CY7C1354CV25-166BZCT [CYPRESS]

ZBT SRAM, 256KX36, 3.5ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, MO-216, FBGA-165;
CY7C1354CV25-166BZCT
型号: CY7C1354CV25-166BZCT
厂家: CYPRESS    CYPRESS
描述:

ZBT SRAM, 256KX36, 3.5ns, CMOS, PBGA165, 13 X 15 MM, 1.40 MM HEIGHT, MO-216, FBGA-165

时钟 静态存储器 内存集成电路
文件: 总35页 (文件大小:603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1354CV25  
CY7C1356CV25  
9-Mbit (256K × 36/512K × 18)  
Pipelined SRAM with NoBL™ Architecture  
9-Mbit (256K  
× 36/512K × 18) Pipelined SRAM with NoBL™ Architecture  
Features  
Functional Description  
Pin-compatible with and functionally equivalent to ZBT™  
Supports 250 MHz bus operations with zero wait states  
Available speed grades are 250, 200, and 166 MHz  
The  
CY7C1354CV25/CY7C1356CV25[1]  
are  
2.5 V,  
256K × 36/512K × 18 synchronous pipelined burst SRAMs with  
No Bus Latency™ (NoBL logic, respectively. They are  
designed to support unlimited true back-to-back read/write  
operations  
with  
no  
wait  
states.  
The  
Internally self-timed output buffer control to eliminate the need  
to use asynchronous OE  
CY7C1354CV25/CY7C1356CV25 are equipped with the  
advanced (NoBL) logic required to enable consecutive  
read/write operations with data being transferred on every clock  
cycle. This feature dramatically improves the throughput of data  
in systems that require frequent write/read transitions. The  
CY7C1354CV25/CY7C1356CV25 are pin-compatible with and  
functionally equivalent to ZBT devices.  
Fully registered (inputs and outputs) for pipelined operation  
Byte write capability  
Single 2.5 V power supply (VDD  
)
Fast clock-to-output times  
2.8 ns (for 250-MHz device)  
All synchronous inputs pass through input registers controlled by  
the rising edge of the clock. All data outputs pass through output  
registers controlled by the rising edge of the clock. The clock  
input is qualified by the clock enable (CEN) signal, which when  
deasserted suspends operation and extends the previous clock  
cycle.  
Clock enable (CEN) pin to suspend operation  
Synchronous self-timed writes  
Available in Pb-free 100-pin TQFP package, Pb-free and  
non Pb-free 119-ball BGA package and 165-ball FBGA  
package  
Write operations are controlled by the byte write selects  
(BWa–BWd for CY7C1354CV25 and BWa–BWb for  
CY7C1356CV25) and a write enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
IEEE 1149.1 JTAG-compatible boundary scan  
Burst capability – linear or interleaved burst order  
“ZZ” sleep mode option and stop clock option  
Three synchronous chip enables (CE1, CE2, CE3) and an  
asynchronous output enable (OE) provide for easy bank  
selection and output tri-state control. In order to avoid bus  
contention, the output drivers are synchronously tri-stated during  
the data portion of a write sequence.  
For a complete list of related documentation, click here.  
Selection Guide  
Description  
Maximum access time  
250 MHz  
2.8  
200 MHz  
3.2  
166 MHz Unit  
3.5  
180  
40  
ns  
Maximum operating current  
250  
220  
mA  
mA  
Maximum CMOS standby current  
40  
40  
Note  
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Cypress Semiconductor Corporation  
Document Number: 38-05537 Rev. *R  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 9, 2018  
 
 
 
