a CapSense input (raw count, difference count, and baseline) can be read only for one input at a time using 82h-87h  
registers. This register is used to select a CapSense input to read the raw count, difference count, and baseline. Only the pins defined  
as CapSense inputs in register 07h can be used with this register. Trying to select other pins not defined as CapSense does not have  
any change.  
Bit  
Name  
Description  
7
RD_EN  
This bit enables the CapSense raw data reading.  
0
1
Disable CapSense scan result reading  
Enable CapSense scan result reading  
1:0  
CSBN [1:0]  
These bits decide which CapSense button scan result are read. When writing to this  
register, the bitmask must contain only one bit set to ’1’, otherwise the data is  
discarded.  
CSBN [1:0]  
01  
10  
CapSense Button No  
1
2
Document Number: 001-53516 Rev. *G  
Page 20 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.25 CS_READ_BLx  
Baseline Value MSB/LSB Registers  
CS_READ_BLM: 82h  
CS_READ_BLL: 83h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
0
0
0
R: 00  
BL [7:0]  
Reading from this register returns the 2-byte current baseline value for the selected CapSense input.  
Bit  
Name  
Description  
7:0  
BL [7:0]  
These bits represent the baseline value.  
8.26 CS_READ_DIFFx  
Difference Count Value MSB/LSB Registers  
CS_READ_DIFFM: 82h  
CS_READ_DIFFL: 83h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
R: 00  
DIF [7:0]  
Reading from this register returns the 2-byte current difference count for the selected CapSense input.  
Bit  
Name  
Description  
These bits represent the sensor difference count.  
7:0  
DIF [7:0]  
8.27 CS_READ_RAWx  
Difference Count Value MSB/LSB Registers  
CS_READ_RAWM: 82h  
CS_READ_RAWL: 83h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
2
1
R: 00  
RC [7:0]  
Reading from this register returns the 2-byte current raw count value for the selected CapSense input.  
Bit  
Name  
Description  
7:0  
RC [7:0]  
These bits represent the raw count value.  
Document Number: 001-53516 Rev. *G  
Page 21 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
8.28 CS_READ_STATUS  
Sensor On Status Register  
CS_READ_STATUS: 88h  
1 Button  
Access: FD  
Bit Name  
7
6
6
5
5
4
4
3
3
2
2
1
1
0
R: 0  
BT_ST[0]  
2 Button  
Access: FD  
Bit Name  
7
0
R: 00  
BT_ST[1:0]  
This register gives the sensor ON/OFF status. A bit ‘1’ indicates sensor is ON and ‘0’ indicates sensor is OFF.  
Bit  
Name  
Description  
1:0  
BT_ST [1:0]  
These bits used to represent sensor status.  
0
1
Sensor OFF  
Sensor ON  
8.29 COMMAND_REG  
Command Register  
COMMAND_REG: A0h  
1/2 Button  
Access: FD  
Bit Name  
7
6
5
4
3
W: 00  
2
1
0
Cmnd [7:0]  
Commands are executed by writing the command code to the command register.  
Bit  
Name  
Description  
7:0  
Cmnd [7:0]  
Refer to the following table for command register opcodes.  
Command  
Code  
Name  
Description  
00h  
Get Firmware Revision The I2C buffer is loaded with the one byte firmware revision value. Reading one byte  
after writing this command returns the firmware revision. The upper nibble of the  
firmware revision byte is the major revision number and the lower nibble is the minor  
revision number.  
01h  
02h  
03h  
Store Current Configu-  
ration to NVM  
The current register settings are saved in nonvolatile memory (flash). This setting is  
automatically loaded after the next device reset/power-up or if the Reconfigure Device  
(06h) command is issued.  
Restore Factory  
Configuration  
Replaces the saved user configuration with the factory default configuration. Current  
settings are unaffected by this command. New settings are loaded after the next device  
reset/power-up or if the 06h command is issued.  
Write POR Defaults  
Sends new power-up defaults to the CapSense controller without changing current  
settings unless the 06h command is issued afterwards. This command is followed by  
123 data bytes according to the POR Default Data Structure table. The CRC is calculated  
as the XOR of the 122 data bytes (00h-79h). If the CRC check fails or an incomplete  
block is sent, the slave responds with an ACK and the data is NOT saved to flash.  
To define new POR defaults:  
Write command 03h  
Write 122 data bytes with new values of registers (use the _flash.iic file generated  
from s/w tool)  
Write one CRC byte calculated as XOR of previous 122 data bytes  
Document Number: 001-53516 Rev. *G  
Page 22 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
Command  
Code  
Name  
Description  
04h  
Read POR Defaults  
Reads the POR settings stored in the nonvolatile memory. To read POR defaults:  
Write command 04h  
Read 122 data bytes  
Read one CRC byte  
05h  
Read Device Configu-  
ration (RAM)  
Reads the current device configuration. Gives the user "flat-address-space" access to  
all device settings. To read device configuration:  
Write command 05h  
Read 122 data bytes  
Read one CRC byte  
06h  
07h  
Reconfigure Device  
(POR)  
Immediately reconfigures the device with actual POR defaults from flash. Has the same  
effect on the registers as a POR. This command can only be executed in setup operation  
mode (command code 08).  
Set Normal Operation  
Mode  
Sets the device in normal operation mode. In this mode, CapSense pin assignments  
cannot be modified; settling time, IDAC setting, external capacitor, and sensor  
