CY7C68013_02 [CYPRESS]

EZ-USB FX USB Microcontroller High-Speed USB Peripheral Controller; EZ- USB FX USB微控制器,高速USB外设控制器
CY7C68013_02
型号: CY7C68013_02
厂家: CYPRESS    CYPRESS
描述:

EZ-USB FX USB Microcontroller High-Speed USB Peripheral Controller
EZ- USB FX USB微控制器,高速USB外设控制器

微控制器
文件: 总50页 (文件大小:568K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
68013  
CY7C68013  
CY7C68013  
EZ-USB® FX2USB Microcontroller  
High-Speed USB Peripheral Controller  
Cypress Semiconductor Corporation  
Document #: 38-08012 Rev. *B  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Revised June 21, 2002  
CY7C68013  
TABLE OF CONTENTS  
®
1.0 EZ-USB FX2FEATURES ...........................................................................................................5  
2.0 APPLICATIONS ...............................................................................................................................6  
3.0 FUNCTIONAL OVERVIEW ..............................................................................................................6  
3.1 USB Signaling Speed .....................................................................................................................6  
3.2 8051 Microprocessor ......................................................................................................................6  
2
3.3 I C-compatible Bus .........................................................................................................................7  
3.4 Buses ...............................................................................................................................................7  
3.5 USB Boot Methods .........................................................................................................................8  
3.6 ReNumeration..............................................................................................................................8  
3.7 Interrupt System .............................................................................................................................9  
3.8 Reset and Wakeup ........................................................................................................................10  
3.9 Program/Data RAM .......................................................................................................................10  
3.10 Register Addresses ....................................................................................................................13  
3.11 Endpoint RAM .............................................................................................................................13  
3.12 External FIFO interface ..............................................................................................................15  
3.13 GPIF .............................................................................................................................................15  
3.14 USB Uploads and Downloads ...................................................................................................16  
3.15 Autopointer Access ....................................................................................................................16  
2
3.16 I C-compatible Controller ..........................................................................................................16  
4.0 PIN ASSIGNMENTS ......................................................................................................................17  
4.1 CY7C68013 Pin Descriptions .......................................................................................................23  
5.0 REGISTER SUMMARY ..................................................................................................................30  
6.0 ABSOLUTE MAXIMUM RATINGS ................................................................................................36  
7.0 OPERATING CONDITIONS ...........................................................................................................36  
8.0 DC CHARACTERISTICS ...............................................................................................................36  
8.1 USB Transceiver ...........................................................................................................................36  
9.0 AC ELECTRICAL CHARACTERISTICS .......................................................................................37  
9.1 USB Transceiver ...........................................................................................................................37  
9.2 Program Memory Read ................................................................................................................37  
9.3 Data Memory Read .......................................................................................................................38  
9.4 Data Memory Write .......................................................................................................................39  
9.5 GPIF Synchronous Signals ..........................................................................................................40  
9.6 Slave FIFO Synchronous Read ...................................................................................................41  
9.7 Slave FIFO Asynchronous Read .................................................................................................42  
9.8 Slave FIFO Synchronous Write ...................................................................................................42  
9.9 Slave FIFO Asynchronous Write .................................................................................................43  
9.10 Slave FIFO Synchronous Packet End Strobe ..........................................................................43  
9.11 Slave FIFO Asynchronous Packet End Strobe ........................................................................44  
9.12 Slave FIFO Output Enable ..........................................................................................................44  
9.13 Slave FIFO Address to Flags/Data ............................................................................................44  
9.14 Slave FIFO Synchronous Address ............................................................................................45  
9.15 Slave FIFO Asynchronous Address ..........................................................................................45  
10.0 ORDERING INFORMATION ........................................................................................................45  
11.0 PACKAGE DIAGRAMS ...............................................................................................................46  
Document #: 38-08012 Rev. *B  
Page 2 of 50  
CY7C68013  
LIST OF FIGURES  
Figure 1-1. Block Diagram .................................................................................................................... 5  
Figure 3-1. Internal Code Memory, EA = 0......................................................................................... 11  
Figure 3-2. External Code Memory, EA = 1........................................................................................ 12  
Figure 3-3. Endpoint Configuration ................................................................................................... 14  
Figure 4-1. Signals............................................................................................................................... 18  
Figure 4-2. CY7C68013 128-pin TQFP Pin Assignment.................................................................... 19  
Figure 4-3. CY7C68013 100-pin TQFP Pin Assignment.................................................................... 20  
Figure 4-4. CY7C68013 56-pin SSOP Pin Assignment ..................................................................... 21  
Figure 4-5. CY7C68013 56-pin QFN Pin Assignment........................................................................ 22  
Figure 9-1. Program Memory Read Timing Diagram ........................................................................ 37  
Figure 9-2. Data Memory Read Timing Diagram ............................................................................... 38  
Figure 9-3. Data Memory Write Timing Diagram............................................................................... 39  
Figure 9-4. GPIF Synchronous Signals Timing Diagram .................................................................40  
Figure 9-5. Slave FIFO Synchronous Read Timing Diagram........................................................... 41  
Figure 9-6. Slave FIFO Asynchronous Read Timing Diagram......................................................... 42  
Figure 9-7. Slave FIFO Synchronous Write Timing Diagram........................................................... 42  
Figure 9-8. Slave FIFO Asynchronous Write Timing Diagram......................................................... 43  
Figure 9-9. Slave FIFO Synchronous Packet End Strobe Timing Diagram .................................... 43  
Figure 9-10. Slave FIFO Asynchronous Packet End Strobe Timing Diagram................................44  
Figure 9-11. Slave FIFO Output Enable Timing Diagram .................................................................44  
Figure 9-12. Slave FIFO Address to Flags/Data Timing Diagram.................................................... 44  
Figure 9-13. Slave FIFO Synchronous Address Timing Diagram ................................................... 45  
Figure 9-14. Slave FIFO Asynchronous Address Timing Diagram ................................................. 45  
Figure 11-1. 56-lead Shrunk Small Outline Package O56 ................................................................ 46  
Figure 11-2. 56-lead QFN Package..................................................................................................... 47  
Figure 11-3. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101 .................................... 48  
Figure 11-4. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128..................................49  
Document #: 38-08012 Rev. *B  
Page 3 of 50  
CY7C68013  
LIST OF TABLES  
Table 3-1. Special Function Registers ................................................................................................8  
Table 3-2. Default ID Values for FX2 ...................................................................................................8  
Table 3-3. INT2 USB Interrupts ............................................................................................................9  
Table 3-4. Individual FIFO/GPIF Interrupt Sources ..........................................................................10  
Table 3-5. Default Full-Speed Alternate Settings..............................................................................14  
Table 3-6. Default High-Speed Alternate Settings ............................................................................15  
Table 3-7. Strap Boot EEPROM Address Lines to These Values ...................................................17  
Table 4-1. FX2 Pin Descriptions .........................................................................................................23  
Table 5-1. FX2 Register Summary .....................................................................................................30  
Table 8-1. DC Characteristics ............................................................................................................36  
Table 9-1. Program Memory Read Parameters ................................................................................37  
Table 9-2. Data Memory Read Parameters .......................................................................................38  
Table 9-3. Data Memory Write Parameters .......................................................................................39  
Table 9-4. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK ......................40  
Table 9-5. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK .....................40  
Table 9-6. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK ...............41  
Table 9-7. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK...............41  
Table 9-8. Slave FIFO Asynchronous Read Parameters..................................................................42  
Table 9-9. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK ...............42  
Table 9-10. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK ............43  
Table 9-11. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK ...........43  
Table 9-12. Slave FIFO Sync. Packet End Strobe Parameters with Internally Sourced IFCLK ...43  
Table 9-13. Slave FIFO Sync. Packet End Strobe Parameters with Externally Sourced IFCLK ..44  
Table 9-14. Slave FIFO Asynchronous Packet End Strobe Parameters ........................................44  
Table 9-15. Slave FIFO Output Enable Parameters .........................................................................44  
Table 9-16. Slave FIFO Address to Flags/Data Parameters ............................................................45  
Table 9-17. Slave FIFO Synchronous Address Parameters ............................................................45  
Table 9-18. Slave FIFO Asynchronous Address Parameters ..........................................................45  
Table 10-1. Ordering Information ......................................................................................................45  
Document #: 38-08012 Rev. *B  
Page 4 of 50  
CY7C68013  
®
1.0  
EZ-USB FX2Features  
Cypress’s EZ-USB® FX2is the worlds first USB 2.0 integrated microcontroller. By integrating the USB 2.0 transceiver, SIE,  
enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypress has created a very cost-  
effective solution that provides superior time-to-market advantages. The ingenious architecture of FX2 results in data transfer  
rates of 56 Mbytes per second, the maximum allowable USB 2.0 bandwidth, while still using a low-cost 8051 microcontroller in  
a package as small as a 56 SSOP. Because it incorporates the USB 2.0 transceiver, the FX2 is more economical, providing a  
smaller footprint solution than USB 2.0 SIE or external transceiver implementations. With EZ-USB FX2, the Cypress Smart SIE  
handles most of the USB 1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for application-specific functions  
and decreasing development time to ensure USB compatibility. The General Programmable Interface (GPIF) and Master/Slave  
Endpoint FIFO (8- or 16-bit data bus) provides an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP,  
PCMCIA, and most DSP/processors.  
Four packages are defined for the family: 56 SSOP, 56 QFN, 100 TQFP, and 128 TQFP.  
High-performance micro  
using standard tools  
24 MHz  
Ext. XTAL  
with lower-power options  
FX2  
I2C  
Compatible  
Master  
/0.5  
8051 Core  
x20  
/1.0  
/2.0  
VCC  
12/24/48 MHz,  
four clocks/cycle  
PLL  
Abundant I/O  
including two USARTS  
Additional I/Os (24)  
1.5k  
connected for  
full speed  
General  
ADDR (9)  
programmable I/F  
to ASIC/DSP or bus  
standards such as  
D+  
GPIF  
USB  
2.0  
XCVR  
CY  
Smart  
USB  
8.5 kB  
RAM  
RDY (6)  
CTL (6)  
ATAPI, EPP, etc.  
D–  
1.1/2.0  
Engine  
Integrated  
full- and high-speed  
XCVR  
Up to 96 MBytes/s  
burst rate  
4 kB  
FIFO  
8/16  
Enhanced USB core  
Simplifies 8051 core  
Soft Configuration”  
Easy firmware changes  
FIFO and endpoint memory  
(master or slave operation)  
Figure 1-1. Block Diagram  
Single-chip integrated USB 2.0 Transceiver, Serial Interface Engine (SIE), and Enhanced 8051 Microprocessor  
Software: 8051 runs from internal RAM, which is:  
Downloaded via USB, or  
Loaded from EEPROM  
External memory device (128-pin configuration only)  
Four programmable BULK/INTERRUPT/ISOCHRONOUS endpoints  
Buffering options: double, triple and quad  