CY7C1354CV25  
CY7C1356CV25  
Logic Block Diagram – CY7C1354CV25  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
WRITE  
DRIVERS  
BW  
BW  
a
DQP  
DQP  
DQP  
DQP  
a
b
c
d
A
M
P
b
BW  
BW  
c
S
T
E
R
S
F
d
E
R
S
S
WE  
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Document Number: 38-05537 Rev. *R  
Page 2 of 35  
CY7C1354CV25  
CY7C1356CV25  
Logic Block Diagram – CY7C1356CV25  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
ADV/LD  
C
CLK  
CEN  
C
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
DQs  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
a
F
b
S
T
E
R
S
b
E
R
S
S
N
G
WE  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Document Number: 38-05537 Rev. *R  
Page 3 of 35  
CY7C1354CV25  
CY7C1356CV25  
Contents  
Pin Configurations ...........................................................5  
Pin Definitions ..................................................................8  
Functional Overview ........................................................9  
Single Read Accesses ................................................9  
Burst Read Accesses ..................................................9  
Single Write Accesses .................................................9  
Burst Write Accesses ................................................10  
Sleep Mode ...............................................................10  
Interleaved Burst Address Table ...............................10  
Linear Burst Address Table .......................................10  
ZZ Mode Electrical Characteristics ............................10  
Truth Table ......................................................................11  
Partial Truth Table for Read/Write ................................12  
Partial Truth Table for Read/Write ................................12  
IEEE 1149.1 Serial Boundary Scan (JTAG) ..................13  
Disabling the JTAG Feature ......................................13  
Test Access Port (TAP) .............................................13  
PERFORMING A TAP RESET ..................................13  
TAP REGISTERS ......................................................13  
TAP Instruction Set ...................................................14  
TAP Controller State Diagram .......................................15  
TAP Controller Block Diagram ......................................16  
TAP Timing ......................................................................16  
TAP AC Switching Characteristics ...............................17  
2.5 V TAP AC Test Conditions .......................................17  
2.5 V TAP AC Output Load Equivalent .........................17  
TAP DC Electrical Characteristics  
Identification Register Definitions ................................18  
Scan Register Sizes .......................................................18  
Instruction Codes ...........................................................18  
Boundary Scan Exit Order .............................................19  
Boundary Scan Exit Order .............................................20  
Maximum Ratings ...........................................................21  
Operating Range .............................................................21  
Electrical Characteristics ...............................................21  
Capacitance ....................................................................22  
Thermal Resistance ........................................................22  
AC Test Loads and Waveforms .....................................22  
Switching Characteristics ..............................................23  
Switching Waveforms ....................................................24  
Ordering Information ......................................................27  
Ordering Code Definitions .........................................27  
Package Diagrams ..........................................................28  
Acronyms ........................................................................31  
Document Conventions .................................................31  
Units of Measure .......................................................31  
Document History Page .................................................32  
Sales, Solutions, and Legal Information ......................35  
Worldwide Sales and Design Support .......................35  
Products ....................................................................35  
PSoC® Solutions ......................................................35  
Cypress Developer Community .................................35  
Technical Support .....................................................35  
and Operating Conditions .............................................18  
Document Number: 38-05537 Rev. *R  
Page 4 of 35  
CY7C1354CV25  
CY7C1356CV25  
Pin Configurations  
Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
V
V
V
NC  
DQPa  
DQa  
DQa  
DDQ  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
V
SS  
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
DQb  
DQb  
DQb  
DQb  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
SS  
V
V
DDQ  
DDQ  
V
V
DQa  
DQa  
V
NC  
DDQ  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
DQb  
DQb  
NC  
V
SS  
CY7C1354CV25  
(256K × 36)  
SS  
V
V
DD  
NC  
DD  
CY7C1356CV25  
(512K × 18)  
NC  
V
NC  
V
ZZ  
DD  
DD  
V
V
SS  
SS  
ZZ  
DQa  
DQa  
DQd  
DQb  
DQa  
DQa  
DQd  
DQb  
DDQ  
V
V
DDQ  
V
V
V
DQa  
DQa  
NC  
NC  
V
V
DDQ  
DDQ  
V
V
SS  
V
SS  
SS  
SS  
DQd  
DQd  
DQd  
DQd  
DQa  
DQa  
DQb  
DQb  
DQa DQPb  
DQa  
NC  
V
SS  
V
V
SS  
SS  
SS  
V
V
DDQ  
DDQ  
V
DDQ  
DDQ  
DQd  
DQd  
DQPd  
DQa  
DQa  
DQPa  
NC  
NC  
NC  
NC  
NC  
NC  
Document Number: 38-05537 Rev. *R  
Page 5 of 35  
CY7C1354CV25  
CY7C1356CV25  
Pin Configurations (continued)  
Figure 2. 119-ball BGA (14 × 22 × 2.4 mm) pinout  
CY7C1354CV25 (256K × 36)  
1
2
3
4
5
6
7
VDDQ  
A
A
NC/18M  
A
A
VDDQ  
A
NC/576M  
NC/1G  
DQc  
CE2  
A
A
A
ADV/LD  
VDD  
A
A
CE3  
A
NC  
NC  
B
C
D
DQPc  
VSS  
NC  
VSS  
DQPb  
DQb  
DQc  
VDDQ  
DQc  
DQc  
DQc  
DQc  
DQc  
VDD  
VSS  
VSS  
CE1  
VSS  
VSS  
DQb  
DQb  
DQb  
DQb  
VDD  
DQb  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
DQa  
VDDQ  
DQa  
DQa  
E
F
OE  
A
G
H
J
BWc  
VSS  
NC  
BWb  
VSS  
NC  
DQc  
WE  
VDD  
VDDQ  
DQd  
DQd  
VDDQ  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQPd  
VSS  
BWd  
VSS  
CLK  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
DQa  
DQa  
DQa  
DQa  
DQPa  
K
L
M
N
P
CEN  
A1  
VSS  
VSS  
MODE  
A
A0  
NC/144M  
NC  
A
VDD  
A
A
NC/288M  
ZZ  
R
T
NC  
A
NC/72M  
TMS  
NC/36M  
NC  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1356CV25 (512K × 18)  
1
2
3
4
5
6
7
VDDQ  
A
A
NC/18M  
A
A
VDDQ  
A
B
C
D
E
F
NC/576M  
NC/1G  
DQb  
CE2  
A
A
A
NC  
NC  
CE3  
A
ADV/LD  
VDD  
A
A
NC  
DQb  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPa  
NC  
NC  
NC  
DQa  
VDDQ  
CE1  
VDDQ  
DQa  
OE  
A
NC  
DQb  
VDDQ  
DQb  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQa  
VDD  
DQa  
NC  
VDDQ  
G
H
J
BWb  
VSS  
NC  
WE  
VDD  
NC  
DQb  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
CLK  
NC  
VSS  
NC  
DQa  
NC  
DQa  
NC  
A
DQa  
NC  
K
L
BWa  
VSS  
VDDQ  
DQb  
DQb  
NC  
VDDQ  
NC  
M
N
P
R
T
CEN  
A1  
VSS  
VSS  
NC  
A
NC  
DQPb  
A
A0  
DQa  
NC/144M  
NC/72M  
VDDQ  
VDD  
NC/36M  
TCK  
NC/288M  
ZZ  
A
A
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document Number: 38-05537 Rev. *R  
Page 6 of 35  
CY7C1354CV25  
CY7C1356CV25  
Pin Configurations (continued)  
Figure 3. 165-ball FBGA (13 × 15 × 1.4 mm) pinout  
CY7C1354CV25 (256K × 36)  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
NC/576M  
NC/1G  
DQPc  
ADV/LD  
A
B
C
D
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
A
CE2  
VDDQ  
VDDQ  
OE  
VSS  
VDD  
NC/18M  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
NC  
DQc  
VSS  
VSS  
NC  
DQb  
DQPb  
DQb  
DQc  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
NC  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
K
L
DQd  
DQd  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
DQa  
NC  
A
DQa  
DQPa  
M
N
P
DQPd  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TDO  
NC/288M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1356CV25 (512K × 18)  
1
NC/576M  
NC/1G  
NC  
2
A
A
3
4
5
NC  
6
CE3  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/LD  
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
NC/18M  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
NC  
A
WE  
VSS  
VSS  
OE  
VSS  
VDD  
NC  
VSS  
VDD  
NC  
NC  
DQPa  
DQa  
NC  
DQb  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
NC  
K
L
NC  
NC  
DQb  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
DQa  
NC  
A
NC  
NC  
M
N
P
DQPb  
NC/144M NC/72M  
MODE NC/36M  
TDI  
TDO  
NC/288M  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document Number: 38-05537 Rev. *R  
Page 7 of 35  
CY7C1354CV25  
CY7C1356CV25  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0, A1, A  
Input-  
synchronous  
Address inputs used to select one of the address locations. Sampled at the rising edge of the CLK.  
BWa, BWb,  
Input-  
Byte write select inputs, active LOW. Qualified with WE to conduct writes to the SRAM. Sampled on  
BWc, BWd synchronous the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb, BWc controls DQc  
and DQPc, BWd controls DQd and DQPd.  
WE  
Input-  
Write enable input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This signal  
synchronous must be asserted LOW to initiate a write sequence.  
ADV/LD  
Input- Advance/load input used to advance the on-chip address counter or load a new address. When  
synchronous HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a new address  
can be loaded into the device for an access. After being deselected, ADV/LD should be driven LOW in  
order to load a new address.  
CLK  
CE1  
CE2  
CE3  
OE  
Input-  
clock  
Clock input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN. CLK is  
only recognized if CEN is active LOW.  
Input-  
Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE2  
synchronous and CE3 to select/deselect the device.  
Input-  
Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE3 to select/deselect the device.  
Input-  
Chip enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE1  
synchronous and CE2 to select/deselect the device.  
Input-  
Output enable, active LOW. Combined with the synchronous logic block inside the device to control  
asynchronous the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted  
HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during the data portion of a write  
sequence, during the first clock when emerging from a deselected state and when the device has been  
deselected.  
CEN  
DQS  
Input-  
Clock enable input, active LOW. When asserted LOW the clock signal is recognized by the SRAM.  
synchronous When deasserted HIGH the clock signal is masked. Since deasserting CEN does not deselect the device,  
CEN can be used to extend the previous cycle when required.  
I/O-  
Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the  
synchronous rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by  
addresses during the previous clock rise of the read cycle. The direction of the pins is controlled by OE  
and the internal control logic. When OE is asserted LOW, the pins can behave as outputs. When HIGH,  
DQa–DQd are placed in a tri-state condition. The outputs are automatically tri-stated during the data  
portion of a write sequence, during the first clock when emerging from a deselected state, and when the  
device is deselected, regardless of the state of OE.  
DQPX  
MODE  
TDO  
TDI  
I/O-  
Bidirectional data parity I/O lines. Functionally, these signals are identical to DQ[a:d]. During write  
synchronous sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by BWc, and  
DQPd is controlled by BWd.  
Input strap pin Mode input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order. Pulled  
LOW selects the linear burst order. MODE should not change states during operation. When left floating  
MODE will default HIGH, to an interleaved burst order.  
JTAG serial Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
output  
synchronous  
JTAG serial Serial data-in to the JTAG circuit. Sampled on the rising edge of TCK.  
input  
synchronous  
TMS  
Test mode This pin controls the test access port state machine. Sampled on the rising edge of TCK.  
select  
synchronous  
Document Number: 38-05537 Rev. *R  
Page 8 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
Pin Definitions (continued)  
Pin Name  
TCK  
I/O Type  
Pin Description  
JTAG-clock Clock input to the JTAG circuitry.  
VDD  
Power supply Power supply inputs to the core of the device.  
VDDQ  
I/O power Power supply for the I/O circuitry.  
supply  
VSS  
NC  
Ground  
Ground for the device. Should be connected to ground of the system.  
No connects. This pin is not connected to the die.  
NC/18M,  
NC/36M,  
NC/72M,  
NC/144M,  
NC/288M,  
NC/576M,  
NC/1G  
These pins are not connected. They will be used for expansion to the 18M, 36M, 72M, 144M 288M,  
576M, and 1G densities.  
ZZ  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition with  
asynchronous data integrity preserved. For normal operation, this pin has to be LOW or left floating. ZZ pin has an  
internal pull-down.  
requested data is allowed to propagate through the output  
Functional Overview  
register and onto the data bus within 2.8 ns (250-MHz device)  
provided OE is active LOW. After the first clock of the read  
access the output buffers are controlled by OE and the internal  
control logic. OE must be driven LOW in order for the device to  
drive out the requested data. During the second clock, a  
subsequent operation (read/write/deselect) can be initiated.  
Deselecting the device is also pipelined. Therefore, when the  
SRAM is deselected at clock rise by one of the chip enable  
signals, its output will tri-state following the next clock rise.  
The  
CY7C1354CV25/CY7C1356CV25  
are  
synchronous-pipelined burst NoBL SRAMs designed specifically  
to eliminate wait states during write/read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with the  
clock enable input signal (CEN). If CEN is HIGH, the clock signal  
is not recognized and all internal states are maintained. All  
synchronous operations are qualified with CEN. All data outputs  
pass through output registers controlled by the rising edge of the  
clock. Maximum access delay from the clock rise (tCO) is 2.8 ns  
(250-MHz device).  
Burst Read Accesses  
The CY7C1354CV25/CY7C1356CV25 have an on-chip burst  
counter that allows the user the ability to supply a single address  
and conduct up to four reads without reasserting the address  
inputs. ADV/LD must be driven LOW in order to load a new  
address into the SRAM, as described in Single Read Accesses.  
The sequence of the burst counter is determined by the MODE  
input signal. A LOW input on MODE selects a linear burst mode,  
a HIGH selects an interleaved burst sequence. Both burst  
counters use A0 and A1 in the burst sequence, and will wrap  
around when incremented sufficiently. A HIGH input on ADV/LD  
will increment the internal burst counter regardless of the state  
of chip enables inputs or WE. WE is latched at the beginning of  
a burst cycle. Therefore, the type of access (read or write) is  
maintained throughout the burst sequence.  
Accesses can be initiated by asserting all three chip enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If clock  
enable (CEN) is active LOW and ADV/LD is asserted LOW, the  
address presented to the device will be latched. The access can  
either be a read or write operation, depending on the status of  
the write enable (WE). BW[d:a] can be used to conduct byte write  
operations.  
Write operations are qualified by the write enable (WE). All writes  
are simplified with on-chip synchronous self-timed write circuitry.  
Three synchronous chip enables (CE1, CE2, CE3) and an  
asynchronous output enable (OE) simplify depth expansion. All  
operations (reads, writes, and deselects) are pipelined. ADV/LD  
should be driven LOW once the device has been deselected in  
order to load a new address for the next operation.  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, and (3) the write signal WE is  
asserted LOW. The address presented to A0–A16 is loaded into  
the address register. The write signals are latched into the  
control logic block.  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are all asserted active, (3) the write enable input signal  
WE is deasserted HIGH, and (4) ADV/LD is asserted LOW. The  
address presented to the address inputs is latched into the  
address register and presented to the memory core and control  
logic. The control logic determines that a read access is in  
progress and allows the requested data to propagate to the input  
of the output register. At the rising edge of the next clock the  
On the subsequent clock rise the data lines are automatically  
tri-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354CV25 and DQa,b/DQPa,b for  
Document Number: 38-05537 Rev. *R  
Page 9 of 35  
 