auto-reset also cannot be modified.  
08h  
09h  
Set Setup Operation  
Mode  
Sets the device in setup operation mode. In this mode, CapSense pin assignments can  
be changed along with other parameters.  
Start CapSense  
Scanning  
Allows the user to start CSA scanning after it has been stopped using command 0x0A.  
Note that at POR, scanning is enabled and started by default if one or more sensors are  
enabled.  
0Ah  
Stop CapSense  
Scanning  
Allows the user to stop CSA scanning. A system host controller might initiate this  
command before powering down the device to make sure that during power-down no  
CapSense touches are detected.  
When CSA scanning is stopped by the user and the device is still in the valid VCC  
operating range, the following behavior is supported:  
Any change to configuration can still be done (as long as VCC is in operating range).  
Command code 0x06 overrides the status of stop/scan by enabling and starting CSA  
scanning if one or more sensors are enabled.  
CapSense read-back values return 0x00.  
0Bh  
Returns CapSense  
Scanning Status  
The I2C buffer is loaded with the one-byte CSA scanning status value. After writing the  
value 0Bh to the A0h register, reading one byte returns the CSA scanning status. It  
returns the LVD_STOP_SCAN and STOP_SCAN bits.  
LVD_STOP_SCAN is bit 3 - Set when CSA is stopped because VCC is outside the valid  
operating range. STOP_SCAN is bit 2 - Set when CSA is stopped by the user by writing  
command 0x0A.  
Document Number: 001-53516 Rev. *G  
Page 23 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
9. Layout Guidelines and Best Practices  
Sl.  
Category  
Button Shape  
Min  
Max  
Recommendations/Remarks  
No.  
1
Solid round pattern, round with LED hole, rectangle with  
round corners  
2
3
Button Size  
5 mm  
15 mm  
10 mm  
8 mm  
Button Button Spacing  
= Button  
Ground  
Clearance  
4
5
6
7
Button Ground Clearance  
Ground Flood - Top Layer  
Ground Flood - Bottom Layer  
0.5 mm  
2 mm  
Button ground clearance = Overlay Thickness  
Hatched ground 7 mil trace and 45 mil grid (15% filling)  
Hatched ground 7 mil trace and 70 mil grid (10% filling)  
< 100 mm.  
Trace Length from Sensor to  
PSoC - Buttons  
200 mm  
0.20 mm  
8
9
Trace Width  
0.17 mm  
0.17 mm (7 mil)  
Trace Routing  
Traces should be routed on the non sensor side. If any non  
CapSense trace crosses CapSense trace, ensure that inter-  
section is orthogonal.  
10  
Via Position for the Sensors  
Via should be placed near the edge of the button/slider to  
reduce trace length thereby increasing sensitivity.  
11  
12  
13  
Via Hole Size for Sensor Traces  
No. of Via on Sensor Trace  
10 mil  
1
1
2
CapSense Series Resistor  
Placement  
10mm  
Place CapSense series resistors close to PSoC for noise  
suppression.CapSense resistors have highest priority place  
them first.  
14  
15  
Distance between any  
CapSense Trace to Ground  
Flood  
10 mil  
20 mil  
20 mil  
Device Placement  
Mount the device on the layer opposite to sensor. The  
CapSense trace length between the device and sensors  
should be minimum  
16  
17  
Placement of Components in 2  
Layer PCB  
Top layer-sensor pads and bottom layer-PSoC, other compo-  
nents and traces.  
Placement of Components in 4  
Layer PCB  
Top layer-sensor pads, second layer – CapSense traces,  
third layer-hatched ground, bottom layer- PSoC, other  
components and non CapSense traces  
18  
19  
Overlay Material  
Should to be non conductive material. Glass, ABS Plastic,  
Formica  
Overlay Adhesives  
Adhesive should be non conductive and dielectrically homog-  
enous. 467MP and 468MP adhesives made by 3M are  
recommended.  
20  
21  
LED Back Lighting  
Board Thickness  
Cut a hole in the sensor pad and use rear mountable LEDs.  
Refer Example PCB Layout Design with Two CapSense  
Buttons and Two LEDs on page 26.  
Standard board thickness for CapSense FR4 based designs  
is 1.6 mm.  
The Recommended maximum overlay thickness is 2 mm. For more details refer to AN53490, section The Integrating Capacitor.  
Document Number: 001-53516 Rev. *G  
Page 24 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
Figure 7. Button Shapes  
Figure 8. Button Layout Design  
X: Button to ground clearance  
Y: Button to button clearance  
Figure 9. Recommended Via-hole Placement  
Document Number: 001-53516 Rev. *G  
Page 25 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
9.1 Example PCB Layout Design with Two CapSense Buttons and Two LEDs  
Figure 10. Top Layer  
Figure 11. Bottom Layer  
Document Number: 001-53516 Rev. *G  
Page 26 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
10. Operating Voltages  
For details on I2C 1x Ack time, refer Register Map on page 7 and CapSense Express Commands on page 8. I2C 4x Ack time is  
approximately four times the values mentioned in these tables.  
11. CapSense Constraints  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
Parasitic Capacitance (CP) of the  
CapSense Sensor  
30  
pF  
Supply Voltage Variation (VDD  
)
± 5%  
Document Number: 001-53516 Rev. *G  
Page 27 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
12. Electrical Specifications  
12.1 Absolute Maximum Ratings  
Parameter  
Description  
Storage temperature  
Min  
Typ  
Max  
Unit  
Notes  
TSTG  
–55  
25  
+100  
°C Higher storage temperatures reduce data  
retention time. Recommended storage  