8- or 16-bit external data interface  
General Programmable Interface (GPIF)  
Allows direct connection to most parallel interfaces; 8- and 16-bit  
Programmable waveform descriptors and configuration registers to define waveforms  
Supports multiple Ready (RDY) inputs and Control (CTL) outputs  
Integrated, industry standard 8051 with enhanced features:  
Up to 48-MHz clock rate  
Four clocks per instruction cycle  
Two USARTS  
Document #: 38-08012 Rev. *B  
Page 5 of 50  
CY7C68013  
Three counter/timers  
Expanded interrupt system  
Two data pointers  
3.3V operation  
Smart Serial Interface Engine  
Vectored USB interrupts  
Separate data buffers for the SETUP and DATA portions of a CONTROL transfer  
Integrated I2C-compatible controller, runs at 100 or 400 kHz  
48-MHz, 24-MHz, or 12-MHz 8051 operation  
Four integrated FIFOs  
Brings glue and FIFOs inside for lower system cost  
Automatic conversion to and from 16-bit buses  
Master or slave operation  
FIFOs can use externally supplied clock or asynchronous strobes  
Easy interface to ASIC and DSP ICs  
Special autovectors for FIFO and GPIF interrupts  
Up to 40 general purpose I/Os  
Four package options128-pin TQFP, 100-pin TQFP, 56-pin QFN and 56-pin SSOP.  
2.0  
Applications  
DSL modems  
ATA interface  
Memory card readers  
Legacy conversion devices  
Cameras  
Scanners  
Home PNA  
Wireless LAN  
MP3 players  
Networking.  
The Reference Designssection of the cypress website provides additional tools for typical USB 2.0 applications. Each reference  
design comes complete with firmware source and object code, schematics, and documentation. Please visit  
http://www.cypress.com for more information.  
3.0  
3.1  
Functional Overview  
USB Signaling Speed  
FX2 operates at two of the three rates defined in the Universal Serial Bus Specification Revision 2.0, dated April 27, 2000:  
Full speed, with a signaling bit rate of 12 Mbps  
High speed, with a signaling bit rate of 480 Mbps  
FX2 does not support the low-speed signaling mode of 1.5 Mbps.  
3.2  
8051 Microprocessor  
The 8051 microprocessor embedded in the FX2 family has 256 bytes of register RAM, an expanded interrupt system, three  
timer/counters, and two USARTs.  
Document #: 38-08012 Rev. *B  
Page 6 of 50  
CY7C68013  
3.2.1  
8051 Clock Frequency  
FX2 has an on-chip oscillator circuit that uses an external 24-MHz (±100 ppm) crystal with the following characteristics:  
Parallel resonant  
Fundamental mode  
500-µW drive level  
2733 pF (5% tolerance) load capacitors.  
An on-chip PLL multiplies the 24-MHz oscillator up to 480 MHz, as required by the transceiver/PHY, and internal counters divide  
it down for use as the 8051 clock. The default 8051 clock frequency is 12 MHz. The clock frequency of the 8051 can be changed  
by the 8051 through the CPUCS register, dynamically.  
The CLKOUT pin, which can be tri-stated and inverted using internal control bits, outputs the 50% duty cycle 8051 clock, at the  
selected 8051 clock frequency48, 24, or 12 MHz.  
3.2.2  
USARTS  
FX2 contains two standard 8051 USARTs, addressed via Special Function Register (SFR) bits. The USART interface pins are  
available on separate I/O pins, and are not multiplexed with port pins.  
UART0 and UART1 can operate using an internal clock at 230 KBaud with no more than 1% baud rate error. 230-KBaud operation  
is achieved by an internally derived clock source that generates overflow pulses at the appropriate time. The internal clock adjusts  
for the 8051 clock rate (48, 24, 12 MHz) such that it always presents the correct frequency for 230-KBaud operation.  
Note. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a 1for UART0 and/or UART1,  
respectively.  
3.2.3  
Special Function Registers (SFR)  
Certain 8051 SFR addresses are populated to provide fast access to critical FX2 functions. These SFR additions are shown in  
Table 3-1. Bold type indicates non-standard, enhanced 8051 registers.  
The two SFR rows that end with 0and 8contain bit-addressable registers. The four I/O ports AD use the SFR addresses  
used in the standard 8051 for ports 03, which are not implemented in FX2.  
Because of the faster and more efficient SFR addressing, the FX2 I/O ports are not addressable in external RAM space (using  
the MOVX instruction).  
3.3  
I2C-compatible Bus  
FX2 supports the I2C-compatible bus as a master only at 100/400 kbps. SCL and SDA pins have open-drain outputs and  
hysteresis inputs. These signals must be pulled up to 3.3V, even if no I2C compatible device is connected.  
3.4  
Buses  
All packages: 8- or 16-bit FIFObidirectional data bus, multiplexed on I/O ports B and D.  
128-pin package: adds 16-bit output-only 8051 address bus, 8-bit bidirectional data bus.  
Document #: 38-08012 Rev. *B  
Page 7 of 50  
CY7C68013  
Table 3-1. Special Function Registers  
x
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
8x  
IOA  
9x  
IOB  
Ax  
Bx  
Cx  
Dx  
Ex  
Fx  
IOC  
IOD  
SCON1  
SBUF1  
PSW  
ACC  
B
SP  
EXIF  
INT2CLR  
INT4CLR  
IOE  
DPL0  
DPH0  
DPL1  
DPH1  
DPS  
MPAGE  
OEA  
OEB  
OEC  
OED  
OEE  
PCON  
TCON  
TMOD  
TL0  
SCON0  
SBUF0  
IE  
IP  
T2CON  
EICON  
EIE  
EIP  
AUTOPTRH1  
AUTOPTRL1  
reserved  
EP2468STAT  
EP24FIFOFLGS  
EP68FIFOFLGS  
EP01STAT  
GPIFTRIG  
RCAP2L  
RCAP2H  
TL2  
TL1  
TH0  
TH1  
AUTOPTRH2  
AUTOPTRL2  
reserved  
GPIFSGLDATH  
GPIFSGLDATLX  
TH2  
CKCON  
AUTOPTRSETUP GPIFSGLDATLNOX  
3.5  
USB Boot Methods  
During the power-up sequence, internal logic checks the I2C-compatible port for the connection of an EEPROM whose first byte  
is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM in place of the internally stored values (0xC0),  
or it boot-loads the EEPROM contents into internal RAM (0xC2). If no EEPROM is detected, FX2 enumerates using internally  
stored descriptors. The default ID values for FX2 are VID/PID/DID (0x04B4, 0x8613, 0xxxyy).  
Table 3-2. Default ID Values for FX2  
Default VID/PID/DID  
Vendor ID  
Prod ID  
0x04B4  
0x8613  
0xXXYY  
Cypress Semiconductor  
EZ-USB FX2  
Device release  
Depends on revision (0x04 for Rev E)  
Note. The I2C-compatible bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this  
detection method does not work properly.  
3.6  
ReNumeration™  
Because the FX2s configuration is soft, one chip can take on the identities of multiple distinct USB devices.  
When first plugged into USB, the FX2 enumerates automatically and downloads firmware and USB descriptor tables over the  
USB cable. Next, the FX2 enumerates again, this time as a device defined by the downloaded information. This patented two-  
step process, called ReNumeration, happens instantly when the device is plugged in, with no hint that the initial download step  
has occurred.  
Two control bits in the USBCS (USB Control and Status) register control the ReNumeration process: DISCON and RENUM. To  
simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears DISCON to 0.  
Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware or the Default USB Device will  
handle device requests over endpoint zero: if RENUM = 0, the Default USB Device will handle device requests; if RENUM = 1,  
the firmware will.  
Document #: 38-08012 Rev. *B  
Page 8 of 50  
CY7C68013  
3.7  
Interrupt System  
3.7.1  
INT2 Interrupt Request and Enable Registers  
FX2 implements an autovector feature for INT2 and INT4. There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF) vectors.  
See FX2 TRM for more details.  
3.7.2  
USB-Interrupt Autovectors  
The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time that normally would be required  
to identify the individual USB interrupt source, the FX2 provides a second level of interrupt vectoring, called Autovectoring. When  
a USB interrupt is asserted, the FX2 pushes the program counter onto its stack then jumps to address 0x0043, where it expects  
to find a jumpinstruction to the USB Interrupt service routine.  
The FX2 jump instruction is encoded as follows.  
Table 3-3. INT2 USB Interrupts  
USB INTERRUPT TABLE FOR INT2  
Priority  
1
INT2VEC Value Source  
Notes  
00  
04  
08  
0C  
10  
14  
18  
1C  
20  
24  
28  
2C  
30  
34  
38  
3C  
40  
44  
48  
4C  
50  
54  
58  
5C  
60  
64  
68  
6C  
70  
74  
78  
7C  
SUDAV  
SETUP Data Available  
2
SOF  
Start of Frame (or microframe)  
Setup Token Received  
3
SUTOK  
4
SUSPEND  
USB RESET  
HISPEED  
EP0ACK  
USB Suspend request  
5
Bus reset  
6
Entered high speed operation  
FX2 ACKd the CONTROL Handshake  
reserved  
7
8
9
EP0-IN  
EP0-OUT  
EP1-IN  
EP1-OUT  
EP2  
EP0-IN ready to be loaded with data  
EP0-OUT has USB data  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
EP1-IN ready to be loaded with data  
EP1-OUT has USB data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN: buffer available. OUT: buffer has data  
IN-Bulk-NAK (any IN endpoint)  
reserved  
EP4  
EP6  
EP8  
IBN  
EP0PING  
EP1PING  
EP2PING  
EP4PING  
EP6PING  
EP8PING  
ERRLIMIT  
EP0 OUT was Pinged and it NAKd  
EP1 OUT was Pinged and it NAKd  
EP2 OUT was Pinged and it NAKd  
EP4 OUT was Pinged and it NAKd  
EP6 OUT was Pinged and it NAKd  
EP8 OUT was Pinged and it NAKd  
Bus errors exceeded the programmed limit  
reserved  
reserved  
reserved  
EP2ISOERR  
EP4ISOERR  
EP6ISOERR  
EP8ISOERR  
ISO EP2 OUT PID sequence error  
ISO EP4 OUT PID sequence error  
ISO EP6 OUT PID sequence error  
ISO EP8 OUT PID sequence error  
Document #: 38-08012 Rev. *B  
Page 9 of 50  
CY7C68013  
If Autovectoring is enabled (AV2EN = 1 in the INTSETUP register), the FX2 substitutes its INT2VEC byte. Therefore, if the high  
byte (page) of a jump-table address is preloaded at location 0x0044, the automatically-inserted INT2VEC byte at 0x0045 will  
direct the jump to the correct address out of the 27 addresses within the page.  
3.7.3  
FIFO/GPIF Interrupt (INT4)  
Just as the USB Interrupt is shared among 27 individual USB-interrupt sources, the FIFO/GPIF interrupt is shared among 14  
individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 3-4 shows the  
priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources  
Table 3-4. Individual FIFO/GPIF Interrupt Sources  
Priority  
INT4VEC Value  
Source  
EP2PF  
EP4PF  
EP6PF  
EP8PF  
EP2EF  
EP4EF  
EP6EF  
EP8EF  
EP2FF  
EP4FF  
Notes  
Endpoint 2 Programmable Flag  
1
2
80  
84  
88  
8C  
90  
94  
98  
9C  
A0  
A4  
A8  
AC  
B0  
B4  
Endpoint 4 Programmable Flag  
Endpoint 6 Programmable Flag  
Endpoint 8 Programmable Flag  
Endpoint 2 Empty Flag  
Endpoint 4 Empty Flag  
Endpoint 6 Empty Flag  
Endpoint 8 Empty Flag  
Endpoint 2 Full Flag  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Endpoint 4 Full Flag  
EP6FF  
Endpoint 6 Full Flag  
EP8FF  
GPIFDONE  
GPIFWF  
Endpoint 8 Full Flag  
GPIF Operation Complete  
GPIF Waveform  
If Autovectoring is enabled (AV4EN = 1 in the INTSETUP register), the FX2 substitutes its INT4VEC byte. Therefore, if the high  
byte (page) of a jump-table address is preloaded at location 0x0054, the automatically-inserted INT4VEC byte at 0x0055 will  
direct the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX2 pushes the program  
counter onto its stack then jumps to address 0x0053, where it expects to find a jumpinstruction to the ISR Interrupt service  
routine.  
3.8  
Reset and Wakeup  
Reset Pin  
3.8.1  
An input pin (RESET#) resets the chip. This pin has hysteresis and is active LOW. The internal PLL stabilizes approximately 200  
µs after VCC has reached 3.3V. Typically, an external RC network (R = 100k, C = 0.1 µF) is used to provide the RESET# signal.  
3.8.2  
Wakeup Pins  
The 8051 puts itself and the rest of the chip into a power-down mode by setting PCON.0 = 1. This stops the oscillator and PLL.  
When WAKEUP is asserted by external logic, the oscillator restarts and after the PLL stabilizes, and the 8051 receives a wakeup  
interrupt. This applies whether or not FX2 is connected to the USB.  
The FX2 exits the power down (USB suspend) state using one of the following methods:  
USB bus signals resume  
External logic asserts the WAKEUP pin  
External logic asserts the PA3/WU2 pin.  
The second wakeup pin, WU2, can also be configured as a general purpose I/O pin. This allows a simple external R-C network  
to be used as a periodic wakeup source.  
3.9  
Program/Data RAM  
Size  
3.9.1  
The FX2 has eight kbytes of internal program/data RAM, where PSEN#/RD# signals are internally ORed to allow the 8051 to  
access it as both program and data memory. No USB control registers appear in this space.  
Document #: 38-08012 Rev. *B  
Page 10 of 50  
CY7C68013  
Two memory maps are shown in the following diagrams:  
Figure 3-1 Internal Code Memory, EA = 0  
Figure 3-2 External Code Memory, EA = 1.  
3.9.2  
Internal Code Memory, EA = 0  
This mode implements the internal eight-kbyte block of RAM (starting at 0) as combined code and data memory. When external  
RAM or ROM is added, the external read and write strobes are suppressed for memory spaces that exist inside the chip. This  
allows the user to connect a 64-kbyte memory without requiring address decodes to keep clear of internal memory spaces.  
Only the internal eight kbytes and scratch pad 0.5 kbytes RAM spaces have the following access:  
USB download  
USB upload  
Setup data pointer  
I2C-compatible interface boot load.  
Inside FX2  
Outside FX2  
FFFF  
7.5 kbytes  
(OK to populate  
US B regs and  
4k EP buffers  
(RD#,WR#)  
data memory  
hereRD#/WR#  
strobes are not  
active)  
E200  
E1FF  
0.5 kbytes RAM  
Data (RD#,WR#)*  
E000  
56 kbytes  
External  
Code  
Memory  
(PSEN#)  
48 kbytes  
External  
Data  
Memory  
(RD#,WR#)  
1FFF  
(Ok to populate  
data memory  
hereRD#/WR#  
strobes are not  
active)  
(OK to populate  
program  
memory here—  
PSEN# strobe  
is not active)  
Eight kbytes RAM  
Code and Data  
(PSEN#,RD#,WR#)*  
0000  
Data  
Code  
*SUDPTR, USB upload/download, I2C-compatible interface boot access  
Figure 3-1. Internal Code Memory, EA = 0  
Document #: 38-08012 Rev. *B  
Page 11 of 50  
CY7C68013  
3.9.3  
External Code Memory, EA = 1  
The bottom eight kbytes of program memory is external, and therefore the bottom eight kbytes of internal RAM is accessible only  
as data memory.  
Inside FX2  
Outside FX2  
FFFF  
7.5 kbytes  
(OK to populate  
USB regs and  
4k EP buffers  
(RD#,WR#)  
data memory  
hereRD#/WR#  
strobes are not  
active)  
E200  
E1FF  
0.5 kbytes RAM  
Data (RD#,WR#)*  
E000  
48 kbytes  
External  
Data  
Memory  
(RD#,WR#)  
64 kbytes  
External  
Code  
Memory  
(PSEN#)  
1FFF  
(Ok to populate  
data memory  
hereRD#/WR#  
strobes are not  
active)  
Eight kbytes  
RAM  
Data  
(RD#,WR#)*  
0000  
Data  
Code  
*SUDPTR, USB upload/download, I2C-compatible interface boot access  
Figure 3-2. External Code Memory, EA = 1  
Document #: 38-08012 Rev. *B  
Page 12 of 50  
CY7C68013  
3.10  
Register Addresses  
FFFF  
4 kbytes EP2-EP8 buffers  
(8 × 512)  
F000  
EFFF  
2 kbytes RESERVED  
E800  
E7FF  
64 bytes EP1IN  
64 bytes EP1OUT  
E7C0  
E7BF  
E780  
E77F  
64 bytes EP0 IN/OUT  
64 bytes RESERVED  
256 bytes Registers  
384 bytes RESERVED  
128 bytes GPIF Waveforms  
E740  
E73F  
E700  
E6FF  
E600  
E5FF  
E480  
E47F  
E400  
E3FF  
512 bytes RESERVED  
E200  
E1FF  
512 bytes  
8051 xdata RAM  
E000  
3.11  
Endpoint RAM  
3.11.1 Size  
3 × 64 bytes  
8 × 512 bytes  
(Endpoints 0 and 1)  
(Endpoints 2, 4, 6, 8)  
3.11.2 Organization  
EP0  
EP1IN, EP1OUT  
EP2,4,6,8  
Bidirectional endpoint zero, 64-byte buffer  
64-byte buffers, bulk or interrupt  
Eight 512-byte buffers, bulk, interrupt, or isochronous. EP2 and 6 can be either double, triple, or quad  
buffered. For high-speed endpoint configuration options, see Figure 3-3.  
3.11.3 Setup Data Buffer  
A separate eight-byte buffer at 0xE6B8-0xE6BF holds the SETUP data from a CONTROL transfer.  
Document #: 38-08012 Rev. *B  
Page 13 of 50  
CY7C68013  
3.11.4 Endpoint Configurations (High-speed Mode)  
EP0 IN&OUT  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
EP1 IN  
EP1 OUT  
512  
512  
512  
512  
512  
512  
512  
EP2  
EP4  