 
 
CY7C1354CV25  
CY7C1356CV25  
CY7C1356CV25). In addition, the address for the subsequent  
access (read/write/deselect) is latched into the address register  
(provided the appropriate control signals are asserted).  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ places  
the SRAM in a power conservation “sleep” mode. Two clock  
cycles are required to enter into or exit from this “sleep” mode.  
While in this mode, data integrity is guaranteed. Accesses  
pending when entering the “sleep” mode are not considered valid  
nor is the completion of the operation guaranteed. The device  
must be deselected prior to entering the “sleep” mode. CE1, CE2,  
and CE3, must remain inactive for the duration of tZZREC after the  
ZZ input returns LOW.  
On the next clock rise the data presented to DQ  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354CV25 and DQa,b/DQaPnda,bDfQoPr  
CY7C1356CV25) (or a subset for byte write operations, see  
Write Cycle Description table for details) inputs is latched into the  
device and the Write is complete.  
The data written during the write operation is controlled by BW  
(BWa,b,c,d for CY7C1354CV25 and BWa,b for CY7C1356CV25)  
signals. The CY7C1354CV25/CY7C1356CV25 provides byte  
write capability that is described in the Write Cycle Description  
table. Asserting the write enable input (WE) with the selected  
byte write select (BW) input will selectively write to only the  
desired bytes. Bytes not selected during a byte write operation  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
will remain unaltered.  
A
synchronous self-timed write  
mechanism has been provided to simplify the write operations.  
Byte write capability has been included in order to greatly simplify  
read/modify/write sequences, which can be reduced to simple  
byte write operations.  
00  
01  
10  
11  
01  
00  
11  
10  
10  
11  
00  
01  
11  
10  
01  
00  
Because the CY7C1354CV25/CY7C1356CV25 are common I/O  
devices, data should not be driven into the device while the  
outputs are active. The output enable (OE) can be deasserted  
HIGH before presenting data to the DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354CV25 and DQa,b/DQPa,b for  
CY7C1356CV25) inputs. Doing so will tri-state the output drivers.  
As a safety precaution, DQ and DQP (DQa,b,c,d/DQPa,b,c,d for  
CY7C1354CV25 and DQa,b/DQPa,b for CY7C1356CV25) are  
automatically tri-stated during the data portion of a write cycle,  
regardless of the state of OE.  
Linear Burst Address Table  
(MODE = GND)  
First  
Address  
A1, A0  
Second  
Address  
A1, A0  
Third  
Address  
A1, A0  
Fourth  
Address  
A1, A0  
Burst Write Accesses  
00  
01  
10  
11  
01  
10  
11  
00  
10  
11  
00  
01  
11  
00  
01  
10  
The CY7C1354CV25/CY7C1356CV25 has an on-chip burst  
counter that allows the user the ability to supply a single address  
and conduct up to four write operations without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load the  
initial address, as described in Single Write Accesses. When  
ADV/LD is driven HIGH on the subsequent clock rise, the chip  
enables (CE1, CE2, and CE3) and WE inputs are ignored and the  
burst counter is incremented. The correct BW (BWa,b,c,d for  
CY7C1354CV25 and BWa,b for CY7C1356CV25) inputs must be  
driven in each cycle of the burst write in order to write the correct  
bytes of data.  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
Min  
Max  
50  
Unit  
mA  
ns  
ZZ VDD 0.2 V  
tZZS  
ZZ VDD 0.2 V  
ZZ 0.2 V  
2tCYC  
2tCYC  
tZZREC  
tZZI  
ns  
ZZ active to sleep current  
This parameter is sampled  
2tCYC  
ns  
tRZZI  
ZZ Inactive to exit sleep current This parameter is sampled  
0
ns  
Document Number: 38-05537 Rev. *R  
Page 10 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
Truth Table  
The truth table for CY7C1354CV25/CY7C1356CV25 follows. [2, 3, 4, 5, 6, 7, 8]  
Operation  
Address used CE ZZ ADV/LD WE BWx OE CEN CLK  
DQ  
Deselect cycle  
None  
None  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
L
L
H
X
L–H  
L–H  
Tri-state  
Tri-state  
Continue deselect cycle  
Read cycle (begin burst)  
Read cycle (continue burst)  
NOP/dummy read (begin burst)  
Dummy read (continue burst)  
Write cycle (begin burst)  
Write cycle (continue burst)  
NOP/write abort (begin burst)  
Write abort (continue burst)  
Ignore clock edge (stall)  
Sleep mode  
External  
Next  
L–H Data out (Q)  
L–H Data out (Q)  
X
L
H
L
L
External  
Next  
H
H
X
X
X
X
X
X
L–H  
L–H  
Tri-state  
Tri-state  
X
L
H
L
External  
Next  
L–H Data in (D)  
L–H Data in (D)  
X
L
H
L
X
L
L
None  
H
H
X
X
L–H  
L–H  
L–H  
X
Tri-state  
Tri-state  
Next  
X
X
X
H
X
X
X
X
X
Current  
None  
Tri-state  
Notes  
2. X = “Don’t Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = L signifies at least one byte write select is active, BWx = Valid signifies  
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
3. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
4. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
5. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
6. CEN = H inserts wait states.  
7. Device will power-up deselected and the I/Os in a tri-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = tri-state when OE is  
X
inactive or when the device is deselected, and DQs = data when OE is active.  
Document Number: 38-05537 Rev. *R  
Page 11 of 35  
 