temperature is +25 °C ± 25 °C (0 °C to  
50 °C). Extended duration storage tempera-  
tures above 65 °C degrade reliability  
TBAKETEMP Bake Temperature  
tBAKETIME Bake Time  
125  
See  
Package  
label  
°C  
See  
package  
label  
72  
Hours  
TA  
Ambient temperature with power  
applied  
–40  
+85  
°C  
VDD  
VIO  
Supply voltage on VDD relative to VSS  
DC input voltage  
–0.5  
VSS – 0.5  
VSS – 0.5  
–25  
+6.0  
VDD + 0.5  
VDD + 0.5  
+50  
V
V
VIOZ  
IMIO  
ESD  
LU  
DC voltage applied to tri-state  
Maximum current into any GPIO pin  
Electro static discharge voltage  
Latch up current  
V
mA  
V
2000  
Human body model ESD  
200  
mA  
12.2 Operating Temperature  
Parameter  
Description  
Min  
–40  
–40  
Typ  
Max  
+85  
Unit  
°C  
Notes  
TA  
TJ  
Ambient temperature  
Junction temperature  
+100  
°C  
13. DC Electrical Characteristics  
13.1 DC Chip Level Specifications  
Parameter  
VDD  
Description  
Supply voltage  
Supply current  
Min  
2.40  
Typ  
Max  
5.25  
2.5  
Unit  
Notes  
V
IDD  
1.5  
mA Conditions are VDD = 3.10 V, TA = 25 °C  
Document Number: 001-53516 Rev. *G  
Page 28 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
13.2 DC GPIO Specifications  
13.2.1 5-V and 3.3-V DC GPIO Specifications  
This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C TA 85 °C, 3.10 V to 3.6 V –40 °C TA 85 °C. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design  
guidance only.  
Parameter  
Description  
High output voltage  
Min  
Typ  
Max  
Unit  
V
Notes  
V
V
V
– 0.2  
I
I
I
10 µA/pin, V 3.10 V  
OH1  
OH2  
OL  
DD  
DD  
OH  
OH  
OL  
DD  
V
V
High output voltage  
Low output voltage  
– 0.9  
V
= 1 mA/pin, V 3.10 V  
DD  
0.75  
V
= 20 mA/pin, V > 3.10 V, maximum of 40  
DD  
mA sink current  
I
High output current  
0.01  
1
10  
5
mA  
mA  
pF  
V
3.1 V  
OH  
DD  
DD  
I
Low output current on Port 0 pins  
Capacitive load on pins as output  
V
3.1 V, maximum of 40 mA sink current  
OL1  
C
0.5  
1.7  
Package and pin dependent.  
Temp = 25 °C.  
OUT  
13.2.2 2.7-V DC GPIO Specifications  
This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 2.90 V and  
–40 °C < TA < 85 °C, respectively. Typical parameters apply to 2.7 V at 25 °C and are for design guidance only.  
Parameter  
Description  
High output voltage  
Min  
Typ  
Max  
Unit  
V
Notes  
V
V
V
– 0.2  
I
I
I
10 µA/pin  
OH1  
OH2  
OL  
DD  
DD  
OH  
OH  
OL  
V
V
High output voltage  
Low output voltage  
– 0.5  
V
= 0.2 mA/pin  
0.75  
V
= 10 mA/pin, maximum of 20 mA sink  
current  
I
High output current  
0.01  
0.2  
10  
5
mA  
mA  
pF  
V
V
2.9 V  
OH  
DD  
DD  
I
Low output current on Port 0 pins  
Capacitive load on pins as output  
2.9 V, maximum of 20 mA sink current  
OL1  
C
0.5  
1.7  
Package and pin dependent.  
Temp = 25 °C.  
OUT  
13.3 DC POR and LVD Specifications  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
Notes  
V
V
V
Value for PPOR Trip  
= 2.7 V  
= 3.3 V, 5 V  
V
must be greater than or equal to 2.5 V  
DD  
DD  
DD  
DD  
V
V
2.36  
2.60  
2.40  
2.65  
V
V
during startup or reset from watchdog.  
PPOR0  
PPOR1  
13.4 DC Flash Write Specifications  
This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40  
°C < TA < 85 °C, 3.10 V to 3.6 V and –40 °C < TA < 85 °C or 2.4 V to 2.90 V and –40 °C < TA < 85 °C, respectively. Typical parameters  
apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only. Flash Endurance and Retention specifications are valid only  
within the range: 25 °C±20 °C during the flash write operation. It is at the user’s own risk to operate out of this temperature range. If  
flash writing is done out of this temperature range, the endurance and data retention reduces.  
Symbol  
Description  
Supply Voltage for Flash Write Operations  
Supply Current for Flash Write Operations  
Flash Endurance  
Min  
2.7  
Typ  
Max  
Units  
V
Notes  
[7]  
V
DDIWRITE  
DDP  
I
5
25  
mA  
Flash  
Flash  
50,000  
10  
Erase/write cycles  
ENPB  
DR  
Flash Data Retention  
Years  
Note  
7. Commands involving flash writes (0x01, 0x02, 0x03) and flash read (0x04) must be executed only within the same V voltage range detected at POR (power on, or  
CC  
command 0x06) and above 2.7 V.  
Document Number: 001-53516 Rev. *G  
Page 29 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
2
13.5 DC I C Specifications  
This table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and  
–40 °C < TA < 85 °C, 3.10 V to 3.6 V and –40 °C < TA < 85 °C or 2.4 V to 2.90 V and –40 °C < TA < 85 °C, respectively. Typical  
parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C. These are for design guidance only.  
Table 7. DC I2C Specifications[9]  
Symbol  
Description  
Min  
Typ  
Max  
Units  
Notes  
V
Input low level  
Input high level  
0.3 × V  
V
V
V
V
2.4 V V 3.6 V  
ILI2C  
DD  
DD  
0.7 × V  
0.25 × V  
4.75 V V 5.25 V  
DD  
DD  
V
V
2.4 V V 5.25 V  
IHI2C  
DD  
DD  
Low output voltage  
0.4  
I
=5 mA/pin, maximum of 10 mA  
OLP  
OL  
device sink current  
2.4 V 2.9 V and 3.1 V 3.6  
DD  
DD  
V.  
2
C
R
Capacitive load on I C pins  
0.5  
4
1.7  
5.6  
5
8
pF Package and pin dependent.  
Temp = 25 °C.  
I2C  
PU  
Pull-up resistor  
kΩ  
13.6 CapSense Electrical Characteristics  
Max (V)  
Typ (V)  
Min (V)  
Conditions for Supply Voltage  
Result  
3.6  
3.3  
3.1  
< 2.9  
The device automatically reconfigures itself to work in 2.7 V  
mode of operation.  
> 2.9 or < 3.10  