1024  
1024  
1024  
1024  
1024  
1024  
EP2  
EP2  
EP2  
512  
512  
512  
512  
EP2  
512  
EP2  
EP6  
EP8  
512  
512  
512  
512  
512  
512  
EP6  
EP8  
1024  
1024  
1024  
1024  
1024  
EP6  
EP6  
512  
512  
512  
512  
512  
512  
512  
512  
EP8  
Figure 3-3. Endpoint Configuration  
Endpoints 0 and 1 are the same for every configuration. Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can be either  
BULK or INTERRUPT. To the left of the vertical line, the user may pick different configurations for EP2&4 and EP6&8, since none  
of the 512-byte buffers are combined between these endpoint groups. An example endpoint configuration would be:  
EP21024 double buffered; EP6512 quad buffered.  
To the right of the vertical line, buffers are shared between EP28, and therefore only entire columns may be chosen.  
3.11.5 Default Full-Speed Alternate Settings  
Table 3-5. Default Full-Speed Alternate Settings[1, 2]  
Alternate Setting  
0
64  
0
1
2
3
ep0  
64  
64  
64  
ep1out  
ep1in  
ep2  
64 bulk  
64 bulk  
64 int  
64 int  
64 int  
64 int  
0
0
64 bulk out (2×)  
64 bulk out (2×)  
64 bulk in (2×)  
64 bulk in (2×)  
64 int out (2×)  
64 bulk out (2×)  
64 int in (2×)  
64 iso out (2×)  
64 bulk out (2×)  
64 iso in (2×)  
ep4  
0
ep6  
0
ep8  
0
64 bulk in (2×)  
64 bulk in (2×)  
Notes:  
1. 0means not implemented.”  
2. 2xmeans double buffered.”  
Document #: 38-08012 Rev. *B  
Page 14 of 50  
CY7C68013  
3.11.6 Default High-Speed Alternate Settings  
Table 3-6. Default High-Speed Alternate Settings[1, 2]  
Alternate Setting  
0
1
2
3
ep0  
64  
64  
64  
64  
ep1out  
ep1in  
ep2  
0
0
0
0
0
0
512 bulk[3]  
512 bulk[3]  
64 int  
64 int  
64 int  
64 int  
512 bulk out (2×)  
512 bulk out (2×)  
512 bulk in (2×)  
512 bulk in (2×)  
512 int out (2×)  
512 bulk out (2×)  
512 int in (2×)  
512 iso out (2×)  
512 bulk out (2×)  
512 iso in (2×)  
512 bulk in (2×)  
ep4  
ep6  
ep8  
512 bulk in (2×)  
Note:  
3. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.  
3.12  
External FIFO interface  
3.12.1 Architecture  
The FX2 slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories, and are  
controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).  
In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic.  
The transfer logic takes two forms, the GPIF for internally generated control signals, or the slave FIFO interface for externally  
controlled transfers.  
3.12.2 Master/Slave Control Signals  
The FX2 endpoint FIFOS are implemented as eight physically distinct 256x16 RAM blocks. The 8051/SIE can switch any of the  
RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instan-  
taneously, giving essentially zero transfer time between USB FIFOSand Slave FIFOS.Since they are physically the same  
memory, no bytes are actually transferred between buffers.  
At any given time, some RAM blocks are filling/emptying with USB data under SIE control, while other RAM blocks are available  
to the 8051 and/or the I/O control unit. The RAM blocks operate as single-port in the USB domain, and dual-port in the 8051-I/O  
domain. The blocks can be configured as single, double, triple, or quad buffered as previously shown.  
The I/O control unit implements either an internal-master (M for master) or external-master (S for Slave) interface.  
In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six  
in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can  
be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96  
Megabytes/s (48 MHz).  
In Slave (S) mode, the FX2 accepts either an internally derived clock or externally supplied clock (IFCLK, max. frequency 48  
MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. Each endpoint can individually be selected for byte  
or word operation by an internal configuration bit, and a Slave FIFO Output Enable signal SLOE enables data of the selected  
width. External logic must insure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface  
can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in  
synchronous mode. The signals SLRD, SLWR, SLOE and PKTEND are gated by the signal SLCS#.  
3.12.3 GPIF and FIFO Clock Rates  
An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively,  
an externally supplied clock of 5 MHz 48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured  
to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register  
turns this clock output off, if desired. Another bit within the IFCONFIG register will invert the IFCLK signal whether internally or  
externally sourced.  
3.13  
GPIF  
The GPIF is a flexible 8- or 16-bit parallel interface driven by a user-programmable finite state machine. It allows the CY7C68013  
to perform local bus mastering, and can implement a wide variety of protocols such as ATA interface, printer parallel port, and  
Utopia.  
Document #: 38-08012 Rev. *B  
Page 15 of 50  
CY7C68013  
The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs  
(RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what  
state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to  
the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that will be executed  
to perform the desired data move between the CY7C68013 and the external design.  
3.13.1 Six Control OUT Signals  
The 100- and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define  
the CTL waveforms. The 56-pin package brings out three of these signals, CTL0CTL2. CTLx waveform edges can be  
programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock).  
3.13.2 Six Ready IN Signals  
The 100- and 128-pin packages bring out all six Ready inputs (RDY0RDY5). The 8051 programs the GPIF unit to test the RDY  
pins for GPIF branching. The 56-pin package brings out two of these signals, RDY01.  
3.13.3 Nine GPIF Address OUT signals  
Nine GPIF address lines are available in the 100- and 128-pin packages, GPIFADR[8..0]. The GPIF address lines allow indexing  
through up to a 512-byte block of RAM. If more address lines are needed, I/O port pins can be used.  
3.13.4 Long Transfer Mode  
In master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or  
GPIFTCB0) for unattended transfers of up to 4,294,967,296 bytes. The GPIF automatically throttles data flow to prevent under  
or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to  
represent the current status of the transaction.  
3.14  
USB Uploads and Downloads  
The core has the ability to directly edit the data contents of the internal 8-kbyte RAM and of the internal 512-byte scratch pad  
RAM via a vendor-specific command. This capability is normally used when softdownloading user code and is available only  
to and from internal RAM, whether the 8051 is held in reset or running. The available RAM spaces are 8 kbytes from  
0x00000x1FFF (code/data) and 512 bytes from 0xE0000xE1FF (scratch pad RAM).  
Note: A loaderrunning in internal RAM can be used to transfer downloaded data to external memory.  
3.15  
Autopointer Access  
FX2 provides two identical autopointers. They are similar to the internal 8051 data pointers, but with an additional feature: they  
can optionally increment a pointer address after every memory access. This capability is available to and from both internal and  
external RAM. The autopointers are available in external FX2 registers, under control of a mode bit (AUTOPTRSETUP.0). Using  
the external FX2 autopointer access (at 0xE67B 0xE67C) allows the autopointer to access all RAM, internal and external to  
the part. Also, the autopointers can point to any FX2 register or endpoint buffer space. When autopointer access to external  
memory is enabled, location 0xE67B and 0xE67C in XDATA and PDATA space cannot be used.  
3.16  
I2C-compatible Controller  
FX2 has one I2C-compatible port that is driven by two internal controllers, one that automatically operates at boot time to load  
VID/PID/DID and configuration information, and another that the 8051, once running, uses to control external I2C-compatible  
devices. The I2C-compatible port operates in master mode only.  
3.16.1 I2C-compatible Port Pins  
The I2C-compatible pins SCL and SDA must have external 2.2-kpull-up resistors. External EEPROM device address pins must  
be configured properly. See Table 3-7 for configuring the device address pins.  
Document #: 38-08012 Rev. *B  
Page 16 of 50  
CY7C68013  
Table 3-7. Strap Boot EEPROM Address Lines to These Values  
Bytes Example EEPROM  
A2  
N/A  
0
A1  
N/A  
0
A0  
N/A  
0
16  
24LC00[4]  
24LC01  
24LC02  
24LC32  
24LC64  
128  
256  
4K  
0
0
0
0
0
1
8K  
0
0
1
3.16.2 I2C-compatible Interface Boot Load Access  
At power-on reset the I2C-compatible interface boot loader will load the VID/PID/DID/a configuration byte and up to 8 kbytes of  
program/data. The available RAM spaces are 8 kbytes from 0x00000x1FFF and 512 bytes from 0xE0000xE1FF. The 8051 will  
be in reset. I2C-compatible interface boot loads only occur after power-on reset.  
3.16.3 I2C-compatible Interface General Purpose Access  
The 8051 can control peripherals connected to the I2C-compatible bus using the I2CTL and I2DAT registers. FX2 provides I2C  
compatible master control only, it is never an I2C-compatible slave.  
4.0  
Pin Assignments  
Figure 4-1 identifies all signals for the four package types. The following pages illustrate the individual pin diagrams, plus a  
combination diagram showing which of the full set of signals are available in the 128-, 100-, and 56-pin packages.  
The 56-pin package is the lowest-cost version. The signals on the left edge of the 56-pin package in Figure 4-1 are common to  
all versions in the FX2 family. Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These  
modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register  
bits. Port mode is the power-on default configuration.  
The 100-pin package adds functionality to the 56-pin package by adding these pins:  
PORTC or alternate GPIFADR[7...0] address signals  
PORTE or alternate GPIFADR8 address signals and 7 more 8051 signals  
3 GPIF Control signals  
4 GPIF Ready signals  
Nine 8051 signals (two USARTs, three timer inputs, INT4,and INT5#)  
BKPT, RD#, WR#  
The 128-pin package is the full version, adding the 8051 address and data buses plus control signals. Note that two of the required  
signals, RD# and WR#, are present in the 100-pin version. In the 100-pin and 128-pin versions, an 8051 control bit can be set to  
pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC.  
Note:  
4. This EEPROM does not have address pins.  
Document #: 38-08012 Rev. *B  
Page 17 of 50  
CY7C68013  
Port  
GPIF Master  
Slave FIFO  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
FD[15]  
FD[14]  
FD[13]  
FD[12]  
FD[11]  
FD[10]  
FD[9]  
FD[8]  
FD[7]  
FD[6]  
FD[5]  
FD[4]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
56  
XTALIN  
SLRD  
SLWR  
RDY0  
RDY1  
XTALOUT  
RESET#  
WAKEUP#  
FLAGA  
FLAGB  
FLAGC  
CTL0  
CTL1  
CTL2  
SCL  
SDA  
INT0#/PA0  
INT1#/PA1  
PA2  
WU2/PA3  
PA4  
INT0#/ PA0  
INT1#/ PA1  
SLOE  
INT0#/PA0  
INT1#/PA1  
PA2  
WU2/PA3  
PA4  
PA5  
PA6  
IFCLK  
CLKOUT  
WU2/PA3  
FIFOADR0  
FIFOADR1  
PKTEND  
DPLUS  
DMINUS  
PA5  
PA6  
PA7  
PA7/FLAGD/SLCS#  
PA7  
CTL3  
CTL4  
CTL5  
RDY2  
RDY3  
RDY4  
RDY5  
100  
BKPT  
PORTC7/GPIFADR7  
PORTC6/GPIFADR6  
PORTC5/GPIFADR5  
PORTC4/GPIFADR4  
PORTC3/GPIFADR3  
PORTC2/GPIFADR2  
PORTC1/GPIFADR1  
PORTC0/GPIFADR0  
RxD0  
TxD0  
RxD1  
TxD1  
INT4  
INT5#  
TIMER2  
TIMER1  
TIMER0  
PE7/GPIFADR8  
PE6/T2EX  
PE5/INT6  
PE4/RxD1OUT  
PE3/RxD0OUT  
PE2/T2OUT  
PE1/T1OUT  
PE0/T0OUT  
RD#  
WR#  
CS#  
OE#  
PSEN#  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
128  
A8  
A7  
A6  
A5  
A4  
A3  
EA  
A2  
A1  
A0  
Figure 4-1. Signals  
Document #: 38-08012 Rev. *B  
Page 18 of 50  
CY7C68013  
1
102  
CLKOUT  
VCC  
GND  
PD0/FD8  
*WAKEUP  
VCC  
RESET#  
2
101  
3
100  
4
99  
RDY0/*SLRD  
RDY1/*SLWR  
RDY2  
RDY3  
RDY4  
RDY5  
AVCC  
XTALOUT  
XTALIN  
AGND  
NC  
NC  
NC  
VCC  
DPLUS  
DMINUS  
GND  
A11  
A12  
A13  
A14  
A15  
VCC  
GND  
INT4  
T0  
T1  
5
98  
CTL5  
6
97  
A3  
A2  
A1  
A0  
7
96  
8
95  
9
94  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
93  
GND  
92  
PA7/*FLAGD/SLCS#  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
D7  
D6  
D5  
CY7C68013  
128-pin TQFP  
PA3/*WU2  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
VCC  
GND  
PC7/GPIFADR7  
PC6/GPIFADR6  
PC5/GPIFADR5  
PC4/GPIFADR4  
PC3/GPIFADR3  
PC2/GPIFADR2  
PC1/GPIFADR1  
PC0/GPIFADR0  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
VCC  
T2  
IFCLK  
RESERVED  
BKPT  
EA  
SCL  
SDA  
CTL4  
CTL3  
GND  
OE#  
Figure 4-2. CY7C68013 128-pin TQFP Pin Assignment  
* denotes programmable polarity  
Document #: 38-08012 Rev. *B  
Page 19 of 50  
CY7C68013  
1
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VCC  
GND  
PD0/FD8  
*WAKEUP  
VCC  
RESET#  
2
3
RDY0/*SLRD  
RDY1/*SLWR  
RDY2  
RDY3  
RDY4  
RDY5  
AVCC  
XTALOUT  
XTALIN  
AGND  
NC  
NC  
NC  
VCC  
DPLUS  
DMINUS  
GND  
VCC  
GND  
INT4  
T0  
T1  
T2  
IFCLK  
RESERVED  
BKPT  
SCL  
4
5
CTL5  
GND  
6
7
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
CY7C68013  
100-pin TQFP  
VCC  
GND  
PC7/GPIFADR7  
PC6/GPIFADR6  
PC5/GPIFADR5  
PC4/GPIFADR4  
PC3/GPIFADR3  
PC2/GPIFADR2  
PC1/GPIFADR1  
PC0/GPIFADR0  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
VCC  
CTL4  
CTL3  
SDA  
Figure 4-3. CY7C68013 100-pin TQFP Pin Assignment  
* denotes programmable polarity  
Document #: 38-08012 Rev. *B  
Page 20 of 50  
CY7C68013  
CY7C68013  
56-pin SSOP  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1
PD5/FD13  
PD4/FD12  
PD3/FD11  
PD2/FD10  
PD1/FD9  
PD0/FD8  
*WAKEUP  
VCC  
2
PD6/FD14  
PD7/FD15  
GND  
CLKOUT  
VCC  
3
4
5
6
7
GND  
8
RDY0/*SLRD  
RDY1/*SLWR  
AVCC  
XTALOUT  
XTALIN  
AGND  
RESET#  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PA7/*FLAGD/SLCS#  
PA6/PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
PA2/*SLOE  
PA1/INT1#  
PA0/INT0#  
VCC  
VCC  
DPLUS  
DMINUS  
GND  
VCC  
GND  
IFCLK  
RESERVED  
SCL  
SDA  
VCC  
CTL2/*FLAGC  
CTL1/*FLAGB  
CTL0/*FLAGA  
GND  
VCC  
GND  
PB7/FD7  
PB6/FD6  
PB5/FD5  
PB4/FD4  
PB0/FD0  
PB1/FD1  
PB2/FD2  
PB3/FD3  
Figure 4-4. CY7C68013 56-pin SSOP Pin Assignment  
* denotes programmable polarity  
Document #: 38-08012 Rev. *B  
Page 21 of 50  
CY7C68013  
RESET#  
GND  
RDY0/*SLRD  
RDY1/*SLWR  
AVCC  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
PA7/*FLAGD/SLCS#  
PA6/*PKTEND  
PA5/FIFOADR1  
PA4/FIFOADR0  
PA3/*WU2  
3
XTALOUT  
XTALIN  
AGND  
4
5
6
CY7C68013  
56-pin QFN  
VCC  
7
PA2/*SLOE  
DPLUS  
DMINUS  
GND  
8
PA1/INT1#  
9
PA0/INT0#  
10  
11  
12  
13  
14  
VCC  
VCC  
CTL2/*FLAGC  
CTL1/*FLAGB  
GND  
*IFCLK  
29 CTL0/*FLAGA  
RESERVED  
Figure 4-5. CY7C68013 56-pin QFN Pin Assignment  
* denotes programmable polarity  
Document #: 38-08012 Rev. *B  
Page 22 of 50  
CY7C68013  
4.1  
Table 4-1. FX2 Pin Descriptions[5]  
128 100 56 56  
CY7C68013 Pin Descriptions  
TQFP TQFP SSOP QFN  
Name  
Type  
Default  
Description  
10  
13  
9
10  
13  
3
6
AVCC  
Power  
N/A Analog VCC. This signal provides power to the analog section of  
the chip.  
12  
AGND  
Power  
N/A Analog Ground. Connect to ground with as short a path as possi-  
ble.  
19  
18  
18  
17  
16  
15  
9
8
DMINUS  
DPLUS  
A0  
I/O/Z  
I/O/Z  
Z
Z
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
Z
Z
Z
Z
Z
Z
Z
Z
H
USB DSignal. Connect to the USB Dsignal.  
USB D+ Signal. Connect to the USB D+ signal.  
94  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
I/O/Z  
8051 Address Bus. This bus is driven at all times. When the 8051  
is addressing internal RAM it reflects the internal address.  
95  
A1  
96  
A2  
97  
A3  
117  
118  
119  
120  
126  
127  
128  
21  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
D0  
22  
23  
24  
25  
59  
8051 Data Bus. This bidirectional bus is high-impedance when  
inactive, input for bus reads, and output for bus writes. The data  
bus is used for external 8051 program and data memory. The data  