 
 
 
 
CY7C1354CV25  
CY7C1356CV25  
Partial Truth Table for Read/Write  
The partial truth table for Read/Write for CY7C1354CV25 follows. [9, 10, 11, 12]  
Function (CY7C1354CV25)  
BWd  
X
H
H
H
H
H
H
H
H
L
BWc  
X
H
H
H
H
L
BWb  
X
H
H
L
BWa  
X
H
L
WE  
Read  
H
Write– no bytes written  
Write byte a–(DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write bytes b, a  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
Write byte c –(DQc and DQPc)  
Write bytes c, a  
H
H
L
H
L
L
Write bytes c, b  
L
H
L
Write bytes c, b, a  
L
L
Write byte d –(DQd and DQPd)  
Write bytes d, a  
H
H
H
H
L
H
H
L
H
L
L
Write bytes d, b  
L
H
L
Write bytes d, b, a  
L
L
Write bytes d, c  
L
H
H
L
H
L
Write bytes d, c, a  
L
L
Write bytes d, c, b  
L
L
H
L
Write all bytes  
L
L
L
Partial Truth Table for Read/Write  
The partial truth table for Read/Write for CY7C1356CV25 follows. [9, 10, 11, 12]  
Function (CY7C1356CV25)  
WE  
H
L
BWb  
BWa  
x
Read  
x
H
H
L
Write – no bytes written  
Write byte a (DQa and DQPa)  
Write byte b – (DQb and DQPb)  
Write both bytes  
H
L
L
L
H
L
L
L
Notes  
9. X = “Don’t Care”, H = Logic HIGH, L = Logic LOW, CE stands for all chip enables active. BWx = L signifies at least one byte write select is active, BWx = valid signifies  
that the desired byte write selects are asserted, see Write Cycle Description table for details.  
10. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
11. When a write cycle is detected, all I/Os are tri-stated, even during byte writes.  
12. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document Number: 38-05537 Rev. *R  
Page 12 of 35  
 
 
 
 
CY7C1354CV25  
CY7C1356CV25  
Performing a TAP Reset  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
A RESET is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
SRAM and may be performed while the SRAM is operating.  
The CY7C1354CV25/CY7C1356CV25 incorporates a serial  
boundary scan test access port (TAP) in the BGA package only.  
The TQFP package does not offer this functionality. This part  
operates in accordance with IEEE Standard 1149.1-1900, but  
doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation of  
other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5 V I/O logic levels.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a high Z state.  
TAP Registers  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test circuitry.  
Only one register can be selected at a time through the  
instruction register. Data is serially loaded into the TDI ball on the  
rising edge of TCK. Data is output on the TDO ball on the falling  
edge of TCK.  
The CY7C1354CV25/CY7C1356CV25 contains  
a
TAP  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
Instruction Register  
Disabling the JTAG Feature  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the TDI  
and TDO balls as shown in the TAP Controller Block Diagram on  
page 16. Upon power-up, the instruction register is loaded with  
the IDCODE instruction.  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may  
alternately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the operation  
of the device.  
It is also loaded with the IDCODE instruction if the controller is  
placed in a reset state as described in the previous section.  
When the TAP controller is in the Capture-IR state, the two least  
significant bits are loaded with a binary “01” pattern to allow for  
fault isolation of the board-level serial test data path.  
Test Access Port (TAP)  
Bypass Register  
Test Clock (TCK)  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
The test clock is used only with the TAP controller. All inputs are  
captured on the rising edge of TCK. All outputs are driven from  
the falling edge of TCK.  
SRAM with minimal delay. The bypass register is set LOW (VSS  
when the BYPASS instruction is executed.  
)
Test Mode Select (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to leave  
this ball unconnected if the TAP is not used.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The ball is pulled up internally, resulting in a logic HIGH level.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR state  
and is then placed between the TDI and TDO balls when the  
controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used to  
capture the contents of the I/O ring.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the registers  
and can be connected to the input of any of the registers. The  
register between TDI and TDO is chosen by the instruction that  
is loaded into the TAP instruction register. For information on  
loading the instruction register, see TAP Controller State  
Diagram on page 15. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) of any register.  
The Boundary Scan Exit Order on page 19 and Boundary Scan  
Exit Order on page 20 show the order in which the bits are  
connected. Each bit corresponds to one of the bumps on the  
SRAM package. The MSB of the register is connected to TDI,  
and the LSB is connected to TDO.  
Test Data-Out (TDO)  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current state  
of the TAP state machine (see Instruction Codes on page 18).  
The output changes on the falling edge of TCK. TDO is  
connected to the least significant bit (LSB) of any register.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired into  
the SRAM and can be shifted out when the TAP controller is in  
the Shift-DR state. The ID register has a vendor code and other  
information described in the Identification Register Definitions on  
page 18.  
Document Number: 38-05537 Rev. *R  
Page 13 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
during the Capture-DR state, an input or output will undergo a  
transition. The TAP may then try to capture a signal while in  
transition (metastable state). This will not harm the device, but  
there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
TAP Instruction Set  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the Instruction  
Codes table. Three of these instructions are listed as  
RESERVED and should not be used. The other five instructions  
are described in detail below.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller’s capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or slow)  
the clock during a SAMPLE/PRELOAD instruction. If this is an  
issue, it is still possible to capture all other signals and simply  
ignore the value of the CK and CK# captured in the boundary  
scan register.  
Instructions are loaded into the TAP controller during the Shift-IR  
state when the instruction register is placed between TDI and  
TDO. During this state, instructions are shifted through the  
instruction register through the TDI and TDO balls. To execute  
the instruction once it is shifted in, the TAP controller needs to be  
moved into the Update-IR state.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the boundary  
scan register between the TDI and TDO pins.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells prior  
to the selection of another boundary scan test operation.  
The shifting of data for the SAMPLE and PRELOAD phases can  
occur concurrently when required — that is, while data captured  
is shifted out, the preloaded data can be shifted in.  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
BYPASS  
SAMPLE Z  
When the BYPASS instruction is loaded in the instruction register  
and the TAP is placed in a Shift-DR state, the bypass register is  
placed between the TDI and TDO pins. The advantage of the  
BYPASS instruction is that it shortens the boundary scan path  
when multiple devices are connected together on a board.  
The SAMPLE Z instruction causes the boundary scan register to  
be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a high Z state until the next command is given  
during the “Update IR” state.  
EXTEST  
SAMPLE/PRELOAD  
The EXTEST instruction enables the preloaded data to be driven  
out through the system output pins. This instruction also selects  
the boundary scan register to be connected for serial access  
between the TDI and TDO in the shift-DR controller state.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
Reserved  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because there  
is a large difference in the clock frequencies, it is possible that  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
Document Number: 38-05537 Rev. *R  
Page 14 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
TAP Controller State Diagram  
The TAP Controller State Diagram follows. [13]  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
0
1
0
Note  
13. The 0/1 next to each state represents the value of TMS at the rising edge of the TCK.  
Document Number: 38-05537 Rev. *R  
Page 15 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
TAP Controller Block Diagram  
0
0
Bypass Register  
2
1
Selection  
Circuitry  
Instruction Register  
31 30 29 .  
S
election  
TDI  
TDO  
Circuitr  
y
.
.
2
1
0
Identification Register  
x
.
.
.
.
. 2 1 0  
Boundary Scan Register  
TAP CONTROLLER  
TCK  
TMS  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
Document Number: 38-05537 Rev. *R  
Page 16 of 35  
CY7C1354CV25  
CY7C1356CV25  
TAP AC Switching Characteristics  
Over the Operating Range  
Parameter [14, 15]  
Clock  
Description  
Min  
Max  
Unit  
tTCYC  
TCK clock cycle time  
TCK clock frequency  
TCK clock HIGH time  
TCK clock LOW time  
50  
20  
ns  
MHz  
ns  
tTF  
tTH  
20  
20  
tTL  
ns  
Output Times  
tTDOV  
TCK clock LOW to TDO valid  
TCK clock LOW to TDO invalid  
0
10  
ns  
ns  
tTDOX  
Set-up Times  
tTMSS  
TMS set-up to TCK clock rise  
TDI set-up to TCK clock rise  
Capture set-up to TCK rise  
5
5
5
ns  
ns  
ns  
tTDIS  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK clock rise  
TDI hold after clock rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture hold after clock rise  
2.5 V TAP AC Test Conditions  
2.5 V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels ...............................................VSS to 2.5 V  
Input rise and fall time ....................................................1 ns  
Input timing reference levels ....................................... 1.25 V  
Output reference levels .............................................. 1.25 V  
Test load termination supply voltage ..........................1.25 V  
50Ω  
TDO  
ZO= 50Ω  
20pF  
Notes  
14. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
15. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1 ns.  
R
F
Document Number: 38-05537 Rev. *R  
Page 17 of 35  
 