< 2.45 V  
This range is not recommended for CapSense usage.  
2.90  
5.25  
2.7  
5.0  
2.45  
4.75  
The scanning for CapSense parameters shuts down until the  
voltage returns to over 2.45 V.  
> 3.10  
The device automatically reconfigures itself to work in 3.3 V  
mode of operation.  
< 2.4 V  
The device goes into reset.  
< 4.73 V  
The scanning for CapSense parameters shuts down until the  
voltage returns to over 4.73 V.  
Notes  
8. A maximum of 36 × 50,000 block endurance cycles is allowed. This is balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2 blocks  
of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and that no single block ever sees  
more than 50,000 cycles).  
2
9. All GPIO meet the DC GPIO V and V specifications found in the DC GPIO Specifications sections. The I C GPIO pins also meet the above specs.  
IL  
IH  
Document Number: 001-53516 Rev. *G  
Page 30 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
14. AC Electrical Specifications  
14.1 AC Chip-Level Specifications  
14.1.1 5-V and 3.3-V AC Chip-Level Specifications  
Parameter Description  
Min  
Typ  
Max  
Units  
Notes  
F
Internal low-speed oscillator (ILO) frequency  
15  
32  
64  
kHz  
Calculations during sleep operations are  
done based on ILO frequency.  
32K1  
t
t
External reset pulse width  
10  
Us  
ms  
XRST  
Time from end of POR to CPU executing  
code  
150  
POWERUP  
SR  
Power supply slew rate  
250  
V/ms  
POWER_  
UP  
14.1.2 2.7-V AC Chip-Level Specifications  
Parameter Description  
Min  
Typ  
Max  
Units  
Notes  
F
Internal low-speed oscillator (ILO) frequency  
8
32  
96  
kHz  
Calculations during sleep operations are  
done based on ILO frequency.  
32K1  
t
t
External reset pulse width  
10  
Us  
ms  
XRST  
Time from end of POR to CPU executing  
code  
600  
POWERUP  
SR  
Power supply slew rate  
250  
V/ms  
POWER_  
UP  
14.2 AC GPIO Specifications  
14.2.1 5-V and 3.3-V AC GPIO Specifications  
Parameter  
Description  
Min  
Max  
Unit  
Notes  
t
t
Rise time, strong mode,  
15  
80  
ns  
V
= 3.10 V to 3.6 V and 4.75 V to 5.25  
DD  
Rise  
Cload = 50 pF  
V, 10% to 90%  
V = 3.10 V to 3.6 V and 4.75 V to 5.25  
DD  
Fall time, strong mode,  
Cload = 50 pF  
10  
50  
ns  
Fall  
V, 10% to 90%  
14.2.2 2.7-V AC GPIO Specifications  
Parameter Description  
Min  
Max  
Unit  
Notes  
t
Rise time, strong mode,  
15  
100  
ns  
V
V
= 2.4 V to 2.90 V, 10% to 90%  
Rise  
DD  
DD  
Cload = 50 pF  
t
Fall time, strong mode,  
Cload = 50 pF  
10  
70  
ns  
= 2.4 V to 2.90 V, 10% to 90%  
Fall  
2
14.3 AC I C Specifications  
Standard  
Mode  
Fast Mode  
Parameter  
Description  
Units  
Notes  
Min Max Min  
Max  
F
SCL clock frequency  
0
100  
0
400  
kbps Fast mode not supported for  
< 3.0 V  
SCLI2C  
V
DD  
t
Hold time (repeated) START condition. After  
this period, the first clock pulse is generated  
4.0  
0.6  
µs  
HDSTAI2C  
t
t
t
LOW period of the SCL clock  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
µs  
µs  
µs  
LOWI2C  
HIGH period of the SCL clock  
HIGHI2C  
SUSTAI2C  
Setup time for a repeated START condition  
Document Number: 001-53516 Rev. *G  
Page 31 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
2
14.3 AC I C Specifications (continued)  
Standard  
Mode  
Fast Mode  
Parameter  
Description  
Units  
Notes  
Min Max Min  
Max  
t
Data hold time  
Data setup time  
0
0
µs  
ns  
µs  
µs  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
t
t
t
250  
4.0  
4.7  
100  
0.6  
1.3  
Setup time for STOP condition  
BUS free time between a STOP and START  
condition  
t
Pulse width of spikes suppressed by the input  
filter  
0
50  
ns  
SPI2C  
Figure 12. Definition of Timing for Fast/Standard Mode on the I2C Bus  
I2C_SDA  
I2C_SCL  
TSUDATI2C  
TSPI2C  
TSUSTAI2C  
TBUFI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C TLOWI2C  
TSUSTOI2C  
P
S
S
Sr  
Repeated START Condition  
STOP Condition  
START Condition  
Document Number: 001-53516 Rev. *G  
Page 32 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
2
15. Examples of Frequently Used I C Commands  
2
[10]  
Sl. No.  
Requirement  
Enter into setup mode  
Enter into normal mode  
I C Commands  
W 00 A0 08  
Comment  
1
2
3
W 00 A0 07  
W 00 A0 02  
Load factory defaults to RAM  
registers  
4
Do a software reset  
W 00 A0 08  
W 00 A0 06  
; Enter into setup mode  
; Do software reset  
5
6
Save current configuration to flash  
W 00 A0 01  
Load factory defaults to RAM  
registers and save as user configu-  
ration  
W 00 A0 08  
W 00 A0 02  
W 00 A0 01  
W 00 A0 06  
; Enter into setup mode  
; Load factory defaults to SRAM  
; Save the configuration to flash. Wait for time specified in  
Table 6.  
; Do software reset  
7
Disable combinational logic output to  
DIG0  
W 00 1C 00  
W 00 21 00  
W 00 04 00  
W 00 04 01  
W 00 04 02  
W 00 04 03  
8
Disable combinational logic output to  
DIG1  
9
Clearing (logic 0) the both DIG0 and  
DIG1 outputs  
Combinational logic output on DIG0 and DIG1 should be  
disabled before dong this operation (SL# 7 and 8)  
10  
11  
12  
13  
Setting (logic 1) the DIG0 and  
clearing (Logic 0) the DIG1 outputs  
Clearing (logic 0) the DIG0 and  
Setting (Logic 1) the DIG1 outputs  
Setting (logic 1) the both DIG0 and  
DIG1 outputs  
Change CapSense clock to IMO/2  
W 00 A0 08  
W 00 51 20  
W 00 A0 07  
; Enter into setup mode  