bus is active only for external bus accesses, and is driven LOW in  
suspend.  
60  
D1  
I/O/Z  
61  
D2  
I/O/Z  
62  
D3  
I/O/Z  
63  
D4  
I/O/Z  
86  
D5  
I/O/Z  
87  
D6  
I/O/Z  
88  
D7  
I/O/Z  
39  
PSEN#  
Output  
Program Store Enable. This active-LOW signal indicates an 8051  
code fetch from external memory. It is active for program memory  
fetches from 0x20000xFFFF when the EA pin is LOW, or from  
0x00000xFFFF when the EA pin is HIGH.  
34  
28  
77  
BKPT  
Output  
Input  
L
Breakpoint. This pin goes active (HIGH) when the 8051 address  
bus matches the BPADDRH/L registers and breakpoints are en-  
abled in the BREAKPT register (BPEN = 1). If the BPPULSE bit in  
the BREAKPT register is HIGH, this signal pulses HIGH for eight  
12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the signal re-  
mains HIGH until the 8051 clears the BREAK bit (by writing 1 to it)  
in the BREAKPT register.  
99  
49  
42 RESET#  
N/A Active LOW Reset. Resets the entire chip. This pin is normally tied  
to VCC through a 100K resistor, and to GND through a 0.1-µF ca-  
pacitor.  
Note:  
5. Unused inputs should not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power-up and  
in standby.  
Document #: 38-08012 Rev. *B  
Page 23 of 50  
CY7C68013  
Table 4-1. FX2 Pin Descriptions[5] (continued)  
128  
100  
56  
56  
TQFP TQFP SSOP QFN  
Name  
EA  
Type  
Default  
Description  
35  
Input  
N/A External Access. This pin determines where the 8051 fetches  
code between addresses 0x0000 and 0x1FFF. If EA = 0 the 8051  
fetches this code from its internal RAM. IF EA = 1 the 8051 fetches  
this code from external memory.  
12  
11  
12  
5
4
XTALIN  
Input  
N/A Crystal Input. Connect this signal to a 24-MHz parallel-resonant,  
fundamental mode crystal and 20-pF capacitor to GND.  
It is also correct to drive XTALIN with an external 24 MHz square  
wave derived from another clock source.  
11  
1
10  
11  
5
XTALOUT  
Output  
O/Z  
N/A CrystalOutput. Connectthis signaltoa24-MHz parallel-resonant,  
fundamental mode crystal and 20-pF capacitor to GND.  
If an external clock is used to drive XTALIN, leave this pin open.  
100  
54 CLKOUT  
12 MHz 12-, 24- or 48-MHz clock, phase locked to the 24-MHz input clock.  
The 8051 defaults to 12-MHz operation. The 8051 may tri-state this  
output by setting CPUCS.1 = 1.  
Port A  
82  
67  
68  
69  
40  
41  
42  
33 PA0 or  
INT0#  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by:  
(PA0) PORTACFG.0  
PA0 is a bidirectional IO port pin.  
INT0# is the active-LOW 8051 INT0 interrupt input signal, which is  
either edge triggered (IT0 = 1) or level triggered (IT0 = 0).  
83  
84  
34 PA1 or  
INT1#  
I
Multiplexed pin whose function is selected by:  
(PA1) PORTACFG.1  
PA1 is a bidirectional IO port pin.  
INT1# is the active-LOW 8051 INT1 interrupt input signal, which is  
either edge triggered (IT1 = 1) or level triggered (IT1 = 0).  
35 PA2 or  
SLOE  
I
Multiplexed pin whose function is selected by two bits:  
(PA2) IFCONFIG[1:0].  
PA2 is a bidirectional IO port pin.  
SLOE is an input-only output enable with programmable polarity  
(FIFOPOLAR.4) for the slave FIFOs connected to FD[7..0] or  
FD[15..0].  
85  
70  
43  
36 PA3 or  
WU2  
I/O/Z  
I
Multiplexed pin whose function is selected by:  
(PA3) WAKEUP.7 and OEA.3  
PA3 is a bidirectional I/O port pin.  
WU2 is an alternate source for USB Wakeup, enabled by WU2EN  
bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the  
8051 is in suspend and WU2EN = 1, a transition on this pin starts  
up the oscillator and interrupts the 8051 to allow it to exit the sus-  
pend mode. Asserting this pin inhibits the chip from suspending, if  
WU2EN=1.  
89  
90  
91  
71  
72  
73  
44  
45  
46  
37 PA4 or  
FIFOADR0  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by:  
(PA4) IFCONFIG[1..0].  
PA4 is a bidirectional I/O port pin.  
FIFOADR0 is an input-only address select for the slave FIFOs con-  
nected to FD[7..0] or FD[15..0].  
38 PA5 or  
FIFOADR1  
I
Multiplexed pin whose function is selected by:  
(PA5) IFCONFIG[1..0].  
PA5 is a bidirectional I/O port pin.  
FIFOADR1 is an input-only address select for the slave FIFOs con-  
nected to FD[7..0] or FD[15..0].  
39 PA6 or  
PKTEND  
I
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
(PA6) bits.  
PA6 is a bidirectional I/O port pin.  
PKTEND is an input-only packet end with programmable polarity  
(FIFOPOLAR.5) for the slave FIFOs connected to FD[7..0] or  
FD[15..0].  
Document #: 38-08012 Rev. *B  
Page 24 of 50  
CY7C68013  
Table 4-1. FX2 Pin Descriptions[5] (continued)  
128  
100  
56  
56  
TQFP TQFP SSOP QFN  
Name  
Type  
Default  
Description  
Multiplexed pin whose function is selected by the IFCONFIG[1:0]  
92  
74  
47  
40 PA7 or  
I/O/Z  
I
FLAGD or  
SLCS#  
(PA7) and PORTACFG.7 bits.  
PA7 is a bidirectional I/O port pin.  
FLAGD is a programmable slave-FIFO output status flag signal.  
SLCS# gates all other slave FIFO enable/strobes  
Port B  
44  
34  
35  
36  
37  
44  
45  
46  
47  
25  
26  
27  
28  
29  
30  
31  
32  
18 PB0 or  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the following bits:  
FD[0]  
(PB0) IFCONFIG[1..0].  
PB0 is a bidirectional I/O port pin.  
FD[0] is the bidirectional FIFO/GPIF data bus.  
45  
46  
47  
54  
55  
56  
57  
19 PB1 or  
FD[1]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB1) IFCONFIG[1..0].  
PB1 is a bidirectional I/O port pin.  
FD[1] is the bidirectional FIFO/GPIF data bus.  
20 PB2 or  
FD[2]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB2) IFCONFIG[1..0].  
PB2 is a bidirectional I/O port pin.  
FD[2] is the bidirectional FIFO/GPIF data bus.  
21 PB3 or  
TXD1 or  
FD[3]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB3) IFCONFIG[1..0].  
PB3 is a bidirectional I/O port pin.  
FD[3] is the bidirectional FIFO/GPIF data bus.  
22 PB4 or  
FD[4]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB4) IFCONFIG[1..0].  
PB4 is a bidirectional I/O port pin.  
FD[4] is the bidirectional FIFO/GPIF data bus.  
23 PB5 or  
FD[5]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB5) IFCONFIG[1..0].  
PB5 is a bidirectional I/O port pin.  
FD[5] is the bidirectional FIFO/GPIF data bus.  
24 PB6 or  
FD[6]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB6) IFCONFIG[1..0].  
PB6 is a bidirectional I/O port pin.  
FD[6] is the bidirectional FIFO/GPIF data bus.  
25 PB7 or  
FD[7]  
I
Multiplexed pin whose function is selected by the following bits:  
(PB7) IFCONFIG[1..0].  
PB7 is a bidirectional I/O port pin.  
FD[7] is the bidirectional FIFO/GPIF data bus.  
PORT C  
72  
57  
58  
59  
60  
61  
PC0 or  
GPIFADR0  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by PORTCCFG.0  
(PC0) PC0 is a bidirectional I/O port pin.  
GPIFADR0 is a GPIF address output pin.  
73  
74  
75  
76  
PC1 or  
GPIFADR1  
I
Multiplexed pin whose function is selected by PORTCCFG.1  
(PC1) PC1 is a bidirectional I/O port pin.  
GPIFADR1 is a GPIF address output pin.  
PC2 or  
GPIFADR2  
I
Multiplexed pin whose function is selected by PORTCCFG.2  
(PC2) PC2 is a bidirectional I/O port pin.  
GPIFADR2 is a GPIF address output pin.  
PC3 or  
GPIFADR3  
I
Multiplexed pin whose function is selected by PORTCCFG.3  
(PC3) PC3 is a bidirectional I/O port pin.  
GPIFADR3 is a GPIF address output pin.  
PC4 or  
I
Multiplexed pin whose function is selected by PORTCCFG.4  
GPIFADR4  
(PC4) PC4 is a bidirectional I/O port pin.  
GPIFADR4 is a GPIF address output pin.  
Document #: 38-08012 Rev. *B  
Page 25 of 50  
CY7C68013  
Table 4-1. FX2 Pin Descriptions[5] (continued)  
128  
100  
56  
56  
TQFP TQFP SSOP QFN  
Name  
PC5 or  
GPIFADR5  
Type  
Default  
Description  
Multiplexed pin whose function is selected by PORTCCFG.5  
77  
78  
79  
62  
63  
64  
I/O/Z  
I
(PC5) PC5 is a bidirectional I/O port pin.  
GPIFADR5 is a GPIF address output pin.  
PC6 or  
GPIFADR6  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by PORTCCFG.6  
(PC6) PC6 is a bidirectional I/O port pin.  
GPIFADR6 is a GPIF address output pin.  
PC7 or  
I
Multiplexed pin whose function is selected by PORTCCFG.7  
GPIFADR7  
(PC7) PC7 is a bidirectional I/O port pin.  
GPIFADR7 is a GPIF address output pin.  
PORT D  
102  
80  
81  
82  
83  
95  
96  
97  
98  
52  
53  
54  
55  
56  
1
45 PD0 or  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]  
FD[8]  
(PD0) and EPxFIFCFG.0 (wordwide) bits.  
FD[8] is the bidirectional FIFO/GPIF data bus.  
103  
104  
105  
121  
122  
123  
124  
46 PD1 or  
FD[9]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]  
(PD1) and EPxFIFCFG.0 (wordwide) bits.  
FD[9] is the bidirectional FIFO/GPIF data bus.  
47 PD2 or  
FD[10]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]  
(PD2) and EPxFIFCFG.0 (wordwide) bits.  
FD[10] is the bidirectional FIFO/GPIF data bus.  
48 PD3 or  
FD[11]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]  
(PD3) and EPxFIFCFG.0 (wordwide) bits.  
FD[11] is the bidirectional FIFO/GPIF data bus.  
49 PD4 or  
FD[12]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]  
(PD4) and EPxFIFCFG.0 (wordwide) bits.  
FD[12] is the bidirectional FIFO/GPIF data bus.  
50 PD5 or  
FD[13]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]  
(PD5) and EPxFIFCFG.0 (wordwide) bits.  
FD[13] is the bidirectional FIFO/GPIF data bus.  
2
51 PD6 or  
FD[14]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]  
(PD6) and EPxFIFCFG.0 (wordwide) bits.  
FD[14] is the bidirectional FIFO/GPIF data bus.  
3
52 PD7 or  
FD[15]  
I
Multiplexed pin whose function is selected by the IFCONFIG[1..0]  
(PD7) and EPxFIFCFG.0 (wordwide) bits.  
FD[15] is the bidirectional FIFO/GPIF data bus.  
Port E  
108  
86  
87  
88  
PE0 or  
T0OUT  
I/O/Z  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the PORTECFG.0 bit.  
(PE0) PE0 is a bidirectional I/O port pin.  
T0OUT is an active-HIGH signal from 8051 Timer-counter0.  
T0OUT outputs a high level for one CLKOUT clock cycle when  
Timer0 overflows. If Timer0 is operated in Mode 3 (two separate  
timer/counters), T0OUT is active when the low byte timer/counter  
overflows.  
109  
110  
PE1 or  
T1OUT  
I
Multiplexed pin whose function is selected by the PORTECFG.1 bit.  
(PE1) PE1 is a bidirectional I/O port pin.  
T1OUT is an active-HIGH signal from 8051 Timer-counter1.  
T1OUT outputs a high level for one CLKOUT clock cycle when  
Timer1 overflows. If Timer1 is operated in Mode 3 (two separate  
timer/counters), T1OUT is active when the low byte timer/counter  
overflows.  
PE2 or  
T2OUT  
I
Multiplexed pin whose function is selected by the PORTECFG.2 bit.  
(PE2) PE2 is a bidirectional I/O port pin.  
T2OUT is the active-HIGH output signal from 8051 Timer2. T2OUT  
is active (HIGH) for one clock cycle when Timer/Counter 2 over-  
flows.  
Document #: 38-08012 Rev. *B  
Page 26 of 50  
CY7C68013  
Table 4-1. FX2 Pin Descriptions[5] (continued)  
128  
100  
56  
56  
TQFP TQFP SSOP QFN  
Name  
PE3 or  
Type  
Default  
Description  
Multiplexed pin whose function is selected by the PORTECFG.3 bit.  
111  
89  
I/O/Z  
I
RXD0OUT  
(PE3) PE3 is a bidirectional I/O port pin.  
RXD0OUT is an active-HIGH signal from 8051 UART0. If  
RXD0OUT is selected and UART0 is in Mode 0, this pin provides  
the output data for UART0 only when it is in sync mode. Otherwise  
it is a 1.  
112  
90  
PE4 or  
RXD1OUT  
I/O/Z  
I
Multiplexed pin whose function is selected by the PORTECFG.4 bit.  
(PE4) PE4 is a bidirectional I/O port pin.  
RXD1OUT is an active-HIGH output from 8051 UART1. When  
RXD1OUT is selected and UART1 is in Mode 0, this pin provides  
the output data for UART1 only when it is in sync mode. In Modes  
1, 2, and 3, this pin is HIGH.  
113  
114  
91  
92  
PE5 or  
INT6  
I/O/Z  
I/O/Z  
I
Multiplexed pin whose function is selected by the PORTECFG.5 bit.  
(PE5) PE5 is a bidirectional I/O port pin.  
INT6 is the 8051 INT5 interrupt request input signal. The INT6 pin  
is edge-sensitive, active HIGH.  
PE6 or  
T2EX  
I
Multiplexed pin whose function is selected by the PORTECFG.6 bit.  
(PE6) PE6 is a bidirectional I/O port pin.  
T2EX is an active-high input signal to the 8051 Timer2. T2EX re-  
loads timer 2 on its falling edge. T2EX is active only if the EXEN2  
bit is set in T2CON.  
115  
4
93  
3
PE7 or  
GPIFADR8  
I/O/Z  
Input  
I
Multiplexed pin whose function is selected by the PORTECFG.7 bit.  
(PE7) PE7 is a bidirectional I/O port pin.  
GPIFADR8 is a GPIF address output pin.  
8
9
1
2
RDY0 or  
SLRD  
N/A Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
RDY0 is a GPIF input signal.  
SLRD is the input-only read strobe with programmable polarity  
(FIFOPOLAR.3) for the slave FIFOs connected to FDI[7..0] or  
FDI[15..0].  
5
4
RDY1 or  
SLWR  
Input  
N/A Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
RDY1 is a GPIF input signal.  
SLWR is the input-only write strobe with programmable polarity  
(FIFOPOLAR.2) for the slave FIFOs connected to FDI[7..0] or  
FDI[15..0].  
6
7
5
6
RDY2  
RDY3  
RDY4  
RDY5  
Input  
Input  
N/A RDY2 is a GPIF input signal.  
N/A RDY3 is a GPIF input signal.  
N/A RDY4 is a GPIF input signal.  
N/A RDY5 is a GPIF input signal.  
8
7
Input  
9
8
Input  
69  
54  
36  
37  
29 CTL0 or  
FLAGA  
Output  
H
Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
CTL0 is a GPIF control output.  
FLAGA is a programmable slave-FIFO output status flag signal.  
Defaults to programmable for the FIFO selected by the  
FIFOADR[1:0] pins.  
70  
55  
30 CTL1 or  
FLAGB  
Output  
H
Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
CTL1 is a GPIF control output.  
FLAGB is a programmable slave-FIFO output status flag signal.  
Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.  
Document #: 38-08012 Rev. *B  
Page 27 of 50  
CY7C68013  
Table 4-1. FX2 Pin Descriptions[5] (continued)  
128  
100  
56  
56  
TQFP TQFP SSOP QFN  
Name  
Type  
Default  
Description  
71  
56  
38  
31 CTL2 or  
FLAGC  
Output  
H
Multiplexed pin whose function is selected by the following bits:  
IFCONFIG[1..0].  
CTL2 is a GPIF control output.  
FLAGC is a programmable slave-FIFO output status flag signal.  
Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0]  
pins.  
66  
67  
98  
32  
51  
52  
76  
26  
CTL3  
CTL4  
Output  
Output  
Output  
I/O/Z  
H
H
H
Z
CTL3 is a GPIF control output.  
CTL4 is a GPIF control output.  
CTL5 is a GPIF control output.  
CTL5  
20  
13 IFCLK  
Interface Clock, used for synchronously clocking data into or out of  
the slave FIFOs. IFCLK also serves as a timing reference for all  
slave FIFO control signals and GPIF. When internal clocking,  
IFCONFIG.7 = 1, is used the IFCLK pin can be configured to output  
30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be  
inverted, whether internally or externally sourced, by setting the bit  
IFCONFIG.4 =1.  
28  
106  
31  
22  
84  
25  
INT4  
INT5#  
T2  
Input  
Input  
Input  
N/A INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin  
is edge-sensitive, active HIGH.  
N/A INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin  
is edge-sensitive, active LOW.  
N/A T2 is the active-HIGH T2 input signal to 8051 Timer2, which pro-  
vides the input to Timer2 when C/T2 = 1. When C/T2 = 0, Timer2  
does not use this pin.  
30  
29  
24  
23  
T1  
T0  
Input  
Input  
N/A T1 is the active-HIGH T1 signal for 8051 Timer1, which provides  
the input to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does  
not use this bit.  
N/A T0 is the active-HIGH T0 signal for 8051 Timer0, which provides  
the input to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does  
not use this bit.  
53  
52  
43  
42  
RXD1  
TXD1  
Input  
N/A RXD1is an active-HIGH input signal for 8051 UART1, which pro-  
vides data to the UART in all modes.  
Output  
H
TXD1is an active-HIGH output pin from 8051 UART1, which pro-  
vides the output clock in sync mode, and the output data in async  
mode.  
51  
50  
41  
40  
RXD0  
TXD0  
Input  
N/A RXD0 is the active-HIGH RXD0 input to 8051 UART0, which pro-  
vides data to the UART in all modes.  
Output  
H
TXD0 is the active-HIGH TXD0 output from 8051 UART0, which  
provides the output clock in sync mode, and the output data in  
async mode.  
42  
41  
40  
38  
CS#  
WR#  
RD#  
OE#  
Output  
Output  
Output  
Output  
H
H
H
H
CS# is the active-LOW chip select for external memory.  
WR# is the active-LOW write strobe output for external memory.  
RD# is the active-LOW read strobe output for external memory.  
OE# is the active-LOW output enable for external memory.  
32  
31  
33  
27  
79  
21  
51  
14 Reserved  
44 WAKEUP  
Input  
Input  
N/A Reserved. Connect to ground.  
101  
N/A USB Wakeup. If the 8051 is in suspend, asserting this pin starts  
up the oscillator and interrupts the 8051 to allow it to exit the sus-  
pend mode. Holding WAKEUP asserted inhibits the EZ-USB chip  
from suspending. This pin has programmable polarity (WAKE-  
UP.4).  
Document #: 38-08012 Rev. *B  
Page 28 of 50  
CY7C68013  
Table 4-1. FX2 Pin Descriptions[5] (continued)  
128  
100  
56  
56  
TQFP TQFP SSOP QFN  
Name  
Type  
Default  
Description  
36  
37  
29  
30  
22  
23  
15 SCL  
OD  
Z
Clock for the I2C-compatible interface. Connect to VCC with a  
2.2K resistor, even if no I2C-compatible peripheral is attached.  
16 SDA  
55 VCC  
OD  
Z
Data for I2C-compatible interface. Connect to VCC with a 2.2K  
resistor, even if no I2C-compatible peripheral is attached.  
2
17  
1
6
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
N/A VCC. Connect to 3.3V power source.  
16  
20  
33  
38  
49  
53  
66  
78  
85  
14  
18  
24  
34  
39  
50  
7
VCC  
26  
11 VCC  
17 VCC  
27 VCC  
32 VCC  
43 VCC  
VCC  
43  
48  
64  
68  
81  
100  
107  
VCC  
VCC  
3
20  
27  
49  
58  
65  
80  
93  
116  
125  
2
4
53 GND  
56 GND  
10 GND  
12 GND  
26 GND  
28 GND  
41 GND  
GND  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
Ground  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
N/A Ground.  
19  
21  
39  
48  
50  
65  
75  
94  
99  
7
17  
19  
33  
35  
48  
GND  
GND  
14  
15  
16  
13  
14  
15  
NC  
NC  
NC  
N/A  
N/A  
N/A  
N/A No-connect. This pin must be left open.  
N/A No-connect. This pin must be left open.  
N/A No-connect. This pin must be left open.  
Document #: 38-08012 Rev. *B  
Page 29 of 50  
CY7C68013  
5.0  
Register Summary  
FX2 register bit definitions are described in the FX2 TRM in greater detail.  
Table 5-1. FX2 Register Summary  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
xxxxxxxx RW  
GPIF Waveform Memories  
E400 128 WAVEDATA  
GPIF Waveform Descriptor  
0, 1, 2, 3 data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
E480 384 reserved  
GENERAL CONFIGURATION  
E600  
E601  
1
1
CPUCS  
CPU Control & Status  
0
0
PORTCSTB CLKSPD1 CLKSPD0  
CLKINV  
GSTATE  
CLKOE  
IFCFG1  
8051RES 00000010 rrbbbbbr  
IFCONFIG  
Interface Configuration  
(Ports, GPIF, slave FIFOs)  
IFCLKSRC 3048MHZ  
IFCLKOE  
FLAGB1  
FLAGD1  
0
IFCLKPOL  
FLAGB0  
FLAGD0  
0
ASYNC  
FLAGA3  
FLAGC3  
EP3  
IFCFG0  
11000000  
RW  
RW  
RW  
W
[6]  
[6]  
E602  
E603  
E604  
1
1
1
PINFLAGSAB  
Slave FIFO FLAGA and  
FLAGB Pin Configuration  
FLAGB3  
FLAGD3  
NAKALL  
FLAGB2  
FLAGD2  
0
FLAGA2  
FLAGC2  
EP2  
FLAGA1  
FLAGC1  
EP1  
FLAGA0 00000000  
FLAGC0 01000000  
PINFLAGSCD  
Slave FIFO FLAGC and  
FLAGD Pin Configuration  
[6]  
FIFORESET  
Restore FIFOS to default  
state  
EP0  
xxxxxxxx  
E605  
E606  
E607  
E608  
1
1
1
1
BREAKPT  
BPADDRH  
BPADDRL  
UART230  
Breakpoint Control  
0
A15  
A7  
0
0
A14  
A6  
0
0
A13  
A5  
0
0
A12  
A4  
0
BREAK  
A11  
A3  
BPPULSE  
BPEN  
A9  
0
00000000 rrrrbbbr  
Breakpoint Address H  
Breakpoint Address L  
A10  
A2  
0
A8  
A0  
xxxxxxxx  
xxxxxxxx  
RW  
RW  
A1  
230 Kbaud internally  
generated ref. clock  
0
230UART1 230UART0 00000000 rrrrrrbb  
[6]  
E609  
E60A  
1
1
FIFOPINPOLAR Slave FIFO Interface pins  
polarity  
0
0
PKTEND  
rv5  
SLOE  
rv4  
SLRD  
rv3  
SLWR  
rv2  
EF  
rv1  
FF  
00000000 rrbbbbbb  
REVID  
Chip Revision  
rv7  
rv6  
rv0  
Rev A, B -  
00000000  
Rev C, D -  
00000010  
Rev E -  
R
00000100  
[6]  
E60B  
E60C  
1
REVCTL  
Chip Revision Control  
0
0
0
0
0
0
0
0
0
0
0
0
dyn_out  
enh_pkt  
00000000 rrrrrrbb  
UDMA  
1
3
GPIFHOLDTIME MSTB Hold Time (for UDMA)  
reserved  
HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb  
ENDPOINT CONFIGURATION  
E610  
1
EP1OUTCFG  
Endpoint 1-OUT Configura-  
tion  
VALID  
0
TYPE1  
TYPE0  
0
0
0
0
10100000 brbbrrrr  
E611  
E612  
E613  
E614  
E615  
1
1
1
1
1
2
1
EP1INCFG  
EP2CFG  
Endpoint 1-IN Configuration  
Endpoint 2 Configuration  
Endpoint 4 Configuration  
Endpoint 6 Configuration  
Endpoint 8 Configuration  
VALID  
VALID  
VALID  
VALID  
VALID  
0
TYPE1  
TYPE1  
TYPE1  
TYPE1  
TYPE1  
TYPE0  
TYPE0  
TYPE0  
TYPE0  
TYPE0  
0
SIZE  
0
0
0
0
0
0
0
BUF1  
0
0
BUF0  
0
10100000 brbbrrrr  
10100010 bbbbbrbb  
10100000 bbbbrrrr  
11100010 bbbbbrbb  
11100000 bbbbrrrr  
DIR  
DIR  
DIR  
DIR  
EP4CFG  
EP6CFG  
SIZE  
0
BUF1  
0
BUF0  
0
EP8CFG  
reserved  
[6]  
[6]  
[6]  
[6]  
E618  
E619  
E61A  
E61B  
EP2FIFOCFG  
Endpoint 2 / slave FIFO con-  
figuration  
0
0
0
0
INFM1  
INFM1  
INFM1  
INFM1  
OEP1  
OEP1  
OEP1  
OEP1  
AUTOOUT  
AUTOOUT  
AUTOOUT  
AUTOOUT  
AUTOIN ZEROLENIN  
AUTOIN ZEROLENIN  
AUTOIN ZEROLENIN  
AUTOIN ZEROLENIN  
0
0
0
0
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
WORDWIDE 00000101 rbbbbbrb  
1
1
1
EP4FIFOCFG  
EP6FIFOCFG  
EP8FIFOCFG  
reserved  
Endpoint 4 / slave FIFO con-  
figuration  
Endpoint 6 / slave FIFO con-  
figuration  
Endpoint 8 / slave FIFO con-  
figuration  
4
1
E620  
E621  
E622  
E623  
E624  
E625  
E626  
E627  
EP2AUTOINLENH Endpoint 2 AUTOIN Packet  
0
PL7  
0
0
PL6  
0
0
PL5  
0
0
PL4  
0
0
PL3  
0
PL10  
PL2  
0
PL9  
PL1  
PL9  
PL1  
PL9  
PL1  
PL9  
PL1  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
PL8  
PL0  
00000010 rrrrrbbb  
00000000 RW  
00000010 rrrrrrbb  
00000000 RW  
00000010 rrrrrbbb  
00000000 RW  
00000010 rrrrrrbb  
00000000 RW  
[6]  
Length H  
1
1
1
1
1
1
1
EP2AUTOINLENL Endpoint 2 AUTOIN Packet  
[6]  
Length L  
EP4AUTOINLENH Endpoint 4 AUTOIN Packet  
[6]  
Length H  
EP4AUTOINLENL Endpoint 4 AUTOIN Packet  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
PL2  
PL10  
PL2  
0
[6]  
Length L  
EP6AUTOINLENH Endpoint 6 AUTOIN Packet  
[6]  
Length H  
EP6AUTOINLENL Endpoint 6 AUTOIN Packet  
PL7  
0
PL6  
0
PL5  
0
PL4  
0
PL3  
0
[6]  
Length L  
EP8AUTOINLENH Endpoint 8 AUTOIN Packet  
[6]  
Length H  
EP8AUTOINLENL Endpoint 8 AUTOIN Packet  
PL7  
PL6  
PL5  
PL4  
PL3  
PL2  
[6]  
Length L  
8
1
reserved  
[6]  
E630  
H.S.  
EP2FIFOPFH  
Endpoint 2 / slave FIFO Pro-  
grammable Flag H  
DECIS  
DECIS  
PFC7  
PKTSTAT IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
0
0
PFC9  
PFC9  
PFC1  
PFC8  
10001000 bbbbbrbb  
[6]  
E630  
F.S.  
1
1
EP2FIFOPFH  
Endpoint 2 / slave FIFO Pro-  
grammable Flag H  
PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10  
IN:PKTS[2] 10001000 bbbbbrbb  
OUT:PFC8  
[6]  
E631  
H.S.  
EP2FIFOPFL  
Endpoint 2 / slave FIFO Pro-  
grammable Flag L  
PFC6  
PFC5  
PFC4  
PFC3  
PFC2  
PFC0  
00000000  
RW  
Note:  
6. Read and writes to these register may require synchronization delay, see Technical Reference Manual for Synchronization Delay.”  
Document #: 38-08012 Rev. *B  
Page 30 of 50  
CY7C68013  
Table 5-1. FX2 Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
00000000 RW  
[6]  
[6]  
E631  
F.S  
1
1
1
1
1
1
1
1
1
1
1
1
1
EP2FIFOPFL  
Endpoint 2 / slave FIFO Pro- IN:PKTS[1] IN:PKTS[0]  
grammable Flag L  
PFC5  
PFC4  
PFC3  
PFC2  
PFC1  
PFC0  
OUT:PFC7 OUT:PFC6  
E632  
H.S.  
EP4FIFOPFH  
Endpoint 4 / slave FIFO Pro-  
grammable Flag H  
DECIS  
DECIS  
PFC7  
PKTSTAT  
PKTSTAT  
PFC6  
0
IN: PKTS[1] IN: PKTS[0]  
OUT:PFC10 OUT:PFC9  
0
0
0
PFC8  
PFC8  
PFC0  
PFC0  
PFC8  
10001000 bbrbbrrb  
10001000 bbrbbrrb  
[6]  
E632  
F.S  
EP4FIFOPFH  
Endpoint 4 / slave FIFO Pro-  
grammable Flag H  
0
OUT:PFC10 OUT:PFC9  
0
[6]  
[6]  
[6]  
E633  
H.S.  
EP4FIFOPFL  
EP4FIFOPFL  
Endpoint 4 / slave FIFO Pro-  
grammable Flag L  
PFC5  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
0
PFC1  
PFC1  
PFC9  
PFC9  
PFC1  
PFC1  
0
00000000  
00000000  
RW  
RW  
E633  
F.S  
Endpoint 4 / slave FIFO Pro- IN: PKTS[1] IN: PKTS[0]  
grammable Flag L  
OUT:PFC7 OUT:PFC6  
E634  
H.S.  
EP6FIFOPFH  
Endpoint 6 / slave FIFO Pro-  
grammable Flag H  
DECIS  
DECIS  
PFC7  
PKTSTAT IN:PKTS[2] IN:PKTS[1] IN:PKTS[0]  
OUT:PFC12 OUT:PFC11 OUT:PFC10  
00001000 bbbbbrbb  
[6]  
E634  
F.S  
EP6FIFOPFH  
Endpoint 6 / slave FIFO Pro-  
grammable Flag H  
PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10  
0
IN:PKTS[2] 00001000 bbbbbrbb  
OUT:PFC8  
[6]  
[6]  
[6]  
E635  
H.S.  
EP6FIFOPFL  
EP6FIFOPFL  
Endpoint 6 / slave FIFO Pro-  
grammable Flag L  
PFC6  
PFC5  
PFC5  
0
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
0
PFC0  
PFC0  
PFC8  
PFC8  
PFC0  
PFC0  
00000000  
RW  
E635  
F.S  
Endpoint 6 / slave FIFO Pro- IN:PKTS[1] IN:PKTS[0]  
grammable Flag L  
00000000  
RW  
OUT:PFC7 OUT:PFC6  
E636  
H.S.  
EP8FIFOPFH  
Endpoint 8 / slave FIFO Pro-  
grammable Flag H  
DECIS  
DECIS  
PFC7  
PKTSTAT  
PKTSTAT  
PFC6  
IN: PKTS[1] IN: PKTS[0]  
OUT:PFC10 OUT:PFC9  
00001000 bbrbbrrb  
00001000 bbrbbrrb  
[6]  
E636  
F.S  
EP8FIFOPFH  
Endpoint 8 / slave FIFO Pro-  
grammable Flag H  
0
OUT:PFC10 OUT:PFC9  
0
0
[6]  
[6]  
E637  
H.S.  
EP8FIFOPFL  
EP8FIFOPFL  
reserved  
Endpoint 8 / slave FIFO Pro-  
grammable Flag L  
PFC5  
PFC5  
PFC4  
PFC4  
PFC3  
PFC3  
PFC2  
PFC2  
PFC1  
PFC1  
00000000  
00000000  
RW  
RW  
E637  
F.S  
Endpoint 8 / slave FIFO Pro- IN: PKTS[1] IN: PKTS[0]  
grammable Flag L OUT:PFC7 OUT:PFC6  
8
1
E640  
E641  
E642  
E643  
EP2ISOINPKTS EP2 (if ISO) IN Packets per  
frame (1-3)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INPPF1  
INPPF1  
INPPF1  
INPPF1  
INPPF0  
INPPF0  
INPPF0  
INPPF0  
00000001 rrrrrrbb  
00000001 rrrrrrbb  
00000001 rrrrrrbb  
00000001 rrrrrrbb  
1
1
1
4
EP4ISOINPKTS EP4 (if ISO) IN Packets per  
frame (1-3)  
EP6ISOINPKTS EP6 (if ISO) IN Packets per  
frame (1-3)  
EP8ISOINPKTS EP8 (if ISO) IN Packets per  
frame (1-3)  
reserved  
[6]  
E648  
E649  
1
7
INPKTEND  
Force IN Packet End  
Skip  
Skip  
0
0
0
0
0
0
EP3  
EP3  
EP2  
EP2  
EP1  
EP1  
EP0  
EP0  
xxxxxxxx  
xxxxxxxx  
R/W  
W
[6]  
OUTPKTEND  
Force OUT Packet End  
INTERRUPTS  
[6]  
E650  
E651  
E652  
E653  
E654  
E655  
E656  
E657  
E658  
E659  
E65A  
E65B  
1
1
1
1
1
1
1
1
1
1
1
1
EP2FIFOIE  
Endpoint 2 slave FIFO Flag  
Interrupt Enable  
0
0
0
0
0
0
0
0
EDGEPF  
PF  
PF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EF  
EP1  
EP1  
0
FF  
FF  
00000000  
00000xxx  
00000000  
00000xxx  
00000000  
00000xxx  
00000000  
00000xxx  
00000000  
00xxxxxx  
00000000  
xxxxxxxx  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
[6]  
EP2FIFOIRQ  
Endpoint 2 slave FIFO Flag  
Interrupt Request  
0
EDGEPF  
0
[6]  
EP4FIFOIE  
Endpoint 4 slave FIFO Flag  
Interrupt Enable  
0
0
0
0
PF  
FF  
[6]  
EP4FIFOIRQ  
Endpoint 4 slave FIFO Flag  
Interrupt Request  
0
0
0
0
PF  
FF  
[6]  
EP6FIFOIE  
Endpoint 6 slave FIFO Flag  
Interrupt Enable  
0
0
0
0
EDGEPF  
0
PF  
FF  
[6]  
EP6FIFOIRQ  
Endpoint 6 slave FIFO Flag  
Interrupt Request  
0
0
0
0
PF  
FF  
[6]  
EP8FIFOIE  
Endpoint 8 slave FIFO Flag  
Interrupt Enable  
0
0
0
0
EDGEPF  
0
PF  
FF  
[6]  
EP8FIFOIRQ  
IBNIE  
Endpoint 8 slave FIFO Flag  
Interrupt Request  
0
0
0
0
PF  
FF  
IN-BULK-NAK Interrupt En-  
able  
0
0
EP8  
EP8  
EP4  
EP4  
EP6  
EP6  
EP2  
EP2  
EP4  
EP2  
EP2  
EP0  
EP0  
EP0  
EP0  
IBN  
IBN  
IBNIRQ  
NAKIE  
IN-BULK-NAK interrupt Re-  
quest  
0
0
EP4  
Endpoint Ping-NAK / IBN In-  
terrupt Enable  
EP8  
EP8  
EP6  
EP6  
EP1  
NAKIRQ  
Endpoint Ping-NAK / IBN In-  
terrupt Request  
EP1  
0
E65C  
E65D  
E65E  
E65F  
E660  
E661  
E662  
E663  
1
1
1
1
1
1
1
1
USBIE  
USBIRQ  
EPIE  
USB Int Enables  
0
0
EP0ACK  
EP0ACK  
EP6  
HSGRANT  
HSGRANT  
EP4  
URES  
URES  
EP2  
SUSP  
SUTOK  
SOF  
SOF  
SUDAV  
SUDAV  
EP0IN  
EP0IN  
00000000  
0xxxxxxx  
00000000  
xxxxxxxx  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
USB Interrupt Requests  
Endpoint Interrupt Enables  
Endpoint Interrupt Requests  
GPIF Interrupt Enable  
GPIF Interrupt Request  
SUSP  
SUTOK  
EP8  
EP8  
0
EP1OUT  
EP1IN  
EP0OUT  
EP0OUT  
GPIFWF  
GPIFWF  
0
EPIRQ  
EP6  
EP4  
EP2  
EP1OUT  
EP1IN  
[6]  
GPIFIE  
0
0
0
0
0
0
0
0
0
0
0
GPIFDONE 00000000  
GPIFDONE 000000xx  
ERRLIMIT 00000000  
ERRLIMIT xxxx000x  
[6]  
GPIFIRQ  
0
0
0
0
USBERRIE  
USB Error Interrupt Enables ISOEP8  
ISOEP6  
ISOEP6  
ISOEP4  
ISOEP4  
ISOEP2  
ISOEP2  
USBERRIRQ  
USB Error Interrupt Re-  
quests  
ISOEP8  
0
E664  
E665  
E666  
E667  
1
1
1
1
ERRCNTLIM  
CLRERRCNT  
INT2IVEC  
USB Error counter and limit  
Clear Error Counter EC3:0  
Interrupt 2 (USB) Autovector  
EC3  
EC2  
x
EC1  
x
EC0  
x
LIMIT3  
x
LIMIT2  
x
LIMIT1  
LIMIT0  
xxxx0100 rrrrbbbb  
x
0
1
x
0
0
x
0
0
xxxxxxxx  
00000000  
10000000  
W
R
I2V4  
0
I2V3  
I4V3  
I2V2  
I4V2  
I2V1  
I4V1  
I2V0  
I4V0  
INT4IVEC  
Interrupt 4 (slave FIFO &  
GPIF) Autovector  
R
E668  
1
INTSETUP  
Interrupt 2&4 Setup  
0
0
0
0
AV2EN  
0
INT4SRC  
AV4EN  
00000000  
RW  
Document #: 38-08012 Rev. *B  
Page 31 of 50  
CY7C68013  
Table 5-1. FX2 Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
E669  
7
reserved  
INPUT / OUTPUT  
PORTACFG  
E670  
E671  
E672  
1
1
1
I/O PORTA Alternate Config- FLAGD  
uration  
SLCS  
GPIFA6  
T2EX  
0
0
0
0
INT1  
INT0  
00000000  
00000000  
00000000  
RW  
RW  
RW  
PORTCCFG  
PORTECFG  
I/O PORTC Alternate Config- GPIFA7  
uration  
GPIFA5  
INT6  
GPIFA4  
GPIFA3  
GPIFA2  
T2OUT  
GPIFA1  
T1OUT  
GPIFA0  
T0OUT  
I/O PORTE Alternate Config- GPIFA8  
uration  
RXD1OUT RXD0OUT  
E673  
E678  
5
1
reserved  
I2CS  
I²C-Compatible Bus  
START  
d7  
STOP  
d6  
LASTRD  
ID1  
d4  
0
ID0  
d3  
0
BERR  
d2  
ACK  
d1  
DONE  
d0  
000xx000 bbbrrrrr  
Control & Status  
E679  
E67A  
E67B  
E67C  
1
1
1
1
I2DAT  
I²C-Compatible Bus  
Data  
d5  
0
xxxxxxxx  
00000000  
xxxxxxxx  
xxxxxxxx  
RW  
RW  
RW  
RW  
I2CTL  
I²C-Compatible Bus  
Control  
0
0
0
STOPIE  
D1  
400KHZ  
D0  
XAUTODAT1  
XAUTODAT2  
UDMA CRC  
Autoptr1 MOVX access,  
when APTREN=1  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
Autoptr2 MOVX access,  
when APTREN=1  
D7  
D1  
D0  
[6]  
E67D  
E67E  
E67F  
1
1
1
UDMACRCH  
UDMA CRC MSB  
UDMA CRC LSB  
UDMA CRC Qualifier  
CRC15  
CRC7  
CRC14  
CRC6  
0
CRC13  
CRC5  
0
CRC12  
CRC4  
0
CRC11  
CRC3  
CRC10  
CRC2  
CRC9  
CRC1  
CRC8  
CRC0  
01001010  
10111010  
RW  
RW  
[6]  
UDMACRCL  
UDMACRC-  
QUALIFIER  
QENABLE  
QSTATE  
QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb  
USB CONTROL  
USBCS  
E680  
E681  
E682  
E683  
E684  
E685  
E686  
E687  
E688  
1
1
1
1
1
1
1
1
2
USB Control & Status  
Put chip into suspend  
Wakeup Control & Status  
Toggle Control  
HSM  
x
0
x
0
0
DISCON NOSYNSOF  
RENUM  
x
SIGRSUME x0000000 rrrrbbbb  
SUSPEND  
WAKEUPCS  
TOGCTL  
x
x
WUPOL  
IO  
x
0
x
x
xxxxxxxx  
W
WU2  
Q
WU  
S
WU2POL  
DPEN  
EP2  
FC10  
FC2  
MF2  
FA2  
WU2EN  
EP1  
WUEN  
EP0  
FC8  
FC0  
MF0  
FA0  
xx000101 bbbbrbbb  
xxxxxxxx rbbbbbbb  
R
0
EP3  
0
USBFRAMEH  
USBFRAMEL  
MICROFRAME  
FNADDR  
USB Frame count H  
USB Frame count L  
Microframe count, 0-7  
USB Function address  
0
0
0
FC9  
00000xxx  
xxxxxxxx  
00000xxx  
0xxxxxxx  
R
R
R
R
FC7  
0
FC6  
0
FC5  
0
FC4  
0
FC3  
0
FC1  
MF1  
FA1  
0
FA6  
FA5  
FA4  
FA3  
reserved  
ENDPOINTS  
[6]  
E68A  
E68B  
E68C  
E68D  
E68E  
E68F  
E690  
E691  
E692  
E694  
E695  
E696  
E698  
E699  
E69A  
E69C  
E69D  
E69E  
E6A0  
1
1
1
1
1
1
1
1
2
1
1
2
1
1
2
1
1
2
1
EP0BCH  
Endpoint 0 Byte Count H  
Endpoint 0 Byte Count L  
(BC15)  
(BC7)  
(BC14)  
BC6  
(BC13)  
BC5  
(BC12)  
BC4  
(BC11)  
BC3  
(BC10)  
BC2  
(BC9)  
BC1  
(BC8)  
BC0  
xxxxxxxx  
xxxxxxxx  
RW  
RW  
[6]  
EP0BCL  
reserved  
EP1OUTBC  
reserved  
Endpoint 1 OUT Byte Count  
0
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
0xxxxxxx  
RW  
EP1INBC  
Endpoint 1 IN Byte Count  
Endpoint 2 Byte Count H  
Endpoint 2 Byte Count L  
0
0
BC6  
0
BC5  
0
BC4  
0
BC3  
0
BC2  
BC10  
BC2  
BC1  
BC9  
BC1  
BC0  
BC8  
BC0  
0xxxxxxx  
00000xxx  
xxxxxxxx  
RW  
RW  
RW  
[6]  
EP2BCH  
[6]  
EP2BCL  
BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
reserved  
[6]  
EP4BCH  
Endpoint 4 Byte Count H  
Endpoint 4 Byte Count L  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
000000xx  
xxxxxxxx  
RW  
RW  
[6]  
EP4BCL  
BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
reserved  
[6]  
EP6BCH  
Endpoint 6 Byte Count H  
Endpoint 6 Byte Count L  
0
0
0
0
0
BC10  
BC2  
BC9  
BC1  
BC8  
BC0  
00000xxx  
xxxxxxxx  
RW  
RW  
[6]  
EP6BCL  
BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
reserved  
[6]  
EP8BCH  
Endpoint 8 Byte Count H  
Endpoint 8 Byte Count L  
0
0
0
0
0
0
BC9  
BC1  
BC8  
BC0  
000000xx  
xxxxxxxx  
RW  
RW  
[6]  
EP8BCL  
BC7/SKIP  
BC6  
BC5  
BC4  
BC3  
BC2  
reserved  
EP0CS  
Endpoint 0 Control and Sta-  
tus  
HSNAK  
0
0
0
0
0
BUSY  
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
STALL  
10000000 bbbbbbrb  
00000000 bbbbbbrb  
00000000 bbbbbbrb  
00101000 rrrrrrrb  
00101000 rrrrrrrb  
00000100 rrrrrrrb  
00000100 rrrrrrrb  
E6A1  
E6A2  
E6A3  
E6A4  
E6A5  
E6A6  
1
1
1
1
1
1
EP1OUTCS  
EP1INCS  
EP2CS  
Endpoint 1 OUT Control and  
Status  
0
0
0
0
0
0
0
0
0
0
0
BUSY  
Endpoint 1 IN Control and  
Status  
0
NPAK2  
0
0
0
0
0
BUSY  
Endpoint 2 Control and Sta-  
tus  
NPAK1  
NPAK1  
NPAK1  
NPAK1  
NPAK0  
NPAK0  
NPAK0  
NPAK0  
FULL  
FULL  
FULL  
FULL  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
0
0
0
0
EP4CS  
Endpoint 4 Control and Sta-  
tus  
EP6CS  
Endpoint 6 Control and Sta-  
tus  
NPAK2  
0
EP8CS  
Endpoint 8 Control and Sta-  
tus  
E6A7  
E6A8  
E6A9  
E6AA  
E6AB  
1
1
1
1
1
EP2FIFOFLGS  
EP4FIFOFLGS  
EP6FIFOFLGS  
EP8FIFOFLGS  
EP2FIFOBCH  
Endpoint 2 slave FIFO Flags  
Endpoint 4 slave FIFO Flags  
Endpoint 6 slave FIFO Flags  
Endpoint 8 slave FIFO Flags  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PF  
PF  
EF  
EF  
FF  
FF  
00000010  
00000010  
00000110  
00000110  
00000000  
R
R
R
R
R
0
0
0
0
PF  
EF  
FF  
0
0
PF  
EF  
FF  
Endpoint 2 slave FIFO total  
byte count H  
BC12  
BC11  
BC10  
BC9  
BC8  
Document #: 38-08012 Rev. *B  
Page 32 of 50  
CY7C68013  
Table 5-1. FX2 Register Summary (continued)  
Hex Size Name  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
E6A  
C
1
1
1
1
1
1
1
1
1
1
EP2FIFOBCL  
EP4FIFOBCH  
EP4FIFOBCL  
EP6FIFOBCH  
EP6FIFOBCL  
EP8FIFOBCH  
EP8FIFOBCL  
SUDPTRH  
Endpoint 2 slave FIFO total  
byte count L  
BC7  
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
xxxxxxxx  
R
E6A  
D
Endpoint 4 slave FIFO total  
byte count H  
0
BC7  
0
0
BC6  
0
0
BC5  
0
0
BC4  
0
0
BC3  
BC11  
BC3  
0
BC10  
BC2  
BC10  
BC2  
BC10  
BC2  
A10  
A2  
BC9  
BC1  
BC9  
BC1  
BC9  
BC1  
A9  
BC8  
BC0  
BC8  
BC0  
BC8  
BC0  
A8  
R
E6AE  
E6AF  
E6B0  
E6B1  
E6B2  
E6B3  
E6B4  
E6B5  
Endpoint 4 slave FIFO total  
byte count L  
R
Endpoint 6 slave FIFO total  
byte count H  
R
Endpoint 6 slave FIFO total  
byte count L  
BC7  
0
BC6  
0
BC5  
0
BC4  
0
R
Endpoint 8 slave FIFO total  
byte count H  
R
Endpoint 8 slave FIFO total  
byte count L  
BC7  
A15  
A7  
0
BC6  
A14  
A6  
0
BC5  
A13  
A5  
0
BC4  
A12  
A4  
0
BC3  
A11  
A3  
R
Setup Data Pointer high ad-  
dress byte  
RW  
SUDPTRL  
Setup Data Pointer low ad-  
dress byte  
A1  
0
xxxxxxx0 bbbbbbbr  
SUDPTRCTL  
Setup Data Pointer Auto  
Mode  
0
0
0
SDPAUTO 00000001  
RW  
2
8
reserved  
E6B8  
SETUPDAT  
8 bytes of SETUP data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
xxxxxxxx  
R
SETUPDAT[0] =  
bmRequestType  
SETUPDAT[1] = bmRequest  
SETUPDAT[2:3] = wValue  
SETUPDAT[4:5] = wIndex  
SETUPDAT[6:7] = wLength  
GPIF  
E6C0  
E6C1  
1
1
GPIFWFSELECT Waveform Selector  
SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 FIFOWR0  
FIFORD1  
0
FIFORD0 11100100  
IDLEDRV 10000000  
RW  
RW  
GPIFIDLECS  
GPIF Done, GPIF IDLEdrive  
mode  
DONE  
0
0
0
0
0
E6C2  
E6C3  
E6C4  
E6C5  
1
1
1
1
GPIFIDLECTL  
GPIFCTLCFG  
Inactive Bus, CTL states  
CTL Drive Type  
GPIF Address H  
GPIF Address L  
0
0
CTL5  
CTL5  
0
CTL4  
CTL4  
0
CTL3  
CTL3  
0
CTL2  
CTL2  
0
CTL1  
CTL1  
0
CTL0  
CTL0  
11111111  
00000000  
00000000  
00000000  
RW  
RW  
RW  
RW  
TRICTL  
0
0
0
[6]  
GPIFADRH  
GPIFA8  
GPIFA0  
[6]  
GPIFADRL  
GPIFA7  
GPIFA6  
GPIFA5  
GPIFA4  
GPIFA3  
GPIFA2  
GPIFA1  
FLOWSTATE  
E6C6  
1
FLOWSTATE  
Flowstate Enable and Selec-  
tor  
FSE  
0
0
0
0
FS2  
FS1  
FS0  
00000000 brrrrbbb  
E6C7  
E6C8  
1
1
FLOWLOGIC  
Flowstate Logic  
LFUNC1  
CTL0E3  
LFUNC0  
CTL0E2  
TERMA2  
TERMA1  
TERMA0  
CTL3  
TERMB2  
CTL2  
TERMB1  
CTL1  
TERMB0 00000000  
RW  
RW  
FLOWEQ0CTL  
CTL-Pin States in Flowstate  
(when Logic = 0)  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
CTL0  
00000000  
E6C9  
1
1
1
1
1
1
1
1
1
2
FLOWEQ1CTL  
CTL-Pin States in Flowstate  
(when Logic = 1)  
CTL0E3  
CTL0E2  
CTL0E1/  
CTL5  
CTL0E0/  
CTL4  
CTL3  
CTL2  
HOCTL2  
MSTB2  
0
CTL1  
HOCTL1  
MSTB1  
FALLING  
D1  
CTL0  
00000000  
RW  
RW  
RW  
E6C  
A
FLOWHOLDOFF Holdoff Configuration  
HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD0 HOSTATE  
HOCTL0 00010010  
E6C  
B
FLOWSTB  
Flowstate Strobe Configura-  
tion  
SLAVE  
0
RDYASYNC CTLTOGL  
SUSTAIN  
0
0
MSTB0  
RISING  
D0  
00100000  
E6C  
C
FLOWSTBEDGE Flowstate Rising/Falling  
Edge Configuration  
0
0
0
00000001 rrrrrrbb  
E6C  
D
FLOWSTBPERI- Master-Strobe Half-Period  
D7  
D6  
D5  
D4  
D3  
D2  
00000010  
00000000  
00000000  
00000000  
00000001  
00000000  
RW  
RW  
RW  
RW  
RW  
RW  
OD  
[6]  
E6C  
E
GPIFTCB3  
GPIFTCB2  
GPIFTCB1  
GPIFTCB0  
GPIF Transaction Count  
Byte 3  
TC31  
TC23  
TC15  
TC7  
TC30  
TC22  
TC14  
TC6  
TC29  
TC21  
TC13  
TC5  
TC28  
TC20  
TC12  
TC4  
TC27  
TC19  
TC11  
TC3  
TC26  
TC18  
TC10  
TC2  
TC25  
TC24  
TC16  
TC8  
[6]  
[6]  
[6]  
E6CF  
E6D0  
E6D1  
GPIF Transaction Count  
Byte 2  
TC17  
GPIF Transaction Count  
Byte 1  
TC9  
GPIF Transaction Count  
Byte 0  
TC1  
TC0  
reserved  
reserved  
reserved  
E6D2  
E6D3  
E6D4  
1
1
EP2GPIFFLGSEL Endpoint 2 GPIF Flag select  
[6]  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000  
RW  
RW  
W
EP2GPIFPFSTOP Endpoint 2 GPIF stop trans-  
FIFO2FLAG 00000000  
action on prog. flag  
[6]  
1
3
EP2GPIFTRIG  
reserved  
Endpoint 2 GPIF Trigger  
x
x
xxxxxxxx  
reserved  
reserved  
E6D  
A
1
1
1
3
EP4GPIFFLGSEL Endpoint 4 GPIF Flag select  
[6]  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000  
RW  
RW  
W
E6D  
B
EP4GPIFPFSTOP Endpoint 4 GPIF stop trans-  
FIFO4FLAG 00000000  
xxxxxxxx  
action on GPIF Flag  
[6]  
E6D  
C
EP4GPIFTRIG  
reserved  
Endpoint 4 GPIF Trigger  
x
x
Document #: 38-08012 Rev. *B  
Page 33 of 50  
CY7C68013  
Table 5-1. FX2 Register Summary (continued)  
Hex Size Name  
reserved  
reserved  
Description  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Default Access  
E6E2  
E6E3  
E6E4  
1
EP6GPIFFLGSEL Endpoint 6 GPIF Flag select  
[6]  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000  
RW  
RW  
W
1
EP6GPIFPFSTOP Endpoint 6 GPIF stop trans-  
FIFO6FLAG 00000000  
action on prog. flag  
[6]  
1
3
EP6GPIFTRIG  
reserved  
Endpoint 6 GPIF Trigger  
x
x
xxxxxxxx  
reserved  
reserved  
E6EA  
E6EB  
1
1
1
EP8GPIFFLGSEL Endpoint 8 GPIF Flag select  
[6]  
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
0
0
x
FS1  
0
FS0  
00000000  
RW  
RW  
W
EP8GPIFPFSTOP Endpoint 8 GPIF stop trans-  
FIFO8FLAG 00000000  
action on prog. flag  
[6]  
E6E  
C
EP8GPIFTRIG  
reserved  
Endpoint 8 GPIF Trigger  
x
x
xxxxxxxx  
3
1
E6F0  
E6F1  
E6F2  
E6F3  
XGPIFSGLDATH GPIF Data H (16-bit mode  
only)  
D15  
D7  
D14  
D6  
D13  
D5  
D12  
D4  
D4  
0
D11  
D3  
D3  
0
D10  
D2  
D2  
0
D9  
D1  
D1  
0
D8  
D0  
D0  
0
xxxxxxxx  
xxxxxxxx  
xxxxxxxx  
RW  
RW  
R
1
1
1
XGPIFSGLDATLX Read/Write GPIF Data L &  
trigger transaction  
XGPIFSGLDATL- Read GPIF Data L, no trans-  
D7  
D6  
D5  
NOX  
action trigger  
GPIFREADYCFG Internal RDY, Sync/Async,  
RDY pin states  
INTRDY  
SAS  
TCXRDY5  
00000000 bbbrrrrr  
E6F4  
E6F5  
E6F6  
1
1
2
GPIFREADYSTAT GPIF Ready Status  
0
x
0
x
RDY5  
x
RDY4  
x
RDY3  
x
RDY2  
x
RDY1  
x
RDY0  
x
00xxxxxx  
xxxxxxxx  
R
GPIFABORT  
reserved  
Abort GPIF Waveforms  
W
ENDPOINT BUFFERS  
E740 64 EP0BUF  
E780 64 EP10UTBUF  
E7C0 64 EP1INBUF  
2048 reserved  
EP0-IN/-OUT buffer  
EP1-OUT buffer  
EP1-IN buffer  
D7  
D7  
D7  
D6  
D6  
D6  
D5  
D5  
D5  
D4  
D4  
D4  
D3  
D3  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
xxxxxxxx  
xxxxxxxx  
xxxxxxxx  
RW  
RW  
RW  
RW  
RW  
F000 1024 EP2FIFOBUF  
512/1024-byte EP 2 / slave  
FIFO buffer (IN or OUT)  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx  
xxxxxxxx  
F400 512 EP4FIFOBUF  
512 byte EP 4 / slave FIFO  
buffer (IN or OUT)  
RW  
F600 512 reserved  
F800 1024 EP6FIFOBUF  
512/1024-byte EP 6 / slave  
FIFO buffer (IN or OUT)  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx  
xxxxxxxx  
RW  
RW  
FC00 512 EP8FIFOBUF  
FE00 512 reserved  
512 byte EP 8 / slave FIFO  
buffer (IN or OUT)  
xxxx  
I²C Compatible Configuration Byte  
0
DISCON  
0
0
0
0
0
400KHZ  
xxxxxxxx  
[8]  
n/a  
Special Function Registers (SFRs)  
[7]  
80  
81  
82  
83  
84  
85  
86  
87  
88  
1
1
1
1
1
1
1
1
1
IOA  
SP  
Port A (bit addressable)  
Stack Pointer  
D7  
D7  
D6  
D6  
A6  
A14  
A6  
A14  
0
D5  
D5  
A5  
A13  
A5  
A13  
0
D4  
D4  
A4  
A12  
A4  
A12  
0
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx  
00000111  
00000000  
00000000  
00000000  
00000000  
00000000  
00110000  
00000000  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DPL0  
DPH0  
Data Pointer 0 L  
Data Pointer 0 H  
Data Pointer 1 L  
Data Pointer 1 H  
Data Pointer 0/1 select  
Power Control  
A7  
A3  
A2  
A1  
A0  
A15  
A7  
A11  
A3  
A10  
A2  
A9  
A8  
[7]  
DPL1  
DPH1  
A1  
A0  
[7]  
A15  
0
A11  
0
A10  
0
A9  
A8  
[7]  
DPS  
0
SEL  
IDLE  
IT0  
PCON  
TCON  
SMOD0  
TF1  
x
1
1
GF1  
IE1  
GF0  
IT1  
STOP  
IE0  
Timer/Counter Control (bit  
addressable)  
TR1  
TF0  
TR0  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
1
1
1
1
1
1
1
1
1
1
TMOD  
TL0  
Timer/Counter Mode Control  
Timer 0 reload L  
GATE  
D7  
CT  
D6  
D6  
D14  
D14  
x
M1  
D5  
M0  
D4  
GATE  
D3  
CT  
D2  
M1  
D1  
M0  
D0  
00000000  
00000000  
00000000  
00000000  
00000000  
00000001  
RW  
RW  
RW  
RW  
RW  
RW  
TL1  
Timer 1 reload L  
D7  
D5  
D4  
D3  
D2  
D1  
D0  
TH0  
Timer 0 reload H  
Timer 1 reload H  
Clock Control  
D15  
D15  
x
D13  
D13  
T2M  
D12  
D12  
T1M  
D11  
D11  
T0M  
D10  
D10  
MD2  
D9  
D8  
TH1  
D9  
D8  
[7]  
CKCON  
MD1  
MD0  
reserved  
[7]  
IOB  
Port B (bit addressable)  
External Interrupt Flag(s)  
D7  
IE5  
A15  
D6  
IE4  
A14  
D5  
I²CINT  
A13  
D4  
USBNT  
A12  
D3  
1
D2  
0
D1  
0
D0  
0
xxxxxxxx  
00001000  
00000000  
RW  
RW  
RW  
[7]  
EXIF  
[7]  
MPAGE  
Upper Addr Byte of MOVX  
using @R0 / @R1  
A11  
A10  
A9  
A8  
93  
98  
5
1
reserved  
SCON0  
Serial Port 0 Control (bit ad-  
dressable)  
SM0_0  
D7  
SM1_0  
D6  
SM2_0  
D5  
REN_0  
D4  
TB8_0  
D3  
RB8_0  
D2  
TI_0  
D1  
RI_0  
D0  
00000000  
00000000  
RW  
RW  
99  
1
SBUF0  
Serial Port 0 Data Buffer  
Notes:  
7. SFRs not part of the standard 8051 architecture.  
8. If no EEPROM is detected by the SIE then the default is 00000000.  
Document #: 38-08012 Rev. *B  
Page 34 of 50  
CY7C68013  
Table 5-1. FX2 Register Summary (continued)  
Hex Size Name  
Description  
b7  
A15  
A7  
b6  
A14  
A6  
b5  
A13  
A5  
b4  
A12  
A4  
b3  
A11  
A3  
b2  
A10  
A2  
b1  
A9  
A1  
b0  
A8  
A0  
Default Access  
[7]  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A8  
1
1
1
1
1
1
1
1
1
5
1
AUTOPTRH1  
Autopointer 1 Address H  
Autopointer 1 Address L  
00000000  
00000000  
RW  
RW  
[7]  
AUTOPTRL1  
reserved  
[7]  
AUTOPTRH2  
Autopointer 2 Address H  
Autopointer 2 Address L  
A15  
A7  
A14  
A6  
A13  
A5  
A12  
A4  
A11  
A3  
A10  
A2  
A9  
A1  
A8  
A0  
00000000  
00000000  
RW  
RW  
[7]  
AUTOPTRL2  
reserved  
[7]  
IOC  
Port C (bit addressable)  
Interrupt 2 clear  
D7  
x
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
D1  
x
D0  
x
xxxxxxxx  
xxxxxxxx  
xxxxxxxx  
RW  
W
[7]  
INT2CLR  
[7]  
INT4CLR  
Interrupt 4 clear  
x
x
x
x
x
x
x
x
W
reserved  
IE  
Interrupt Enable (bit addres-  
sable)  
EA  
ES1  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00000000  
RW  
A9  
AA  
AB  
1
1
1
reserved  
[7]  
EP2468STAT  
Endpoint 2,4,6,8 status flags  
EP8F  
0
EP8E  
EP6F  
EP6E  
EP4F  
0
EP4E  
EP2F  
EP2E  
01011010  
00100010  
R
R
[7]  
EP24FIFOFLGS Endpoint 2,4 slave FIFO sta-  
tus flags  
EP4PF  
EP4EF  
EP4FF  
EP2PF  
EP2EF  
EP2FF  
[7]  
AC  
1
EP68FIFOFLGS Endpoint 6,8 slave FIFO sta-  
0
EP8PF  
EP8EF  
EP8FF  
0
EP6PF  
EP6EF  
EP6FF  
01100110  
R
tus flags  
AD  
AF  
2
1
reserved  
AUTOPTRSET-  
Autopointer 1&2 Setup  
0
0
0
0
0
APTR2INC APTR1INC  
APTREN 00000110  
RW  
[7]  
UP  
[7]  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
1
1
1
1
1
1
1
1
1
IOD  
Port D (bit addressable)  
Port E (NOT bit addressable)  
Port A Output Enable  
Port B Output Enable  
Port C Output Enable  
Port D Output Enable  
Port E Output Enable  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
xxxxxxxx  
xxxxxxxx  
00000000  
00000000  
00000000  
00000000  
00000000  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
[7]  
IOE  
[7]  
OEA  
[7]  
OEB  
[7]  
OEC  
[7]  
OED  
[7]  
OEE  
reserved  
IP  
Interrupt Priority (bit addres-  
sable)  
1
PS1  
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
10000000  
RW  
B9  
BA  
BB  
1
1
1
reserved  
[7]  
EP01STAT  
Endpoint 0&1 Status  
0
0
0
0
0
0
0
0
0
EP1INBSY EP1OUTBSY EP0BSY 00000000  
R
[7] [6]  
GPIFTRIG  
Endpoint 2,4,6,8 GPIF slave  
FIFO Trigger  
DONE  
RW  
EP1  
EP0  
10000xxx brrrrbbb  
BC  
BD  
1
1
reserved  
[7]  
GPIFSGLDATH  
GPIF Data H (16-bit mode  
only)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
xxxxxxxx  
RW  
[7]  
BE  
BF  
1
1
GPIFSGLDATLX GPIF Data L w/ Trigger  
GPIFSGLDATL- GPIF Data L w/ No Trigger  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
xxxxxxxx  
xxxxxxxx  
RW  
R
[7]  
NOX  
[7]  
C0  
1
SCON1  
Serial Port 1 Control (bit ad-  
dressable)  
SM0_1  
D7  
SM1_1  
D6  
SM2_1  
D5  
REN_1  
D4  
TB8_1  
D3  
RB8_1  
D2  
TI_1  
D1  
RI_1  
D0  
00000000  
00000000  
RW  
RW  
[7]  
C1  
C2  
C8  
1
6
1
SBUF1  
reserved  
T2CON  
Serial Port 1 Data Buffer  
Timer/Counter 2 Control (bit  
addressable)  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
CT2  
CPRL2  
00000000  
RW  
C9  
CA  
1
1
reserved  
RCAP2L  
Capture for Timer 2, auto-re-  
load, up-counter  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
00000000  
00000000  
RW  
RW  
CB  
1
RCAP2H  
Capture for Timer 2, auto-re-  
load, up-counter  
CC  
CD  
CE  
D0  
1
1
2
1
TL2  
Timer 2 reload L  
Timer 2 reload H  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D9  
D0  
D8  
00000000  
00000000  
RW  
RW  
TH2  
D15  
D14  
D13  
D12  
D11  
D10  
reserved  
PSW  
Program Status Word (bit ad-  
dressable)  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00000000  
RW  
D1  
D8  
D9  
E0  
7
1
7
1
reserved  
[7]  
EICON  
External Interrupt Control  
SMOD1  
D7  
1
ERESI  
D5  
RESI  
D4  
INT6  
D3  
0
0
0
01000000  
00000000  
RW  
RW  
reserved  
ACC  
Accumulator (bit address-  
able)  
D6  
D2  
D1  
D0  
E1  
E8  
E9  
F0  
F1  
F8  
7
1
7
1
7
1
reserved  
[7]  
EIE  
External Interrupt Enable(s)  
B (bit addressable)  
1
D7  
1
1
D6  
1
1
D5  
1
EX6  
D4  
EX5  
D3  
EX4  
D2  
EI²C  
D1  
EUSB  
D0  
11100000  
00000000  
11100000  
RW  
RW  
RW  
reserved  
B
reserved  
[7]  
EIP  
External Interrupt Priority  
Control  
PX6  
PX5  
PX4  
PI²C  
PUSB  
F9  
7
reserved  
R = all bits read-only  
W = all bits write-only  
r = read-only bit  
w = write-only bit  
b = both read/write bit  
Document #: 38-08012 Rev. *B  
Page 35 of 50  
CY7C68013  
6.0  
Absolute Maximum Ratings  
Storage Temperature .................................................................................................................................... 65°C to +150°C  
Ambient Temperature with Power Supplied........................................................................................................ 0°C to +70°C  
Supply Voltage to Ground Potential..................................................................................................................0.5V to +4.0V  
DC Input Voltage to Any Input Pin ................................................................................................................................. 5.25V  
DC Voltage Applied to Outputs in High Z State....................................................................................... 0.5V to VCC + 0.5V  
Power Dissipation ...................................................................................................................................................... 936 mW  
Static Discharge Voltage............................................................................................................................................ > 2000V  
Max Output Current, per I/O port .................................................................................................................................. 10 mA  
Max Output Current, all five I/O ports (128- and 100-pin packages) ............................................................................ 50 mA  
7.0  
Operating Conditions  
TA (Ambient Temperature Under Bias) ............................................................................................................... 0°C to +70°C  
Supply Voltage..................................................................................................................................................+3.0V to +3.6V  
Ground Voltage.................................................................................................................................................................... 0V  
FOSC (Oscillator or Crystal Frequency)...................................................................................................... 24 MHz ± 100 ppm  
Parallel Resonant  
8.0  
DC Characteristics  
Table 8-1. DC Characteristics  
Parameter  
VCC  
VIH  
Description  
Conditions  
Min.  
3.0  
2
Typ.  
Max.  
3.6  
Unit  
V
Supply Voltage  
3.3  
Input HIGH Voltage  
Input LOW Voltage  
Input Leakage Current  
Output Voltage HIGH  
Output LOW Voltage  
Output Current HIGH  
Output Current LOW  
Input Pin Capacitance  
5.25  
0.8  
V
VIL  
0.5  
V
II  
0< VIN < VCC  
±10  
µA  
V
VOH  
VOL  
IOH  
IOUT = 4 mA  
2.4  
IOUT = 4 mA  
0.4  
4
V
mA  
mA  
pF  
pF  
µA  
mA  
mA  
IOL  
4
CIN  
Except D+/D–  
10  
D+/D–  
15  
ISUSP  
ICC  
Suspend Current  
Supply Current  
Includes 1.5k internal pull-up  
8051 running, connected to USB HS  
8051 running, connected to USB FS  
250  
200  
90  
400  
260  
150  
8.1  
USB Transceiver  
USB 2.0-certified in full- and high-speed modes.  
Document #: 38-08012 Rev. *B  
Page 36 of 50  
CY7C68013  
9.0  
9.1  
AC Electrical Characteristics  
USB Transceiver  
USB 2.0-certified in full- and high-speed modes.  
9.2  
Program Memory Read  
tCL  
[9]  
CLKOUT  
tAV  
tAV  
A[15..0]  
PSEN#  
D[7..0]  
tSTBH  
tSTBL  
[10]  
tACC1  
tDH  
data in  
tSOEL  
OE#  
CS#  
tSCSL  
Figure 9-1. Program Memory Read Timing Diagram  
Table 9-1. Program Memory Read Parameters  
Parameter Description  
tCL 1/CLKOUT Frequency  
Min.  
Typ.  
20.83  
41.66  
83.2  
Max.  
Unit  
Notes  
48 MHz  
24 MHz  
12 MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAV  
Delay from Clock to Valid Address  
Clock to PSEN Low  
Clock to PSEN High  
Clock to OE Low  
0
0
0
10.7  
8
tSTBL  
tSTBH  
tSOEL  
tSCSL  
tDSU  
tDH  
8
11.1  
13  
Clock to CS Low  
Data Set-up to Clock  
Data Hold Time  
9.6  
0
Notes:  
9. CLKOUT is shown with positive polarity.  
10. tACC1 is computed from the above parameters as follows:  
tACC1(24 MHz) = 3*tCL tAV tDSU = 106 ns  
tACC1(48 MHz) = 3*tCL tAV tDSU = 43 ns.  
Document #: 38-08012 Rev. *B  
Page 37 of 50  
CY7C68013  
9.3  
Data Memory Read  
tCL  
Stretch = 0  
[9]  
CLKOUT  
tAV  
tAV  
A[15..0]  
RD#  
tSTBH  
tSTBL  
tSCSL  
CS#  
OE#  
tSOEL  
tDSU  
[11]  
tACC1  
tDH  
D[7..0]  
data in  
Stretch = 1  
tCL  
[9]  
CLKOUT  
tAV  
A[15..0]  
RD#  
CS#  
tDSU  
[11]  
tACC1  
tDH  
D[7..0]  
data in  
Figure 9-2. Data Memory Read Timing Diagram  
Note:  
11.  
tACC2 and tACC3 are computed from the above parameters as follows:  
tACC2(24 MHz) = 3*tCL tAV tDSU = 106 ns  
tACC2(48 MHz) = 3*tCL tAV tDSU = 43 ns  
tACC3(24 MHz) = 5*tCL tAV tDSU = 190 ns  
tACC3(48 MHz) = 5*tCL tAV tDSU = 86 ns.  
Table 9-2. Data Memory Read Parameters  
Parameter  
tCL  
Description  
1/CLKOUT Frequency  
Min.  
Typ.  
20.83  
41.66  
83.2  
Max.  
Unit  
Notes  
48 MHz  
24 MHz  
12 MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAV  
Delay from Clock to Valid Address  
Clock to RD LOW  
10.7  
11  
tSTBL  
tSTBH  
tSCSL  
tSOEL  
tDSU  
tDH  
Clock to RD HIGH  
11  
Clock to CS LOW  
13  
Clock to OE LOW  
11.1  
Data Set-up to Clock  
Data Hold Time  
9.6  
0
Document #: 38-08012 Rev. *B  
Page 38 of 50  
CY7C68013  
9.4  
Data Memory Write  
tCL  
CLKOUT  
tAV  
tSTBL  
tSTBH  
tAV  
A[15..0]  
WR#  
CS#  
tSCSL  
tON1  
tOFF1  
data out  
D[7..0]  
Stretch = 1  
tCL  
CLKOUT  
A[15..0]  
tAV  
WR#  
CS#  
tON1  
tOFF1  
data out  
D[7..0]  
Figure 9-3. Data Memory Write Timing Diagram  
Table 9-3. Data Memory Write Parameters  
Parameter Description  
Min.  
Max.  
10.7  
11.2  
11.2  
13.0  
13.1  
13.1  
Unit  
ns  
Notes  
tAV  
Delay from Clock to Valid Address  
Clock to WR Pulse LOW  
Clock to WR Pulse HIGH  
Clock to CS Pulse LOW  
Clock to Data Turn-on  
0
0
0
tSTBL  
tSTBH  
tSCSL  
tON1  
ns  
ns  
ns  
0
0
ns  
tOFF1  
Clock to Data Hold Time  
ns  
Document #: 38-08012 Rev. *B  
Page 39 of 50  
CY7C68013  
9.5  
GPIF Synchronous Signals  
tIFCLK  
IFCLK  
tSGA  
GPIFADR[8:0]  
RDYX  
tSRY  
tRYH  
DATA(input)  
valid  
tSGD  
tDAH  
CTLX  
tXCTL  
DATA(output)  
N
N+1  
tXGD  
Figure 9-4. GPIF Synchronous Signals Timing Diagram[12]  
Table 9-4. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[13, 14]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
8.9  
0
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IFCLK Period  
tSRY  
tRYH  
tSGD  
tDAH  
tSGA  
tXGD  
tXCTL  
RDYX to Clock Set-up Time  
Clock to RDYX  
GPIF Data to Clock Set-up Time  
GPIF Data Hold Time  
9.2  
0
Clock to GPIF Address Propagation Delay  
Clock to GPIF Data Output Propagation Delay  
Clock to CTLX Output Propagation Delay  
7.5  
11  
6.7  
Table 9-5. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[14]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
2.9  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IFCLK Period  
200  
tSRY  
tRYH  
tSGD  
tDAH  
tSGA  
tXGD  
tXCTL  
RDYX to Clock Set-up Time  
Clock to RDYX  
3.7  
GPIF Data to Clock Set-up Time  
GPIF Data Hold Time  
3.2  
4.5  
Clock to GPIF Address Propagation Delay  
Clock to GPIF Data Output Propagation Delay  
Clock to CTLX Output Propagation Delay  
11.5  
15  
10.7  
Notes:  
12. Dashed lines denote signals with programmable polarity  
13. GPIF asynchronous RDYx signals have a minimum set-up time of 50 ns when using internal 48-MHz IFCLK.  
14. IFCLK must not exceed 48 MHz.  
Document #: 38-08012 Rev. *B  
Page 40 of 50  
CY7C68013  
9.6  
Slave FIFO Synchronous Read  
tIFCLK  
IFCLK  
SLRD  
tRDH  
tSRD  
tXFLG  
FLAGS  
DATA  
N
N+1  
tXFD  
tOEon  
tOEoff  
SLOE  
Figure 9-5. Slave FIFO Synchronous Read Timing Diagram[12]  
Table 9-6. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[14]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
18.7  
0
Max.  
Unit  
ns  
IFCLK Period  
tSRD  
tRDH  
tOEon  
tOEoff  
tXFLG  
tXFD  
SLRD to Clock Set-up Time  
ns  
Clock to SLRD Hold Time  
ns  
SLOE Turn-on to FIFO Data Valid  
SLOE Turn-off to FIFO Data Hold  
Clock to FLAGS Output Propagation Delay  
Clock to FIFO Data Output Propagation Delay  
10.5  
10.5  
9.5  
ns  
ns  
ns  
11  
ns  
Table 9-7. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[14]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
12.7  
3.7  
Max.  
Unit  
ns  
IFCLK Period  
200  
tSRD  
tRDH  
tOEon  
tOEoff  
tXFLG  
tXFD  
SLRD to Clock Set-up Time  
ns  
Clock to SLRD Hold Time  
ns  
SLOE Turn-on to FIFO Data Valid  
SLOE Turn-off to FIFO Data Hold  
Clock to FLAGS Output Propagation Delay  
Clock to FIFO Data Output Propagation Delay  
10.5  
10.5  
13.5  
15  
ns  
ns  
ns  
ns  
Document #: 38-08012 Rev. *B  
Page 41 of 50  
CY7C68013  
9.7  
Slave FIFO Asynchronous Read  
tRDpwh  
SLRD  
tRDpwl  
tXFLG  
tXFD  
FLAGS  
DATA  
SLOE  
N+1  
N
tOEon  
tOEoff  
Figure 9-6. Slave FIFO Asynchronous Read Timing Diagram[12]  
Table 9-8. Slave FIFO Asynchronous Read Parameters[15]  
Parameter Description  
tRDpwl SLRD Pulse Width LOW  
Min.  
50  
Max.  
Unit  
ns  
tRDpwh  
tXFLG  
tXFD  
SLRD Pulse Width HIGH  
50  
ns  
SLRD to FLAGS Output Propagation Delay  
SLRD to FIFO Data Output Propagation Delay  
SLOE Turn-on to FIFO Data Valid  
SLOE Turn-off to FIFO Data Hold  
70  
15  
ns  
ns  
tOEon  
10.5  
10.5  
ns  
tOEoff  
ns  
Note:  
15. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.  
9.8  
Slave FIFO Synchronous Write  
tIFCLK  
IFCLK  
tWRH  
SLWR  
tSWR  
DATA  
Z
N
Z
tSFD tFDH  
FLAGS  
tXFLG  
Figure 9-7. Slave FIFO Synchronous Write Timing Diagram[12]  
Table 9-9. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK [14]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
18.1  
0
Max.  
Unit  
ns  
IFCLK Period  
tSWR  
tWRH  
tSFD  
SLWR to Clock Set-up Time  
ns  
Clock to SLWR Hold Time  
ns  
FIFO Data to Clock Set-up Time  
Clock to FIFO Data Hold Time  
Clock to FLAGS Output Propagation Time  
9.2  
ns  
tFDH  
tXFLG  
0
ns  
9.5  
ns  
Document #: 38-08012 Rev. *B  
Page 42 of 50  
CY7C68013  
Table 9-10. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK [14]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
12.1  
3.6  
Max.  
Unit  
ns  
IFCLK Period  
200  
tSWR  
tWRH  
tSFD  
SLWR to Clock Set-up Time  
ns  
Clock to SLWR Hold Time  
ns  
FIFO Data to Clock Set-up Time  
Clock to FIFO Data Hold Time  
Clock to FLAGS Output Propagation Time  
3.2  
ns  
tFDH  
tXFLG  
4.5  
ns  
13.5  
ns  
9.9  
Slave FIFO Asynchronous Write  
tWRpwh  
SLWR/SLCS#  
tWRpwl  
tFDH  
tSFD  
DATA  
tXFD  
FLAGS  
Figure 9-8. Slave FIFO Asynchronous Write Timing Diagram[12]  
Table 9-11. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [15]  
Parameter  
tWRpwl  
tWRpwh  
tSFD  
Description  
Min.  
50  
Max.  
Unit  
ns  
SLWR Pulse LOW  
SLWR Pulse HIGH  
70  
ns  
SLWR to FIFO DATA Set-up Time  
FIFO DATA to SLWR Hold Time  
10  
ns  
tFDH  
10  
ns  
tXFD  
SLWR to FLAGS Output Propagation Delay  
70  
ns  
9.10  
Slave FIFO Synchronous Packet End Strobe  
IFCLK  
tPEH  
PKTEND  
tSPE  
FLAGS  
tXFLG  
Figure 9-9. Slave FIFO Synchronous Packet End Strobe Timing Diagram[12]  
Table 9-12. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK [14]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
14.6  
0
Max.  
Unit  
ns  
IFCLK Period  
tSPE  
tPEH  
tXFLG  
PKTEND to Clock Set-up Time  
ns  
Clock to PKTEND Hold Time  
ns  
Clock to FLAGS Output Propagation Delay  
9.5  
ns  
Document #: 38-08012 Rev. *B  
Page 43 of 50  
CY7C68013  
Table 9-13. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK [14]  
Parameter  
tIFCLK  
Description  
Min.  
20.83  
8.6  
Max.  
Unit  
ns  
IFCLK Period  
200  
tSPE  
tPEH  
tXFLG  
PKTEND to Clock Set-up Time  
ns  
Clock to PKTEND Hold Time  
2.5  
ns  
Clock to FLAGS Output Propagation Delay  
13.5  
ns  
9.11  
Slave FIFO Asynchronous Packet End Strobe  
tPEpwh  
PKTEND  
tPEpwl  
FLAGS  
tXFLG  
Figure 9-10. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[12]  
Table 9-14. Slave FIFO Asynchronous Packet End Strobe Parameters[15]  
Parameter  
tPEpwl  
tPWpwh  
tXFLG  
Description  
PKTEND Pulse Width LOW  
Min.  
50  
Max.  
Unit  
ns  
PKTEND Pulse Width HIGH  
50  
ns  
PKTEND to FLAGS Output Propagation Delay  
70  
ns  
9.12  
Slave FIFO Output Enable  
SLOE  
tOEoff  
tOEon  
DATA  
Figure 9-11. Slave FIFO Output Enable Timing Diagram[12]  
Table 9-15. Slave FIFO Output Enable Parameters  
Parameter  
tOEon  
Description  
SLOE Assert to FIFO DATA Output  
SLOE Deassert to FIFO DATA Hold  
Min.  
Max.  
10.5  
10.5  
Unit  
ns  
tOEoff  
ns  
9.13  
Slave FIFO Address to Flags/Data  
FIFOADR [1.0]  
tXFLG  
FLAGS  
tXFD  
DATA  
N
N+1  
Figure 9-12. Slave FIFO Address to Flags/Data Timing Diagram[12]  
Document #: 38-08012 Rev. *B  
Page 44 of 50  
CY7C68013  
Table 9-16. Slave FIFO Address to Flags/Data Parameters  
Parameter  
tXFLG  
Description  
Min.  
Max.  
10.7  
14.3  
Unit  
ns  
FIFOADR[1:0] to FLAGS Output Propagation Delay  
FIFOADR[1:0] to FIFODATA Output Propagation Delay  
tXFD  
ns  
9.14  
Slave FIFO Synchronous Address  
IFCLK  
SLCS/FIFOADR [1:0]  
tSFA  
tFAH  
Figure 9-13. Slave FIFO Synchronous Address Timing Diagram  
Table 9-17. Slave FIFO Synchronous Address Parameters [14]  
Parameter Description  
tIFCLK Interface Clock Period  
tSFA  
tFAH  
Min.  
20.83  
25  
Max.  
Unit  
ns  
200  
FIFOADR[1:0] to Clock Set-up Time  
Clock to FIFOADR[1:0] Hold Time  
ns  
10  
ns  
9.15  
Slave FIFO Asynchronous Address  
SLCS/FIFOADR [1:0]  
tFAH  
tSFA  
RD/WR/PKTEND  
Figure 9-14. Slave FIFO Asynchronous Address Timing Diagram[12]  
Table 9-18. Slave FIFO Asynchronous Address Parameters[15]  
Parameter  
tSFA  
tFAH  
Description  
Min.  
10  
Max.  
Unit  
ns  
FIFOADR[1:0] to RD/WR/PKTEND Set-up Time  
RD/WR/PKTEND to FIFOADR[1:0] Hold Time  
10  
ns  
10.0  
Ordering Information  
Table 10-1. Ordering Information  
8051  
Address  
/Data Busses  
Ordering Code  
Package Type  
RAM Size  
# Prog I/Os  
CY7C68013-128AC  
CY7C68013-100AC  
CY7C68013-56PVC  
CY7C68013-56LFC  
CY3681  
128 TQFP  
8K  
8K  
8K  
8K  
40  
16/8 bit  
100 TQFP  
56 SSOP  
56 QFN  
40  
24  
24  
-
-
-
EZ-USB FX2 Xcelerator Development Kit  
Document #: 38-08012 Rev. *B  
Page 45 of 50  
CY7C68013  
11.0  
Package Diagrams  
The FX2 is available in four packages:  
56-pin SSOP  
56-pin QFN  
100-pin TQFP  
128-pin TQFP.  
51-85062-*C  
Figure 11-1. 56-lead Shrunk Small Outline Package O56  
Document #: 38-08012 Rev. *B  
Page 46 of 50  
CY7C68013  
51-85144-*A  
Figure 11-2. 56-lead Quad Flatpack No Lead Package (8 X 8 mm) LF56  
Document #: 38-08012 Rev. *B  
Page 47 of 50  
CY7C68013  
51-85050-*A  
Figure 11-3. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
Document #: 38-08012 Rev. *B  
Page 48 of 50  
CY7C68013  
51-85101-*B  
Figure 11-4. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128  
EZ-USB is a registered trademark, and FX2 and ReNumeration are trademarks of Cypress Semiconductor Corporation. Purchase  
of I2C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined  
by Philips. All product and company names mentioned in this document may be the trademarks of their respective holders.  
Document #: 38-08012 Rev. *B  
Page 49 of 50  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C68013  
Document Title: CY7C68013 EZ USB® FX2USB Microcontroller, High-Speed USB Peripheral Controller  
Document Number: 38-08012  
Issue  
Orig. of  
REV.  
**  
ECN NO.  
111753  
Date  
Change Description of Change  
11/15/01  
02/20/02  
DSG  
KKU  
Change from Spec number: 38-00929 to 38-08012  
*A  
111802  
Update functional changes between revision D part and revision E part  
Changed timing data from simulation data to revision E characterization data  
*B  
115480  
06/26/02  
KKU  
Added new 56 pin Quad Flatpack No Lead package and pinout  
Revised pin description table to reflect new package  
Corrected Figure 9-8 by moving tsfd parameter location  
Corrected labels on Dplus and Dminus in Table 4-1  
Removed Preliminary from spec title  
Document #: 38-08012 Rev. *B  
Page 50 of 50  

相关型号:

CY7C68014A

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-100AXC

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-100AXC

USB 2.0 Peripheral controller with 16K RAM, 40 GPIOs, 100-pin TQFP for battery powered applications
INFINEON

CY7C68014A-128AXC

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-128AXC

USB 2.0 Peripheral controller with 16K RAM, 40 GPIOs, 8051 address/data bus, 128-pin TQFP for battery powered applications
INFINEON

CY7C68014A-56BAXC

EZ-USB FX2LP⑩ USB Microcontroller
CYPRESS

CY7C68014A-56LFXC

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-56LTXC

EZ-USB FX2LP USB Microcontroller High Speed USB Peripheral Controller
CYPRESS

CY7C68014A-56LTXC

USB 2.0 Peripheral controller with 16K RAM, 24 GPIOs, 56-pin QFN for battery powered applications
INFINEON

CY7C68014A-56PVXC

EZ-USB FX2LP USB Microcontroller
CYPRESS

CY7C68014A-56PVXC

USB 2.0 Peripheral controller with 16K RAM, 24 GPIOs, 56-pin SSOP for battery powered applications
INFINEON

CY7C68014A-56PVXCT

Microcontroller, 8-Bit, EEPROM, 48MHz, CMOS, PDSO56, SSOP-56
CYPRESS