 
CY7C1354CV25  
CY7C1356CV25  
TAP DC Electrical Characteristics and Operating Conditions  
(0 °C < TA < +70 °C; VDD = 2.5 V ± 0.125 V unless otherwise noted)  
Parameter [16]  
Description  
Output HIGH voltage  
Output HIGH voltage  
Output LOW voltage  
Output LOW voltage  
Input HIGH voltage  
Input LOW voltage  
Input Load current  
Test Conditions  
IOH = –1.0 mA, VDDQ = 2.5 V  
IOH = –100 µA, VDDQ = 2.5 V  
IOL = 8.0 mA, VDDQ = 2.5 V  
Min  
2.0  
2.1  
Max  
Unit  
V
VOH1  
VOH2  
VOL1  
VOL2  
VIH  
0.4  
V
V
IOL = 100 µA  
VDDQ = 2.5 V  
0.2  
V
VDDQ = 2.5 V  
VDDQ = 2.5 V  
1.7  
–0.3  
–5  
VDD + 0.3  
0.7  
V
VIL  
V
IX  
GND < VIN < VDDQ  
5
µA  
Identification Register Definitions  
Instruction Field  
Revision number (31:29)  
Cypress device ID (28:12)  
Cypress JEDEC ID (11:1)  
ID register presence (0)  
CY7C1354CV25  
CY7C1356CV25  
000  
01011001000010110 Reserved for future use.  
Description  
000  
01011001000100110  
00000110100  
1
Reserved for version number.  
00000110100  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size (× 36)  
Bit Size (× 18)  
Instruction  
Bypass  
ID  
3
3
1
1
32  
69  
69  
32  
69  
69  
Boundary scan order (119-ball BGA package)  
Boundary scan order (165-ball FBGA package)  
Instruction Codes  
Instruction  
EXTEST  
Code  
Description  
000  
Captures the input/output ring contents. Places the boundary scan register between the TDI  
and TDO. Forces all SRAM outputs to high Z state.  
IDCODE  
001  
010  
Loads the ID register with the vendor ID code and places the register between TDI and TDO.  
This operation does not affect SRAM operation.  
SAMPLE Z  
Captures the input/output contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a high Z state.  
RESERVED  
011  
100  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD  
Captures the input/output ring contents. Places the boundary scan register between TDI and  
TDO. Does not affect the SRAM operation.  
RESERVED  
RESERVED  
BYPASS  
101  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM  
operation.  
Note  
16. All voltages referenced to V (GND).  
SS  
Document Number: 38-05537 Rev. *R  
Page 18 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
Boundary Scan Exit Order (continued)  
Boundary Scan Exit Order  
(256K × 36)  
(256K × 36)  
Bit #  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
119-ball ID  
165-ball ID  
Bit #  
1
119-ball ID  
K4  
H4  
M4  
F4  
165-ball ID  
B6  
L2  
K1  
N2  
N1  
M2  
L1  
K2  
J2  
2
B7  
M2  
M1  
L1  
K1  
J1  
3
A7  
4
B8  
5
B4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
A8  
6
A9  
K2  
7
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
Not Bonded (Preset to 1) Not Bonded (Preset to 1)  
8
H1  
G2  
E2  
D1  
H2  
G1  
F2  
E1  
D2  
C2  
A2  
E4  
B2  
L3  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
G7  
H6  
T7  
K7  
L6  
N6  
P7  
N7  
M6  
L7  
G3  
G5  
L5  
B6  
K6  
P6  
T4  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
R6  
T5  
P9  
R8  
P8  
R6  
P6  
R4  
P4  
T3  
R3  
R2  
R3  
P2  
P1  
P3  
R1  
N1  
L2  
Document Number: 38-05537 Rev. *R  
Page 19 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
Boundary Scan Exit Order (continued)  
Boundary Scan Exit Order  
(512K × 18)  
(512K × 18)  
Bit #  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
69  
69  
68  
69  
66  
67  
68  
69  
119-ball ID  
165-ball ID  
Bit #  
1
119-ball ID  
165-ball ID  
B6  
T3  
R2  
R3  
R3  
P3  
R1  
K4  
H4  
M4  
F4  
B4  
G4  
C3  
B3  
T2  
2
B7  
3
A7  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
4
B8  
5
A8  
6
A9  
7
B10  
A10  
A11  
P2  
N1  
M2  
L1  
N1  
M1  
L1  
K1  
J1  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
K2  
Not Bonded (Preset to 1) Not Bonded (Preset to 1)  
D6  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
C11  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
H1  
G2  
E2  
D1  
G2  
F2  
E2  
D2  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
N6  
P7  
C2  
A2  
E4  
B2  
B2  
A2  
A3  
B3  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
Not Bonded (Preset to 0) Not Bonded (Preset to 0)  
G3  
Not Bonded (Preset to 0)  
T6  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
R6  
T5  
R11  
R10  
P10  
R9  
P9  
Not Bonded (Preset to 0)  
A4  
L5  
B5  
B6  
A6  
B6  
A6  
B6  
A6  
R8  
P8  
L5  
B5  
B6  
A6  
R6  
P6  
G3  
Not Bonded (Preset to 0)  
Not Bonded (Preset to 0)  
A4  
B5  
A6  
R4  
P4  
L5  
B6  
Document Number: 38-05537 Rev. *R  
Page 20 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
DC input voltage ................................. –0.5 V to VDD + 0.5 V  
Current into outputs (LOW) ........................................ 20 mA  
Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Static discharge voltage  
(per MIL-STD-883, method 3015) ......................... > 2001 V  
Storage temperature ................................ –65 °C to +150 °C  
Latch-up current ................................................... > 200 mA  
Ambient temperature with  
power applied .......................................... –55 °C to +125 °C  
Operating Range  
Supply voltage on VDD relative to GND .......–0.5 V to +3.6 V  
Supply voltage on VDDQ relative to GND ...... –0.5 V to +VDD  
DC to outputs in tri-state ...................–0.5 V to VDDQ + 0.5 V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0 °C to +70 °C  
VDD/VDDQ  
2.5 V ±5%  
–40 °C to +85 °C  
Electrical Characteristics  
Over the Operating Range  
Parameter [17, 18]  
Description  
Power supply voltage  
I/O supply voltage  
Test Conditions  
Min  
2.375  
2.375  
2.0  
Max  
Unit  
VDD  
VDDQ  
VOH  
VOL  
VIH  
2.625  
V
V
for 2.5 V I/O  
VDD  
Output HIGH voltage  
Output LOW voltage  
Input HIGH voltage  
Input LOW voltage [17]  
for 2.5 V I/O, IOH = 1.0 mA  
for 2.5 V I/O, IOL= 1.0 mA  
for 2.5 V I/O  
V
0.4  
V
1.7  
VDD + 0.3 V  
V
VIL  
for 2.5 V I/O  
–0.3  
–5  
0.7  
5
V
IX  
Input leakage current except ZZ GND VI VDDQ  
and MODE  
A  
Input current of MODE  
Input = VSS  
Input = VDD  
Input = VSS  
Input = VDD  
–30  
5
A  
A  
A  
A  
A  
mA  
Input current of ZZ  
–5  
30  
5
IOZ  
IDD  
Output leakage current  
VDD operating supply  
GND VI VDDQ, output disabled  
–5  
VDD = Max, IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4-ns cycle,  
250 MHz  
250  
5-ns cycle,  
200 MHz  
220  
180  
130  
120  
110  
40  
mA  
mA  
mA  
mA  
mA  
mA  
6-ns cycle,  
166 MHz  
ISB1  
Automatic CE power-down  
current — TTL inputs  
Max VDD, device deselected,  
VIN VIH or VIN VIL,  
f = fMAX = 1/tCYC  
4-ns cycle,  
250 MHz  
5-ns cycle,  
200 MHz  
6-ns cycle,  
166 MHz  
ISB2  
Automatic CE power-down  
current — CMOS inputs  
Max VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V, grades  
f = 0  
All speed  
Notes  
17. Overshoot: V  
< V + 1.5 V (Pulse width less than t  
/2), undershoot: V  
> –2 V (Pulse width less than t  
/2).  
IH(AC)  
DD  
CYC  
IL(AC)  
CYC  
18. T  
: Assumes a linear ramp from 0 V to V  
within 200 ms. During this time V < V and V  
V  
.
Power-up  
(min)  
IH  
DD  
DDQ  
DD  
DD  
Document Number: 38-05537 Rev. *R  
Page 21 of 35  
 