; CapSense clock is set as IMO/2  
; Enter into normal mode  
14  
15  
16  
Change value of IDAC0 to ‘x’h  
Change value of IDAC1 to ‘y’h  
W 00 70 x  
W 00 71 y  
W 00 70 x y  
‘x’ represents new value of IDAC register  
‘y’ represents new value of IDAC register  
‘x’ and ‘y’ represents new value of IDAC register  
Change value of IDAC0 and IDAC1  
to ‘x’h and ‘y’h  
17  
18  
19  
Change the value FT0 to ‘x’h  
Change the value FT1 to ‘y’h  
W 00 66 x  
W 00 67 y  
W 00 66 x y  
‘x’ represents new value of FT register  
‘y’ represents new value of FT register  
‘x’ and ‘y’ represents new value of FT registers  
Change thevalue FT0andFT1 to ‘x’h  
and ‘y’h  
20  
21  
Change noise threshold to ‘x’h  
W 00 4E x  
Read CapSense button CS0 scan  
results  
W 00 81 81  
W 00 82  
; Select CapSense button for reading scan result  
; Set the read point to 82h  
; Consecutive 6 reads gets baseline, difference count and  
raw count (all two byte each)  
R
00 RD RD RD RD  
RD RD  
22  
Read CapSense button status  
register  
W 00 88  
; Set the read pointer to 88  
; Reading a byte gets status CapSense inputs  
R
00 RD  
Note  
10. The ‘W’ indicates the write transfer and the next byte of data represents the 7-bit I2C address. The I2C address is assumed to be ‘0’ in the above examples.  
Similarly ‘R’ indicates the read transfer followed by 7-bit address and data byte read operations.  
Document Number: 001-53516 Rev. *G  
Page 33 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
16. Ordering Information  
Package  
Ordering Code  
Operating  
Temperature  
CapSense CapSense  
Digital  
Outputs  
XRES  
Pin  
Package Type  
Diagram  
Blocks  
Inputs  
CY8C20111-SX1I  
CY8C20111-SX1IT  
CY8C20121-SX1I  
CY8C20121-SX1IT  
51-85066 8-Pin SOIC  
Industrial  
Industrial  
Industrial  
Industrial  
Yes  
1
1
2
2
1
1
2
2
No  
No  
No  
No  
51-85066 8-Pin SOIC (tape and reel)  
51-85066 8-Pin SOIC  
Yes  
Yes  
51-85066 8-Pin SOIC (tape and reel)  
Yes  
Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).  
16.1 Ordering Code Definitions  
CY 8 C 201  
xx - SX 1 I T  
Tape and Reel  
Thermal Rating : Industrial  
8 pin pinout  
Package Type : SOIC Pb- Free  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = Cypress Semiconductors  
Company ID: CY = Cypress  
Thermal Impedances  
Solder Reflow Specifications  
Table 16-1. Thermal Impedance by Package  
Table 16-2. Solder Reflow Specifications  
[11]  
Package  
Typical θJA  
Maximum Peak  
Temperature (TC)  
Maximum Time  
above TC – 5 °C  
Package  
8-Pin SOIC  
127.22 °C/W  
8-Pin SOIC  
260 °C  
30 seconds  
Note  
11. T = T + Power x θ  
J
A
JA.  
Document Number: 001-53516 Rev. *G  
Page 34 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
17. Package Diagram  
Figure 13. 8-Pin (150-Mil) SOIC (51-85066)  
51-85066 *E  
Document Number: 001-53516 Rev. *G  
Page 35 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
18. Acronyms  
18.1 Acronyms Used  
Table 8 lists the acronyms that are used in this document.  
Table 8. Acronyms Used in this Datasheet  
Acronym  
AC  
Description  
alternating current  
Acronym  
LVD  
Description  
low voltage detect  
CMOS  
CRC  
complementary metal oxide semiconductor  
cyclic redundancy check  
PCB  
printed circuit board  
PGA  
programmable gain amplifier  
power on reset  
CSA  
capsense successive approximation  
capsense sigma delta  
POR  
CSD  
PPOR  
PSoC®  
PWM  
precision power on reset  
Programmable System-on-Chip  
pulse width modulator  
DC  
direct current  
EEPROM  
electrically erasable programmable read-only  
memory  
EMC  
GPIO  
I/O  
electromagnetic compatibility  
general-purpose I/O  
input/output  
QFN  
quad flat no leads  
SLIMO  
SPITM  
SRAM  
SROM  
SSOP  
USB  
slow IMO  
serial peripheral interface  
static random access memory  
supervisory read only memory  
shrink small-outline package  
universal serial bus  
IDAC  
ILO  
current DAC  
internal low speed oscillator  
internal main oscillator  
liquid crystal display  
low dropout regulator  
light-emitting diode  
least-significant bit  
IMO  
LCD  
LDO  
LED  
LSB  
WDT  
watchdog timer  
WLCSP  
XRES  
wafer level chip scale package  
external reset  
19. Document Conventions  
19.1 Units of Measure  
Table 9 lists the units of measures.  
Table 9. Units of Measure  
Symbol  
Unit of Measure  
Symbol  
Unit of Measure  
millimeter  
°C  
degree Celsius  
kilo bits per second  
kilohertz  
mm  
kbps  
kHz  
kΩ  
ms  
nA  
ns  
%
millisecond  
nanoampere  
nanosecond  
percent  
kilohm  
LSB  
µA  
least significant bit  
microampere  
microsecond  
milliampere  
pF  
V
picofarad  
µs  
volts  
mA  
W
watt  
19.2 Numeric Conventions  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimals.  
Document Number: 001-53516 Rev. *G  
Page 36 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
20. Glossary  
active high  
1. A logic signal having its asserted state as the logic 1 state.  
2. A logic signal having the logic 1 state as the higher voltage of the two states.  
analog blocks  
The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous  
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain  
stages, and much more.  
analog-to-digital A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,  
(ADC)  
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs  
the reverse operation.  
Application  
programming  
interface (API)  
