CY7C68013A_0905 [CYPRESS]

EZ-USB FX2LP? USB Microcontroller High Speed USB Peripheral Controller; EZ- USB FX2LP ™ USB微控制器,高速USB外设控制器
CY7C68013A_0905
型号: CY7C68013A_0905
厂家: CYPRESS    CYPRESS
描述:

EZ-USB FX2LP? USB Microcontroller High Speed USB Peripheral Controller
EZ- USB FX2LP ™ USB微控制器,高速USB外设控制器

微控制器
文件: 总62页 (文件大小:1809K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
EZ-USB FX2LP™ USB Microcontroller  
High Speed USB Peripheral Controller  
GPIF (General Programmable Interface)  
Enables direct connection to most parallel interfaces  
Programmable waveform descriptors and configuration  
registers to define waveforms  
Supports multiple Ready (RDY) inputs and Control (CTL)  
outputs  
1. Features (CY7C68013A/14A/15A/16A)  
USB 2.0 USB IF High Speed Certified (TID # 40460272)  
Single Chip Integrated USB 2.0 Transceiver, Smart SIE, and  
Enhanced 8051 Microprocessor  
Fit, Form, and Function Compatible with the FX2  
Pin compatible  
Object-code-compatible  
Integrated, Industry Standard Enhanced 8051  
48 MHz, 24 MHz, or 12 MHz CPU operation  
Four clocks per instruction cycle  
Two USARTS  
Functionally Compatible (FX2LP is a superset)  
Ultra Low Power: ICC No More than 85 mA in any Mode  
Ideal for bus and battery powered applications  
Three counter/timers  
Expanded interrupt system  
Two data pointers  
Software: 8051 Code Runs from:  
3.3V Operation with 5V Tolerant Inputs  
Internal RAM, which is downloaded through USB  
Internal RAM, which is loaded from EEPROM  
External memory device (128 pin package)  
Vectored USB Interrupts and GPIF/FIFO Interrupts  
Separate Data Buffers for the Setup and Data Portions of a  
CONTROL Transfer  
16 KBytes of On-Chip Code/Data RAM  
Integrated I2C Controller, Runs at 100 or 400 kHz  
Four Programmable BULK/INTERRUPT/ISOCHRONOUS  
Endpoints  
Buffering options: double, triple, and quad  
Four Integrated FIFOs  
Integrated glue logic and FIFOs lower system cost  
Automatic conversion to and from 16-bit buses  
Master or slave operation  
Uses external clock or asynchronous strobes  
Easy interface to ASIC and DSP ICs  
Additional Programmable (BULK/INTERRUPT) 64 Byte  
Endpoint  
8-bit or 16-bit External Data Interface  
Smart Media Standard ECC Generation  
Available in Commercial and Industrial Temperature Grade  
(all packages except VFBGA)  
Cypress Semiconductor Corporation  
Document #: 38-08032 Rev. *M  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 22, 2009  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Logic Block Diagram  
High performance micro  
using standard tools  
with lower-power options  
24 MHz  
Ext. XTAL  
FX2LP  
I2C  
/0.5  
/1.0  
/2.0  
8051 Core  
x20  
PLL  
Master  
VCC  
1.5k  
12/24/48 MHz,  
four clocks/cycle  
Abundant I/O  
including two USARTS  
Additional I/Os (24)  
connected for  
full speed  
General  
ADDR (9)  
programmable I/F  
to ASIC/DSP or bus  
standards such as  
D+  
D–  
GPIF  
USB  
2.0  
XCVR  
CY  
Smart  
USB  
16 KB  
RAM  
RDY (6)  
CTL (6)  
ATAPI, EPP, etc.  
ECC  
1.1/2.0  
Engine  
Integrated  
full speed and  
high speed  
XCVR  
Up to 96 MBytes/s  
burst rate  
4 kB  
FIFO  
8/16  
Enhanced USB core  
Simplifies 8051 code  
“Soft Configuration”  
Easy firmware changes  
FIFO and endpoint memory  
(master or slave operation)  
Cypress has created a cost effective solution that provides  
superior time-to-market advantages with low power to enable  
bus powered applications.  
1.1 Features (CY7C68013A/14A only)  
CY7C68014A: Ideal for Battery Powered Applications  
Suspend current: 100 μA (typ)  
The ingenious architecture of FX2LP results in data transfer  
rates of over 53 Mbytes per second, the maximum allowable  
USB 2.0 bandwidth, while still using a low cost 8051 microcon-  
troller in a package as small as a 56 VFBGA (5 mm x 5 mm).  
Because it incorporates the USB 2.0 transceiver, the FX2LP is  
more economical, providing a smaller footprint solution than  
USB 2.0 SIE or external transceiver implementations. With  
EZ-USB FX2LP, the Cypress Smart SIE handles most of the  
USB 1.1 and 2.0 protocol in hardware, freeing the embedded  
microcontroller for application specific functions and decreasing  
development time to ensure USB compatibility.  
CY7C68013A: Ideal for Non-battery Powered Applications  
Suspend current: 300 μA (typ)  
Available in Five Pb-free Packages with Up to 40 GPIOs  
128-pinTQFP(40GPIOs),100-pinTQFP(40GPIOs),56-pin  
QFN (24 GPIOs), 56-pin SSOP (24 GPIOs), and 56-pin VF-  
BGA (24 GPIOs)  
1.2 Features (CY7C68015A/16A only)  
CY7C68016A: Ideal for Battery Powered Applications  
Suspend current: 100 μA (typ)  
The General Programmable Interface (GPIF) and Master/Slave  
Endpoint FIFO (8-bit or 16-bit data bus) provides an easy and  
glueless interface to popular interfaces such as ATA, UTOPIA,  
EPP, PCMCIA, and most DSP/processors.  
CY7C68015A: Ideal for Non-battery Powered Applications  
Suspend current: 300 μA (typ)  
Available in Pb-free 56-pin QFN Package (26 GPIOs)  
TwomoreGPIOsthanCY7C68013A/14Aenablingadditional  
features in same footprint  
The FX2LP draws less current than the FX2 (CY7C68013), has  
double the on-chip code/data RAM, and is fit, form and function  
compatible with the 56, 100, and 128 pin FX2.  
Cypress’s EZ-USB FX2LP(CY7C68013A/14A) is a low power  
version of the EZ-USB FX2(CY7C68013), which is a highly  
integrated, low power USB 2.0 microcontroller. By integrating the  
USB 2.0 transceiver, serial interface engine (SIE), enhanced  
8051 microcontroller, and a programmable peripheral interface  
in a single chip,  
Five packages are defined for the family: 56VFBGA, 56 SSOP,  
56 QFN, 100 TQFP, and 128 TQFP.  
Document #: 38-08032 Rev. *M  
Page 2 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
2. Applications  
Figure 1. Crystal Configuration  
Portable video recorder  
MPEG/TV conversion  
DSL modems  
24 MHz  
C1  
C2  
12 pf  
12 pf  
ATA interface  
20 × PLL  
Memory card readers  
Legacy conversion devices  
Cameras  
12-pF capacitor values assumes a trace capacitance  
of 3 pF per side on a four-layer FR4 PCA  
Scanners  
The CLKOUT pin, which can be three-stated and inverted using  
internal control bits, outputs the 50% duty cycle 8051 clock, at  
the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz.  
Home PNA  
Wireless LAN  
3.2.2 USARTS  
MP3 players  
FX2LP contains two standard 8051 USARTs, addressed through  
Special Function Register (SFR) bits. The USART interface pins  
are available on separate I/O pins, and are not multiplexed with  
port pins.  
Networking  
The “Reference Designs” section of the Cypress web site  
provides additional tools for typical USB 2.0 applications. Each  
reference design comes complete with firmware source and  
object code, schematics, and documentation. Visit  
www.cypress.com for more information.  
UART0 and UART1 can operate using an internal clock at  
230 KBaud with no more than 1% baud rate error. 230 KBaud  
operation is achieved by an internally derived clock source that  
generates overflow pulses at the appropriate time. The internal  
clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and  
12 MHz) such that it always presents the correct frequency for  
230 KBaud operation.[1]  
3. Functional Overview  
3.1 USB Signaling Speed  
FX2LP operates at two of the three rates defined in the USB  
Specification Revision 2.0, dated April 27, 2000:  
3.2.3 Special Function Registers  
Certain 8051 SFR addresses are populated to provide fast  
access to critical FX2LP functions. These SFR additions are  
shown in Table 1 on page 4. Bold type indicates non standard,  
enhanced 8051 registers. The two SFR rows that end with “0”  
and “8” contain bit addressable registers. The four I/O ports A to  
D use the SFR addresses used in the standard 8051 for ports 0  
to 3, which are not implemented in FX2LP. Because of the faster  
and more efficient SFR addressing, the FX2LP I/O ports are not  
addressable in external RAM space (using the MOVX  
instruction).  
Full speed, with a signaling bit rate of 12 Mbps  
High speed, with a signaling bit rate of 480 Mbps.  
FX2LP does not support the low speed signaling mode of  
1.5 Mbps.  
3.2 8051 Microprocessor  
The 8051 microprocessor embedded in the FX2LP family has  
256 bytes of register RAM, an expanded interrupt system, three  
timer/counters, and two USARTs.  
2
3.3 I C Bus  
3.2.1 8051 Clock Frequency  
FX2LP supports the I2C bus as a master only at 100/400 KHz.  
SCL and SDA pins have open-drain outputs and hysteresis  
inputs. These signals must be pulled up to 3.3V, even if no I2C  
device is connected.  
FX2LP has an on-chip oscillator circuit that uses an external  
24 MHz (±100 ppm) crystal with the following characteristics:  
Parallel resonant  
Fundamental mode  
3.4 Buses  
500 μW drive level  
All packages, 8-bit or 16-bit “FIFO” bidirectional data bus, multi-  
plexed on I/O ports B and D. 128-pin package: adds 16-bit  
output-only 8051 address bus, 8-bit bidirectional data bus.  
12 pF (5% tolerance) load capacitors  
An on-chip PLL multiplies the 24 MHz oscillator up to 480 MHz,  
as required by the transceiver/PHY and internal counters divide  
it down for use as the 8051 clock. The default 8051 clock  
frequency is 12 MHz. The clock frequency of the 8051 can be  
changed by the 8051 through the CPUCS register, dynamically.  
Note  
1. 115 KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0, UART1, or both respectively.  
Document #: 38-08032 Rev. *M  
Page 3 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 1. Special Function Registers  
x
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
8x  
IOA  
9x  
IOB  
Ax  
Bx  
Cx  
Dx  
Ex  
Fx  
IOC  
IOD  
SCON1  
SBUF1  
PSW  
ACC  
B
SP  
EXIF  
INT2CLR  
INT4CLR  
IOE  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
MPAGE  
OEA  
OEB  
OEC  
OED  
OEE  
PCON  
TCON  
TMOD  
TL0  
SCON0  
SBUF0  
IE  
IP  
T2CON  
EICON  
EIE  
EIP  
AUTOPTRH1  
AUTOPTRL1  
reserved  
EP2468STAT  
EP24FIFOFLGS  
EP68FIFOFLGS  
EP01STAT  
GPIFTRIG  
RCAP2L  
RCAP2H  
TL2  
TL1  
TH0  
TH1  
AUTOPTRH2  
AUTOPTRL2  
reserved  
GPIFSGLDATH  
GPIFSGLDATLX  
TH2  
CKCON  
AUTOPTRSET-UP GPIFSGLDATLNOX  
Two control bits in the USBCS (USB Control and Status) register,  
control the ReNumeration process: DISCON and RENUM. To  
simulate a USB disconnect, the firmware sets DISCON to 1. To  
reconnect, the firmware clears DISCON to 0.  
3.5 USB Boot Methods  
During the power up sequence, internal logic checks the I2C port  
for the connection of an EEPROM whose first byte is either 0xC0  
or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM  
in place of the internally stored values (0xC0), or it boot-loads the  
EEPROM contents into internal RAM (0xC2). If no EEPROM is  
detected, FX2LP enumerates using internally stored descriptors.  
The default ID values for FX2LP are VID/PID/DID (0x04B4,  
0x8613, 0xAxxx where xxx = Chip revision).[2]  
Before reconnecting, the firmware sets or clears the RENUM bit  
to indicate whether the firmware or the Default USB Device  
handles device requests over endpoint zero: if RENUM = 0, the  
Default USB Device handles device requests; if RENUM = 1, the  
firmware services the requests.  
Table 2. Default ID Values for FX2LP  
Default VID/PID/DID  
3.7 Bus-Powered Applications  
The FX2LP fully supports bus powered designs by enumerating  
with less than 100 mA as required by the USB 2.0 specification.  
Vendor ID  
Product ID  
0x04B4 Cypress Semiconductor  
0x8613 EZ-USB FX2LP  
3.8 Interrupt System  
Device release 0xAnnn Depends on chip revision  
(nnn = chip revision where first  
silicon = 001)  
3.8.1 INT2 Interrupt Request and Enable Registers  
FX2LP implements an autovector feature for INT2 and INT4.  
There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF)  
vectors. See EZ-USB Technical Reference Manual (TRM) for  
more details.  
3.6 ReNumeration  
Because the FX2LP’s configuration is soft, one chip can take on  
the identities of multiple distinct USB devices.  
3.8.2 USB Interrupt Autovectors  
When first plugged into USB, the FX2LP enumerates automati-  
cally and downloads firmware and USB descriptor tables over  
the USB cable. Next, the FX2LP enumerates again, this time as  
a device defined by the downloaded information. This patented  
two step process called ReNumerationhappens instantly when  
the device is plugged in, without a hint that the initial download  
step has occurred.  
The main USB interrupt is shared by 27 interrupt sources. To  
save the code and processing time that is required to identify the  
individual USB interrupt source, the FX2LP provides a second  
level of interrupt vectoring, called Autovectoring. When a USB  
interrupt is asserted, the FX2LP pushes the program counter to  
its stack, and then jumps to the address 0x0043 where it expects  
to find a “jump” instruction to the USB Interrupt service routine.  
Note  
2
2. The I C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.  
Document #: 38-08032 Rev. *M  
Page 4 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
The FX2LP jump instruction is encoded as follows:  
Table 3. INT2 USB Interrupts  
USB INTERRUPT TABLE FOR INT2  
Source  
Priority  
1
INT2VEC Value  
Notes  
00  
04  
08  
0C  
10  
14  
18  
1C  
20  
24  
28  
2C  
30  
34  
38  
3C  
40  
44  
48  
4C  
50  
54  
58  
5C  
60  
64  
68  
6C  
70  
74  
78  
7C  
SUDAV  
Setup Data Available  
2
SOF  
Start of Frame (or microframe)  
Setup Token Received  
3
SUTOK  
4
SUSPEND  
USB RESET  
HISPEED  
EP0ACK  
USB Suspend request  
5
Bus reset  
6
Entered high speed operation  
FX2LP ACK’d the CONTROL Handshake  
reserved  
7
8
9
EP0-IN  
EP0-OUT  
EP1-IN  
EP1-OUT  
EP2  
EP0-IN ready to be loaded with data  
EP0-OUT has USB data  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
EP1-IN ready to be loaded with data  
EP1-OUT has USB data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN-Bulk-NAK (any IN endpoint)  
reserved  
EP4  
EP6  
EP8  
IBN  
EP0PING  
EP1PING  
EP2PING  
EP4PING  
EP6PING  
EP8PING  
ERRLIMIT  
EP0 OUT was Pinged and it NAK’d  
EP1 OUT was Pinged and it NAK’d  
EP2 OUT was Pinged and it NAK’d  
EP4 OUT was Pinged and it NAK’d  
EP6 OUT was Pinged and it NAK’d  
EP8 OUT was Pinged and it NAK’d  
Bus errors exceeded the programmed limit  
reserved  
reserved  
EP2ISOERR  
EP4ISOERR  
EP6ISOERR  
EP8ISOERR  
ISO EP2 OUT PID sequence error  
ISO EP4 OUT PID sequence error  
ISO EP6 OUT PID sequence error  
ISO EP8 OUT PID sequence error  
If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), the FX2LP substitutes its INT2VEC byte. Therefore, if the high  
byte (“page”) of a jump table address is preloaded at the location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs  
the jump to the correct address out of the 27 addresses within the page.  
3.8.3 FIFO/GPIF Interrupt (INT4)  
Just as the USB Interrupt is shared among 27 individual USB interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual  
FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 4 on page 6 shows the priority  
and INT4VEC values for the 14 FIFO/GPIF interrupt sources.  
Document #: 38-08032 Rev. *M  
Page 5 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 4. Individual FIFO/GPIF Interrupt Sources  
Priority  
INT4VEC Value  
Source  
EP2PF  
EP4PF  
EP6PF  
EP8PF  
EP2EF  
EP4EF  
EP6EF  
EP8EF  
EP2FF  
EP4FF  
EP6FF  
EP8FF  
GPIFDONE  
GPIFWF  
Notes  
1
2
80  
84  
88  
8C  
90  
94  
98  
9C  
A0  
A4  
A8  
AC  
B0  
B4  
Endpoint 2 Programmable Flag  
Endpoint 4 Programmable Flag  
Endpoint 6 Programmable Flag  
Endpoint 8 Programmable Flag  
Endpoint 2 Empty Flag  
Endpoint 4 Empty Flag  
Endpoint 6 Empty Flag  
Endpoint 8 Empty Flag  
Endpoint 2 Full Flag  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Endpoint 4 Full Flag  
Endpoint 6 Full Flag  
Endpoint 8 Full Flag  
GPIF Operation Complete  
GPIF Waveform  
If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP  
register), the FX 2LP substitutes its INT4VEC byte. Therefore, if  
the high byte (“page”) of a jump-table address is preloaded at  
location 0x0054, the automatically inserted INT4VEC byte at  
0x0055 directs the jump to the correct address out of the 14  
addresses within the page. When the ISR occurs, the FX2LP  
pushes the program counter to its stack then jumps to address  
0x0053, where it expects to find a “jump” instruction to the ISR  
Interrupt service routine.  
5 ms after VCC reaches 3.0V. If the crystal input pin is driven by  
a clock signal the internal PLL stabilizes in 200 μs after VCC has  
reached 3.0V.[3]  
Figure 2 on page 7 shows a power on reset condition and a reset  
applied during operation. A power on reset is defined as the time  
reset that is asserted while power is being applied to the circuit.  
A powered reset is when the FX2LP powered on and operating  
and the RESET# pin is asserted.  
Cypress provides an application note which describes and  
recommends power on reset implementation. For more infor-  
mation about reset implementation for the FX2 family of products  
visit http://www.cypress.com.  
3.9 Reset and Wakeup  
3.9.1 Reset Pin  
The input pin, RESET#, resets the FX2LP when asserted. This  
pin has hysteresis and is active LOW. When a crystal is used with  
the CY7C680xxA the reset period must enable stabilization of  
the crystal and the PLL. This reset period must be approximately  
Note  
3. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 μs.  
Document #: 38-08032 Rev. *M  
Page 6 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 2. Reset Timing Plots  
RESET#  
RESET#  
VIL  
VIL  
3.3V  
3.0V  
3.3V  
VCC  