 
 
 
CY7C1354CV25  
CY7C1356CV25  
Electrical Characteristics (continued)  
Over the Operating Range  
Parameter [17, 18]  
Description  
Test Conditions  
Min  
Max  
Unit  
ISB3  
Automatic CE power-down  
current — CMOS inputs  
Max VDD, device deselected,  
VIN 0.3 V or VIN > VDDQ 0.3 V, 250 MHz  
f = fMAX = 1/tCYC  
4-ns cycle,  
120  
mA  
5-ns cycle,  
200 MHz  
110  
100  
40  
mA  
mA  
mA  
6-ns cycle,  
166 MHz  
ISB4  
Automatic CE power-down  
current — TTL inputs  
Max VDD, device deselected,  
VIN VIH or VIN VIL, f = 0  
All speed  
grades  
Capacitance  
100-pin TQFP 119-ball BGA 165-ballFBGA  
Parameter [19]  
Description  
Test Conditions  
Unit  
Max  
Max  
Max  
CIN  
Input capacitance  
TA = 25 °C, f = 1 MHz,  
VDD = 2.5 V, VDDQ = 2.5 V  
5
5
5
5
5
7
5
5
7
pF  
pF  
pF  
CCLK  
CI/O  
Clock input capacitance  
Input/output capacitance  
Thermal Resistance  
100-pin TQFP 119-ball BGA 165-ballFBGA  
Parameter [19]  
Description  
Test Conditions  
Unit  
Package  
Package  
Package  
JA  
Thermal resistance  
(junction to ambient)  
Test  
conditions  
follow  
29.41  
34.1  
16.8  
°C/W  
standard test methods and  
procedures for measuring  
thermal impedance, per  
EIA/JESD51.  
JC  
Thermal resistance  
(junction to case)  
6.13  
14  
3.0  
°C/W  
AC Test Loads and Waveforms  
Figure 4. AC Test Loads and Waveforms  
2.5 V I/O Test Load  
R = 1667  
2.5 V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
90%  
10%  
Z = 50   
0
R = 50   
10%  
L
GND  
5 pF  
INCLUDING  
R = 1538   
1 ns  
1 ns  
VT = 1.25 V  
(a)  
JIG AND  
SCOPE  
(b)  
(c)  
Note  
19. Tested initially and after any design or process change that may affect these parameters.  
Document Number: 38-05537 Rev. *R  
Page 22 of 35  
 
 
 