A series of software routines that comprise an interface between a computer application and  
lower level services and functions (for example, user modules and libraries). APIs serve as  
building blocks for programmers that create software applications.  
asynchronous  
A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.  
Bandgap  
reference  
A stable voltage reference design that matches the positive temperature coefficient of VT with  
the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally)  
reference.  
bandwidth  
bias  
1. The frequency range of a message or information processing system measured in hertz.  
2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or  
loss); it is sometimes represented more specifically as, for example, full width at half maximum.  
1. A systematic deviation of a value from a reference value.  
2. The amount by which the average of a set of values departs from a reference value.  
3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a  
reference level to operate the device.  
block  
buffer  
1. A functional unit that performs a single function, such as an oscillator.  
2. A functional unit that may be configured to perform one of several functions, such as a digital  
PSoC block or an analog PSoC block.  
1. A storage area for data that is used to compensate for a speed difference, when transferring  
data from one device to another. Usually refers to an area reserved for I/O operations, into  
which data is read, or from which data is written.  
2. A portion of memory set aside to store data, often before it is sent to an external device or as  
it is received from an external device.  
3. An amplifier used to lower the output impedance of a system.  
bus  
1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets  
with similar routing patterns.  
2. A set of signals performing a common function and carrying similar data. Typically represented  
using vector notation; for example, address[7:0].  
3. One or more conductors that serve as a common connection for a group of related devices.  
clock  
The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is  
sometimes used to synchronize different logic blocks.  
comparator  
An electronic circuit that produces an output voltage or current whenever two input levels simultaneously  
satisfy predetermined amplitude requirements.  
Document Number: 001-53516 Rev. *G  
Page 37 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
20. Glossary (continued)  
compiler  
A program that translates a high level language, such as C, into machine language.  
configuration  
space  
In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to  
‘1’.  
crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric  
crystal is less sensitive to ambient temperature than other circuit components.  
cyclicredundancy A calculation used to detect errors in data communications, typically performed using a linear  
check (CRC)  
data bus  
feedback shift register. Similar calculations may be used for a variety of other purposes such as  
data compression.  
A bi-directional set of signals used by a computer to convey information from a memory location  
to the central processing unit and vice versa. More generally, a set of signals used to convey  
data between digital functions.  
debugger  
A hardware and software system that allows you to analyze the operation of the system  
under development. A debugger usually allows the developer to step through the firmware one  
step at a time, set break points, and analyze memory.  
dead band  
A period of time when neither of two or more signals are in their active state or in transition.  
digital blocks  
The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC  
generator, pseudo-random number generator, or SPI.  
digital-to-analog A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-  
(DAC)  
to-digital (ADC) converter performs the reverse operation.  
duty cycle  
emulator  
The relationship of a clock period high time to its low time, expressed as a percent.  
Duplicates (provides an emulation of) the functions of one system with a different system, so that  
the second system appears to behave like the first system.  
External Reset  
(XRES)  
An active high signal that is driven into the PSoC device. It causes all operation of the CPU and  
blocks to stop and return to a pre-defined state.  
Flash  
An electrically programmable and erasable, non-volatile technology that provides you the  
programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means  
that the data is retained when power is OFF.  
Flash block  
The smallest amount of Flash ROM space that may be programmed at one time and the smallest  
amount of Flash space that may be protected. A Flash block holds 64 bytes.  
frequency  
gain  
The number of cycles or events per unit of time, for a periodic function.  
The ratio of output current, voltage, or power to input current, voltage, or power, respectively.  
Gain is usually expressed in dB.  
I2C  
A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an  
Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The  
original system was created in the early 1980s as a battery control interface, but it was later used  
as a simple internal bus system for building control electronics. I2C uses only two bi-directional  
pins, clock and data, both running at +5V and pulled high with resistors. The bus operates at 100  
kbits/second in standard mode and 400 kbits/second in fast mode.  
Document Number: 001-53516 Rev. *G  
Page 38 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
20. Glossary (continued)  
ICE  
The in-circuit emulator that allows you to test the project in a hardware environment, while  
viewing the debugging device activity in a software environment (PSoC Designer).  
input/output (I/O) A device that introduces data into or extracts data from a system.  
interrupt  
A suspension of a process, such as the execution of a computer program, caused by an event  
external to that process, and performed in such a way that the process can be resumed.  
interrupt service A block of code that normal code execution is diverted to when the M8C receives a hardware  
routine (ISR)  
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code  
block. Each ISR code block ends with the RETI instruction, returning the device to the point in  
the program where it left normal program execution.  
jitter  
1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on  
serial data streams.  
2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval between  
successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.  
low-voltagedetect A circuit that senses VDD and provides an interrupt to the system when VDD falls lower than a selected threshold.  
(LVD)  
M8C  
An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside  
a PSoC by interfacing to the Flash, SRAM, and register space.  
master device  
A device that controls the timing for data exchanges between two devices. Or when devices are  
cascaded in width, the master device is the one that controls the timing for data exchanges  
between the cascaded devices and an external interface. The controlled device is called the  
slave device.  
microcontroller  
An integrated circuit chip that is designed primarily for control systems and products. In addition  
to a CPU, a microcontroller typically includes memory, timing circuits, and I/O circuitry. The reason  
for this is to permit the realization of a controller with a minimal quantity of chips, thus  
achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of  
the controller. The microcontroller is normally not used for general-purpose computation as is a  
microprocessor.  
mixed-signal  
modulator  
noise  
The reference to a circuit containing both analog and digital techniques and components.  
A device that imposes a signal on a carrier.  
1. A disturbance that affects a signal and that may distort the information carried by the signal.  
2. The random variations of one or more characteristics of any entity such as voltage, current, or data.  
oscillator  
parity  
A circuit that may be crystal controlled and is used to generate a clock frequency.  
A technique for testing transmitting data. Typically, a binary digit is added to the data to make the  
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).  
Phase-locked  
loop (PLL)  
An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative  
to a reference signal.  
pinouts  
The pin number assignment: the relation between the logical inputs and outputs of the PSoC  
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts  
involve pin numbers as a link between schematic and PCB design (both being computer generated  
files) and may also involve pin names.  
Document Number: 001-53516 Rev. *G  
Page 39 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
20. Glossary (continued)  
port  
A group of pins, usually eight.  
Power on reset  
(POR)  
A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is a type of  
hardware reset.  
PSoC®  
Cypress Semiconductor’s PSoC® is a registered trademark and Programmable System-on-Chip™ is a trademark  
of Cypress.  
PSoC Designer™ The software for Cypress’ Programmable System-on-Chip technology.  
pulse width  
An output in the form of duty cycle which varies as a function of the applied measurand  
modulator (PWM)  
RAM  
An acronym for random access memory. A data-storage device from which data can be read out  
and new data can be written in.  
register  
reset  
A storage device with a specific capacity, such as a bit or byte.  
A means of bringing a system back to a know state. See hardware reset and software reset.  
ROM  
An acronym for read only memory. A data-storage device from which data can be read out, but  
new data cannot be written in.  
serial  
1. Pertaining to a process in which all events occur one after the other.  
2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or  
channel.  
settling time  
shift register  
slave device  
The time it takes for an output signal or value to stabilize after the input has changed from one  
value to another.  
A memory storage device that sequentially shifts a word either left or right to output a stream of  
serial data.  
A device that allows another device to control the timing for data exchanges between two  
devices. Or when devices are cascaded in width, the slave device is the one that allows another  
device to control the timing of data exchanges between the cascaded devices and an external  
interface. The controlling device is called the master device.  
SRAM  
SROM  
An acronym for static random access memory. A memory device where you can store and  
retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell,  
it remains unchanged until it is explicitly altered or until power is removed from the device.  
An acronym for supervisory read only memory. The SROM holds code that is used to boot the  
device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be  
accessed in normal user code, operating from Flash.  
stop bit  
A signal following a character or block that prepares the receiving device to receive the next  
character or block.  
synchronous  
1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal.  
2. A system whose operation is synchronized by a clock signal.  
Document Number: 001-53516 Rev. *G  
Page 40 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
20. Glossary (continued)  
tri-state  
A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does  
not drive any value in the Z state and, in many respects, may be considered to be disconnected  
from the rest of the circuit, allowing another output to drive the same net.  
UART  
A UART or universal asynchronous receiver-transmitter translates between parallel bits of data  
and serial bits.  
user modules  
Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and  
configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high  
level API (Application Programming Interface) for the peripheral function.  
user space  
VDD  
The bank 0 space of the register map. The registers in this bank are more likely to be modified  
during normal program execution and not just during initialization. Registers in bank 1 are most  
likely to be modified only during the initialization phase of the program.  
A name for a power net meaning "voltage drain." The most positive power supply signal. Usually  
5 V or 3.3 V.  
VSS  
A name for a power net meaning "voltage source." The most negative power supply signal.  
watchdog timer  
A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified  
period of time.  
Document Number: 001-53516 Rev. *G  
Page 41 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
21. Document History Page  
Document Title: CY8C20111, CY8C20121 CapSense® Express™ - One Button and Two Button Capacitive Controllers  
Document Number: 001-53516  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
2709248  
2821828  
SLAN/PYRS  
SSHH/FSU  
See ECN New data sheet  
12/4/2009 - Added Contents  
*A  
- Changed values in the Registers table.  
- Added the OUTPUT_STATUS register.  
- The note about flash writes must be performed at POR voltage also applies  
to flash reads.  
- Added new electrical specs including Tpowerup and output current.  
*B  
*C  
2868929  
2892629  
SLAN  
NJF  
01/28/2010 Converted from Preliminary to Final.  
Updated package diagram.  
03/15/2010 Added TBAKETEMP and TBAKETIME parameters in Absolute Maximum  
Ratings.  
Added the following tables: Thermal Impedance by Package and Solder  
Reflow Specifications.  
*D  
*E  
3043236  
3087790  
ARVM  
NJF  
09/30/10 Removed F32ku and tpowerup rows from Absolute Maximum Ratings table.  
Included “AC Chip-Level Specifications” section under  
“AC Electrical Specifications” section  
11/16/10 Removed section “2.7-V DC Spec for I2C Line with 1.8 V External Pull-up”.  
Added DC I2C Specifications table and DC Programming Specifications.  
Updated Units of Measure, Acronyms, and Glossary sections.  
Updated solder reflow specifications.  
No specific changes were made to I2C Timing Diagram. Updated for clearer  
understanding.  
Template and styles update.  
*F  
3148656  
3287607  
ARVM  
ARVM  
01/20/11 In table under 9th section, deleted the 18th row (Overlay thickness-buttons)  
In “CapSense Constraints” table, deleted the 2nd row (Overlay thickness)  
Added following statement after table under 9th section - “The Recom-  
mended maximum overlay thickness is 2 mm. For more details refer to  
AN53490, section: The Integrating Capacitor.”  
Updated Solder reflow specifications.  
*G  
06/20/11 Posting to external web.  
Document Number: 001-53516 Rev. *G  
Page 42 of 43  
[+] Feedback  
CY8C20111, CY8C20121  
22. Sales, Solutions, and Legal Information  
22.1 Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-53516 Rev. *G  
Revised June 24, 2011  
Page 43 of 43  
CapSense Express™, PSoC Designer™, and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered  
2
trademarks referenced herein are property of the respective corporations. Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the  
2
2
2
Philips I C Patent Rights to use these components in an I C system, provided that the system conforms to the I C Standard Specification as defined by Philips. All products and company names  
mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY8C20111_12

CapSense® Express™ – One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20121

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20121-SX1I

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20121-SX1IT

CapSense Express-One Button and Two Button Capacitive Controllers
CYPRESS

CY8C20134

PSoC? Programmable System-on-Chip?
CYPRESS

CY8C20134-12SXI

PSoC? Programmable System-on-Chip?
CYPRESS

CY8C20134_1106

PSoC Programmable System-on-Chip Low power at high speed
CYPRESS

CY8C20140

CapSense Express⑩ - 4 Configurable IOs
CYPRESS

CY8C20140-LDX2I

CapSense Express⑩ - 4 Configurable IOs
CYPRESS

CY8C20140-SX2I

CapSense Express⑩ - 4 Configurable IOs
CYPRESS

CY8C20140_09

CapSense Express-4 Configurable IOs
CYPRESS

CY8C20142

CapSense Express⑩ - 4 Configurable IOs
CYPRESS