VCC  
0V  
0V  
TRESET  
TRESET  
Power on Reset  
Powered Reset  
Table 5. Reset Timing Values  
3.10 Program/Data RAM  
3.10.1 Size  
Condition  
TRESET  
Power on Reset with Crystal  
5 ms  
The FX2LP has 16 KBytes of internal program/data RAM, where  
PSEN#/RD# signals are internally ORed to enable the 8051 to  
access it as both program and data memory. No USB control  
registers appear in this space.  
Power on Reset with External  
Clock  
200 μs + Clock stability time  
Powered Reset  
200 μs  
Two memory maps are shown in the following diagrams:  
Figure 3 on page 8 shows the Internal Code Memory, EA = 0  
Figure 4 on page 9 shows the External Code Memory, EA = 1.  
3.9.2 Wakeup Pins  
The 8051 puts itself and the rest of the chip into a power down  
mode by setting PCON.0 = 1. This stops the oscillator and PLL.  
When WAKEUP is asserted by external logic the oscillator  
restarts after the PLL stabilizes, and the 8051 receives a wakeup  
interrupt. This applies whether or not FX2LP is connected to the  
USB.  
3.10.2 Internal Code Memory, EA = 0  
This mode implements the internal 16 KByte block of RAM  
(starting at 0) as combined code and data memory. When  
external RAM or ROM is added, the external read and write  
strobes are suppressed for memory spaces that exist inside the  
chip. This enables the user to connect a 64 KByte memory  
without requiring address decodes to keep clear of internal  
memory spaces.  
The FX2LP exits the power down (USB suspend) state using one  
of the following methods:  
USB bus activity (if D+/D– lines are left floating, noise on these  
lines may indicate activity to the FX2LP and initiate a wakeup)  
Only the internal 16 KBytes and scratch pad 0.5 KBytes RAM  
spaces have the following access:  
External logic asserts the WAKEUP pin  
External logic asserts the PA3/WU2 pin  
USB download  
USB upload  
The second wakeup pin, WU2, can also be configured as a  
general purpose I/O pin. This enables a simple external R-C  
network to be used as a periodic wakeup source. WAKEUP is by  
default active LOW.  
Setup data pointer  
I2C interface boot load.  
3.10.3 External Code Memory, EA = 1  
The bottom 16 KBytes of program memory is external and  
therefore the bottom 16 KBytes of internal RAM is accessible  
only as a data memory.  
Document #: 38-08032 Rev. *M  
Page 7 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 3. Internal Code Memory, EA = 0  
Inside FX2LP  
Outside FX2LP  
FFFF  
7.5 KBytes  
USB regs and  
4K FIFO buffers  
(OK to populate  
data memory  
here—RD#/WR#  
strobes are not  
active)  
(RD#,WR#)  
E200  
E1FF  
0.5 KBytes RAM  
Data (RD#,WR#)*  
E000  
48 KBytes  
External  
Code  
Memory  
(PSEN#)  
40 KBytes  
External  
Data  
Memory  
(RD#,WR#)  
3FFF  
(Ok to populate  
data memory  
here—RD#/WR#  
strobes are not  
active)  
(OK to populate  
program  
memory here—  
PSEN# strobe  
is not active)  
16 KBytes RAM  
Code and Data  
(PSEN#,RD#,WR#)*  
0000  
Data  
Code  
*SUDPTR, USB upload/download, I2C interface boot access  
Document #: 38-08032 Rev. *M  
Page 8 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 4. External Code Memory, EA = 1  
Inside FX2LP Outside FX2LP  
FFFF  
7.5 KBytes  
(OK to populate  
USB regs and  
4K FIFO buffers  
(RD#,WR#)  
data memory  
here—RD#/WR#  
strobes are not  
active)  
E200  
E1FF  
0.5 KBytes RAM  
Data (RD#,WR#)*  
E000  
40 KBytes  
External  
Data  
Memory  
(RD#,WR#)  
64 KBytes  
External  
Code  
Memory  
(PSEN#)  
3FFF  
(Ok to populate  
data memory  
here—RD#/WR#  
strobes are not  
active)  
16 KBytes  
RAM  
Data  
(RD#,WR#)*  
0000  
Data  
Code  
*SUDPTR, USB upload/download, I2C interface boot access  
3.11 Register Addresses  
FFFF  
4 KBytes EP2-EP8  
buffers  
(8 x 512)  
F000  
EFFF  
2 KBytes RESERVED  
E800  
E7FF  
64 Bytes EP1IN  
E7C0  
E7BF  
E780  
64 Bytes EP1OUT  
E77F  
E740  
64 Bytes EP0 IN/OUT  
E73F  
64 Bytes RESERVED  
E700  
E6FF  
8051 Addressable Registers  
(512)  
E500  
E4FF  
Reserved (128)  
E480  
E47F  
128 bytes GPIF Waveforms  
E400  
E3FF  
E200  
Reserved (512)  
E1FF  
512 bytes  
8051 xdata RAM  
E000  
Document #: 38-08032 Rev. *M  
Page 9 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
3.12.3 Setup Data Buffer  
3.12 Endpoint RAM  
A separate 8 byte buffer at 0xE6B8-0xE6BF holds the setup data  
from a CONTROL transfer.  
3.12.1 Size  
3× 64 bytes  
(Endpoints 0 and 1)  
3.12.4 Endpoint Configurations (High Speed Mode)  
8 × 512 bytes (Endpoints 2, 4, 6, 8)  
Endpoints 0 and 1 are the same for every configuration. Endpoint  
0 is the only CONTROL endpoint, and endpoint 1 can be either  
BULK or INTERRUPT.  
3.12.2 Organization  
EP0  
The endpoint buffers can be configured in any 1 of the 12 config-  
urations shown in the vertical columns. When operating in the full  
speed BULK mode only the first 64 bytes of each buffer are used.  
For example, in high speed, the max packet size is 512 bytes but  
in full speed it is 64 bytes. Even though a buffer is configured to  
a 512 byte buffer, in full speed only the first 64 bytes are used.  
The unused endpoint buffer space is not available for other  
operations. An example endpoint configuration is the EP2–1024  
double buffered; EP6–512 quad buffered (column 8).  
Bidirectional endpoint zero, 64 byte buffer  
EP1IN, EP1OUT  
64 byte buffers, bulk or interrupt  
EP2, 4, 6, 8  
Eight 512 byte buffers, bulk, interrupt, or isochronous. EP4 and  
EP8 can be double buffered; EP2 and 6 can be either double,  
triple, or quad buffered. For high speed endpoint configuration  
options, see Figure 5.  
Figure 5. Endpoint Configuration  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
EP0 IN&OUT  
EP1 IN  
EP1 OUT  
EP2  
512  
EP2  
EP2  
EP2 EP2  
EP2 EP2  
EP2  
512  
EP2  
EP2  
512  
EP2  
EP2  
512  
512  
512  
512  
512  
512  
512  
1024  
1024  
1024  
1024  
512  
512  
512  
512  
512  
1024  
EP4  
512  
EP4 EP4  
512  
512  
512  
512  
512  
512  
512  
512  
EP6  
1024  
1024  
1024  
1024  
1024  
512  
512  
512  
512  
EP6  
512  
EP6  
512  
EP6  
EP6  
512  
EP6  
EP6  
512  
EP6  
EP6 EP6  
512  
512  
1024  
1024  
512  
512  
1024  
1024  
1024  
512  
512  
512  
512  
512  
512  
EP8  
512  
EP8  
512  
EP8  
512  
EP8  
512  
EP8  
512  
1024  
512  
512  
512  
512  
512  
512  
1024  
1024  
1024  
512  
512  
512  
512  
512  
10  
11  
12  
9
4
5
8
1
2
3
6
7
Document #: 38-08032 Rev. *M  
Page 10 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
3.12.5 Default Full Speed Alternate Settings  
Table 6. Default Full Speed Alternate Settings[4, 5]  
Alternate Setting  
0
64  
0
1
2
3
ep0  
64  
64  
64  
ep1out  
ep1in  
ep2  
64 bulk  
64 bulk  
64 int  
64 int  
64 int  
0
64 int  
0
64 bulk out (2×)  
64 bulk out (2×)  
64 bulk in (2×)  
64 bulk in (2×)  
64 int out (2×)  
64 bulk out (2×)  
64 int in (2×)  
64 iso out (2×)  
64 bulk out (2×)  
64 iso in (2×)  
64 bulk in (2×)  
ep4  
0
ep6  
0
ep8  
0
64 bulk in (2×)  
3.12.6 Default High Speed Alternate Settings  
Table 7. Default High Speed Alternate Settings[4, 5]  
Alternate Setting  
0
1
2
3
ep0  
64  
0
64  
64  
64  
ep1out  
ep1in  
ep2  
512 bulk[6]  
512 bulk[6]  
64 int  
64 int  
0
64 int  
64 int  
0
512 bulk out (2×)  
512 bulk out (2×)  
512 bulk in (2×)  
512 bulk in (2×)  
512 int out (2×)  
512 bulk out (2×)  
512 int in (2×)  
512 bulk in (2×)  
512 iso out (2×)  
512 bulk out (2×)  
512 iso in (2×)  
512 bulk in (2×)  
ep4  
0
ep6  
0
ep8  
0
in the 8051-I/O domain. The blocks can be configured as single,  
double, triple, or quad buffered as previously shown.  
3.13 External FIFO Interface  
3.13.1 Architecture  
The I/O control unit implements either an internal master (M for  
master) or external master (S for Slave) interface.  
The FX2LP slave FIFO architecture has eight 512 byte blocks in  
the endpoint RAM that directly serve as FIFO memories and are  
controlled by FIFO control signals (such as IFCLK, SLCS#,  
SLRD, SLWR, SLOE, PKTEND, and flags).  
In Master (M) mode, the GPIF internally controls FIFOADR[1..0]  
to select a FIFO. The RDY pins (two in the 56-pin package, six  
in the 100-pin and 128-pin packages) can be used as flag inputs  
from an external FIFO or other logic if desired. The GPIF can be  
run from either an internally derived clock or externally supplied  
clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s  
(48-MHz IFCLK with 16-bit interface).  
In operation, some of the eight RAM blocks fill or empty from the  
SIE, while the others are connected to the I/O transfer logic. The  
transfer logic takes two forms, the GPIF for internally generated  
control signals and the slave FIFO interface for externally  
controlled transfers.  
In Slave (S) mode, the FX2LP accepts either an internally  
derived clock or externally supplied clock (IFCLK, max frequency  
48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals  
from external logic. When using an external IFCLK, the external  
clock must be present before switching to the external clock with  
the IFCLKSRC bit. Each endpoint can individually be selected  
for byte or word operation by an internal configuration bit and a  
Slave FIFO Output Enable signal SLOE enables data of the  
selected width. External logic must ensure that the output enable  
signal is inactive when writing data to a slave FIFO. The slave  
interface can also operate asynchronously, where the SLRD and  
SLWR signals act directly as strobes, rather than a clock qualifier  
as in synchronous mode. The signals SLRD, SLWR, SLOE and  
PKTEND are gated by the signal SLCS#.  
3.13.2 Master/Slave Control Signals  
The FX2LP endpoint FIFOS are implemented as eight physically  
distinct 256x16 RAM blocks. The 8051/SIE can switch any of the  
RAM blocks between two domains, the USB (SIE) domain and  
the 8051-I/O Unit domain. This switching is done virtually instan-  
taneously, giving essentially zero transfer time between “USB  
FIFOS” and “Slave FIFOS.” Because they are physically the  
same memory no bytes are actually transferred between buffers.  
At any given time, some RAM blocks are filling/emptying with  
USB data under SIE control, while other RAM blocks are  
available to the 8051, the I/O control unit or both. The RAM  
blocks operate as single port in the USB domain, and dual port  
Notes  
4. “0” means “not implemented.”  
5. “2×” means “double buffered.”  
6. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.  
Document #: 38-08032 Rev. *M  
Page 11 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
3.15 ECC Generation[7]  
3.13.3 GPIF and FIFO Clock Rates  
An 8051 register bit selects one of two frequencies for the  
internally supplied interface clock: 30 MHz and 48 MHz. Alterna-  
tively, an externally supplied clock of 5 MHz–48 MHz feeding the  
IFCLK pin can be used as the interface clock. IFCLK can be  
configured to function as an output clock when the GPIF and  
FIFOs are internally clocked. An output enable bit in the  
IFCONFIG register turns this clock output off, if desired. Another  
bit within the IFCONFIG register inverts the IFCLK signal  
whether internally or externally sourced.  
The EZ-USB can calculate ECCs (Error Correcting Codes) on  
data that passes across its GPIF or Slave FIFO interfaces. There  
are two ECC configurations: Two ECCs, each calculated over  
256 bytes (SmartMedia Standard); and one ECC calculated over  
512 bytes.  
The ECC can correct any one-bit error or detect any two-bit error.  
3.15.1 ECC Implementation  
The two ECC configurations are selected by the ECCM bit:  
ECCM = 0  
3.14 GPIF  
The GPIF is a flexible 8-bit or 16-bit parallel interface driven by  
a user programmable finite state machine. It enables the  
CY7C68013A/15A to perform local bus mastering and can  
implement a wide variety of protocols such as ATA interface,  
printer parallel port, and Utopia.  
Two 3 byte ECCs, each calculated over a 256 byte block of data.  
This configuration conforms to the SmartMedia Standard.  
Write any value to ECCRESET, then pass data across the GPIF  
or Slave FIFO interface. The ECC for the first 256 bytes of data  
is calculated and stored in ECC1. The ECC for the next 256 bytes  
is stored in ECC2. After the second ECC is calculated, the values  
in the ECCx registers do not change until ECCRESET is written  
again, even if more data is subsequently passed across the  
interface.  
The GPIF has six programmable control outputs (CTL), nine  
address outputs (GPIFADRx), and six general-purpose ready  
inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF  
vector defines the state of the control outputs, and determines  
what state a ready input (or multiple inputs) must be before  
proceeding. The GPIF vector can be programmed to advance a  
FIFO to the next data value, advance an address, etc. A  
sequence of the GPIF vectors make up a single waveform that  
is executed to perform the desired data move between the  
FX2LP and the external device.  
ECCM = 1  
One 3 byte ECC calculated over a 512 byte block of data.  
Write any value to ECCRESET then pass data across the GPIF  
or Slave FIFO interface. The ECC for the first 512 bytes of data  
is calculated and stored in ECC1; ECC2 is unused. After the  
ECC is calculated, the values in ECC1 do not change even if  
more data is subsequently passed across the interface, till  
ECCRESET is written again.  
3.14.1 Six Control OUT Signals  
The 100-pin and 128-pin packages bring out all six Control  
Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to  
define the CTL waveforms. The 56-pin package brings out three  
of these signals, CTL0–CTL2. CTLx waveform edges can be  
programmed to make transitions as fast as once per clock (20.8  
ns using a 48-MHz clock).  
3.16 USB Uploads and Downloads  
The core has the ability to directly edit the data contents of the  
internal 16 KByte RAM and of the internal 512 byte scratch pad  
RAM via a vendor specific command. This capability is normally  
used when soft downloading user code and is available only to  
and from internal RAM, only when the 8051 is held in reset. The  
available RAM spaces are 16 KBytes from 0x0000–0x3FFF  
(code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad  
data RAM).[8]  
3.14.2 Six Ready IN Signals  
The 100-pin and 128-pin packages bring out all six Ready inputs  
(RDY0–RDY5). The 8051 programs the GPIF unit to test the  
RDY pins for GPIF branching. The 56-pin package brings out two  
of these signals, RDY0–1.  
3.17 Autopointer Access  
3.14.3 Nine GPIF Address OUT Signals  
FX2LP provides two identical autopointers. They are similar to  
the internal 8051 data pointers but with an additional feature:  
they can optionally increment after every memory access. This  
capability is available to and from both internal and external  
RAM. The autopointers are available in external FX2LP registers  
under control of a mode bit (AUTOPTRSET-UP.0). Using the  
external FX2LP autopointer access (at 0xE67B – 0xE67C)  
enables the autopointer to access all internal and external RAM  
to the part.  
Nine GPIF address lines are available in the 100-pin and 128-pin  
packages, GPIFADR[8..0]. The GPIF address lines enable  
indexing through up to a 512 byte block of RAM. If more address  
lines are needed I/O port pins are used.  
3.14.4 Long Transfer Mode  
In the master mode, the 8051 appropriately sets GPIF trans-  
action count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or  
GPIFTCB0) for unattended transfers of up to 232 transactions.  
The GPIF automatically throttles data flow to prevent under or  
overflow until the full number of requested transactions  
complete. The GPIF decrements the value in these registers to  
represent the current status of the transaction.  
Also, the autopointers can point to any FX2LP register or  
endpoint buffer space. When autopointer access to external  
memory is enabled, location 0xE67B and 0xE67C in XDATA and  
code space cannot be used.  
Notes  
7. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.  
8. After the data has been downloaded from the host, a “loader” can execute from internal RAM to transfer downloaded data to external memory.  
Document #: 38-08032 Rev. *M  
Page 12 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
3.18.2 I2C Interface Boot Load Access  
2
3.18 I C Controller  
At power on reset the I2C interface boot loader loads the  
VID/PID/DID configuration bytes and up to 16 KBytes of  
program/data. The available RAM spaces are 16 KBytes from  
0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051  
is in reset. I2C interface boot loads only occur after power on  
reset.  
FX2LP has one I2C port that is driven by two internal controllers,  
one that automatically operates at boot time to load VID/PID/DID  
and configuration information, and another that the 8051 uses  
when running to control external I2C devices. The I2C port  
operates in master mode only.  
3.18.1 I2C Port Pins  
3.18.3 I2C Interface General-Purpose Access  
The 8051 can control peripherals connected to the I2C bus using  
the I2CTL and I2DAT registers. FX2LP provides I2C master  
control only, it is never an I2C slave.  
The I2C pins SCL and SDA must have external 2.2 kΩ pull up  
resistors even if no EEPROM is connected to the FX2LP.  
External EEPROM device address pins must be configured  
properly. See Table 8 for configuring the device address pins.  
Table 8. Strap Boot EEPROM Address Lines to These Values  
3.19 Compatible with Previous Generation  
EZ-USB FX2  
Bytes  
16  
Example EEPROM  
24LC00[9]  
24LC01  
A2  
N/A  
0
A1  
N/A  
0
A0  
N/A  
0
The EZ-USB FX2LP is form, fit and with minor exceptions  
functionally compatible with its predecessor, the EZ-USB FX2.  
This makes for an easy transition for designers wanting to  
upgrade their systems from the FX2 to the FX2LP. The pinout  
and package selection are identical and a vast majority of  
firmware previously developed for the FX2 functions in the  
FX2LP.  
128  
256  
4K  
24LC02  
0
0
0
24LC32  
0
0
1
8K  
24LC64  
0
0
1
16K  
24LC128  
0
0
1
For designers migrating from the FX2 to the FX2LP a change in  
the bill of material and review of the memory allocation (due to  
increased internal memory) is required. For more information  
about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the  
application note titled Migrating from EZ-USB FX2 to EZ-USB  
FX2LP available in the Cypress web site.  
Table 9. Part Number Conversion Table  
EZ-USB FX2  
Part Number  
EZ-USB FX2LP  
Part Number  
Package Description  
CY7C68013-56PVC  
CY7C68013-56PVCT  
CY7C68013-56LFC  
CY7C68013-100AC  
CY7C68013-128AC  
CY7C68013A-56PVXC or CY7C68014A-56PVXC 56-pin SSOP  
CY7C68013A-56PVXCT or CY7C68014A-56PVXCT 56-pin SSOP – Tape and Reel  
CY7C68013A-56LFXC or CY7C68014A-56LFXC 56-pin QFN  
CY7C68013A-100AXC or CY7C68014A-100AXC 100-pin TQFP  
CY7C68013A-128AXC or CY7C68014A-128AXC 128-pin TQFP  
Note  
9. This EEPROM does not have address pins.  
Document #: 38-08032 Rev. *M  
Page 13 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
3.20 CY7C68013A/14A and CY7C68015A/16A  
Differences  
4. Pin Assignments  
Figure 6 on page 15 identifies all signals for the five package  
types. The following pages illustrate the individual pin diagrams,  
plus a combination diagram showing which of the full set of  
signals are available in the 128-pin, 100-pin, and 56-pin  
packages.  
CY7C68013A is identical to CY7C68014A in form, fit, and  
functionality. CY7C68015A is identical to CY7C68016A in form,  
fit, and functionality. CY7C68014A and CY7C68016A have a  
lower suspend current than CY7C68013A and CY7C68015A  
respectively and are ideal for power sensitive battery applica-  
tions.  
The signals on the left edge of the 56-pin package in Figure 6  
on page 15 are common to all versions in the FX2LP family with  
the noted differences between the CY7C68013A/14A and the  
CY7C68015A/16A.  
CY7C68015A and CY7C68016A are available in 56-pin QFN  
package only. Two additional GPIO signals are available on the  
CY7C68015A and CY7C68016A to provide more flexibility when  
neither IFCLK or CLKOUT are needed in the 56-pin package.  
Three modes are available in all package versions: Port, GPIF  
master, and Slave FIFO. These modes define the signals on the  
right edge of the diagram. The 8051 selects the interface mode  
using the IFCONFIG[1:0] register bits. Port mode is the power on  
default configuration.  
USB developers wanting to convert their FX2 56-pin application  
to a bus-powered system directly benefit from these additional  
signals. The two GPIOs give developers the signals they need  
for the power control circuitry of their bus-powered application  
without pushing them to a high pincount version of FX2LP.  
The 100-pin package adds functionality to the 56-pin package by  
adding these pins:  
The CY7C68015A is only available in the 56-pin QFN package  
PORTC or alternate GPIFADR[7:0] address signals  
Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Dif-  
ferences  
PORTE or alternate GPIFADR[8] address signal and seven  
additional 8051 signals  
CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A  
Three GPIF Control signals  
Four GPIF Ready signals  
IFCLK  
PE0  
PE1  
CLKOUT  
Nine 8051 signals (two USARTs, three timer inputs, INT4,and  
INT5#)  
BKPT, RD#, WR#.  
The 128-pin package adds the 8051 address and data buses  
plus control signals. Note that two of the required signals, RD#  
and WR#, are present in the 100-pin version.  
In the 100-pin and 128-pin versions, an 8051 control bit can be  
set to pulse the RD# and WR# pins when the 8051 reads  
from/writes to PORTC. This feature is enabled by setting  
PORTCSTB bit in CPUCS register.  
Section 10.5 displays the timing diagram of the read and write  
strobing function on accessing PORTC.  
Document #: 38-08032 Rev. *M  
Page 14 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 6. Signal  
GPIF Master  
Port  
Slave FIFO  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
XTALIN  
XTALOUT  
RESET#  
WAKEUP#  
SCL  
SDA  
56  
SLRD  
SLWR  
RDY0  
RDY1  
**PE0 replaces IFCLK  
& PE1 replaces CLKOUT  
on CY7C68015A/16A  
FLAGA  
FLAGB  
FLAGC  
CTL0  
CTL1  
CTL2  
**PE0  
**PE1  
INT0#/PA0  
INT1#/PA1  
PA2  
WU2/PA3  
PA4  
INT0#/ PA0  
INT1#/ PA1  
SLOE  
INT0#/PA0  
INT1#/PA1  
PA2  
WU2/PA3  
PA4  
PA5  
PA6  
IFCLK  
CLKOUT  
WU2/PA3  
FIFOADR0  
FIFOADR1  
PKTEND  
DPLUS  
DMINUS  
PA5  
PA6  
PA7  
PA7/FLAGD/SLCS#  
PA7  
CTL3  
CTL4  
CTL5  
RDY2  
RDY3  
RDY4  
RDY5  
100  
BKPT  
PORTC7/GPIFADR7  
PORTC6/GPIFADR6  
PORTC5/GPIFADR5  
PORTC4/GPIFADR4  
PORTC3/GPIFADR3  
PORTC2/GPIFADR2  
PORTC1/GPIFADR1  
PORTC0/GPIFADR0  
RxD0  
TxD0  
RxD1  
TxD1  
INT4  
INT5#  
T2  
PE7/GPIFADR8  
PE6/T2EX  
PE5/INT6  
PE4/RxD1OUT  
PE3/RxD0OUT  
PE2/T2OUT  
PE1/T1OUT  
PE0/T0OUT  
T1  
T0  
RD#  
WR#  
CS#  
OE#  
PSEN#  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
128  
A8  
A7  
A6  
A5  
A4  
A3  
EA  
A2  
A1  
A0  
Document #: 38-08032 Rev. *M  
Page 15 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 7. CY7C68013A/CY7C68014A 128-pin TQFP Pin Assignment  
1
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
CLKOUT  
VCC  
GND  
PD0/FD8  
*WAKEUP  
VCC  
2
3
4
RDY0/*SLRD  
RDY1/*SLWR  
RDY2  
RDY3  
RDY4  
RDY5  
AVCC  
XTALOUT  
XTALIN  
AGND  
NC  
RESET#  
5
CTL5  
6
A3  
A2  
A1  
A0  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
GND  
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
D7  
NC  
NC  
D6  
D5  
AVCC  
DPLUS  
DMINUS  
AGND  
A11  
A12  
A13  
A14  
A15  
VCC  
GND  
INT4  
T0  
T1  
T2  
CY7C68013A/CY7C68014A  
128-pin TQFP  
PA3/*WU2  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
VCC  
GND  
PC7/GPIFADR7  
PC6/GPIFADR6  
PC5/GPIFADR5  
PC4/GPIFADR4  
PC3/GPIFADR3  
PC2/GPIFADR2  
PC1/GPIFADR1  
PC0/GPIFADR0  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
VCC  
*IFCLK  
RESERVED  
BKPT  
EA  
SCL  
SDA  
CTL4  
CTL3  
GND  
OE#  
* denotes programmable polarity  
Document #: 38-08032 Rev. *M  
Page 16 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 8. CY7C68013A/CY7C68014A 100-pin TQFP Pin Assignment  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VCC  
GND  
PD0/FD8  
*WAKEUP  
VCC  
RESET#  
2
3
RDY0/*SLRD  
RDY1/*SLWR  
RDY2  
RDY3  
RDY4  
RDY5  
AVCC  
XTALOUT  
XTALIN  
AGND  
NC  
4
5
CTL5  
GND  
6
7
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
NC  
NC  
CY7C68013A/CY7C68014A  
100-pin TQFP  
VCC  
GND  
AVCC  
DPLUS  
DMINUS  
AGND  
VCC  
GND  
INT4  
T0  
T1  
PC7/GPIFADR7  
PC6/GPIFADR6  
PC5/GPIFADR5  
PC4/GPIFADR4  
PC3/GPIFADR3  
PC2/GPIFADR2  
PC1/GPIFADR1  
PC0/GPIFADR0  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
VCC  
T2  
*IFCLK  
RESERVED  
BKPT  
SCL  
CTL4  
CTL3  
SDA  
* denotes programmable polarity  
Document #: 38-08032 Rev. *M  
Page 17 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 9. CY7C68013A/CY7C68014A 56-pin SSOP Pin Assignment  
CY7C68013A/CY7C68014A  
56-pin SSOP  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PD5/FD13  
PD4/FD12  
PD3/FD11  
PD2/FD10  
PD1/FD9  
PD0/FD8  
*WAKEUP  
VCC  
2
PD6/FD14  
PD7/FD15  
GND  
CLKOUT  
VCC  
3
4
5
6
7
GND  
8
RDY0/*SLRD  
RDY1/*SLWR  
AVCC  
XTALOUT  
XTALIN  
AGND  
RESET#  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PA7/*FLAGD/SLCS#  
PA6/PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
VCC  
AVCC  
DPLUS  
DMINUS  
AGND  
VCC  
GND  
*IFCLK  
RESERVED  
SCL  
SDA  
VCC  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
GND  
VCC  
GND  
PB7/FD7  
PB6/FD6  
PB5/FD5  
PB4/FD4  
PB0/FD0  
PB1/FD1  
PB2/FD2  
PB3/FD3  
* denotes programmable polarity  
Document #: 38-08032 Rev. *M  
Page 18 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 10. CY7C68013A/14A/15A/16A 56-pin QFN Pin Assignment  
RESET#  
RDY0/*SLRD  
RDY1/*SLWR  
AVCC  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
GND  
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
3
XTALOUT  
XTALIN  
4
CY7C68013A/CY7C68014A  
5
&
AGND  
6
CY7C68015A/CY7C68016A  
AVCC  
7
PA2/*SLOE  
PA1/INT1#  
DPLUS  
8
56-pin QFN  
DMINUS  
AGND  
9
PA0/INT0#  
10  
11  
12  
13  
14  
VCC  
VCC  
CTL2/*FLAGC  
CTL1/*FLAGB  
GND  
*IFCLK/**PE0  
RESERVED  
29 CTL0/*FLAGA  
* denotes programmable polarity  
** denotes CY7C68015A/CY7C68016A pinout  
Document #: 38-08032 Rev. *M  
Page 19 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment - Top View  
1
2
3
4
5
6
7
8
1A  
1B  
1C  
2A  
2B  
2C  
3A  
3B  
3C  
4A  
4B  
4C  
5A  
5B  
5C  
6A  
6B  
6C  
7A  
7B  
7C  
8A  
8B  
8C  
A
B
C
D
1D  
2D  
7D  
8D  
1E  
1F  
1G  
1H  
2E  
2F  
2G  
2H  
7E  
7F  
7G  
7H  
8E  
8F  
8G  
8H  
E
3F  
4F  
5F  
6F  
F
G
H
3G  
3H  
4G  
4H  
5G  
5H  
6G  
6H  
Document #: 38-08032 Rev. *M  
Page 20 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
4.1 CY7C68013A/15A Pin Descriptions  
The FX2LP Pin Descriptions follows.[10]  
Table 11. FX2LP Pin Descriptions  
128 100  
56  
56 56 VF-  
Name  
AVCC  
Type Default  
Description  
TQFP TQFP SSOP QFN BGA  
10  
17  
9
10  
14  
3
7
2D  
1D  
Power  
N/A Analog VCC. Connect this pin to 3.3V power source.  
This signal provides power to the analog section of the  
chip.  
16  
AVCC  
Power  
N/A Analog VCC. Connect this pin to 3.3V power source.  
This signal provides power to the analog section of the  
chip.  
13  
20  
12  
19  
13  
17  
6
2F  
1F  
AGND  
AGND  
Ground  
Ground  
N/A AnalogGround. Connecttogroundwithasshortapath  
as possible.  
10  
N/A AnalogGround. Connecttogroundwithasshortapath  
as possible.  
19  
18  
18  
17  
16  
15  
9
8
1E  
2E  
DMINUS  
DPLUS  
A0  
I/O/Z  
I/O/Z  
Z
Z
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
H
USB D– Signal. Connect to the USB D– signal.  
USB D+ Signal. Connect to the USB D+ signal.  
94  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
I/O/Z  
8051 Address Bus. This bus is driven at all times.  
When the 8051 is addressing internal RAM it reflects  
the internal address.  
95  
A1  
96  
A2  
97  
A3  
117  
118  
119  
120  
126  
127  
128  
21  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
D0  
22  
23  
24  
25  
59  
8051 Data Bus. This bidirectional bus is high  
impedance when inactive, input for bus reads, and  
output for bus writes. The data bus is used for external  
8051 program and data memory. The data bus is active  
only for external bus accesses, and is driven LOW in  
suspend.  
60  
D1  
I/O/Z  
61  
D2  
I/O/Z  
62  
D3  
I/O/Z  
63  
D4  
I/O/Z  
86  
D5  
I/O/Z  
87  
D6  
I/O/Z  
88  
D7  
I/O/Z  
39  
PSEN#  
Output  
Program Store Enable. This active-LOW signal  
indicates an 8051 code fetch from external memory. It  
is active for program memory fetches from  
0x4000–0xFFFF when the EA pin is LOW, or from  
0x0000–0xFFFF when the EA pin is HIGH.  
Note  
10. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in  
standby. Note also that no pins should be driven while the device is powered down.  
Document #: 38-08032 Rev. *M  
Page 21 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 11. FX2LP Pin Descriptions (continued)  
128 100 56 56 56 VF-  
Name  
BKPT  
Type Default  
Description  
TQFP TQFP SSOP QFN BGA  
34  
28  
Output  
L
Breakpoint. Thispingoesactive(HIGH)whenthe8051  
address bus matches the BPADDRH/L registers and  
breakpoints are enabled in the BREAKPT register  
(BPEN = 1). If the BPPULSE bit in the BREAKPT  
register is HIGH, this signal pulses HIGH for eight  
12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the  
signal remains HIGH until the 8051 clears the BREAK  
bit (by writing 1 to it) in the BREAKPT register.  
99  
35  
77  
11  
49  
12  
42  
8B  
1C  
RESET#  
EA  
Input  
Input  
N/A Active LOW Reset. Resets the entire chip. See section  
3.9 ”Reset and Wakeup” on page 6 for more details.  
N/A External Access. This pin determines where the 8051  
fetches code between addresses 0x0000 and 0x3FFF.  
If EA = 0 the 8051 fetches this code from its internal  
RAM. IF EA = 1 the 8051 fetches this code from external  
memory.  
12  
5
XTALIN  
Input  
N/A Crystal Input. Connect this signal to a 24-MHz  
parallel-resonant, fundamental mode crystal and load  
capacitor to GND.  
It is also correct to drive XTALIN with an external  
24-MHz square wave derived from another clock  
source. When driving from an external source, the  
driving signal should be a 3.3V square wave.  
11  
1
10  
11  
5
4
2C  
2B  
XTALOUT  
Output  
O/Z  
N/A Crystal Output. Connect this signal to a 24-MHz  
parallel-resonant, fundamental mode crystal and load  
capacitor to GND.  
If an external clock is used to drive XTALIN, leave this  
pin open.  
100  
54  
CLKOUT on  
CY7C68013A  
and  
12 MHz CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the  
24-MHz input clock. The 8051 defaults to 12-MHz  
operation. The 8051 may three-state this output by  
setting CPUCS.1 = 1.  
CY7C68014A  
------------------ ----------- ---------- ------------------------------------------------------------------------  
PE1 on  
I/O/Z  
I
PE1 is a bidirectional I/O port pin.  
CY7C68015A  
and  
CY7C68016A  
Port A  
82  
67  
68  
69  
40  
41  
42  
33  
34  
35  
8G  
6G  
8F  
PA0 or  
INT0#  
I/O/Z  
I
Multiplexed pin whose function is selected by  
(PA0) PORTACFG.0  
PA0 is a bidirectional I/O port pin.  
INT0# is the active-LOW 8051 INT0 interrupt input  
signal, which is either edge triggered (IT0 = 1) or level  
triggered (IT0 = 0).  
83  
84  
PA1 or  
INT1#  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by:  
(PA1) PORTACFG.1  
PA1 is a bidirectional I/O port pin.  
INT1# is the active-LOW 8051 INT1 interrupt input  
signal, which is either edge triggered (IT1 = 1) or level  
triggered (IT1 = 0).  
PA2 or  
I
Multiplexed pin whose function is selected by two bits:  
SLOE or  
(PA2) IFCONFIG[1:0].  
PA2 is a bidirectional I/O port pin.  
SLOE is an input-only output enable with program-  
mable polarity (FIFOPINPOLAR.4) for the slave FIFOs  
connected to FD[7..0] or FD[15..0].  
Document #: 38-08032 Rev. *M  
Page 22 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 11. FX2LP Pin Descriptions (continued)  
128 100 56 56 56 VF-  
Name  
Type Default  
Description  
TQFP TQFP SSOP QFN BGA  
85  
70  
43  
36  
7F  
PA3 or  
WU2  
I/O/Z  
I
Multiplexed pin whose function is selected by:  
(PA3) WAKEUP.7 and OEA.3  
PA3 is a bidirectional I/O port pin.  
WU2 is an alternate source for USB Wakeup, enabled  
by WU2EN bit (WAKEUP.1) and polarity set by  
WU2POL (WAKEUP.4). If the 8051 is in suspend and  
WU2EN = 1, a transition on this pin starts up the oscil-  
lator and interrupts the 8051 to enable it to exit the  
suspend mode. Asserting this pin inhibits the chip from  
suspending, if WU2EN = 1.  
89  
90  
91  
71  
72  
73  
44  
45  
46  
37  
38  
39  
6F  
8C  
7C  
PA4 or  
FIFOADR0  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by:  
(PA4) IFCONFIG[1..0].  
PA4 is a bidirectional I/O port pin.  
FIFOADR0 is an input-only address select for the slave  
FIFOs connected to FD[7..0] or FD[15..0].  
PA5 or  
FIFOADR1  
I
Multiplexed pin whose function is selected by:  
(PA5) IFCONFIG[1..0].  
PA5 is a bidirectional I/O port pin.  
FIFOADR1 is an input-only address select for the slave  
FIFOs connected to FD[7..0] or FD[15..0].  
PA6 or  
PKTEND  
I
Multiplexed pin whose function is selected by the  
(PA6) IFCONFIG[1:0] bits.  
PA6 is a bidirectional I/O port pin.  
PKTEND is an input used to commit the FIFO packet  
data to the endpoint and whose polarity is program-  
mable via FIFOPINPOLAR.5.  
92  
74  
47  
40  
6C  
PA7 or  
FLAGD or  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PA7) IFCONFIG[1:0] and PORTACFG.7 bits.  
SLCS#  
PA7 is a bidirectional I/O port pin.  
FLAGD is a programmable slave-FIFO output status  
flag signal.  
SLCS# gates all other slave FIFO enable/strobes  
Port B  
44  
34  
35  
36  
37  
44  
25  
26  
27  
28  
29  
18  
19  
20  
21  
22  
3H  
4F  
4H  
4G  
5H  
PB0 or  
FD[0]  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PB0) following bits: IFCONFIG[1..0].  
PB0 is a bidirectional I/O port pin.  
FD[0] is the bidirectional FIFO/GPIF data bus.  
45  
46  
47  
54  
PB1 or  
FD[1]  
I
Multiplexed pin whose function is selected by the  
(PB1) following bits: IFCONFIG[1..0].  
PB1 is a bidirectional I/O port pin.  
FD[1] is the bidirectional FIFO/GPIF data bus.  
PB2 or  
FD[2]  
I
Multiplexed pin whose function is selected by the  
(PB2) following bits: IFCONFIG[1..0].  
PB2 is a bidirectional I/O port pin.  
FD[2] is the bidirectional FIFO/GPIF data bus.  
PB3 or  
FD[3]  
I
Multiplexed pin whose function is selected by the  
(PB3) following bits: IFCONFIG[1..0].  
PB3 is a bidirectional I/O port pin.  
FD[3] is the bidirectional FIFO/GPIF data bus.  
PB4 or  
FD[4]  
I
Multiplexed pin whose function is selected by the  
(PB4) following bits: IFCONFIG[1..0].  
PB4 is a bidirectional I/O port pin.  
FD[4] is the bidirectional FIFO/GPIF data bus.  
Document #: 38-08032 Rev. *M  
Page 23 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 11. FX2LP Pin Descriptions (continued)  
128 100 56 56 56 VF-  
Name  
Type Default  
Description  
TQFP TQFP SSOP QFN BGA  
55  
56  
57  
45  
46  
47  
30  
31  
32  
23  
24  
25  
5G  
5F  
6H  
PB5 or  
FD[5]  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PB5) following bits: IFCONFIG[1..0].  
PB5 is a bidirectional I/O port pin.  
FD[5] is the bidirectional FIFO/GPIF data bus.  
PB6 or  
FD[6]  
I
Multiplexed pin whose function is selected by the  
(PB6) following bits: IFCONFIG[1..0].  
PB6 is a bidirectional I/O port pin.  
FD[6] is the bidirectional FIFO/GPIF data bus.  
PB7 or  
FD[7]  
I
Multiplexed pin whose function is selected by the  
(PB7) following bits: IFCONFIG[1..0].  
PB7 is a bidirectional I/O port pin.  
FD[7] is the bidirectional FIFO/GPIF data bus.  
PORT C  
57  
72  
73  
74  
75  
76  
77  
78  
79  
PC0 or  
GPIFADR0  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by  
(PC0) PORTCCFG.0  
PC0 is a bidirectional I/O port pin.  
GPIFADR0 is a GPIF address output pin.  
58  
59  
60  
61  
62  
63  
64  
PC1 or  
GPIFADR1  
I
Multiplexed pin whose function is selected by  
(PC1) PORTCCFG.1  
PC1 is a bidirectional I/O port pin.  
GPIFADR1 is a GPIF address output pin.  
PC2 or  
GPIFADR2  
I
Multiplexed pin whose function is selected by  
(PC2) PORTCCFG.2  
PC2 is a bidirectional I/O port pin.  
GPIFADR2 is a GPIF address output pin.  
PC3 or  
GPIFADR3  
I
Multiplexed pin whose function is selected by  
(PC3) PORTCCFG.3  
PC3 is a bidirectional I/O port pin.  
GPIFADR3 is a GPIF address output pin.  
PC4 or  
GPIFADR4  
I
Multiplexed pin whose function is selected by  
(PC4) PORTCCFG.4  
PC4 is a bidirectional I/O port pin.  
GPIFADR4 is a GPIF address output pin.  
PC5 or  
GPIFADR5  
I
Multiplexed pin whose function is selected by  
(PC5) PORTCCFG.5  
PC5 is a bidirectional I/O port pin.  
GPIFADR5 is a GPIF address output pin.  
PC6 or  
GPIFADR6  
I
Multiplexed pin whose function is selected by  
(PC6) PORTCCFG.6  
PC6 is a bidirectional I/O port pin.  
GPIFADR6 is a GPIF address output pin.  
PC7 or  
I
Multiplexed pin whose function is selected by  
GPIFADR7  
(PC7) PORTCCFG.7  
PC7 is a bidirectional I/O port pin.  
GPIFADR7 is a GPIF address output pin.  
PORT D  
102  
80  
52  
53  
45  
46  
8A  
7A  
PD0 or  
FD[8]  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PD0) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.  
FD[8] is the bidirectional FIFO/GPIF data bus.  
103  
81  
PD1 or  
FD[9]  
I
Multiplexed pin whose function is selected by the  
(PD1) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.  
FD[9] is the bidirectional FIFO/GPIF data bus.  
Document #: 38-08032 Rev. *M  
Page 24 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 11. FX2LP Pin Descriptions (continued)  
128 100 56 56 56 VF-  
Name  
Type Default  
Description  
TQFP TQFP SSOP QFN BGA  
104  
105  
121  
122  
123  
124  
82  
83  
95  
96  
97  
98  
54  
55  
56  
1
47  
48  
49  
50  
51  
52  
6B  
6A  
3B  
3A  
3C  
2A  
PD2 or  
FD[10]  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PD2) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.  
FD[10] is the bidirectional FIFO/GPIF data bus.  
PD3 or  
FD[11]  
I
Multiplexed pin whose function is selected by the  
(PD3) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.  
FD[11] is the bidirectional FIFO/GPIF data bus.  
PD4 or  
FD[12]  
I
Multiplexed pin whose function is selected by the  
(PD4) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.  
FD[12] is the bidirectional FIFO/GPIF data bus.  
PD5 or  
FD[13]  
I
Multiplexed pin whose function is selected by the  
(PD5) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.  
FD[13] is the bidirectional FIFO/GPIF data bus.  
2
PD6 or  
FD[14]  
I
Multiplexed pin whose function is selected by the  
(PD6) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.  
FD[14] is the bidirectional FIFO/GPIF data bus.  
3
PD7 or  
FD[15]  
I
Multiplexed pin whose function is selected by the  
(PD7) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.  
FD[15] is the bidirectional FIFO/GPIF data bus.  
Port E  
108  
86  
PE0 or  
T0OUT  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PE0) PORTECFG.0 bit.  
PE0 is a bidirectional I/O port pin.  
T0OUT is an active-HIGH signal from 8051  
Timer-counter0. T0OUT outputs a high level for one  
CLKOUT clock cycle when Timer0 overflows. If Timer0  
is operated in Mode 3 (two separate timer/counters),  
T0OUT is active when the low byte timer/counter  
overflows.  
109  
87  
PE1 or  
T1OUT  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PE1) PORTECFG.1 bit.  
PE1 is a bidirectional I/O port pin.  
T1OUT is an active-HIGH signal from 8051  
Timer-counter1. T1OUT outputs a high level for one  
CLKOUT clock cycle when Timer1 overflows. If Timer1  
is operated in Mode 3 (two separate timer/counters),  
T1OUT is active when the low byte timer/counter  
overflows.  
110  
111  
88  
89  
PE2 or  
T2OUT  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PE2) PORTECFG.2 bit.  
PE2 is a bidirectional I/O port pin.  
T2OUT is the active-HIGH output signal from 8051  
Timer2. T2OUT is active (HIGH) for one clock cycle  
when Timer/Counter 2 overflows.  
PE3 or  
RXD0OUT  
I
Multiplexed pin whose function is selected by the  
(PE3) PORTECFG.3 bit.  
PE3 is a bidirectional I/O port pin.  
RXD0OUT is an active-HIGH signal from 8051 UART0.  
If RXD0OUT is selected and UART0 is in Mode 0, this  
pin provides the output data for UART0 only when it is  
in sync mode. Otherwise it is a 1.  
Document #: 38-08032 Rev. *M  
Page 25 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 11. FX2LP Pin Descriptions (continued)  
128 100 56 56 56 VF-  
Name  
Type Default  
Description  
TQFP TQFP SSOP QFN BGA  
112  
90  
PE4 or  
RXD1OUT  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PE4) PORTECFG.4 bit.  
PE4 is a bidirectional I/O port pin.  
RXD1OUT is an active-HIGH output from 8051 UART1.  
When RXD1OUT is selected and UART1 is in Mode 0,  
this pin provides the output data for UART1 only when  
it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.  
113  
114  
91  
92  
PE5 or  
INT6  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the  
(PE5) PORTECFG.5 bit.  
PE5 is a bidirectional I/O port pin.  
INT6is the 8051 INT6 interruptrequestinput signal. The  
INT6 pin is edge-sensitive, active HIGH.  
PE6 or  
T2EX  
I
Multiplexed pin whose function is selected by the  
(PE6) PORTECFG.6 bit.  
PE6 is a bidirectional I/O port pin.  
T2EX is an active-HIGH input signal to the 8051 Timer2.  
T2EX reloads timer 2 on its falling edge. T2EX is active  
only if the EXEN2 bit is set in T2CON.  
115  
4
93  
3
PE7 or  
GPIFADR8  
I/O/Z  
Input  
I
Multiplexed pin whose function is selected by the  
(PE7) PORTECFG.7 bit.  
PE7 is a bidirectional I/O port pin.  
GPIFADR8 is a GPIF address output pin.  
8
9
1
2
1A  
1B  
RDY0 or  
SLRD  
N/A Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
RDY0 is a GPIF input signal.  
SLRD is the input-only read strobe with programmable  
polarity (FIFOPINPOLAR.3) for the slave FIFOs  
connected to FD[7..0] or FD[15..0].  
5
4
RDY1 or  
SLWR  
Input  
N/A Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
RDY1 is a GPIF input signal.  
SLWR is the input-only write strobe with programmable  
polarity (FIFOPINPOLAR.2) for the slave FIFOs  
connected to FD[7..0] or FD[15..0].  
6
7
5
6
RDY2  
RDY3  
RDY4  
RDY5  
Input  
Input  
Input  
Input  
O/Z  
N/A RDY2 is a GPIF input signal.  
N/A RDY3 is a GPIF input signal.  
N/A RDY4 is a GPIF input signal.  
N/A RDY5 is a GPIF input signal.  
8
7
9
8
69  
54  
36  
29  
7H  
CTL0 or  
FLAGA  
H
Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
CTL0 is a GPIF control output.  
FLAGA is a programmable slave-FIFO output status  
flag signal.  
Defaults to programmable for the FIFO selected by the  
FIFOADR[1:0] pins.  
Document #: 38-08032 Rev. *M  
Page 26 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 11. FX2LP Pin Descriptions (continued)  
128 100 56 56 56 VF-  
Name  
Type Default  
Description  
TQFP TQFP SSOP QFN BGA  
70  
55  
37  
30  
7G  
CTL1 or  
FLAGB  
O/Z  
H
Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
CTL1 is a GPIF control output.  
FLAGB is a programmable slave-FIFO output status  
flag signal.  
Defaults to FULL for the FIFO selected by the  
FIFOADR[1:0] pins.  
71  
56  
38  
31  
8H  
CTL2 or  
FLAGC  
O/Z  
H
Multiplexed pin whose function is selected by the  
following bits:  
IFCONFIG[1..0].  
CTL2 is a GPIF control output.  
FLAGC is a programmable slave-FIFO output status  
flag signal.  
Defaults to EMPTY for the FIFO selected by the  
FIFOADR[1:0] pins.  
66  
67  
98  
32  
51  
52  
76  
26  
CTL3  
CTL4  
CTL5  
O/Z  
H
H
H
Z
CTL3 is a GPIF control output.  
CTL4 is a GPIF control output.  
CTL5 is a GPIF control output.  
Output  
Output  
I/O/Z  
20  
13  
2G  
IFCLK on  
CY7C68013A  
and  
Interface Clock, used for synchronously clocking data  
into or out of the slave FIFOs. IFCLK also serves as a  
timing reference for all slave FIFO control signals and  
GPIF. When internal clocking is used (IFCONFIG.7 = 1)  
the IFCLK pin can be configured to output 30/48 MHz  
by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be  
inverted, whether internally or externally sourced, by  
setting the bit IFCONFIG.4 =1.  
CY7C68014A  
------------------ ----------- ---------- -----------------------------------------------------------------------  
PE0 on  
I/O/Z  
I
PE0 is a bidirectional I/O port pin.  
CY7C68015A  
and  
CY7C68016A  
28  
106  
31  
22  
84  
25  
INT4  
INT5#  
T2  
Input  
Input  
Input  
N/A INT4is the 8051 INT4 interruptrequestinput signal. The  
INT4 pin is edge-sensitive, active HIGH.  
N/A INT5# is the 8051 INT5 interrupt request input signal.  
The INT5 pin is edge-sensitive, active LOW.  
N/A T2 is the active-HIGH T2 input signal to 8051 Timer2,  
which provides the input to Timer2 when C/T2 = 1.  
When C/T2 = 0, Timer2 does not use this pin.  
30  
29  
24  
23  
T1  
T0  
Input  
Input  
N/A T1 is the active-HIGH T1 signal for 8051 Timer1, which  
provides the input to Timer1 when C/T1 is 1. When C/T1  
is 0, Timer1 does not use this bit.  
N/A T0 is the active-HIGH T0 signal for 8051 Timer0, which  
provides the input to Timer0 when C/T0 is 1. When C/T0  
is 0, Timer0 does not use this bit.  
53  
52  
43  
42  
RXD1  
TXD1  
Input  
N/A RXD1is an active-HIGH input signal for 8051 UART1,  
which provides data to the UART in all modes.  
Output  
H
TXD1is an active-HIGH output pin from 8051 UART1,  
which provides the output clock in sync mode, and the  
output data in async mode.  
51  
41  
RXD0  
Input  
N/A RXD0 is the active-HIGH RXD0 input to 8051 UART0,  
which provides data to the UART in all modes.  
Document #: 38-08032 Rev. *M  
Page 27 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 11. FX2LP Pin Descriptions (continued)  
128 100 56 56 56 VF-  
Name  
TXD0  
Type Default  
Description  
TQFP TQFP SSOP QFN BGA  
50  
40  
Output  
H
TXD0 is the active-HIGH TXD0 output from 8051  
UART0, which provides the output clock in sync mode,  
and the output data in async mode.  
42  
41  
CS#  
Output  
Output  
H
H
CS# is the active-LOW chip select for external memory.  
32  
31  
WR#  
WR# is the active-LOW write strobe output for external  
memory.  
40  
38  
RD#  
OE#  
Output  
Output  
H
H
RD# is the active-LOW read strobe output for external  
memory.  
OE# is the active-LOW output enable for external  
memory.  
33  
27  
79  
21  
51  
14  
44  
2H  
7B  
Reserved  
WAKEUP  
Input  
Input  
N/A Reserved. Connect to ground.  
101  
N/A USB Wakeup. If the 8051 is in suspend, asserting this  
pin starts up the oscillator and interrupts the 8051 to  
enable it to exit the suspend mode. Holding WAKEUP  
asserted inhibits the EZ-USB® chip from suspending.  
This pin has programmable polarity (WAKEUP.4).  
36  
37  
29  
30  
22  
23  
15  
16  
3F  
SCL  
SDA  
OD  
OD  
Z
Clock for the I2C interface. Connect to VCC with a 2.2K  
resistor, even if no I2C peripheral is attached.  
3G  
Z
Data for I2C-compatible interface. Connect to VCC  
with a 2.2K resistor, even if no I2C-compatible  
peripheral is attached.  
2
1
6
55  
11  
17  
5A  
1G  
7E  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
26  
20  
33  
38  
49  
53  
66  
78  
85  
18  
24  
43  
48  
64  
34  
27  
8E  
68  
81  
39  
50  
32  
43  
5C  
5B  
100  
107  
3
2
7
56  
12  
4B  
1H  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
27  
21  
39  
48  
50  
65  
75  
94  
99  
19  
49  
58  
33  
35  
26  
28  
7D  
8D  
65  
80  
93  
48  
4
41  
53  
4C  
4A  
116  
125  
14  
15  
16  
13  
14  
15  
NC  
NC  
NC  
N/A  
N/A  
N/A  
N/A No Connect. This pin must be left open.  
N/A No Connect. This pin must be left open.  
N/A No Connect. This pin must be left open.  
Document #: 38-08032 Rev. *M  
Page 28 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
5. Register Summary  
FX2LP register bit definitions are described in the FX2LP TRM in greater detail.  
Table 12. FX2LP Register Summary  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
GPIF Waveform Memories  
E400 128 WAVEDATA  
GPIF Waveform  
Descriptor 0, 1, 2, 3 data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx RW  
E480 128 reserved  
GENERAL CONFIGURATION  
E50D  
GPCR2  
General Purpose Configu-reserved  
ration Register 2  
reserved  
0
reserved  
FULL_SPEE reserved  
D_ONLY  
reserved  
reserved  
reserved  
00000000 R  
E600  
E601  
1
1
CPUCS  
CPU Control & Status  
0
PORTCSTB CLKSPD1 CLKSPD0 CLKINV  
CLKOE  
IFCFG1  
8051RES  
IFCFG0  
00000010 rrbbbbbr  
10000000 RW  
IFCONFIG  
Interface Configuration  
(Ports, GPIF, slave FIFOs)  
IFCLKSRC 3048MHZ  
IFCLKOE  
FLAGB1  
FLAGD1  
0
IFCLKPOL ASYNC  
GSTATE  
FLAGA2  
FLAGC2  
EP2  
[11]  
[11]  
E602  
E603  
E604  
1
1
1
PINFLAGSAB  
Slave FIFO FLAGA and FLAGB3  
FLAGB Pin Configuration  
FLAGB2  
FLAGD2  
0
FLAGB0  
FLAGD0  
0
FLAGA3  
FLAGC3  
EP3  
FLAGA1  
FLAGC1  
EP1  
FLAGA0  
FLAGC0  
EP0  
00000000 RW  
00000000 RW  
PINFLAGSCD  
Slave FIFO FLAGC and FLAGD3  
FLAGD Pin Configuration  
[11]  
FIFORESET  
Restore FIFOS to default NAKALL  
state  
xxxxxxxx W  
E605  
E606  
E607  
E608  
1
1
1
1
BREAKPT  
BPADDRH  
BPADDRL  
UART230  
Breakpoint Control  
0
0
0
0
BREAK  
A11  
A3  
BPPULSE BPEN  
0
00000000 rrrrbbbr  
xxxxxxxx RW  
xxxxxxxx RW  
Breakpoint Address H  
Breakpoint Address L  
A15  
A7  
0
A14  
A6  
0
A13  
A5  
0
A12  
A4  
0
A10  
A2  
0
A9  
A1  
A8  
A0  
230 Kbaud internally  
generated ref. clock  
0
230UART1 230UART0 00000000 rrrrrrbb  
[11]  
E609  
1
FIFOPINPOLAR  
Slave FIFO Interface pins 0  
polarity  
0
PKTEND  
SLOE  
rv4  
SLRD  
rv3  
SLWR  
rv2  
EF  
FF  
00000000 rrbbbbbb  
E60A 1  
E60B 1  
REVID  
Chip Revision  
rv7  
rv6  
0
rv5  
0
rv1  
rv0  
RevA  
00000001  
R
[11]  
REVCTL  
Chip Revision Control  
0
0
0
0
0
dyn_out  
enh_pkt  
00000000 rrrrrrbb  
UDMA  
E60C 1  
3
GPIFHOLDAMOUNT MSTB Hold Time  
(for UDMA)  
0
0
0
0
0
HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb  
reserved  
ENDPOINT CONFIGURATION  
E610  
E611  
1
1
EP1OUTCFG  
Endpoint 1-OUT  
Configuration  
VALID  
VALID  
0
0
TYPE1  
TYPE1  
TYPE0  
TYPE0  
0
0
0
0
0
0
0
0
10100000 brbbrrrr  
10100000 brbbrrrr  
EP1INCFG  
Endpoint 1-IN  
Configuration  
E612  
E613  
E614  
E615  
1
1
1
1
2
1
EP2CFG  
EP4CFG  
EP6CFG  
EP8CFG  
reserved  
Endpoint 2 Configuration VALID  
Endpoint 4 Configuration VALID  
Endpoint 6 Configuration VALID  
Endpoint 8 Configuration VALID  
DIR  
DIR  
DIR  
DIR  
TYPE1  
TYPE1  
TYPE1  
TYPE1  
TYPE0  
TYPE0  
TYPE0  
TYPE0  
SIZE  
0
0
0
0
0
BUF1  
0
BUF0  
0
10100010 bbbbbrbb  
10100000 bbbbrrrr  
11100010 bbbbbrbb  
11100000 bbbbrrrr  
SIZE  
0
BUF1  
0
BUF0  
0
[11]  
[11]  
[11]  
[11]  
E618  
E619  
EP2FIFOCFG  
Endpoint 2 / slave FIFO  
configuration  
0
0
0
0
INFM1  
INFM1  
INFM1  
INFM1  
OEP1  
OEP1  
OEP1  
OEP1  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
AUTOOUT AUTOIN  
ZEROLENIN 0  
ZEROLENIN 0  
ZEROLENIN 0  
ZEROLENIN 0  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
1
EP4FIFOCFG  
EP6FIFOCFG  
EP8FIFOCFG  
reserved  
Endpoint 4 / slave FIFO  
configuration  
E61A 1  
E61B 1  
E61C 4  
Endpoint 6 / slave FIFO  
configuration  
Endpoint 8 / slave FIFO  
configuration  
[11  
E620  
E621  
E622  
E623  
E624  
E625  
E626  
E627  
1
1
1
1
1
1
1
1
EP2AUTOINLENH Endpoint 2 AUTOIN  
0
0
0
0
0
PL10  
PL2  
0
PL9  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
00000010 rrrrrbbb  
00000000 RW  
Packet Length H  
[11]  
EP2AUTOINLENL  
Endpoint 2 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL1  
PL9  
PL1  
PL9  
PL1  
PL9  
PL1  
[11]  
EP4AUTOINLENH Endpoint 4 AUTOIN  
00000010 rrrrrrbb  
00000000 RW  
Packet Length H  
[11]  
EP4AUTOINLENL  
Endpoint 4 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL2  
PL10  
PL2  
0
[11]  
EP6AUTOINLENH Endpoint 6 AUTOIN  
00000010 rrrrrbbb  
00000000 RW  
Packet Length H  
[11]  
EP6AUTOINLENL  
Endpoint 6 AUTOIN  
Packet Length L  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
[11]  
EP8AUTOINLENH Endpoint 8 AUTOIN  
00000010 rrrrrrbb  
00000000 RW  
Packet Length H  
[11]  
EP8AUTOINLENL  
Endpoint 8 AUTOIN  
Packet Length L  
PL7  
PL6  
PL5  
PL4  
PL3  
PL2  
E628  
E629  
1
1
ECCCFG  
ECCRESET  
ECC1B0  
ECC Configuration  
ECC Reset  
0
0
0
0
0
0
0
ECCM  
x
00000000 rrrrrrrb  
00000000 W  
x
x
x
x
x
x
x
E62A 1  
ECC1 Byte 0 Address  
LINE15  
LINE14  
LINE13  
LINE12  
LINE11  
LINE10  
LINE9  
LINE8  
00000000 R  
Note  
11. Read and writes to these registers may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.”  
Document #: 38-08032 Rev. *M  
Page 29 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
E62B 1  
E62C 1  
E62D 1  
E62E 1  
E62F 1  
ECC1B1  
ECC1 Byte 1 Address  
ECC1 Byte 2 Address  
ECC2 Byte 0 Address  
ECC2 Byte 1 Address  
ECC2 Byte 2 Address  
LINE7  
COL5  
LINE15  
LINE7  
COL5  
LINE6  
COL4  
LINE14  
LINE6  
COL4  
PKTSTAT  
LINE5  
COL3  
LINE13  
LINE5  
COL3  
LINE4  
COL2  
LINE12  
LINE4  
COL2  
LINE3  
COL1  
LINE11  
LINE3  
COL1  
LINE2  
COL0  
LINE10  
LINE2  
COL0  
0
LINE1  
LINE17  
LINE9  
LINE1  
0
LINE0  
LINE16  
LINE8  
LINE0  
0
00000000 R  
ECC1B2  
00000000 R  
ECC2B0  
00000000 R  
ECC2B1  
00000000 R  
ECC2B2  
00000000 R  
[11]  
[11]  
E630  
H.S.  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
EP2FIFOPFH  
Endpoint 2 / slave FIFO DECIS  
Programmable Flag H  
IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
PFC9  
PFC8  
10001000 bbbbbrbb  
E630  
F.S.  
EP2FIFOPFH  
Endpoint 2 / slave FIFO DECIS  
Programmable Flag H  
PKTSTAT  
PFC6  
OUT:PFC12 OUT:PFC11 OUT:PFC10 0  
PFC9  
PFC1  
PFC1  
0
IN:PKTS[2] 10001000 bbbbbrbb  
OUT:PFC8  
[11]  
[11]  
[11]  
E631  
H.S.  
EP2FIFOPFL  
Endpoint 2 / slave FIFO PFC7  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC0  
PFC0  
PFC8  
PFC8  
PFC0  
PFC0  
PFC8  
00000000 RW  
E631  
F.S  
EP2FIFOPFL  
Endpoint 2 / slave FIFO IN:PKTS[1] IN:PKTS[0] PFC5  
Programmable Flag L OUT:PFC7 OUT:PFC6  
00000000 RW  
E632  
H.S.  
EP4FIFOPFH  
Endpoint 4 / slave FIFO DECIS  
Programmable Flag H  
PKTSTAT  
PKTSTAT  
PFC6  
0
IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC10 OUT:PFC9  
10001000 bbrbbrrb  
10001000 bbrbbrrb  
00000000 RW  
[11]  
E632  
F.S  
EP4FIFOPFH  
Endpoint 4 / slave FIFO DECIS  
Programmable Flag H  
0
OUT:PFC10 OUT:PFC9  
0
0
[11]  
[11]  
[11]  
E633  
H.S.  
EP4FIFOPFL  
Endpoint 4 / slave FIFO PFC7  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
0
PFC1  
PFC1  
PFC9  
PFC9  
PFC1  
PFC1  
0
E633  
F.S  
EP4FIFOPFL  
Endpoint 4 / slave FIFO IN: PKTS[1] IN: PKTS[0] PFC5  
Programmable Flag L OUT:PFC7 OUT:PFC6  
00000000 RW  
E634  
H.S.  
EP6FIFOPFH  
Endpoint 6 / slave FIFO DECIS  
Programmable Flag H  
PKTSTAT  
PKTSTAT  
PFC6  
IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
00001000 bbbbbrbb  
[11]  
E634  
F.S  
EP6FIFOPFH  
Endpoint 6 / slave FIFO DECIS  
Programmable Flag H  
OUT:PFC12 OUT:PFC11 OUT:PFC10 0  
IN:PKTS[2] 00001000 bbbbbrbb  
OUT:PFC8  
[11]  
[11]  
[11]  
E635  
H.S.  
EP6FIFOPFL  
Endpoint 6 / slave FIFO PFC7  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC0  
PFC0  
PFC8  
PFC8  
PFC0  
PFC0  
00000000 RW  
E635  
F.S  
EP6FIFOPFL  
Endpoint 6 / slave FIFO IN:PKTS[1] IN:PKTS[0] PFC5  
Programmable Flag L OUT:PFC7 OUT:PFC6  
00000000 RW  
E636  
H.S.  
EP8FIFOPFH  
Endpoint 8 / slave FIFO DECIS  
Programmable Flag H  
PKTSTAT  
PKTSTAT  
PFC6  
0
IN: PKTS[1] IN: PKTS[0] 0  
OUT:PFC10 OUT:PFC9  
00001000 bbrbbrrb  
00001000 bbrbbrrb  
00000000 RW  
[11]  
E636  
F.S  
EP8FIFOPFH  
Endpoint 8 / slave FIFO DECIS  
Programmable Flag H  
0
OUT:PFC10 OUT:PFC9  
0
0
[11]  
E637  
H.S.  
EP8FIFOPFL  
EP8FIFOPFL  
reserved  
Endpoint 8 / slave FIFO PFC7  
Programmable Flag L  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC1  
PFC1  
[11]  
E637  
F.S  
Endpoint 8 / slave FIFO IN: PKTS[1] IN: PKTS[0] PFC5  
Programmable Flag L OUT:PFC7 OUT:PFC6  
00000000 RW  
8
1
E640  
E641  
E642  
E643  
EP2ISOINPKTS  
EP4ISOINPKTS  
EP6ISOINPKTS  
EP8ISOINPKTS  
reserved  
EP2 (if ISO) IN Packets AADJ  
per frame (1-3)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INPPF1  
INPPF1  
INPPF1  
INPPF1  
INPPF0  
INPPF0  
INPPF0  
INPPF0  
00000001 brrrrrbb  
00000001 brrrrrrr  
00000001 brrrrrbb  
00000001 brrrrrrr  
1
1
1
EP4 (if ISO) IN Packets AADJ  
per frame (1-3)  
EP6 (if ISO) IN Packets AADJ  
per frame (1-3)  
EP8 (if ISO) IN Packets AADJ  
per frame (1-3)  
E644  
E648  
E649  
4
1
7
[11]  
INPKTEND  
Force IN Packet End  
Skip  
0
0
0
0
0
0
EP3  
EP3  
EP2  
EP2  
EP1  
EP1  
EP0  
EP0  
xxxxxxxx  
xxxxxxxx  
W
W
[11]  
OUTPKTEND  
Force OUT Packet End Skip  
INTERRUPTS  
[11]  
E650  
E651  
E652  
E653  
E654  
E655  
E656  
E657  
E658  
E659  
1
1
1
1
1
1
1
1
1
1
EP2FIFOIE  
Endpoint 2 slave FIFO  
Flag Interrupt Enable  
0
0
0
0
0
0
0
0
0
0
0
0
0
EDGEPF  
0
PF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EP1  
EP1  
0
FF  
00000000 RW  
[11,12]  
EP2FIFOIRQ  
Endpoint 2 slave FIFO  
Flag Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[11]  
EP4FIFOIE  
Endpoint 4 slave FIFO  
Flag Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
FF  
[11,12]  
[11,12]  
[11,12]  
EP4FIFOIRQ  
Endpoint 4 slave FIFO  
Flag Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[11]  
EP6FIFOIE  
Endpoint 6 slave FIFO  
Flag Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
FF  
EP6FIFOIRQ  
Endpoint 6 slave FIFO  
Flag Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
[11]  
EP8FIFOIE  
EP8FIFOIRQ  
IBNIE  
Endpoint 8 slave FIFO  
Flag Interrupt Enable  
0
0
0
EDGEPF  
0
PF  
FF  
Endpoint 8 slave FIFO  
Flag Interrupt Request  
0
0
0
PF  
FF  
00000000 rrrrrbbb  
00000000 RW  
IN-BULK-NAK Interrupt  
Enable  
0
EP8  
EP8  
EP4  
EP4  
EP6  
EP6  
EP2  
EP2  
EP4  
EP2  
EP2  
EP0  
EP0  
SUTOK  
EP0  
EP0  
IBN  
IBN  
SUDAV  
[12]  
IBNIRQ  
IN-BULK-NAK interrupt  
Request  
0
EP4  
00xxxxxx rrbbbbbb  
00000000 RW  
E65A 1  
E65B 1  
E65C 1  
NAKIE  
Endpoint Ping-NAK / IBN EP8  
Interrupt Enable  
EP6  
EP6  
EP0ACK  
EP1  
[12]  
NAKIRQ  
Endpoint Ping-NAK / IBN EP8  
Interrupt Request  
EP1  
0
xxxxxx0x bbbbbbrb  
00000000 RW  
USBIE  
USB Int Enables  
0
HSGRANT URES  
SUSP  
SOF  
Note  
12. The register can only be reset, it cannot be set.  
Document #: 38-08032 Rev. *M  
Page 30 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size Name  
Description  
b7  
0
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
[12]  
E65D 1  
E65E 1  
USBIRQ  
USB Interrupt Requests  
EP0ACK  
EP6  
HSGRANT URES  
SUSP  
EP1OUT  
SUTOK  
EP1IN  
SOF  
SUDAV  
EP0IN  
0xxxxxxx rbbbbbbb  
00000000 RW  
EPIE  
Endpoint Interrupt  
Enables  
EP8  
EP4  
EP4  
EP2  
EP2  
EP0OUT  
[12]  
E65F 1  
EPIRQ  
Endpoint Interrupt  
Requests  
EP8  
EP6  
EP1OUT  
EP1IN  
EP0OUT  
EP0IN  
0
RW  
[11]  
[11]  
E660  
E661  
E662  
1
1
1
GPIFIE  
GPIF Interrupt Enable  
GPIF Interrupt Request  
0
0
0
0
0
0
0
0
0
0
GPIFWF  
GPIFWF  
0
GPIFDONE 00000000 RW  
GPIFDONE 000000xx RW  
GPIFIRQ  
0
0
0
0
USBERRIE  
USB Error Interrupt  
Enables  
ISOEP8  
ISOEP6  
ISOEP4  
ISOEP2  
ERRLIMIT  
ERRLIMIT  
LIMIT0  
00000000 RW  
[12]  
E663  
E664  
1
1
USBERRIRQ  
USB Error Interrupt  
Requests  
ISOEP8  
EC3  
ISOEP6  
EC2  
ISOEP4  
EC1  
ISOEP2  
EC0  
0
0
0
0000000x bbbbrrrb  
xxxx0100 rrrrbbbb  
ERRCNTLIM  
USB Error counter and  
limit  
LIMIT3  
LIMIT2  
LIMIT1  
E665  
E666  
1
1
CLRERRCNT  
INT2IVEC  
Clear Error Counter EC3:0 x  
x
x
x
x
x
x
x
xxxxxxxx W  
Interrupt 2 (USB)  
Autovector  
0
1
0
I2V4  
I2V3  
I2V2  
I2V1  
I2V0  
0
0
00000000 R  
10000000 R  
00000000 RW  
E667  
1
INT4IVEC  
Interrupt 4 (slave FIFO &  
GPIF) Autovector  
0
0
I4V3  
0
I4V2  
0
I4V1  
I4V0  
0
0
0
E668  
E669  
1
7
INTSET-UP  
reserved  
Interrupt 2&4 setup  
AV2EN  
INT4SRC  
AV4EN  
INPUT / OUTPUT  
PORTACFG  
E670  
E671  
E672  
1
1
1
I/O PORTA Alternate  
Configuration  
FLAGD  
GPIFA7  
GPIFA8  
SLCS  
GPIFA6  
T2EX  
0
0
0
0
INT1  
INT0  
00000000 RW  
00000000 RW  
00000000 RW  
PORTCCFG  
PORTECFG  
I/O PORTC Alternate  
Configuration  
GPIFA5  
INT6  
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA1  
T1OUT  
GPIFA0  
T0OUT  
I/O PORTE Alternate  
Configuration  
RXD1OUT RXD0OUT T2OUT  
E673  
E677  
E678  
4
1
1
reserved  
reserved  
2
I CS  
I²C Bus  
START  
STOP  
d6  
LASTRD  
ID1  
d4  
0
ID0  
d3  
0
BERR  
d2  
ACK  
d1  
DONE  
d0  
000xx000 bbbrrrrr  
xxxxxxxx RW  
00000000 RW  
xxxxxxxx RW  
xxxxxxxx RW  
Control & Status  
E679  
1
I2DAT  
I²C Bus  
Data  
d7  
0
d5  
0
2
E67A 1  
E67B 1  
E67C 1  
I CTL  
I²C Bus  
Control  
0
0
STOPIE  
D1  
400KHZ  
D0  
XAUTODAT1  
XAUTODAT2  
UDMA CRC  
Autoptr1 MOVX access, D7  
when APTREN=1  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
Autoptr2 MOVX access, D7  
when APTREN=1  
D1  
D0  
[11]  
E67D 1  
E67E 1  
E67F 1  
UDMACRCH  
UDMA CRC MSB  
UDMA CRC LSB  
UDMA CRC Qualifier  
CRC15  
CRC14  
CRC6  
0
CRC13  
CRC5  
0
CRC12  
CRC4  
0
CRC11  
CRC3  
CRC10  
CRC2  
CRC9  
CRC1  
CRC8  
CRC0  
01001010 RW  
10111010 RW  
[11]  
UDMACRCL  
CRC7  
UDMACRC-  
QUALIFIER  
QENABLE  
QSTATE  
QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb  
USB CONTROL  
USBCS  
E680  
E681  
E682  
E683  
E684  
E685  
E686  
E687  
E688  
1
1
1
1
1
1
1
1
2
USB Control & Status  
Put chip into suspend  
HSM  
x
0
0
0
DISCON  
NOSYNSOF RENUM  
SIGRSUME x0000000 rrrrbbbb  
SUSPEND  
WAKEUPCS  
TOGCTL  
x
x
x
x
x
x
x
xxxxxxxx W  
Wakeup Control & Status WU2  
WU  
S
WU2POL  
WUPOL  
I/O  
0
DPEN  
EP2  
FC10  
FC2  
MF2  
FA2  
WU2EN  
EP1  
FC9  
FC1  
MF1  
FA1  
WUEN  
EP0  
FC8  
FC0  
MF0  
FA0  
xx000101 bbbbrbbb  
x0000000 rrrbbbbb  
00000xxx R  
Toggle Control  
Q
R
EP3  
0
USBFRAMEH  
USBFRAMEL  
MICROFRAME  
FNADDR  
USB Frame count H  
USB Frame count L  
Microframe count, 0-7  
USB Function address  
0
0
0
0
FC7  
0
FC6  
0
FC5  
0
FC4  
0
FC3  
0
xxxxxxxx  
00000xxx R  
0xxxxxxx R  
R
0
FA6  
FA5  
FA4  
FA3  
reserved  
ENDPOINTS  
[11]  
E68A 1  
E68B 1  
E68C 1  
E68D 1  
EP0BCH  
Endpoint 0 Byte Count H (BC15)  
Endpoint 0 Byte Count L (BC7)  
(BC14)  
BC6  
(BC13)  
BC5  
(BC12)  
BC4  
(BC11)  
BC3  
(BC10)  
BC2  
(BC9)  
BC1  
(BC8)  
BC0  
xxxxxxxx RW  
xxxxxxxx RW  
[11]  
EP0BCL  
reserved  
EP1OUTBC  
Endpoint 1 OUT Byte  
Count  
0
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
0xxxxxxx RW  
E68E 1  
E68F 1  
reserved  
EP1INBC  
Endpoint 1 IN Byte Count 0  
Endpoint 2 Byte Count H  
Endpoint 2 Byte Count L BC7/SKIP  
BC6  
0
BC5  
0
BC4  
0
BC3  
0
BC2  
BC10  
BC2  
BC1  
BC9  
BC1  
BC0  
BC8  
BC0  
0xxxxxxx RW  
00000xxx RW  
xxxxxxxx RW  
[11]  
E690  
E691  
E692  
E694  
E695  
E696  
E698  
E699  
1
1
2
1
1
2
1
1
EP2BCH  
0
[11]  
EP2BCL  
BC6  
BC5  
BC4  
BC3  
reserved  
[11]  
EP4BCH  
Endpoint 4 Byte Count H  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
000000xx RW  
xxxxxxxx RW  
[11]  
EP4BCL  
Endpoint 4 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
reserved  
[11]  
EP6BCH  
Endpoint 6 Byte Count H  
0
0
0
0
0
BC10  
BC2  
BC9  
BC1  
BC8  
BC0  
00000xxx RW  
xxxxxxxx RW  
[11]  
EP6BCL  
Endpoint 6 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
E69A 2  
E69C 1  
reserved  
[11]  
EP8BCH  
Endpoint 8 Byte Count H  
0
0
0
0
0
0
BC9  
BC8  
000000xx RW  
Document #: 38-08032 Rev. *M  
Page 31 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
Access  
[11]  
E69D 1  
E69E 2  
E6A0 1  
EP8BCL  
Endpoint 8 Byte Count L BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
xxxxxxxx RW  
reserved  
EP0CS  
Endpoint 0 Control and HSNAK  
Status  
0
0
0
0
0
BUSY  
BUSY  
BUSY  
0
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
FF  
10000000 bbbbbbrb  
00000000 bbbbbbrb  
00000000 bbbbbbrb  
00101000 rrrrrrrb  
00101000 rrrrrrrb  
00000100 rrrrrrrb  
00000100 rrrrrrrb  
00000010 R  
E6A1 1  
E6A2 1  
E6A3 1  
E6A4 1  
E6A5 1  
E6A6 1  
E6A7 1  
E6A8 1  
E6A9 1  
E6AA 1  
E6AB 1  
E6AC 1  
E6AD 1  
E6AE 1  
E6AF 1  
E6B0 1  
E6B1 1  
E6B2 1  
E6B3 1  
E6B4 1  
E6B5 1  
EP1OUTCS  
EP1INCS  
Endpoint 1 OUT Control  
and Status  
0
0
0
0
0
0
Endpoint 1 IN Control and 0  
Status  
0
0
0
0
0
EP2CS  
Endpoint 2 Control and  
Status  
0
NPAK2  
NPAK1  
NPAK0  
NPAK0  
NPAK0  
NPAK0  
0
FULL  
FULL  
FULL  
FULL  
0
EMPTY  
EMPTY  
EMPTY  
EMPTY  
PF  
EP4CS  
Endpoint 4 Control and  
Status  
0
0
NPAK1  
0
EP6CS  
Endpoint 6 Control and  
Status  
0
NPAK2  
NPAK1  
0
EP8CS  
Endpoint 8 Control and  
Status  
0
0
NPAK1  
0
EP2FIFOFLGS  
EP4FIFOFLGS  
EP6FIFOFLGS  
EP8FIFOFLGS  
EP2FIFOBCH  
EP2FIFOBCL  
EP4FIFOBCH  
EP4FIFOBCL  
EP6FIFOBCH  
EP6FIFOBCL  
EP8FIFOBCH  
EP8FIFOBCL  
SUDPTRH  
Endpoint 2 slave FIFO  
Flags  
0
0
0
EF  
Endpoint 4 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
00000010 R  
Endpoint 6 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
00000110 R  
Endpoint 8 slave FIFO  
Flags  
0
0
0
0
0
PF  
EF  
FF  
00000110 R  
Endpoint 2 slave FIFO  
total byte count H  
0
0
0
BC12  
BC4  
0
BC11  
BC3  
0
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
A10  
A2  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
A9  
BC8  
BC0  
BC8  
BC0  
BC8  
BC0  
BC8  
BC0  
A8  
00000000 R  
Endpoint 2 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
00000000 R  
Endpoint 4 slave FIFO  
total byte count H  
00000000 R  
Endpoint 4 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
BC3  
BC11  
BC3  
0
00000000 R  
Endpoint 6 slave FIFO  
total byte count H  
00000000 R  
Endpoint 6 slave FIFO  
total byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
00000000 R  
Endpoint 8 slave FIFO  
total byte count H  
00000000 R  
Endpoint 8 slave FIFO  
total byte count L  
BC7  
BC6  
A14  
A6  
0
BC5  
A13  
A5  
0
BC4  
A12  
A4  
BC3  
A11  
A3  
00000000 R  
Setup Data Pointer high A15  
address byte  
xxxxxxxx RW  
xxxxxxx0 bbbbbbbr  
SUDPTRL  
Setup Data Pointer low ad-A7  
dress byte  
A1  
0
SUDPTRCTL  
Setup Data Pointer Auto  
Mode  
0
0
0
0
0
SDPAUTO 00000001 RW  
2
reserved  
E6B8 8  
SET-UPDAT  
8 bytes of setup data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx R  
SET-UPDAT[0] =  
bmRequestType  
SET-UPDAT[1] =  
bmRequest  
SET-UPDAT[2:3] = wVal-  
ue  
SET-UPDAT[4:5] = wInd-  
ex  
SET-UPDAT[6:7] =  
wLength  
GPIF  
E6C0 1  
E6C1 1  
GPIFWFSELECT  
GPIFIDLECS  
Waveform Selector  
SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0  
FIFORD1  
0
FIFORD0  
IDLEDRV  
11100100 RW  
10000000 RW  
GPIF Done, GPIF IDLE DONE  
drive mode  
0
0
0
0
0
E6C2 1  
E6C3 1  
E6C4 1  
E6C5 1  
GPIFIDLECTL  
GPIFCTLCFG  
Inactive Bus, CTL states  
CTL Drive Type  
0
0
CTL5  
CTL5  
0
CTL4  
CTL4  
0
CTL3  
CTL3  
0
CTL2  
CTL2  
0
CTL1  
CTL1  
0
CTL0  
11111111 RW  
00000000 RW  
00000000 RW  
00000000 RW  
TRICTL  
0
0
CTL0  
[11]  
GPIFADRH  
GPIF Address H  
0
GPIFA8  
GPIFA0  
[11]  
GPIFADRL  
GPIF Address L  
GPIFA7  
GPIFA6  
GPIFA5  
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA1  
FLOWSTATE  
FLOWSTATE  
E6C6 1  
Flowstate Enable and  
Selector  
FSE  
0
0
0
0
FS2  
FS1  
FS0  
00000000 brrrrbbb  
E6C7 1  
E6C8 1  
FLOWLOGIC  
Flowstate Logic  
LFUNC1  
CTL0E3  
LFUNC0  
CTL0E2  
TERMA2  
TERMA1  
TERMA0  
CTL3  
TERMB2  
CTL2  
TERMB1  
CTL1  
TERMB0  
CTL0  
00000000 RW  
00000000 RW  
FLOWEQ0CTL  
CTL-Pin States in  
Flowstate  
(when Logic = 0)  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
E6C9 1  
E6CA 1  
FLOWEQ1CTL  
CTL-Pin States in Flow- CTL0E3  
state (when Logic = 1)  
CTL0E2  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
CTL3  
CTL2  
CTL1  
CTL0  
00000000 RW  
00010010 RW  
FLOWHOLDOFF  
Holdoff Configuration  
HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD HOSTATE HOCTL2  
0
HOCTL1  
HOCTL0  
Document #: 38-08032 Rev. *M  
Page 32 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
0
b2  
b1  
b0  
Default  
Access  
E6CB 1  
FLOWSTB  
Flowstate Strobe  
Configuration  
SLAVE  
RDYASYNC CTLTOGL  
SUSTAIN  
MSTB2  
MSTB1  
MSTB0  
00100000 RW  
E6CC 1  
FLOWSTBEDGE  
Flowstate Rising/Falling  
Edge Configuration  
0
0
0
0
0
0
FALLING  
RISING  
00000001 rrrrrrbb  
E6CD 1  
E6CE 1  
FLOWSTBPERIOD Master-Strobe Half-Period D7  
[11]  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00000010 RW  
00000000 RW  
GPIFTCB3  
GPIFTCB2  
GPIFTCB1  
GPIFTCB0  
GPIF Transaction Count TC31  
Byte 3  
TC30  
TC29  
TC28  
TC27  
TC26  
TC25  
TC24  
[11]  
[11]  
[11]  
E6CF 1  
E6D0 1  
E6D1 1  
2
GPIF Transaction Count TC23  
Byte 2  
TC22  
TC14  
TC6  
TC21  
TC13  
TC5  
TC20  
TC12  
TC4  
TC19  
TC11  
TC3  
TC18  
TC10  
TC2  
TC17  
TC9  
TC1  
TC16  
TC8  
TC0  
00000000 RW  
00000000 RW  
00000001 RW  
00000000 RW  
GPIF Transaction Count TC15  
Byte 1  
GPIF Transaction Count TC7  
Byte 0  
reserved  
reserved  
reserved  
[11]  
E6D2 1  
E6D3 1  
EP2GPIFFLGSEL  
Endpoint 2 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP2GPIFPFSTOP  
Endpoint 2 GPIF stop  
transaction on prog. flag  
FIFO2FLAG 00000000 RW  
[11]  
E6D4 1  
3
EP2GPIFTRIG  
Endpoint 2 GPIF Trigger  
x
x
xxxxxxxx W  
reserved  
reserved  
reserved  
[11]  
E6DA 1  
E6DB 1  
EP4GPIFFLGSEL  
Endpoint 4 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP4GPIFPFSTOP  
Endpoint 4 GPIF stop  
transaction on GPIF Flag  
FIFO4FLAG 00000000 RW  
[11]  
E6DC 1  
3
EP4GPIFTRIG  
Endpoint 4 GPIF Trigger  
x
x
xxxxxxxx W  
reserved  
reserved  
reserved  
[11]  
E6E2 1  
E6E3 1  
EP6GPIFFLGSEL  
Endpoint 6 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP6GPIFPFSTOP  
Endpoint 6 GPIF stop  
transaction on prog. flag  
FIFO6FLAG 00000000 RW  
[11]  
E6E4 1  
3
EP6GPIFTRIG  
Endpoint 6 GPIF Trigger  
x
x
xxxxxxxx W  
reserved  
reserved  
reserved  
[11]  
E6EA 1  
E6EB 1  
EP8GPIFFLGSEL  
Endpoint 8 GPIF Flag  
select  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000 RW  
EP8GPIFPFSTOP  
Endpoint 8 GPIF stop  
transaction on prog. flag  
FIFO8FLAG 00000000 RW  
[11]  
E6EC 1  
3
EP8GPIFTRIG  
Endpoint 8 GPIF Trigger  
x
x
xxxxxxxx W  
reserved  
E6F0 1  
XGPIFSGLDATH  
GPIF Data H  
D15  
D14  
D6  
D13  
D12  
D4  
D4  
0
D11  
D3  
D3  
0
D10  
D2  
D2  
0
D9  
D1  
D1  
0
D8  
D0  
D0  
0
xxxxxxxx RW  
xxxxxxxx RW  
(16-bit mode only)  
E6F1 1  
E6F2 1  
E6F3 1  
XGPIFSGLDATLX  
Read/Write GPIF Data L & D7  
trigger transaction  
D5  
XGPIFSGLDATL-  
NOX  
Read GPIF Data L, no  
transaction trigger  
D7  
D6  
D5  
xxxxxxxx  
R
GPIFREADYCFG  
InternalRDY,Sync/Async, INTRDY  
RDY pin states  
SAS  
TCXRDY5  
00000000 bbbrrrrr  
E6F4 1  
E6F5 1  
E6F6 2  
GPIFREADYSTAT  
GPIFABORT  
GPIF Ready Status  
0
x
0
x
RDY5  
x
RDY4  
x
RDY3  
x
RDY2  
x
RDY1  
x
RDY0  
x
00xxxxxx  
xxxxxxxx  
R
Abort GPIF Waveforms  
W
reserved  
ENDPOINT BUFFERS  
E740 64 EP0BUF  
EP0-IN/-OUT buffer  
EP1-OUT buffer  
EP1-IN buffer  
D7  
D7  
D7  
D6  
D6  
D6  
D5  
D5  
D5  
D4  
D4  
D4  
D3  
D3  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
xxxxxxxx RW  
xxxxxxxx RW  
xxxxxxxx RW  
RW  
E780 64 EP10UTBUF  
E7C0 64 EP1INBUF  
E800 2048 reserved  
F000 1024 EP2FIFOBUF  
512/1024byteEP2/slave D7  
FIFO buffer (IN or OUT)  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx RW  
F400 512 EP4FIFOBUF  
512 byte EP 4 / slave FIFO D7  
buffer (IN or OUT)  
xxxxxxxx RW  
F600 512 reserved  
F800 1024 EP6FIFOBUF  
512/1024byteEP6/slave D7  
FIFO buffer (IN or OUT)  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx RW  
xxxxxxxx RW  
FC00 512 EP8FIFOBUF  
FE00 512 reserved  
512 byte EP 8 / slave FIFO D7  
buffer (IN or OUT)  
Document #: 38-08032 Rev. *M  
Page 33 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size Name  
Description  
b7  
0
b6  
b5  
0
b4  
0
b3  
0
b2  
0
b1  
0
b0  
Default  
Access  
xxxx  
I²C Configuration Byte  
DISCON  
400KHZ  
xxxxxxxx n/a  
[14]  
Special Function Registers (SFRs)  
[13]  
80  
81  
82  
83  
84  
85  
86  
87  
88  
1
1
1
1
1
1
1
1
1
IOA  
Port A (bit addressable) D7  
D6  
D6  
A6  
A14  
A6  
A14  
0
D5  
D5  
A5  
A13  
A5  
A13  
0
D4  
D4  
A4  
A12  
A4  
A12  
0
D3  
D3  
A3  
A11  
A3  
A11  
0
D2  
D2  
A2  
A10  
A2  
A10  
0
D1  
D1  
A1  
A9  
A1  
A9  
0
D0  
xxxxxxxx RW  
00000111 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00110000 RW  
00000000 RW  
SP  
Stack Pointer  
D7  
D0  
DPL0  
DPH0  
Data Pointer 0 L  
Data Pointer 0 H  
Data Pointer 1 L  
Data Pointer 1 H  
Data Pointer 0/1 select  
Power Control  
A7  
A0  
A15  
A7  
A8  
[13]  
DPL1  
DPH1  
A0  
[13]  
A15  
0
A8  
[13]  
DPS  
SEL  
IDLE  
IT0  
PCON  
TCON  
SMOD0  
TF1  
x
1
1
x
x
x
Timer/Counter Control  
(bit addressable)  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
89  
1
TMOD  
Timer/Counter Mode  
Control  
GATE  
CT  
M1  
M0  
GATE  
CT  
M1  
M0  
00000000 RW  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
1
1
1
1
1
1
1
1
1
TL0  
Timer 0 reload L  
Timer 1 reload L  
Timer 0 reload H  
Timer 1 reload H  
Clock Control  
D7  
D7  
D15  
D15  
x
D6  
D6  
D14  
D14  
x
D5  
D4  
D3  
D2  
D1  
D0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000001 RW  
TL1  
D5  
D4  
D3  
D2  
D1  
D0  
TH0  
D13  
D13  
T2M  
D12  
D12  
T1M  
D11  
D11  
T0M  
D10  
D10  
MD2  
D9  
D8  
TH1  
D9  
D8  
[13]  
CKCON  
MD1  
MD0  
reserved  
[13]  
IOB  
Port B (bit addressable) D7  
External Interrupt Flag(s) IE5  
D6  
D5  
D4  
D3  
1
D2  
0
D1  
0
D0  
0
xxxxxxxx RW  
00001000 RW  
00000000 RW  
[13]  
EXIF  
IE4  
A14  
I²CINT  
A13  
USBNT  
A12  
[13]  
MPAGE  
Upper Addr Byte of MOVX A15  
using @R0 / @R1  
A11  
A10  
A9  
A8  
93  
98  
5
1
reserved  
SCON0  
Serial Port 0 Control  
(bit addressable)  
SM0_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00000000 RW  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A8  
1
1
1
1
1
1
1
1
1
1
5
1
SBUF0  
Serial Port 0 Data Buffer D7  
Autopointer 1 Address H A15  
Autopointer 1 Address L A7  
D6  
D5  
D4  
D3  
A11  
A3  
D2  
D1  
A9  
A1  
D0  
A8  
A0  
00000000 RW  
00000000 RW  
00000000 RW  
[13]  
AUTOPTRH1  
A14  
A6  
A13  
A5  
A12  
A4  
A10  
A2  
[13]  
AUTOPTRL1  
reserved  
[13]  
AUTOPTRH2  
Autopointer 2 Address H A15  
Autopointer 2 Address L A7  
A14  
A6  
A13  
A5  
A12  
A4  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
00000000 RW  
00000000 RW  
[13]  
AUTOPTRL2  
reserved  
[13]  
IOC  
Port C (bit addressable) D7  
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
D1  
x
D0  
x
xxxxxxxx RW  
[13]  
INT2CLR  
Interrupt 2 clear  
Interrupt 4 clear  
x
x
xxxxxxxx  
xxxxxxxx  
W
W
[13]  
INT4CLR  
x
x
x
x
x
x
x
reserved  
IE  
Interrupt Enable  
(bit addressable)  
EA  
ES1  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00000000 RW  
A9  
AA  
1
1
reserved  
[13]  
EP2468STAT  
Endpoint 2,4,6,8 status  
flags  
EP8F  
EP8E  
EP6F  
EP6E  
EP4F  
EP4E  
EP2F  
EP2E  
01011010 R  
00100010 R  
01100110 R  
AB  
AC  
1
1
EP24FIFOFLGS  
[13]  
Endpoint 2,4 slave FIFO  
status flags  
0
0
EP4PF  
EP8PF  
EP4EF  
EP8EF  
EP4FF  
EP8FF  
0
0
EP2PF  
EP6PF  
EP2EF  
EP6EF  
EP2FF  
EP6FF  
EP68FIFOFLGS  
[13]  
Endpoint 6,8 slave FIFO  
status flags  
AD  
AF  
B0  
B1  
2
1
1
1
reserved  
[13]  
AUTOPTRSETUP  
Autopointer 1&2 setup  
0
0
0
0
0
APTR2INC APTR1INC APTREN  
00000110 RW  
xxxxxxxx RW  
xxxxxxxx RW  
[13]  
IOD  
Port D (bit addressable) D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
[13]  
IOE  
Port E  
(NOT bit addressable)  
D7  
[13]  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
1
1
1
1
1
1
1
OEA  
Port A Output Enable  
Port B Output Enable  
Port C Output Enable  
Port D Output Enable  
Port E Output Enable  
D7  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
00000000 RW  
[13]  
OEB  
[13]  
OEC  
[13]  
OED  
[13]  
OEE  
reserved  
IP  
Interrupt Priority (bit ad-  
dressable)  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
10000000 RW  
B9  
BA  
1
1
reserved  
[13]  
EP01STAT  
Endpoint 0&1 Status  
0
0
0
0
0
0
0
0
0
EP1INBSY EP1OUTBS EP0BSY  
Y
00000000 R  
[13, 11]  
BB  
1
GPIFTRIG  
Endpoint 2,4,6,8 GPIF  
slave FIFO Trigger  
DONE  
RW  
EP1  
EP0  
10000xxx brrrrbbb  
BC  
BD  
1
1
reserved  
[13]  
GPIFSGLDATH  
GPIF Data H (16-bit mode D15  
only)  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
xxxxxxxx RW  
Note  
13. SFRs not part of the standard 8051 architecture.  
14. If no EEPROM is detected by the SIE then the default is 00000000.  
Document #: 38-08032 Rev. *M  
Page 34 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Table 12. FX2LP Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default  
xxxxxxxx RW  
xxxxxxxx  
Access  
[13]  
BE  
BF  
1
1
GPIFSGLDATLX  
GPIFSGLDATL-  
GPIF Data L w/ Trigger D7  
GPIF Data L w/ No Trigger D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
R
[13]  
NOX  
[13]  
C0  
1
SCON1  
Serial Port 1 Control (bit SM0_1  
addressable)  
SM1_1  
D6  
SM2_1  
D5  
REN_1  
D4  
TB8_1  
D3  
RB8_1  
D2  
TI_1  
D1  
RI_1  
D0  
00000000 RW  
00000000 RW  
[13]  
C1  
C2  
C8  
1
6
1
SBUF1  
Serial Port 1 Data Buffer D7  
reserved  
T2CON  
Timer/Counter 2 Control TF2  
(bit addressable)  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
CT2  
CPRL2  
00000000 RW  
C9  
CA  
1
1
reserved  
RCAP2L  
Capture for Timer 2, au- D7  
to-reload, up-counter  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
00000000 RW  
00000000 RW  
CB  
1
RCAP2H  
Capture for Timer 2, au- D7  
to-reload, up-counter  
CC  
CD  
CE  
D0  
1
1
2
1
TL2  
Timer 2 reload L  
Timer 2 reload H  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
00000000 RW  
00000000 RW  
TH2  
D15  
D14  
D13  
D12  
D11  
D10  
reserved  
PSW  
Program Status Word (bit CY  
addressable)  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00000000 RW  
D1  
D8  
D9  
E0  
7
1
7
1
reserved  
[13]  
EICON  
External Interrupt Control SMOD1  
1
ERESI  
D5  
RESI  
D4  
INT6  
D3  
0
0
0
01000000 RW  
00000000 RW  
reserved  
ACC  
Accumulator (bit address- D7  
able)  
D6  
D2  
D1  
D0  
E1  
E8  
7
1
reserved  
[13]  
EIE  
External Interrupt En-  
able(s)  
1
1
1
EX6  
EX5  
EX4  
EI²C  
EUSB  
11100000 RW  
E9  
F0  
F1  
F8  
7
1
7
1
reserved  
B
B (bit addressable)  
D7  
1
D6  
1
D5  
1
D4  
D3  
D2  
D1  
D0  
00000000 RW  
11100000 RW  
reserved  
[13]  
EIP  
External Interrupt Priority  
Control  
PX6  
PX5  
PX4  
PI²C  
PUSB  
F9  
7
reserved  
R = all bits read-only  
W = all bits write-only  
r = read-only bit  
w = write-only bit  
b = both read/write bit  
Document #: 38-08032 Rev. *M  
Page 35 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
6. Absolute Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Max Output Current, per I/O port......................................10 mA  
Max Output Current, all five I/O ports  
Storage Temperature ......................................–65°C to +150°C  
(128- and 100-pin packages)............................................50 mA  
Ambient Temperature with  
Power Supplied (Commercial)...............................0°C to +70°C  
7. Operating Conditions  
Ambient Temperature with  
Power Supplied (Industrial) ............................–40°C to + 105°C  
TA (Ambient Temperature Under Bias)  
Commercial ...........................................................0°C to +70°C  
Supply Voltage to Ground Potential.................... –0.5V to +4.0V  
DC Input Voltage to Any Input Pin[15] ................................5.25V  
TA (Ambient Temperature Under Bias)  
Industrial–40°C to +105°C  
Supply Voltage................................................+3.00V to +3.60V  
Ground Voltage.......................................................................0V  
DC Voltage Applied to Outputs  
in High Z State.......................................... –0.5V to VCC + 0.5V  
Power Dissipation..........................................................300 mW  
Static Discharge Voltage................. ...............................>2000V  
F
OSC (Oscillator or Crystal Frequency)............24 MHz ± 10 ppm,  
Parallel Resonant  
8. Thermal Characteristics  
The following table displays the thermal characteristics of various packages:  
Table 13. Thermal Characteristics  
θJc  
θCa  
θJa  
θa  
Junction to Case Case to Ambient  
Junction toθAJmcb+ieθnCt aTemperature  
Ambient Temperature  
Package  
Temperature  
Temperature  
(°C)  
(°C/W)  
24.4  
11.9  
(°C/W)  
23.3  
34.0  
27.7  
14.6  
27.7  
(°C/W)  
47.7  
45.9  
43.2  
25.2  
58.6  
56 SSOP  
100 TQFP  
128 TQFP  
56 QFN  
70  
70  
70  
70  
70  
15.5  
10.6  
30.9  
56 VFBGA  
The Junction Temperature θj, can be calculated using the following equation: θj = P*θJa + θa  
where,  
P = Power  
θJa = Junction to Ambient Temperature (θJc + θCa)  
θa = Ambient Temperature (70 C)  
The Case Temperature θc, can be calculated using the following equation: θc = P*θCa + θa  
where,  
P = Power  
θCa = Case to Ambient Temperature  
θa = Ambient Temperature (70 C)  
Note  
15. Do not power I/O with chip power off.  
Document #: 38-08032 Rev. *M  
Page 36 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
9. DC Characteristics  
Table 14. DC Characteristics  
Parameter  
VCC  
VCC Ramp Up 0 to 3.3V  
Description  
Conditions  
Min  
3.00  
200  
2
Typ  
Max  
Unit  
V
Supply Voltage  
3.3  
3.60  
μs  
V
VIH  
VIL  
Input HIGH Voltage  
5.25  
0.8  
Input LOW Voltage  
–0.5  
2
V
VIH_X  
VIL_X  
II  
Crystal Input HIGH Voltage  
Crystal Input LOW Voltage  
Input Leakage Current  
Output Voltage HIGH  
Output LOW Voltage  
Output Current HIGH  
Output Current LOW  
Input Pin Capacitance  
5.25  
0.8  
V
–0.5  
V
0< VIN < VCC  
±10  
μA  
V
VOH  
VOL  
IOH  
IOL  
IOUT = 4 mA  
2.4  
IOUT = –4 mA  
0.4  
4
V
mA  
mA  
pF  
pF  
μA  
μA  
mA  
mA  
mA  
mA  
mS  
μS  
4
CIN  
Except D+/D–  
10  
D+/D–  
15  
ISUSP  
Suspend Current  
Connected  
300  
100  
0.5  
0.3  
50  
380[16]  
150[16]  
1.2[16]  
1.0[16]  
85  
CY7C68014/CY7C68016  
Suspend Current  
Disconnected  
Connected  
CY7C68013/CY7C68015  
Supply Current  
Disconnected  
ICC  
8051 running, connected to USB HS  
8051 running, connected to USB FS  
VCC min = 3.0V  
35  
65  
TRESET  
Reset Time after Valid Power  
Pin Reset after powered on  
5.0  
200  
9.1 USB Transceiver  
USB 2.0 compliant in full speed and high speed modes.  
10. AC Electrical Characteristics  
10.1 USB Transceiver  
USB 2.0 compliant in full speed and high speed modes.  
Note  
16. Measured at Max VCC, 25°C.  
Document #: 38-08032 Rev. *M  
Page 37 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.2 Program Memory Read  
Figure 12. Program Memory Read Timing Diagram  
t
CL  
CLKOUT[17]  
t
t
AV  
AV  
A[15..0]  
t
t
STBH  
STBL  
PSEN#  
D[7..0]  
[18]  
ACC1  
t
DH  
t
data in  
t
SOEL  
OE#  
CS#  
t
SCSL  
Table 15. Program Memory Read Parameters  
Parameter Description  
1/CLKOUT Frequency  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
48 MHz  
24 MHz  
12 MHz  
tCL  
20.83  
41.66  
83.2  
tAV  
Delay from Clock to Valid Address  
Clock to PSEN Low  
Clock to PSEN High  
Clock to OE Low  
0
0
0
10.7  
8
tSTBL  
tSTBH  
tSOEL  
tSCSL  
tDSU  
tDH  
8
11.1  
13  
Clock to CS Low  
Data Setup to Clock  
Data Hold Time  
9.6  
0
Notes  
17. CLKOUT is shown with positive polarity.  
18. t  
is computed from the above parameters as follows:  
ACC1  
ACC1  
ACC1  
t
t
(24 MHz) = 3*t – t – t  
= 106 ns  
= 43 ns.  
CL  
AV  
DSU  
DSU  
(48 MHz) = 3*t – t – t  
CL  
AV  
Document #: 38-08032 Rev. *M  
Page 38 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.3 Data Memory Read  
Figure 13. Data Memory Read Timing Diagram  
t
CL  
Stretch = 0  
CLKOUT[17]  
t
t
AV  
AV  
A[15..0]  
t
t
STBH  
STBL  
RD#  
t
SCSL  
CS#  
OE#  
t
SOEL  
t
DSU  
[19]  
t
DH  
t
ACC1  
D[7..0]  
data in  
Stretch = 1  
t
CL  
CLKOUT[17]  
t
AV  
A[15..0]  
RD#  
CS#  
t
DSU  
t
[19]  
DH  
t
ACC1  
D[7..0]  
data in  
Table 16. Data Memory Read Parameters  
Parameter Description  
1/CLKOUT Frequency  
Min  
Typ  
20.83  
41.66  
83.2  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
48 MHz  
24 MHz  
12 MHz  
tCL  
tAV  
Delay from Clock to Valid Address  
Clock to RD LOW  
10.7  
11  
tSTBL  
tSTBH  
tSCSL  
tSOEL  
tDSU  
tDH  
Clock to RD HIGH  
11  
Clock to CS LOW  
13  
Clock to OE LOW  
11.1  
Data Setup to Clock  
Data Hold Time  
9.6  
0
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either  
RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for  
which is based on the stretch value  
Note  
19. t  
and t  
are computed from the above parameters as follows:  
ACC2  
ACC2  
ACC2  
ACC3  
ACC3  
ACC3  
t
t
t
t
(24 MHz) = 3*t – t –t  
= 106 ns  
(48 MHz) = 3*t – t – t = 43 ns  
DSU  
CL  
AV DSU  
CL  
AV  
(24 MHz) = 5*t – t –t = 190 ns  
(48 MHz) = 5*t – t – t = 86 ns.  
DSU  
CL  
AV DSU  
CL  
AV  
Document #: 38-08032 Rev. *M  
Page 39 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.4 Data Memory Write  
Figure 14. Data Memory Write Timing Diagram  
t
CL  
CLKOUT  
A[15..0]  
t
AV  
t
t
t
STBL  
STBH  
AV  
WR#  
CS#  
t
SCSL  
t
ON1  
t
OFF1  
data out  
D[7..0]  
Stretch = 1  
t
CL  
CLKOUT  
A[15..0]  
t
AV  
WR#  
CS#  
t
ON1  
t
OFF1  
data out  
D[7..0]  
Table 17. Data Memory Write Parameters  
Parameter Description  
Delay from Clock to Valid Address  
Min  
0
Max  
10.7  
11.2  
11.2  
13.0  
13.1  
13.1  
Unit  
ns  
Notes  
tAV  
tSTBL  
tSTBH  
tSCSL  
tON1  
Clock to WR Pulse LOW  
Clock to WR Pulse HIGH  
Clock to CS Pulse LOW  
Clock to Data Turn-on  
Clock to Data Hold Time  
0
ns  
0
ns  
ns  
0
0
ns  
tOFF1  
ns  
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD#  
or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for which is  
based on the stretch value.  
Document #: 38-08032 Rev. *M  
Page 40 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.5 PORTC Strobe Feature Timings  
The RD# and WR# are present in the 100-pin version and the  
128-pin package. In these 100-pin and 128-pin versions, an  
8051 control bit can be set to pulse the RD# and WR# pins when  
the 8051 reads from or writes to PORTC. This feature is enabled  
by setting PORTCSTB bit in CPUCS register.  
The RD# signal prompts the external logic to prepare the next  
data byte. Nothing gets sampled internally on assertion of the  
RD# signal itself, it is just a prefetch type signal to get the next  
data byte prepared. So, using it with that in mind easily meets the  
setup time to the next read.  
The RD# and WR# strobes are asserted for two CLKOUT cycles  
when PORTC is accessed.  
The purpose of this pulsing of RD# is to allow the external  
peripheral to know that the 8051 is done reading PORTC and the  
data was latched into PORTC three CLKOUT cycles before  
asserting the RD# signal. After the RD# is pulsed, the external  
logic can update the data on PORTC.  
The WR# strobe is asserted two clock cycles after PORTC is  
updated and is active for two clock cycles after that, as shown in  
Figure 15.  
Following is the timing diagram of the read and write strobing  
function on accessing PORTC. Refer to Section 10.3 and  
Section 10.4 for details on propagation delay of RD# and WR#  
signals.  
As for read, the value of PORTC three clock cycles before the  
assertion of RD# is the value that the 8051 reads in. The RD# is  
pulsed for 2 clock cycles after 3 clock cycles from the point when  
the 8051 has performed a read function on PORTC.  
Figure 15. WR# Strobe Function when PORTC is Accessed by 8051  
t
CLKOUT  
CLKOUT  
PORTC IS UPDATED  
WR#  
t
t
STBL  
STBH  
Figure 16. RD# Strobe Function when PORTC is Accessed by 8051  
t
CLKOUT  
CLKOUT  
8051 READS PORTC  
RD#  
DATA CAN BE UPDATED BY EXTERNAL LOGIC  
DATA MUST BE HELD FOR 3 CLK CYLCES  
t
t
STBL  
STBH  
Document #: 38-08032 Rev. *M  
Page 41 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.6 GPIF Synchronous Signals  
Figure 17. GPIF Synchronous Signals Timing Diagram[20]  
t
IFCLK  
IFCLK  
t
SGA  
GPIFADR[8:0]  
RDY  
X
t
SRY  
t
RYH  
DATA(input)  
valid  
t
SGD  
t
DAH  
CTLX  
t
XCTL  
DATA(output)  
N
N+1  
t
XGD  
Table 18. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[20, 21]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
8.9  
0
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IFCLK Period  
tSRY  
tRYH  
tSGD  
tDAH  
tSGA  
tXGD  
tXCTL  
RDYX to Clock Setup Time  
Clock to RDYX  
GPIF Data to Clock Setup Time  
GPIF Data Hold Time  
9.2  
0
Clock to GPIF Address Propagation Delay  
Clock to GPIF Data Output Propagation Delay  
Clock to CTLX Output Propagation Delay  
7.5  
11  
6.7  
Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[21]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
2.9  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IFCLK Period[22]  
200  
tSRY  
tRYH  
tSGD  
tDAH  
tSGA  
tXGD  
tXCTL  
RDYX to Clock Setup Time  
Clock to RDYX  
3.7  
GPIF Data to Clock Setup Time  
GPIF Data Hold Time  
3.2  
4.5  
Clock to GPIF Address Propagation Delay  
Clock to GPIF Data Output Propagation Delay  
Clock to CTLX Output Propagation Delay  
11.5  
15  
10.7  
Notes  
20. Dashed lines denote signals with programmable polarity.  
21. GPIF asynchronous RDY signals have a minimum Setup time of 50 ns when using internal 48-MHz IFCLK.  
x
22. IFCLK must not exceed 48 MHz.  
Document #: 38-08032 Rev. *M  
Page 42 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.7 Slave FIFO Synchronous Read  
Figure 18. Slave FIFO Synchronous Read Timing Diagram[20]  
t
IFCLK  
IFCLK  
SLRD  
t
RDH  
t
SRD  
t
XFLG  
FLAGS  
DATA  
N+1  
N
t
t
XFD  
OEon  
t
OEoff  
SLOE  
Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[21]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
18.7  
0
Max  
Unit  
ns  
IFCLK Period  
tSRD  
tRDH  
tOEon  
tOEoff  
tXFLG  
tXFD  
SLRD to Clock Setup Time  
ns  
Clock to SLRD Hold Time  
ns  
SLOE Turn-on to FIFO Data Valid  
SLOE Turn-off to FIFO Data Hold  
Clock to FLAGS Output Propagation Delay  
Clock to FIFO Data Output Propagation Delay  
10.5  
10.5  
9.5  
ns  
ns  
ns  
11  
ns  
Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[21]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
12.7  
3.7  
Max  
Unit  
ns  
IFCLK Period  
200  
tSRD  
tRDH  
tOEon  
tOEoff  
tXFLG  
tXFD  
SLRD to Clock Setup Time  
ns  
Clock to SLRD Hold Time  
ns  
SLOE Turn-on to FIFO Data Valid  
SLOE Turn-off to FIFO Data Hold  
Clock to FLAGS Output Propagation Delay  
Clock to FIFO Data Output Propagation Delay  
10.5  
10.5  
13.5  
15  
ns  
ns  
ns  
ns  
Document #: 38-08032 Rev. *M  
Page 43 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.8 Slave FIFO Asynchronous Read  
Figure 19. Slave FIFO Asynchronous Read Timing Diagram[20]  
t
RDpwh  
SLRD  
t
RDpwl  
t
XFLG  
t
FLAGS  
XFD  
DATA  
SLOE  
N+1  
N
t
t
OEoff  
OEon  
Table 22. Slave FIFO Asynchronous Read Parameters[23]  
Parameter Description  
tRDpwl SLRD Pulse Width LOW  
SLRD Pulse Width HIGH  
Min  
Max  
Unit  
ns  
50  
50  
tRDpwh  
tXFLG  
tXFD  
ns  
SLRD to FLAGS Output Propagation Delay  
SLRD to FIFO Data Output Propagation Delay  
SLOE Turn-on to FIFO Data Valid  
70  
15  
ns  
ns  
tOEon  
tOEoff  
10.5  
10.5  
ns  
SLOE Turn-off to FIFO Data Hold  
ns  
Note  
23. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.  
Document #: 38-08032 Rev. *M  
Page 44 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.9 Slave FIFO Synchronous Write  
Figure 20. Slave FIFO Synchronous Write Timing Diagram[20]  
t
IFCLK  
IFCLK  
SLWR  
t
WRH  
t
SWR  
DATA  
N
Z
Z
t
t
FDH  
SFD  
FLAGS  
t
XFLG  
Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK[21]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
10.4  
0
Max  
Unit  
ns  
IFCLK Period  
tSWR  
tWRH  
tSFD  
SLWR to Clock Setup Time  
ns  
Clock to SLWR Hold Time  
ns  
FIFO Data to Clock Setup Time  
Clock to FIFO Data Hold Time  
Clock to FLAGS Output Propagation Time  
9.2  
0
ns  
tFDH  
tXFLG  
ns  
9.5  
ns  
Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[21]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
12.1  
3.6  
Max  
Unit  
ns  
IFCLK Period  
200  
tSWR  
tWRH  
tSFD  
SLWR to Clock Setup Time  
ns  
Clock to SLWR Hold Time  
ns  
FIFO Data to Clock Setup Time  
Clock to FIFO Data Hold Time  
Clock to FLAGS Output Propagation Time  
3.2  
ns  
tFDH  
tXFLG  
4.5  
ns  
13.5  
ns  
Document #: 38-08032 Rev. *M  
Page 45 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.10 Slave FIFO Asynchronous Write  
Figure 21. Slave FIFO Asynchronous Write Timing Diagram[20]  
t
WRpwh  
SLWR  
t
WRpwl  
t
t
FDH  
SFD  
DATA  
t
XFD  
FLAGS  
Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [23]  
Parameter  
tWRpwl  
tWRpwh  
tSFD  
Description  
Min  
50  
Max  
Unit  
ns  
SLWR Pulse LOW  
SLWR Pulse HIGH  
70  
ns  
SLWR to FIFO DATA Setup Time  
FIFO DATA to SLWR Hold Time  
10  
ns  
tFDH  
10  
ns  
tXFD  
SLWR to FLAGS Output Propagation Delay  
70  
ns  
10.11 Slave FIFO Synchronous Packet End Strobe  
Figure 22. Slave FIFO Synchronous Packet End Strobe Timing Diagram[20]  
IFCLK  
t
PEH  
PKTEND  
FLAGS  
t
SPE  
t
XFLG  
Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK[21]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
14.6  
0
Max  
Unit  
ns  
IFCLK Period  
tSPE  
tPEH  
tXFLG  
PKTEND to Clock Setup Time  
ns  
Clock to PKTEND Hold Time  
ns  
Clock to FLAGS Output Propagation Delay  
9.5  
ns  
Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK[21]  
Parameter  
tIFCLK  
Description  
Min  
20.83  
8.6  
Max  
Unit  
ns  
IFCLK Period  
200  
tSPE  
tPEH  
tXFLG  
PKTEND to Clock Setup Time  
ns  
Clock to PKTEND Hold Time  
2.5  
ns  
Clock to FLAGS Output Propagation Delay  
13.5  
ns  
Document #: 38-08032 Rev. *M  
Page 46 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
There is no specific timing requirement that should be met for  
asserting PKTEND pin to asserting SLWR. PKTEND can be  
asserted with the last data value clocked into the FIFOs or there-  
after. The setup time tSPE and the hold time tPEH must be met.  
caused the last byte or word to be clocked into the previous auto  
committed packet. Figure 23 shows this scenario. X is the value  
the AUTOINLEN register is set to when the IN endpoint is  
configured to be in auto mode.  
Although there are no specific timing requirements for the  
PKTEND assertion, there is a specific corner case condition that  
needs attention while using the PKTEND to commit a one byte  
or word packet. There is an additional timing requirement that  
needs to be met when the FIFO is configured to operate in auto  
mode and it is required to send two packets back to back: a full  
packet (full defined as the number of bytes in the FIFO meeting  
the level set in AUTOINLEN register) committed automatically  
followed by a short one byte or word packet committed manually  
using the PKTEND pin. In this scenario, the user must ensure to  
assert PKTEND at least one clock cycle after the rising edge that  
Figure 23 shows a scenario where two packets are committed.  
The first packet gets committed automatically when the number  
of bytes in the FIFO reaches X (value set in AUTOINLEN  
register) and the second one byte/word short packet being  
committed manually using PKTEND.  
Note that there is at least one IFCLK cycle timing between the  
assertion of PKTEND and clocking of the last byte of the previous  
packet (causing the packet to be committed automatically).  
Failing to adhere to this timing results in the FX2 failing to send  
the one byte or word short packet.  
Figure 23. Slave FIFO Synchronous Write Sequence and Timing Diagram[20]  
t
IFCLK  
IFCLK  
t
t
SFA  
FAH  
FIFOADR  
>= t  
WRH  
>= t  
SWR  
SLWR  
DATA  
t
t
t
FDH  
t
t
t
FDH  
t
t
t
SFD  
t
SFD  
FDH  
SFD  
t
SFD  
t
FDH  
SFD  
SFD  
FDH  
FDH  
X-4  
X-2  
X-1  
1
X-3  
X
At least one IFCLK cycle  
t
SPE  
t
PEH  
PKTEND  
10.12 Slave FIFO Asynchronous Packet End Strobe  
Figure 24. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[20]  
t
PEpwh  
PKTEND  
FLAGS  
t
PEpwl  
t
XFLG  
Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters[23]  
Parameter Description  
tPEpwl PKTEND Pulse Width LOW  
tPWpwh  
tXFLG  
Min  
50  
Max  
Unit  
ns  
ns  
ns  
PKTEND Pulse Width HIGH  
50  
PKTEND to FLAGS Output Propagation Delay  
115  
Document #: 38-08032 Rev. *M  
Page 47 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.13 Slave FIFO Output Enable  
Figure 25. Slave FIFO Output Enable Timing Diagram[20]  
SLOE  
t
OEoff  
t
OEon  
DATA  
Table 29. Slave FIFO Output Enable Parameters  
Parameter  
tOEon  
tOEoff  
Description  
Min  
Max  
10.5  
10.5  
Unit  
ns  
SLOE Assert to FIFO DATA Output  
SLOE Deassert to FIFO DATA Hold  
ns  
10.14 Slave FIFO Address to Flags/Data  
Figure 26. Slave FIFO Address to Flags/Data Timing Diagram[20]  
FIFOADR [1.0]  
t
XFLG  
FLAGS  
DATA  
t
XFD  
N
N+1  
Table 30. Slave FIFO Address to Flags/Data Parameters  
Parameter  
tXFLG  
tXFD  
Description  
FIFOADR[1:0] to FLAGS Output Propagation Delay  
FIFOADR[1:0] to FIFODATA Output Propagation Delay  
Min  
Max  
10.7  
14.3  
Unit  
ns  
ns  
Document #: 38-08032 Rev. *M  
Page 48 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.15 Slave FIFO Synchronous Address  
Figure 27. Slave FIFO Synchronous Address Timing Diagram[20]  
IFCLK  
SLCS/FIFOADR [1:0]  
t
t
FAH  
SFA  
Table 31. Slave FIFO Synchronous Address Parameters [21]  
Parameter  
tIFCLK  
tSFA  
tFAH  
Description  
Interface Clock Period  
Min  
20.83  
25  
Max  
Unit  
ns  
200  
FIFOADR[1:0] to Clock Setup Time  
Clock to FIFOADR[1:0] Hold Time  
ns  
10  
ns  
10.16 Slave FIFO Asynchronous Address  
Figure 28. Slave FIFO Asynchronous Address Timing Diagram[20]  
SLCS/FIFOADR [1:0]  
t
FAH  
t
SFA  
SLRD/SLWR/PKTEND  
Table 32. Slave FIFO Asynchronous Address Parameters[23]  
Parameter  
Description  
Min  
10  
Max  
Unit  
ns  
tSFA  
tFAH  
FIFOADR[1:0] to SLRD/SLWR/PKTEND Setup Time  
RD/WR/PKTEND to FIFOADR[1:0] Hold Time  
10  
ns  
Document #: 38-08032 Rev. *M  
Page 49 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.17 Sequence Diagram  
10.17.1 Single and Burst Synchronous Read Example  
Figure 29. Slave FIFO Synchronous Read Sequence and Timing Diagram[20]  
t
IFCLK  
IFCLK  
t
t
SFA  
SFA  
t
t
FAH  
FAH  
FIFOADR  
t=0  
T=0  
t
t
>= t  
SRD  
>= t  
RDH  
RDH  
SRD  
SLRD  
SLCS  
t=3  
t=2  
T=3  
T=2  
t
XFLG  
FLAGS  
DATA  
SLOE  
t
t
t
XFD  
t
XFD  
XFD  
XFD  
N+4  
Data Driven: N  
N+2  
N+3  
N+1  
N+1  
t
t
t
OEoff  
OEon  
t
OEoff  
OEon  
t=4  
T=4  
T=1  
t=1  
Figure 30. Slave FIFO Synchronous Sequence of Events Diagram  
IFCLK  
IFCLK  
N
IFCLK  
N+1  
IFCLK  
N+1  
IFCLK  
N+1  
IFCLK  
N+2  
IFCLK  
N+3  
IFCLK  
N+4  
IFCLK  
N+4  
IFCLK  
N+4  
N
FIFO POINTER  
SLOE  
SLRD  
SLOE  
SLRD  
SLOE  
SLRD  
SLRD  
SLOE  
FIFO DATA BUS Not Driven  
Driven: N  
N+1  
Not Driven  
N+1  
N+2  
N+3  
N+4  
N+4  
Not Driven  
Figure 29 shows the timing relationship of the SLAVE FIFO  
signals during a synchronous FIFO read using IFCLK as the  
synchronizing clock. The diagram illustrates a single read  
followed by a burst read.  
If the SLCS signal is used, it must be asserted before SLRD is  
asserted (The SLCS and SLRD signals must both be asserted  
to start a valid read condition).  
The FIFO pointer is updated on the rising edge of the IFCLK,  
while SLRD is asserted. This starts the propagation of data  
from the newly addressed location to the data bus. After a  
propagation delay of tXFD (measured from the rising edge of  
IFCLK) the new data value is present. N is the first data value  
read from the FIFO. To have data on the FIFO data bus, SLOE  
MUST also be asserted.  
At t = 0 the FIFO address is stable and the signal SLCS is  
asserted (SLCS may be tied low in some applications). Note  
that tSFA has a minimum of 25 ns. This means when IFCLK is  
running at 48 MHz, the FIFO address setup time is more than  
one IFCLK cycle.  
At t = 1, SLOE is asserted. SLOE is an output enable only,  
whose sole function is to drive the data bus. The data that is  
driven on the bus is the data that the internal FIFO pointer is  
currently pointing to. In this example it is the first data value in  
the FIFO. Note: the data is pre-fetched and is driven on the bus  
when SLOE is asserted.  
The same sequence of events are shown for a burst read and  
are marked with the time indicators of T = 0 through 5.  
Note For the burst mode, the SLRD and SLOE are left asserted  
during the entire duration of the read. In the burst read mode,  
when SLOE is asserted, data indexed by the FIFO pointer is on  
the data bus. During the first read cycle, on the rising edge of the  
clock the FIFO pointer is updated and increments to point to  
address N+1. For each subsequent rising edge of IFCLK, while  
the SLRD is asserted, the FIFO pointer is incremented and the  
next data value is placed on the data bus.  
At t = 2, SLRD is asserted. SLRD must meet the setup time of  
tSRD (time from asserting the SLRD signal to the rising edge of  
the IFCLK) and maintain a minimum hold time of tRDH (time  
from the IFCLK edge to the deassertion of the SLRD signal).  
Document #: 38-08032 Rev. *M  
Page 50 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.17.2 Single and Burst Synchronous Write  
Figure 31. Slave FIFO Synchronous Write Sequence and Timing Diagram[20]  
t
IFCLK  
IFCLK  
t
t
SFA  
t
SFA  
t
FAH  
FAH  
FIFOADR  
>= t  
WRH  
t=0  
t
t
>= t  
T=0  
SWR  
WRH  
SWR  
SLWR  
SLCS  
T=2  
T=5  
t=2  
t=3  
t
XFLG  
t
XFLG  
FLAGS  
DATA  
t
t
t
t
t
FDH  
t
t
t
SFD  
FDH  
SFD  
FDH  
SFD  
SFD  
FDH  
N+1  
N+3  
N
N+2  
T=4  
T=3  
t=1  
T=1  
t
SPE  
t
PEH  
PKTEND  
The Figure 31 shows the timing relationship of the SLAVE FIFO  
signals during a synchronous write using IFCLK as the synchro-  
nizing clock. The diagram illustrates a single write followed by  
burst write of 3 bytes and committing all 4 bytes as a short packet  
using the PKTEND pin.  
FIFO data bus is written to the FIFO on every rising edge of  
IFCLK. The FIFO pointer is updated on each rising edge of  
IFCLK. In Figure 31, after the four bytes are written to the FIFO,  
SLWR is deasserted. The short 4 byte packet can be committed  
to the host by asserting the PKTEND signal.  
There is no specific timing requirement that should be met for  
asserting PKTEND signal with regards to asserting the SLWR  
signal. PKTEND can be asserted with the last data value or  
thereafter. The only requirement is that the setup time tSPE and  
the hold time tPEH must be met. In the scenario of Figure 31, the  
number of data values committed includes the last value written  
to the FIFO. In this example, both the data value and the  
PKTEND signal are clocked on the same rising edge of IFCLK.  
PKTEND can also be asserted in subsequent clock cycles. The  
FIFOADDR lines should be held constant during the PKTEND  
assertion.  
At t = 0 the FIFO address is stable and the signal SLCS is  
asserted. (SLCS may be tied low in some applications) Note  
that tSFA has a minimum of 25 ns. This means when IFCLK is  
running at 48 MHz, the FIFO address setup time is more than  
one IFCLK cycle.  
At t = 1, the external master/peripheral must outputs the data  
value onto the data bus with a minimum set up time of tSFD  
before the rising edge of IFCLK.  
At t = 2, SLWR is asserted. The SLWR must meet the setup  
time of tSWR (time from asserting the SLWR signal to the rising  
edgeofIFCLK)andmaintainaminimumholdtimeoftWRH (time  
from the IFCLK edge to the deassertion of the SLWR signal).  
If the SLCS signal is used, it must be asserted with SLWR or  
before SLWR is asserted (The SLCS and SLWR signals must  
both be asserted to start a valid write condition).  
Although there are no specific timing requirement for the  
PKTEND assertion, there is a specific corner case condition that  
needs attention while using the PKTEND to commit a one  
byte/word packet. Additional timing requirements exists when  
the FIFO is configured to operate in auto mode and it is desired  
to send two packets: a full packet (full defined as the number of  
bytes in the FIFO meeting the level set in AUTOINLEN register)  
committed automatically followed by a short one byte or word  
packet committed manually using the PKTEND pin.  
While the SLWR is asserted, data is written to the FIFO and on  
the rising edge of the IFCLK, the FIFO pointer is incremented.  
The FIFO flag is also updated after a delay of tXFLG from the  
rising edge of the clock.  
In this case, the external master must ensure to assert the  
PKTEND pin at least one clock cycle after the rising edge that  
caused the last byte or word that needs to be clocked into the  
previous auto committed packet (the packet with the number of  
bytes equal to what is set in the AUTOINLEN register). Refer to  
Figure 23 for further details on this timing.  
The same sequence of events are also shown for a burst write  
and are marked with the time indicators of T = 0 through 5.  
Note For the burst mode, SLWR and SLCS are left asserted for  
the entire duration of writing all the required data values. In this  
burst write mode, after the SLWR is asserted, the data on the  
Document #: 38-08032 Rev. *M  
Page 51 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.17.3 Sequence Diagram of a Single and Burst Asynchronous Read  
Figure 32. Slave FIFO Asynchronous Read Sequence and Timing Diagram[20]  
t
t
t
t
FAH  
SFA  
SFA  
FAH  
FIFOADR  
t=0  
t
t
t
RDpwh  
t
t
t
RDpwl  
t
t
T=0  
RDpwl  
RDpwl  
RDpwl  
RDpwh  
RDpwh  
RDpwh  
SLRD  
SLCS  
t=3  
t=2  
T=2  
T=3  
T=5  
T=4  
T=6  
t
XFLG  
t
XFLG  
FLAGS  
DATA  
SLOE  
t
t
XFD  
t
XFD  
XFD  
t
XFD  
Data (X)  
Driven  
N+3  
N
N+1  
N+2  
N
t
t
OEon  
t
t
OEoff  
OEoff  
OEon  
t=4  
T=1  
T=7  
t=1  
Figure 33. Slave FIFO Asynchronous Read Sequence of Events Diagram  
SLOE  
SLRD  
SLRD  
SLOE  
SLOE  
SLRD  
N+1  
SLRD  
N+1  
SLRD  
N+2  
SLRD  
N+2  
SLOE  
FIFO POINTER  
N
N
N
N
N+1  
N
N+1  
N+3  
N+2  
N+3  
FIFO DATA BUS Not Driven  
Driven: X  
Not Driven  
N
N+1  
N+1  
N+2  
Not Driven  
Figure 32 shows the timing relationship of the SLAVE FIFO  
signals during an asynchronous FIFO read. It shows a single  
read followed by a burst read.  
The data that is driven, after asserting SLRD, is the updated  
data from the FIFO. This data is valid after a propagation delay  
of tXFD from the activating edge of SLRD. In Figure 32, data N  
is the first valid data read from the FIFO. For data to appear on  
the data bus during the read cycle (SLRD is asserted), SLOE  
must be in an asserted state. SLRD and SLOE can also be tied  
together.  
At t = 0 the FIFO address is stable and the SLCS signal is  
asserted.  
At t = 1, SLOE is asserted. This results in the data bus being  
driven. The data that is driven on to the bus is previous data,  
it data that was in the FIFO from a prior read cycle.  
The same sequence of events is also shown for a burst read  
marked with T = 0 through 5.  
At t = 2, SLRD is asserted. The SLRD must meet the minimum  
active pulse of tRDpwl and minimum de-active pulse width of  
Note In burst read mode, during SLOE is assertion, the data bus  
is in a driven state and outputs the previous data. After SLRD is  
asserted, the data from the FIFO is driven on the data bus (SLOE  
must also be asserted) and then the FIFO pointer is incre-  
mented.  
t
RDpwh. If SLCS is used then, SLCS must be asserted before  
SLRD is asserted (The SLCS and SLRD signals must both be  
asserted to start a valid read condition.)  
Document #: 38-08032 Rev. *M  
Page 52 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
10.17.4 Sequence Diagram of a Single and Burst Asynchronous Write  
Figure 34. Slave FIFO Asynchronous Write Sequence and Timing Diagram[20]  
t
t
t
FAH  
t
SFA  
SFA  
FAH  
FIFOADR  
t=0  
T=0  
t
t
t
t
t
t
t
t
WRpwh  
WRpwl  
WRpwh  
WRpwl  
WRpwl  
WRpwh  
WRpwh  
WRpwl  
SLWR  
SLCS  
t =1  
t=3  
T=1  
T=4  
T=3  
T=7  
T=6  
T=9  
t
XFLG  
t
XFLG  
FLAGS  
DATA  
t
t
t
t
t
t
t
SFD  
t
SFD FDH  
SFD FDH  
SFD FDH  
FDH  
N
N+1  
N+2  
N+3  
t=2  
T=8  
T=2  
T=5  
t
t
PEpwl  
PEpwh  
PKTEND  
Figure 34 shows the timing relationship of the SLAVE FIFO write  
in an asynchronous mode. The diagram shows a single write  
followed by a burst write of 3 bytes and committing the 4 byte  
short packet using PKTEND.  
The FIFO flag is also updated after tXFLG from the deasserting  
edge of SLWR.  
The same sequence of events are shown for a burst write and is  
indicated by the timing marks of T = 0 through 5.  
At t = 0 the FIFO address is applied, insuring that it meets the  
setup time of tSFA. If SLCS is used, it must also be asserted  
(SLCS may be tied low in some applications).  
Note In the burst write mode, after SLWR is deasserted, the data  
is written to the FIFO and then the FIFO pointer is incremented  
to the next byte in the FIFO. The FIFO pointer is post incre-  
mented.  
At t = 1 SLWR is asserted. SLWR must meet the minimum  
active pulse of tWRpwl and minimum de-active pulse width of  
In Figure 34 after the four bytes are written to the FIFO and  
SLWR is deasserted, the short 4 byte packet can be committed  
to the host using the PKTEND. The external device should be  
designed to not assert SLWR and the PKTEND signal at the  
same time. It should be designed to assert the PKTEND after  
SLWR is deasserted and met the minimum deasserted pulse  
width. The FIFOADDR lines have to held constant during the  
PKTEND assertion.  
t
WRpwh. If the SLCS is used, it must be asserted with SLWR or  
before SLWR is asserted.  
At t = 2, data must be present on the bus tSFD before the  
deasserting edge of SLWR.  
At t = 3, deasserting SLWR causes the data to be written from  
the data bus to the FIFO and then increments the FIFO pointer.  
Document #: 38-08032 Rev. *M  
Page 53 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
11. Ordering Information  
Table 33. Ordering Information  
8051 Address  
/Data Busses  
Ordering Code  
Package Type  
RAM Size  
# Prog I/Os  
Ideal for battery powered applications  
CY7C68014A-128AXC  
128 TQFP – Pb-Free  
100 TQFP – Pb-Free  
56 SSOP – Pb-Free  
56 QFN – Pb-Free  
56 VFBGA – Pb-Free  
56 QFN – Pb-Free  
16K  
16K  
16K  
16K  
16K  
16K  
40  
40  
24  
24  
24  
26  
16/8 bit  
CY7C68014A-100AXC  
CY7C68014A-56PVXC  
CY7C68014A-56LFXC  
CY7C68014A-56BAXC  
CY7C68016A-56LFXC  
Ideal for non-battery powered applications  
CY7C68013A-128AXC  
CY7C68013A-128AXI  
CY7C68013A-100AXC  
CY7C68013A-100AXI  
CY7C68013A-56PVXC  
CY7C68013A-56PVXI  
CY7C68013A-56LFXC  
CY7C68013A-56LFXI  
CY7C68015A-56LFXC  
CY7C68013A-56BAXC  
CY7C68013A-56LTXC  
CY7C68013A-56LTXCT  
CY7C68013A-56LTXI  
128 TQFP – Pb-Free  
128 TQFP – Pb-Free (Industrial)  
100 TQFP – Pb-Free  
100 TQFP – Pb-Free (Industrial)  
56 SSOP – Pb-Free  
56 SSOP – Pb-Free (Industrial)  
56 QFN – Pb-Free  
56 QFN – Pb-Free (Industrial)  
56 QFN – Pb-Free  
56 VFBGA – Pb-Free  
56 QFN  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
16K  
40  
40  
40  
40  
24  
24  
24  
24  
26  
24  
24  
24  
24  
24  
24  
24  
24  
16/8 bit  
16/8 bit  
56 QFN  
56 QFN  
CY7C68014A-56LTXC  
CY7C68015A-56LTXC  
CY7C68016A-56LTXC  
CY7C68016A-56LTXCT  
56 QFN  
56 QFN  
56 QFN  
56 QFN  
Development Tool Kit  
CY3684  
EZ-USB FX2LP Development Kit  
Reference Design Kit  
CY4611B  
USB 2.0 to ATA/ATAPI Reference Design using EZ-USB FX2LP  
Document #: 38-08032 Rev. *M  
Page 54 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
12. Package Diagrams  
The FX2LP is available in five packages:  
56-pin SSOP  
56-pin QFN  
100-pin TQFP  
128-pin TQFP  
56-ball VFBGA  
Package Diagrams  
Figure 35. 56-Pin Shrunk Small Outline Package O56 (51-85062)  
51-85062-*C  
Document #: 38-08032 Rev. *M  
Page 55 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Package Diagrams (continued)  
Figure 36. 56-Pin QFN 8 x 8 mm LF56A (51-85144)  
SIDE VIEW  
BOTTOM VIEW  
TOP VIEW  
0.08[0.003]  
C
7.90[0.311]  
A
1.00[0.039] MAX.  
0.80[0.031] MAX.  
8.10[0.319]  
6.1  
0.05[0.002] MAX.  
0.20[0.008] REF.  
0.18[0.007]  
0.28[0.011]  
7.70[0.303]  
7.80[0.307]  
PIN1 ID  
0.20[0.008] R.  
N
N
1
2
1
2
0.45[0.018]  
0.80[0.031]  
DIA.  
SOLDERABLE  
EXPOSED  
PAD  
6.1  
0.24[0.009]  
0.60[0.024]  
(4X)  
0°-12°  
0.30[0.012]  
0.50[0.020]  
0.50[0.020]  
C
SEATING PLANE  
6.45[0.254]  
6.55[0.258]  
NOTES:  
1.  
HATCH AREA IS SOLDERABLE EXPOSED METAL.  
2. REFERENCE JEDEC#: MO-220  
3. PACKAGE WEIGHT: 0.162g  
4. ALL DIMENSIONS ARE IN MM [MIN/MAX]  
5. PACKAGE CODE  
PART #  
DESCRIPTION  
LF56  
LY56  
STANDARD  
PB-FREE  
(SUBCON PUNCH TYPE PKG with 6.1 x 6.1 EPAD)  
51-85144-*G  
Figure 37. 56-Pin QFN 8 x 8 mm (Sawn Version)  
51-85187 *C  
Document #: 38-08032 Rev. *M  
Page 56 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Package Diagrams (continued)  
Figure 38. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A100RA (51-85050)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
100  
81  
80  
1
0.30 0.08  
0.65  
TYP.  
12° 1°  
(8X)  
SEE DETAIL  
A
30  
51  
31  
50  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
0.05 MIN.  
0.15 MAX.  
NOTE:  
1. JEDEC STD REF MS-026  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
3. DIMENSIONS IN MILLIMETERS  
0°-7°  
0.60 0.15  
1.00 REF.  
51-85050-*B  
0.20 MIN.  
DETAIL  
A
Document #: 38-08032 Rev. *M  
Page 57 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Package Diagrams (continued)  
Figure 39. 128-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128 (51-85101)  
16.00 0.20  
14.00 0.10  
1.40 0.05  
128  
1
0.22 0.05  
12° 1°  
(8X)  
SEE DETAIL  
A
0.50  
TYP.  
0.20 MAX.  
1.60 MAX.  
R 0.08 MIN.  
0.20 MAX.  
0° MIN.  
SEATING PLANE  
STAND-OFF  
NOTE:  
1. JEDEC STD REF MS-026  
0.05 MIN.  
0.15 MAX.  
0.25  
GAUGE PLANE  
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH  
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE  
R 0.08 MIN.  
0.20 MAX.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH  
51-85101-*C  
0°-7°  
3. DIMENSIONS IN MILLIMETERS  
0.60 0.15  
1.00 REF.  
0.20 MIN.  
DETAIL  
A
Document #: 38-08032 Rev. *M  
Page 58 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Package Diagrams (continued)  
Figure 40. 56 VFBGA (5 x 5 x 1.0 mm) 0.50 Pitch, 0.30 Ball BZ56 (001-03901)  
TOP VIEW  
BOTTOM VIEW  
Ø0.05 M C  
Ø0.15 M C A B  
A1 CORNER  
PIN A1 CORNER  
Ø0.30 0.05(56X)  
1
2
3
4
5
6
6
8
8
7
6
5
4
3
2
1
A
B
C
D
E
A
B
C
D
E
F
F
G
H
G
H
0.50  
3.50  
-B-  
-A-  
5.00 0.10  
SIDE VIEW  
5.00 0.10  
0.10(4X)  
REFERENCE JEDEC: MO-195C  
PACKAGE WEIGHT: 0.02 grams  
-C-  
SEATING PLANE  
001-03901-*B  
13. PCB Layout Recommendations  
Follow these recommendations to ensure reliable high perfor-  
mance operation:[24]  
Bypass and flyback caps on VBus, near connector, are recom-  
mended.  
Four layer impedance controlled boards are required to  
maintain signal quality.  
DPLUS and DMINUS trace lengths should be kept to within 2  
mm of each other in length, with preferred length of 20 to  
30 mm.  
Specify impedance targets (ask your board vendor what they  
can achieve).  
Maintain a solid ground plane under the DPLUS and DMINUS  
traces. Do not allow the plane to split under these traces.  
To control impedance, maintain trace widths and trace spacing.  
Minimize stubs to minimize reflected signals.  
Do not place vias on the DPLUS or DMINUS trace routing.  
Isolate the DPLUS and DMINUS traces from all other signal  
traces by no less than 10 mm.  
Connections between the USB connector shell and signal  
ground must be near the USB connector.  
Note  
24. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and High  
Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.  
Document #: 38-08032 Rev. *M  
Page 59 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
14. Quad Flat Package No Leads (QFN) Package Design Notes  
Electrical contact of the part to the Printed Circuit Board (PCB)  
is made by soldering the leads on the bottom surface of the  
package to the PCB. Hence, special attention is required to the  
heat transfer area below the package to provide a good thermal  
bond to the circuit board. Design a Copper (Cu) fill in the PCB as  
a thermal pad under the package. Heat is transferred from the  
FX2LP through the device’s metal paddle on the bottom side of  
the package. Heat from here is conducted to the PCB at the  
thermal pad. It is then conducted from the thermal pad to the  
PCB inner ground plane by a 5 x 5 array of via. A via is a plated  
through hole in the PCB with a finished diameter of 13 mil. The  
QFN’s metal die paddle must be soldered to the PCB’s thermal  
pad. Solder mask is placed on the board top side over each via  
to resist solder flow into the via. The mask on the top side also  
minimizes outgassing during the solder reflow process.  
For further information on this package design refer to Appli-  
cation Notes for Surface Mount Assembly of Amkor's MicroLead-  
Frame (MLF) Packages. You can find this on Amkor's website  
http://www.amkor.com.  
The application note provides detailed information about board  
mounting guidelines, soldering flow, rework process, etc.  
Figure 41 shows  
a cross-sectional area underneath the  
package. The cross section is of only one via. The solder paste  
template should be designed to allow at least 50% solder  
coverage. The thickness of the solder paste template should be  
5 mil. Use the No Clean type 3 solder paste for mounting the part.  
Nitrogen purge is recommended during reflow.  
Figure 42 is a plot of the solder mask pattern and Figure 43  
displays an X-Ray image of the assembly (darker areas indicate  
solder).  
Figure 41. Cross-section of the Area Underneath the QFN Package  
0.017” dia  
Solder Mask  
Cu Fill  
Cu Fill  
0.013” dia  
PCB Material  
PCB Material  
Via hole for thermally connecting the  
This figure only shows the top three layers of the  
circuit board: Top Solder, PCB Dielectric, and  
the Ground Plane  
QFN to the circuit board ground plane.  
Figure 42. Plot of the Solder Mask (White Area)  
Figure 43. X-ray Image of the Assembly  
Document #: 38-08032 Rev. *M  
Page 60 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Document History Page  
Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller High  
Speed USB Peripheral Controller  
Document Number: 38-08032  
Submission Orig. of  
REV. ECN NO.  
Description of Change  
Date  
Change  
** 124316  
03/17/03  
09/02/03  
VCS New data sheet  
*A 128461  
VCS Added PN CY7C68015A throughout data sheet  
Modified Figure 1 to add ECC block and fix errors  
Removed word “compatible” where associated with I2C  
Corrected grammar and formatting in various locations  
Updated Sections 3.2.1, 3.9, 3.11, Table 9, Section 5.0  
Added Sections 3.15, 3.18.4, 3.20  
Modified Figure 5 for clarity  
Updated Figure 36 to match current spec revision  
*B 130335  
*C 131673  
10/09/03  
02/12/04  
KKV Restored PRELIMINARY to header (had been removed in error from rev. *A)  
KKU Section 8.1 changed “certified” to “compliant”  
Table 14 added parameter VIH_X and VIL_X  
Added Sequence diagrams Section 9.16  
Updated Ordering information with lead-free parts  
Updated Registry Summary  
Section 3.12.4:example changed to column 8 from column 9  
Updated Figure 14 memory write timing Diagram  
Updated section 3.9 (reset)  
Updated section 3.15 ECC Generation  
*D 230713  
*E 242398  
See ECN  
See ECN  
See ECN  
KKU Changed Lead free Marketing part numbers in Table 33 as per spec change in 28-00054.  
TMD Minor Change: data sheet posted to the web,  
*F  
271169  
MON Added USB-IF Test ID number  
Added USB 2.0 logo  
Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x  
Changed VCC from + 10% to + 5%  
Changed E-Pad size to 4.3 mm x 5.0 mm  
Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in  
Table 28 from a max value of 70 ns to 115 ns  
*G  
*H  
316313  
338901  
See ECN  
See ECN  
MON Removed CY7C68013A-56PVXCT part availability  
Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A  
Provided additional timing restrictions and requirement about the use of PKETEND pin to  
commit a short one byte/word packet subsequent to committing a packet automatically  
(when in auto mode).  
Added Min Vcc Ramp Up time (0 to 3.3v)  
MON Added information about the AUTOPTR1/AUTOPTR2 address timing with regards to data  
memory read/write timing diagram.  
Removed TBD for Min value of Clock to FIFO Data Output Propagation Delay (tXFD) for  
Slave FIFO Synchronous Read  
Changed Table 33 to include part CY7C68016A-56LFXC in the part listed for battery  
powered applications  
Added register GPCR2 in register summary  
*I  
371097  
397239  
See ECN  
See ECN  
MON Added timing for strobing RD#/WR# signals when using PortC strobe feature (Section 10.5)  
*J  
MON Removed XTALINSRC register from register summary.  
Changed Vcc margins to +10%  
Added 56-pin VFBGA Pin Package Diagram  
Added 56-pin VFBGA definition in pin listing  
Added RDK part number to the Ordering Information table  
Document #: 38-08032 Rev. *M  
Page 61 of 62  
[+] Feedback  
CY7C68013A, CY7C68014A  
CY7C68015A, CY7C68016A  
Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller High  
Speed USB Peripheral Controller  
Document Number: 38-08032  
Submission Orig. of  
REV. ECN NO.  
Description of Change  
Date  
Change  
*K 420505  
See ECN  
MON Remove SLCS from figure in Section 10.10.  
Removed indications that SLRD can be asserted simultaneously with SLCS in Section  
10.17.2 and Section 10.17.3  
Added Absolute Maximum Temperature Rating for industrial packages in Section 6.  
Changed number of packages stated in the description in Section 4. to five.  
Added Table 13 on Thermal Coefficients for various packages  
*L 2064406 See ECN  
*M 2710327 05/22/2009  
CMCC/ Changed TID number  
PYRS Removed T0OUT and T1OUT from CY7C68015A/16A  
Updated tSWR Min value in Figure 20  
Updated 56-lead QFN package diagram  
DPT Added 56-Pin QFN (8 X 8 mm) package diagram  
Updated ordering information for CY7C68013A-56LTXC, CY7C68013A-56LTXI,  
CY7C68014A-56LTXC, CY7C68015A-56LTXC, and CY7C68016A-56LTXC parts.  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Clocks & Buffers  
Wireless  
Memories  
CAN 2.0b  
Image Sensors  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2003-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-08032 Rev. *M  
Revised May 22, 2009  
Page 62 of 62  
Purchase of I2C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided  
that the system conforms to the I2C Standard Specification as defined by Philips. EZ-USB FX2LP and EZ-USB FX2 are trademarks, and EZ-USB is a registered trademark, of Cypress Semiconductor  
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C68013_02

EZ-USB FX USB Microcontroller High-Speed USB Peripheral Controller
CYPRESS

CY7C68014A

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-100AXC

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-100AXC

USB 2.0 Peripheral controller with 16K RAM, 40 GPIOs, 100-pin TQFP for battery powered applications
INFINEON

CY7C68014A-128AXC

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-128AXC

USB 2.0 Peripheral controller with 16K RAM, 40 GPIOs, 8051 address/data bus, 128-pin TQFP for battery powered applications
INFINEON

CY7C68014A-56BAXC

EZ-USB FX2LP⑩ USB Microcontroller
CYPRESS

CY7C68014A-56LFXC

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-56LTXC

EZ-USB FX2LP USB Microcontroller High Speed USB Peripheral Controller
CYPRESS

CY7C68014A-56LTXC

USB 2.0 Peripheral controller with 16K RAM, 24 GPIOs, 56-pin QFN for battery powered applications
INFINEON

CY7C68014A-56PVXC

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-56PVXC

USB 2.0 Peripheral controller with 16K RAM, 24 GPIOs, 56-pin SSOP for battery powered applications
INFINEON