CY7C1354CV25  
CY7C1356CV25  
Switching Characteristics  
Over the Operating Range  
-250  
-200  
-166  
Unit  
Parameter [20, 21]  
Description  
Min  
Max  
Min  
Max  
Min  
Max  
[22]  
tPower  
VCC(typical)tothefirstaccessreador  
write  
1
1
1
ms  
Clock  
tCYC  
Clock cycle time  
Maximum operating frequency  
Clock HIGH  
4.0  
250  
5
200  
6
166  
ns  
MHz  
ns  
FMAX  
tCH  
1.8  
1.8  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data output valid after CLK rise  
OE LOW to output valid  
2.8  
2.8  
3.2  
3.2  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
Data output hold after CLK rise  
Clock to high Z [23, 24, 25]  
Clock to low Z [23, 24, 25]  
OE HIGH to output high Z [23, 24, 25]  
OE LOW to output low Z [23, 24, 25]  
1.25  
1.25  
1.25  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
tCHZ  
2.8  
3.2  
3.5  
tCLZ  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
2.8  
3.2  
3.5  
0
0
0
Address set-up before CLK rise  
Data input set-up before CLK rise  
CEN set-up before CLK rise  
WE, BWx set-up before CLK rise  
ADV/LD set-up before CLK rise  
Chip select set-up  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
tALS  
tCES  
Hold Times  
tAH  
Address hold after CLK rise  
Data input hold after CLK rise  
CEN hold after CLK rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
tWEH  
WE, BWx hold after CLK rise  
ADV/LD hold after CLK rise  
Chip select hold after CLK rise  
tALH  
tCEH  
Notes  
20. Timing reference level is when V  
= 2.5 V.  
DDQ  
21. Test conditions shown in (a) of Figure 4 on page 22 unless otherwise noted.  
22. This part has a voltage regulator internally; t is the time power needs to be supplied above V minimum initially, before a Read or Write operation can be initiated.  
power  
DD  
23. t  
, t  
, t  
, and t  
are specified with AC test conditions shown in (b) of Figure 4 on page 22. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ EOLZ  
EOHZ  
24. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same data  
CLZ  
EOHZ  
EOLZ  
CHZ  
bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve  
high Z prior to low Z under the same system conditions.  
25. This parameter is sampled and not 100% tested.  
Document Number: 38-05537 Rev. *R  
Page 23 of 35  
 
 
 
 
 
 
 
CY7C1354CV25  
CY7C1356CV25  
Switching Waveforms  
Figure 5. Read/Write Timing [26, 27, 28]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
Q(A4+1)  
D(A5)  
Q(A6)  
In-Out (DQ)  
t
OEHZ  
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes  
26. For this waveform ZZ is tied LOW.  
27. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
28. Order of the Burst sequence is determined by the status of the MODE (0 = Linear, 1 = Interleaved). Burst operations are optional.  
Document Number: 38-05537 Rev. *R  
Page 24 of 35  
 
 
 
CY7C1354CV25  
CY7C1356CV25  
Switching Waveforms (continued)  
Figure 6. NOP, STALL and DESELECT CYCLES [29, 30, 31]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
Notes  
29. For this waveform ZZ is tied LOW.  
30. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH, CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
31. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle.  
Document Number: 38-05537 Rev. *R  
Page 25 of 35  
 
 
 
CY7C1354CV25  
CY7C1356CV25  
Switching Waveforms (continued)  
Figure 7. ZZ Mode Timing [32, 33]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
Notes  
32. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
33. I/Os are in high Z when exiting ZZ sleep mode.  
Document Number: 38-05537 Rev. *R  
Page 26 of 35  
 
 
CY7C1354CV25  
CY7C1356CV25  
Ordering Information  
Cypress offers other versions of this type of product in many different configurations and features. The below table contains only the  
list of parts that are currently available.For a complete listing of all options, visit the Cypress website at www.cypress.com and refer  
to the product summary page at http://www.cypress.com/products or contact your local sales representative.  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office  
closest to you, visit us at http://www.cypress.com/go/datasheet/offices.  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Part and Package Type  
Ordering Code  
166 CY7C1354CV25-166AXC  
CY7C1356CV25-166AXC  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
CY7C1354CV25-166BZC  
51-85180 165-ball FBGA (13 × 15 × 1.4 mm)  
200 CY7C1354CV25-200AXC  
51-85050 100-pin TQFP (14 × 20 × 1.4 mm) Pb-free  
Commercial  
Ordering Code Definitions  
CY  
7
C
135X  
C
V25 - XXX XX X  
C
Temperature Range: C = Commercial  
Pb-free  
Package Type: XX = A or BZ  
A = 100-pin TQFP  
BZ = 165-ball FBGA  
Speed Grade: XXX = 166 MHz or 200 MHz  
V25 = 2.5 V  
Process Technology 90 nm  
135X = 1354 or 1356  
1354 = PL, 256Kb × 36 (9Mb)  
1356 = PL, 512Kb × 18 (9Mb)  
Technology Code: C = CMOS  
Marketing Code: 7 = SRAM  
Company ID: CY = Cypress  
Document Number: 38-05537 Rev. *R  
Page 27 of 35  
 
 
CY7C1354CV25  
CY7C1356CV25  
Package Diagrams  
Figure 8. 100-pin TQFP (14 × 20 × 1.4 mm) A100RA Package Outline, 51-85050  
ș 2  
ș
1
ș
DIMENSIONS  
MIN. NOM. MAX.  
1.60  
NOTE:  
SYMBOL  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. BODY LENGTH DIMENSION DOES NOT  
INCLUDE MOLD PROTRUSION/END FLASH.  
MOLD PROTRUSION/END FLASH SHALL  
A
0.05  
0.15  
A1  
A2  
D
1.35 1.40 1.45  
15.80 16.00 16.20  
13.90 14.00 14.10  
21.80 22.00 22.20  
19.90 20.00 20.10  
NOT EXCEED 0.0098 in (0.25 mm) PER SIDE.  
BODY LENGTH DIMENSIONS ARE MAX PLASTIC  
D1  
E
E1  
BODY SIZE INCLUDING MOLD MISMATCH.  
3. JEDEC SPECIFICATION NO. REF: MS-026.  
0.08  
0.08  
0°  
R
R
ș
0.20  
0.20  
7°  
1
2
ș 1  
ș 2  
c
0°  
11° 12° 13°  
0.20  
0.22 0.30 0.38  
0.45 0.60 0.75  
1.00 REF  
b
L
L1  
L 2  
L 3  
e
0.25 BSC  
0.20  
0.65 TYP  
51-85050 *G  
Document Number: 38-05537 Rev. *R  
Page 28 of 35  
 
CY7C1354CV25  
CY7C1356CV25  
Package Diagrams (continued)  
Figure 9. 119-ball PBGA (14 × 22 × 2.4 mm) BG119 Package Outline, 51-85115  
51-85115 *D  
Document Number: 38-05537 Rev. *R  
Page 29 of 35  
CY7C1354CV25  
CY7C1356CV25  
Package Diagrams (continued)  
Figure 10. 165-ball FBGA (13 × 15 × 1.4 mm) BB165D/BW165D (0.5 Ball Diameter) Package Outline, 51-85180  
51-85180 *G  
Document Number: 38-05537 Rev. *R  
Page 30 of 35  
CY7C1354CV25  
CY7C1356CV25  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
Description  
BGA  
CE  
Ball Grid Array  
Symbol  
°C  
Unit of Measure  
Chip Enable  
Clock Enable  
degree Celsius  
megahertz  
microampere  
milliampere  
millimeter  
millisecond  
millivolt  
MHz  
µA  
mA  
mm  
ms  
mV  
ns  
CEN  
CMOS  
EIA  
Complementary Metal Oxide Semiconductor  
Electronic Industries Alliance  
Fine-Pitch Ball Grid Array  
Input/Output  
FBGA  
I/O  
JEDEC  
JTAG  
LSB  
Joint Electron Devices Engineering Council  
Joint Test Action Group  
Least Significant Bit  
Most Significant Bit  
nanosecond  
ohm  
%
percent  
MSB  
NoBL  
OE  
pF  
V
picofarad  
volt  
No Bus Latency  
Output Enable  
W
watt  
SRAM  
TAP  
Static Random Access Memory  
Test Access Port  
TCK  
TDI  
Test Clock  
Test Data-In  
TDO  
TMS  
TQFP  
TTL  
Test Data-Out  
Test mode select  
Thin Quad Flat Pack  
Transistor-Transistor Logic  
Write Enable  
WE  
Document Number: 38-05537 Rev. *R  
Page 31 of 35  
 
 
CY7C1354CV25  
CY7C1356CV25  
Document History Page  
Document Title: CY7C1354CV25/CY7C1356CV25, 9-Mbit (256K × 36/512K × 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05537  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
242032  
278969  
RKF  
RKF  
07/13/2004 New data sheet.  
*A  
10/18/2004 Updated Boundary Scan Exit Order (To match the B Rev of these devices).  
Updated Boundary Scan Exit Order (To match the B Rev of these devices).  
*B  
*C  
284929  
323636  
RKF / VBL 11/01/2004 Updated Functional Overview:  
Updated ZZ Mode Electrical Characteristics:  
Changed maximum value of IDDZZ parameter from 35 mA to 50 mA.  
Added Electrical Characteristics.  
Updated Ordering Information:  
Updated part numbers.  
PCI  
02/22/2005 Replaced “225 MHz” with “250 MHz” in all instances across the document.  
Updated Pin Definitions:  
Modified address expansion as per JEDEC Standard in all instances across  
the document.  
Updated Thermal Resistance:  
Changed value of JA parameter corresponding to 100-pin TQFP Package  
from 25 °C/W to 29.41 °C/W.  
Changed value of JC parameter corresponding to 100-pin TQFP Package  
from 9 °C/W to 6.13 °C/W.  
Changed value of JA parameter corresponding to 119-ball BGA Packagefrom  
25 °C/W to 34.1 °C/W.  
Changed value of JC parameter corresponding to 119-ball BGA Packagefrom  
6 °C/W to 14.0 °C/W.  
Changed value of JA parameter corresponding to 165-ball FBGA Package  
from 27 °C/W to 16.8 °C/W.  
Changed value of JC parameter corresponding to 165-ball FBGA Package  
from 6 °C/W to 3.0 °C/W.  
Updated Switching Characteristics:  
Changedminimumvalue of tCYC parameter from4.4 ns to4.0nscorresponding  
to 250 MHz frequency.  
Updated Ordering Information:  
No change in part numbers.  
Removed comment “Lead-free BGX package will be available in 2005.” below  
the table.  
*D  
332879  
PCI  
03/13/2005 Updated Selection Guide:  
Unshaded 200 MHz and 166 MHz speed bins related information.  
Updated Pin Definitions:  
Added Address Expansion pins.  
Updated IEEE 1149.1 Serial Boundary Scan (JTAG):  
Updated TAP Instruction Set:  
Removed “EXTEST OUTPUT BUS TRI-STATE”.  
Updated Electrical Characteristics:  
Unshaded 200 MHz and 166 MHz speed bins related information.  
Updated details in “Test Conditions” column corresponding to VOL and VOH  
parameters.  
Updated Switching Characteristics:  
Unshaded 200 MHz and 166 MHz speed bins related information.  
Updated Ordering Information:  
Updated part numbers.  
Document Number: 38-05537 Rev. *R  
Page 32 of 35  
CY7C1354CV25  
CY7C1356CV25  
Document History Page (continued)  
Document Title: CY7C1354CV25/CY7C1356CV25, 9-Mbit (256K × 36/512K × 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05537  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
*E  
357258  
PCI  
05/05/2005 Changed status from Preliminary to Final.  
Updated Selection Guide:  
Unshaded 250 MHz speed bin related information.  
Updated Electrical Characteristics:  
Changed maximum value of ISB2 parameter from 35 mA to 40 mA.  
Unshaded 250 MHz speed bin related information.  
Updated Switching Characteristics:  
Unshaded 250 MHz speed bin related information.  
Updated Ordering Information:  
Updated part numbers.  
*F  
377095  
408298  
PCI  
06/10/2005 Updated Electrical Characteristics:  
Updated Note 18 (Replaced “VDDQ < VDD” with “VDDQ VDD”).  
*G  
RXU  
11/16/2005 Changed address of Cypress Semiconductor Corporation in page 1 from “3901  
North First Street” to “198 Champion Court”.  
Replaced “three-state” with “tri-state” in all instances across the document.  
Updated Electrical Characteristics:  
Replaced “Input Load” with “Input Leakage Current except ZZ and MODE” in  
“Description” column corresponding to IX parameter.  
Updated Ordering Information:  
Updated part numbers.  
Removed “Package Name” column.  
Added “Package Diagram” column.  
*H  
501793  
VKN  
09/13/2006 Updated Switching Characteristics:  
Changed minimum value of tTH, and tTL parameters from 25 ns to 20 ns.  
Changed maximum value of tTDOV parameter from 5 ns to 10 ns.  
Updated Maximum Ratings:  
Added “Supply Voltage on VDDQ Relative to GND” and its rating.  
Updated Ordering Information:  
Updated part numbers.  
*I  
2898958  
3033272  
NJY  
NJY  
03/25/2010 Updated Ordering Information:  
Updated part numbers.  
Updated Package Diagrams:  
spec 51-85050 – Changed revision from *B to *C.  
spec 51-85115 – Changed revision from *B to *C.  
spec 51-85180 – Changed revision from *A to *C.  
*J  
09/19/2010 Updated Ordering Information:  
No change in part numbers.  
Added Ordering Code Definitions.  
Added Acronyms and Units of Measure.  
Minor edits.  
Updated to new template.  
Completing Sunset Review.  
*K  
*L  
3052726  
3385314  
NJY  
10/08/2010 Updated Ordering Information:  
Updated part numbers.  
PRIT  
09/29/2011 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *C to *D.  
Completing Sunset Review.  
*M  
3754566  
PRIT  
09/25/2012 Updated Package Diagrams (spec 51-85115 (Changed revision from *C to *D),  
spec 51-85180 (Changed revision from *C to *F)).  
Completing Sunset Review.  
Document Number: 38-05537 Rev. *R  
Page 33 of 35  
CY7C1354CV25  
CY7C1356CV25  
Document History Page (continued)  
Document Title: CY7C1354CV25/CY7C1356CV25, 9-Mbit (256K × 36/512K × 18) Pipelined SRAM with NoBL™ Architecture  
Document Number: 38-05537  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
*N  
4537527  
PRIT  
10/14/2014 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *D to *E.  
Updated to new template.  
Completing Sunset Review.  
*O  
*P  
4571917  
4974141  
PRIT  
PRIT  
11/18/2014 Updated Functional Description:  
Added “For a complete list of related documentation, click here.” at the end.  
10/19/2015 Updated Package Diagrams:  
spec 51-85180 – Changed revision from *F to *G.  
Updated to new template.  
Completing Sunset Review.  
*Q  
*R  
5509821  
6021076  
PRIT  
11/04/2016 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *E to *F.  
Updated to new template.  
Completing Sunset Review.  
RMES  
01/09/2018 Updated Package Diagrams:  
spec 51-85050 – Changed revision from *F to *G.  
Updated to new template.  
Completing Sunset Review.  
Document Number: 38-05537 Rev. *R  
Page 34 of 35  
CY7C1354CV25  
CY7C1356CV25  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Arm® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Community | Projects | Video | Blogs | Training | Components  
Technical Support  
Internet of Things  
Memory  
cypress.com/support  
cypress.com/memory  
cypress.com/mcu  
Microcontrollers  
PSoC  
cypress.com/psoc  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2004-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document,  
including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 38-05537 Rev. *R  
Revised January 9, 2018  
Page 35 of 35  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device Technology, Inc.  

相关型号:

CY7C1354CV25-166BZI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1354CV25-166BZXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1354CV25-166BZXI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1354CV25-167AXC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167AXI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BGC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BGI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BGXC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BGXI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BZC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BZI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BZXC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS