CY7C1354CV25-167AXC [CYPRESS]

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture; 9兆位( 256K ×36 / 512K ×18 )流水线SRAM与NOBL -TM架构
CY7C1354CV25-167AXC
型号: CY7C1354CV25-167AXC
厂家: CYPRESS    CYPRESS
描述:

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
9兆位( 256K ×36 / 512K ×18 )流水线SRAM与NOBL -TM架构

静态存储器
文件: 总25页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
9-Mbit (256K x 36/512K x 18) Pipelined SRAM  
with NoBL™ Architecture  
Features  
Functional Description  
• Pin-compatible with and functionally equivalent to  
ZBT™  
The CY7C1354CV25 and CY7C1356CV25 are 2.5V, 256K x  
36 and 512K x 18 Synchronous pipelined burst SRAMs with  
No Bus Latency™ (NoBL™) logic, respectively. They are  
designed to support unlimited true back-to-back Read/Write  
operations with no wait states. The CY7C1354CV25 and  
CY7C1356CV25 are equipped with the advanced (NoBL) logic  
required to enable consecutive Read/Write operations with  
data being transferred on every clock cycle. This feature  
dramatically improves the throughput of data in systems that  
require frequent Write/Read transitions. The CY7C1354CV25  
and CY7C1356CV25 are pin-compatible with and functionally  
equivalent to ZBT devices.  
• Supports 225-MHz bus operations with zero wait states  
— Available speed grades are 225, 200, and 167 MHz  
• Internally self-timed output buffer control to eliminate  
the need to use asynchronous OE  
• Fully registered (inputs and outputs) for pipelined  
operation  
• Byte Write capability  
• Single 2.5V power supply  
All synchronous inputs pass through input registers controlled  
by the rising edge of the clock. All data outputs pass through  
output registers controlled by the rising edge of the clock. The  
clock input is qualified by the Clock Enable (CEN) signal,  
which when deasserted suspends operation and extends the  
previous clock cycle.  
• Fast clock-to-output times  
— 2.8 ns (for 225-MHz device)  
— 3.2ns (for 200-MHz device)  
— 3.5 ns (for 167-MHz device)  
• Clock Enable (CEN) pin to suspend operation  
• Synchronous self-timed writes  
Write operations are controlled by the Byte Write Selects  
(BWa–BWd for CY7C1354CV25 and BWa–BWb for  
CY7C1356CV25) and a Write Enable (WE) input. All writes are  
conducted with on-chip synchronous self-timed write circuitry.  
• Available in lead-free 100 TQFP, 119 BGA, and 165 fBGA  
packages  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) provide for easy bank  
selection and output three-state control. In order to avoid bus  
contention, the output drivers are synchronously three-stated  
during the data portion of a write sequence.  
• IEEE 1149.1 JTAG Boundary Scan  
Burst capabilitylinear or interleaved burst order  
• “ZZ” Sleep Mode option and Stop Clock option  
Logic Block Diagram–CY7C1354CV25 (256K x 36)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
O
S
U
D
A
T
U
T
P
T
P
E
N
S
U
T
U
T
ADV/LD  
A
E
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
R
E
G
I
MEMORY  
ARRAY  
B
U
F
S
T
E
E
R
I
DQs  
DQP  
DQP  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
a
b
c
d
A
M
P
b
BW  
BW  
c
S
T
E
R
S
F
d
E
R
S
S
WE  
E
E
N
G
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
SLEEP  
CONTROL  
ZZ  
Cypress Semiconductor Corporation  
Document #: 38-05537 Rev. *B  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised November 1, 2004  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Logic Block Diagram–CY7C1356CV25 (512K x 18)  
ADDRESS  
REGISTER 0  
A0, A1, A  
A1  
A0  
A1'  
A0'  
D1  
D0  
Q1  
Q0  
BURST  
LOGIC  
MODE  
C
ADV/LD  
C
CLK  
CEN  
WRITE ADDRESS  
REGISTER 1  
WRITE ADDRESS  
REGISTER 2  
O
U
T
P
O
U
T
P
S
E
N
S
D
A
T
U
T
U
T
ADV/LD  
WRITE REGISTRY  
AND DATA COHERENCY  
CONTROL LOGIC  
A
R
E
G
I
MEMORY  
ARRAY  
E
B
U
F
DQs  
DQP  
DQP  
WRITE  
DRIVERS  
BW  
BW  
a
S
T
E
E
R
I
A
M
P
a
F
b
S
T
E
R
S
b
E
R
S
S
N
G
WE  
E
E
INPUT  
REGISTER 1  
INPUT  
REGISTER 0  
E
E
OE  
READ LOGIC  
CE1  
CE2  
CE3  
Sleep  
Control  
ZZ  
Selection Guide  
CY7C1354CV25-225  
CY7C1356CV25-225  
CY7C1354CV25-200  
CY7C1356CV25-200  
CY7C1354CV25-167  
CY7C1356CV25-167  
Unit  
ns  
Maximum Access Time  
2.8  
250  
35  
3.2  
220  
35  
3.5  
180  
35  
Maximum Operating Current  
Maximum CMOS Standby Current  
mA  
mA  
Shaded areas contain advance information.Please contact your local Cypress sales representative for availability of these parts.  
Note:  
1. For best–practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.  
Document #: 38-05537 Rev. *B  
Page 2 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Pin Configurations  
100-pin TQFP Packages  
DQPc  
DQc  
DQc  
1
2
3
4
5
6
7
8
NC  
NC  
NC  
DDQ  
1
2
3
4
5
6
7
8
A
NC  
NC  
78  
DQPb  
DQb  
DQb  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
80  
79  
V
V
DDQ  
VDDQ  
VSS  
V
V
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DDQ  
SS  
V
V
SS  
SS  
DQc  
DQc  
NC  
NC  
DQb  
NC  
DQb  
DQb  
DQb  
DQb  
VSS  
VDDQ  
DQb  
DQb  
VSS  
NC  
DQPa  
DQa  
DQa  
DQc  
DQc  
9
DQb  
9
V
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
SS  
V
V
DDQ  
DDQ  
V
DQa  
DQa  
DDQ  
DQc  
DQc  
NC  
DQb  
DQb  
NC  
V
CY7C1354CV25  
(256K × 36)  
SS  
V
V
DD  
DD  
NC  
CY7C1356CV25  
(512K × 18)  
NC  
VDD  
ZZ  
DQa  
DQa  
NC  
V
DD  
V
V
SS  
SS  
ZZ  
DQd  
DQb  
DQb  
DQa  
DQa  
DQd  
V
V
DDQ  
DDQ  
VDDQ  
VSS  
DQa  
DQa  
V
DDQ  
V
V
SS  
SS  
V
SS  
DQd  
DQd  
DQd  
DQd  
DQb  
DQb  
DQa DQPb  
DQa  
DQa  
NC  
DQa  
VSS  
VDDQ  
DQa  
DQa  
DQPa  
NC  
NC  
V
SS  
V
V
SS  
SS  
V
V
DDQ  
DQd  
DDQ  
V
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
DQd  
DQPd  
Document #: 38-05537 Rev. *B  
Page 3 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Pin Configurations (continued)  
119-ball BGA Pinout  
CY7C1354CV25 (256K × 36) – 14 × 22 BGA  
1
2
3
4
5
6
7
VDDQ  
A
A
E(18)  
A
A
VDDQ  
A
NC  
NC  
CE2  
A
A
A
ADV/LD  
VDD  
A
A
CE3  
A
NC  
NC  
B
C
D
DQc  
DQPc  
VSS  
NC  
VSS  
DQPb  
DQb  
DQc  
VDDQ  
DQc  
DQc  
DQc  
DQc  
DQc  
VDD  
VSS  
VSS  
CE1  
VSS  
VSS  
DQb  
DQb  
DQb  
DQb  
VDD  
DQb  
VDDQ  
DQb  
DQb  
VDDQ  
DQa  
DQa  
VDDQ  
DQa  
DQa  
E
F
OE  
A
G
H
J
BWc  
VSS  
NC  
BWb  
VSS  
NC  
DQc  
WE  
VDD  
VDDQ  
DQd  
DQd  
VDDQ  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQPd  
VSS  
BWd  
VSS  
CLK  
NC  
VSS  
BWa  
VSS  
VSS  
VSS  
DQa  
DQa  
DQa  
DQa  
DQPa  
K
L
M
N
P
CEN  
A1  
VSS  
VSS  
MODE  
A
A0  
NC  
NC  
A
VDD  
A
A
NC  
ZZ  
R
T
NC  
A
E(72)  
TMS  
E(36)  
NC  
VDDQ  
TDI  
TCK  
TDO  
VDDQ  
U
CY7C1356CV25 (512K x 18)–14 x 22 BGA  
1
2
3
4
5
6
7
VDDQ  
A
A
E(18)  
A
A
VDDQ  
A
B
C
D
E
F
NC  
NC  
CE2  
A
A
A
NC  
NC  
CE3  
A
ADV/LD  
VDD  
A
A
DQb  
NC  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
NC  
VSS  
VSS  
VSS  
DQPa  
NC  
NC  
DQa  
VDDQ  
CE1  
VDDQ  
DQa  
OE  
A
NC  
DQb  
VDDQ  
DQb  
NC  
VDD  
VSS  
VSS  
NC  
NC  
DQa  
VDD  
DQa  
NC  
VDDQ  
G
H
J
BWb  
VSS  
NC  
WE  
VDD  
NC  
DQb  
VDDQ  
DQb  
NC  
DQb  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
MODE  
A
CLK  
NC  
VSS  
NC  
DQa  
NC  
DQa  
NC  
A
DQa  
NC  
K
L
BWa  
VSS  
DQb  
NC  
VDDQ  
NC  
M
N
P
R
T
CEN  
A1  
VSS  
VSS  
NC  
A
DQPb  
A
A0  
DQa  
NC  
NC  
VDD  
E(36)  
TCK  
E(72)  
VDDQ  
A
A
ZZ  
TMS  
TDI  
TDO  
NC  
VDDQ  
U
Document #: 38-05537 Rev. *B  
Page 4 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Pin Configurations (continued)  
165-Ball fBGA Pinout  
CY7C1354CV25 (256K × 36) – 13 × 15 fBGA  
1
2
A
3
4
5
6
7
8
9
A
10  
A
11  
NC  
E(288)  
ADV/LD  
A
B
C
D
CE1  
BWc  
BWd  
VSS  
VDD  
BWb  
BWa  
VSS  
VSS  
CE3  
CLK  
VSS  
VSS  
CEN  
WE  
NC  
A
CE2  
VDDQ  
VDDQ  
OE  
VSS  
VDD  
E(18)  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
E(144)  
DQPb  
DQb  
A
DQPc  
DQc  
NC  
DQc  
VSS  
VSS  
NC  
DQb  
DQc  
DQc  
DQc  
NC  
DQc  
DQc  
DQc  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
DQb  
DQb  
DQb  
NC  
DQb  
DQb  
DQb  
ZZ  
E
F
G
H
J
NC  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
K
L
DQd  
DQPd  
NC  
DQd  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
DQa  
NC  
A
DQa  
DQPa  
NC  
M
N
P
E(72)  
TDI  
TDO  
MODE  
E(36)  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
CY7C1356CV25 (512K × 18) – 13 × 15 fBGA  
1
E(288)  
NC  
2
A
A
3
4
5
NC  
6
CE3  
7
8
9
A
10  
A
11  
A
A
B
C
D
CE1  
BWb  
NC  
CEN  
ADV/LD  
CE2  
VDDQ  
VDDQ  
BWa  
VSS  
VSS  
CLK  
VSS  
VSS  
E(18)  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
E(144)  
DQPa  
DQa  
WE  
VSS  
VSS  
OE  
VSS  
VDD  
A
NC  
NC  
VSS  
VDD  
NC  
NC  
DQb  
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
NC  
NC  
DQa  
DQa  
DQa  
ZZ  
E
F
NC  
NC  
G
H
J
NC  
NC  
NC  
DQb  
DQb  
DQb  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
DQa  
DQa  
DQa  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
A
NC  
K
L
NC  
NC  
DQb  
DQPb  
NC  
NC  
NC  
VDDQ  
VDDQ  
A
VDD  
VSS  
A
VSS  
NC  
VSS  
NC  
A1  
VSS  
NC  
VDD  
VSS  
A
DQa  
NC  
A
NC  
NC  
NC  
M
N
P
E(72)  
TDI  
TDO  
MODE  
E(36)  
A
A
TMS  
A0  
TCK  
A
A
A
A
R
Document #: 38-05537 Rev. *B  
Page 5 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Pin Definitions  
Pin Name  
I/O Type  
Pin Description  
A0  
A1  
A
Input-  
Synchronous  
Address Inputs used to select one of the address locations. Sampled at the rising edge of  
the CLK.  
BWa,  
BWb,  
BWc,  
BWd,  
Input-  
Synchronous  
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.  
Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,  
BWc controls DQc and DQPc, BWd controls DQd and DQPd.  
Input-  
Synchronous  
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This  
signal must be asserted LOW to initiate a write sequence.  
WE  
Input-  
Synchronous  
Advance/Load Input used to advance the on-chip address counter or load a new address.  
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a  
new address can be loaded into the device for an access. After being deselected, ADV/LD should  
be driven LOW in order to load a new address.  
ADV/LD  
CLK  
Input-  
Clock  
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.  
CLK is only recognized if CEN is active LOW.  
Input-  
Synchronous  
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE2 and CE3 to select/deselect the device.  
CE1  
CE2  
Input-  
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with  
Synchronous  
CE1 and CE3 to select/deselect the device.  
Input-  
Synchronous  
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with  
CE1 and CE2 to select/deselect the device.  
CE3  
OE  
Input-  
Output Enable, active LOW. Combined with the synchronous logic block inside the device to  
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.  
When deasserted HIGH, I/O pins are three-stated, and act as input data pins. OE is masked  
during the data portion of a Write sequence, during the first clock when emerging from a  
deselected state and when the device has been deselected.  
Input-  
Synchronous  
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the  
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not  
deselect the device, CEN can be used to extend the previous cycle when required.  
CEN  
DQS  
I/O-  
Synchronous  
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered  
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location  
specified by addresses during the previous clock rise of the Read cycle. The direction of the pins  
is controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave  
as outputs. When HIGH, DQa–DQd are placed in a three-state condition. The outputs are  
automatically three-stated during the data portion of a write sequence, during the first clock when  
emerging from a deselected state, and when the device is deselected, regardless of the state of  
OE.  
DQPX  
I/O-  
Synchronous  
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ[a:d]. During  
write sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled  
by BWc, and DQPd is controlled by BWd.  
MODE  
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.  
Pulled LOW selects the linear burst order. MODE should not change states during operation.  
When left floating MODE will default HIGH, to an interleaved burst order.  
TDO  
TDI  
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.  
Synchronous  
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.  
Synchronous  
TMS  
Test Mode Select This pin controls the Test Access Port state machine. Sampled on the rising edge of TCK.  
Synchronous  
TCK  
VDD  
VDDQ  
VSS  
JTAG-Clock  
Clock input to the JTAG circuitry.  
Power Supply Power supply inputs to the core of the device.  
I/O Power Supply Power supply for the I/O circuitry.  
Ground  
Ground for the device. Should be connected to ground of the system.  
Document #: 38-05537 Rev. *B  
Page 6 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Pin Definitions (continued)  
Pin Name  
I/O Type  
Pin Description  
No connects. This pin is not connected to the die.  
NC  
E(18,36,  
72, 144,  
288)  
These pins are not connected. They will be used for expansion to the 18M, 36M, 72M, 144M  
and 288M densities.  
ZZ  
Input-  
ZZ “sleep” Input. This active HIGH input places the device in a non-time critical “sleep” condition  
Asynchronous with data integrity preserved. During normal operation, this pin can be connected to VSS or left floating.  
Burst Read Accesses  
Functional Overview  
The CY7C1354CV25 and CY7C1356CV25 have an on-chip  
burst counter that allows the user the ability to supply a single  
address and conduct up to four Reads without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load  
a new address into the SRAM, as described in the Single Read  
Access section above. The sequence of the burst counter is  
determined by the MODE input signal. A LOW input on MODE  
selects a linear burst mode, a HIGH selects an interleaved  
burst sequence. Both burst counters use A0 and A1 in the  
burst sequence, and will wrap around when incremented suffi-  
ciently. A HIGH input on ADV/LD will increment the internal  
burst counter regardless of the state of chip enables inputs or  
WE. WE is latched at the beginning of a burst cycle. Therefore,  
the type of access (Read or Write) is maintained throughout  
the burst sequence.  
The  
CY7C1354CV25  
and  
CY7C1356CV25  
are  
synchronous-pipelined Burst NoBL SRAMs designed specifi-  
cally to eliminate wait states during Write/Read transitions. All  
synchronous inputs pass through input registers controlled by  
the rising edge of the clock. The clock signal is qualified with  
the Clock Enable input signal (CEN). If CEN is HIGH, the clock  
signal is not recognized and all internal states are maintained.  
All synchronous operations are qualified with CEN. All data  
outputs pass through output registers controlled by the rising  
edge of the clock. Maximum access delay from the clock rise  
(tCO) is 2.8 ns (225-MHz device).  
Accesses can be initiated by asserting all three Chip Enables  
(CE1, CE2, CE3) active at the rising edge of the clock. If Clock  
Enable (CEN) is active LOW and ADV/LD is asserted LOW,  
the address presented to the device will be latched. The  
access can either be a Read or Write operation, depending on  
the status of the Write Enable (WE). BW[d:a] can be used to  
conduct Byte Write operations.  
Single Write Accesses  
Write access are initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, and (3) the Write signal WE  
is asserted LOW. The address presented to A0A16 is loaded  
into the Address Register. The write signals are latched into  
the Control Logic block.  
Write operations are qualified by the Write Enable (WE). All  
Writes are simplified with on-chip synchronous self-timed  
Write circuitry.  
Three synchronous Chip Enables (CE1, CE2, CE3) and an  
asynchronous Output Enable (OE) simplify depth expansion.  
All operations (Reads, Writes, and Deselects) are pipelined.  
ADV/LD should be driven LOW once the device has been  
deselected in order to load a new address for the next  
operation.  
On the subsequent clock rise the data lines are automatically  
three-stated regardless of the state of the OE input signal. This  
allows the external logic to present the data on DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354CV25 and DQa,b/DQPa,b  
for CY7C1356CV25). In addition, the address for the subse-  
quent access (Read/Write/Deselect) is latched into the  
address register (provided the appropriate control signals are  
asserted).  
Single Read Accesses  
A read access is initiated when the following conditions are  
satisfied at clock rise: (1) CEN is asserted LOW, (2) CE1, CE2,  
and CE3 are ALL asserted active, (3) the Write Enable input  
signal WE is deasserted HIGH, and (4) ADV/LD is asserted  
LOW. The address presented to the address inputs is latched  
into the address register and presented to the memory core  
and control logic. The control logic determines that a read  
access is in progress and allows the requested data to  
propagate to the input of the output register. At the rising edge  
of the next clock the requested data is allowed to propagate  
through the output register and onto the data bus within 2.8 ns  
(225-MHz device) provided OE is active LOW. After the first  
clock of the read access the output buffers are controlled by  
OE and the internal control logic. OE must be driven LOW in  
order for the device to drive out the requested data. During the  
second clock, a subsequent operation (Read/Write/Deselect)  
can be initiated. Deselecting the device is also pipelined.  
Therefore, when the SRAM is deselected at clock rise by one  
of the chip enable signals, its output will three-state following  
the next clock rise.  
On the next clock rise the data presented to DQ  
and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354CV25 and DQa,b/DQPa,b  
for CY7C1356CV25) (or a subset for byte write operations,  
see Write Cycle Description table for details) inputs is latched  
into the device and the Write is complete.  
The data written during the Write operation is controlled by BW  
(BWa,b,c,d  
for  
CY7C1354CV25  
and  
BWa,b  
for  
CY7C1356CV25) signals. The CY7C1354CV25/56CV25  
provides Byte Write capability that is described in the Write  
Cycle Description table. Asserting the Write Enable input (WE)  
with the selected Byte Write Select (BW) input will selectively  
write to only the desired bytes. Bytes not selected during a  
Byte Write operation will remain unaltered. A synchronous  
self-timed write mechanism has been provided to simplify the  
Write operations. Byte Write capability has been included in  
order to greatly simplify Read/Modify/Write sequences, which  
can be reduced to simple Byte Write operations.  
Because the CY7C1354CV25 and CY7C1356CV25 are  
common I/O devices, data should not be driven into the device  
while the outputs are active. The Output Enable (OE) can be  
Document #: 38-05537 Rev. *B  
Page 7 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
deasserted HIGH before presenting data to the DQ and DQP  
(DQa,b,c,d/DQPa,b,c,d for CY7C1354CV25 and DQa,b/DQPa,b  
for CY7C1356CV25) inputs. Doing so will three-state the  
considered valid nor is the completion of the operation  
guaranteed. The device must be deselected prior to entering  
the “sleep” mode. CE1, CE2, and CE3, must remain inactive for  
the duration of tZZREC after the ZZ input returns LOW.  
output drivers. As a safety precaution, DQ and DQP (DQa,b,c,d  
/
DQPa,b,c,d for CY7C1354CV25 and DQa,b/DQPa,b for  
CY7C1356CV25) are automatically three-stated during the  
data portion of a write cycle, regardless of the state of OE.  
Interleaved Burst Address Table  
(MODE = Floating or VDD  
)
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
Burst Write Accesses  
The CY7C1354CV25/56CV25 has an on-chip burst counter  
that allows the user the ability to supply a single address and  
conduct up to four WRITE operations without reasserting the  
address inputs. ADV/LD must be driven LOW in order to load  
the initial address, as described in the Single Write Access  
section above. When ADV/LD is driven HIGH on the subse-  
quent clock rise, the chip enables (CE1, CE2, and CE3) and  
WE inputs are ignored and the burst counter is incremented.  
The correct BW (BWa,b,c,d for CY7C1354CV25 and BWa,b for  
CY7C1356CV25) inputs must be driven in each cycle of the  
burst write in order to write the correct bytes of data.  
A1,A0  
00  
01  
10  
11  
A1,A0  
01  
00  
11  
10  
A1,A0  
10  
11  
00  
01  
A1,A0  
11  
10  
01  
00  
Linear Burst Address Table (MODE = GND)  
First  
Address  
Second  
Address  
Third  
Address  
Fourth  
Address  
A1,A0  
00  
01  
10  
11  
A1,A0  
01  
10  
11  
00  
A1,A0  
10  
11  
00  
01  
A1,A0  
11  
00  
01  
10  
Sleep Mode  
The ZZ input pin is an asynchronous input. Asserting ZZ  
places the SRAM in a power conservation “sleep” mode. Two  
clock cycles are required to enter into or exit from this “sleep”  
mode. While in this mode, data integrity is guaranteed.  
Accesses pending when entering the “sleep” mode are not  
ZZ Mode Electrical Characteristics  
Parameter  
IDDZZ  
Description  
Sleep mode standby current  
Device operation to ZZ  
ZZ recovery time  
Test Conditions  
ZZ > VDD 0.2V  
ZZ > VDD 0.2V  
ZZ < 0.2V  
This parameter is sampled  
This parameter is sampled  
Min.  
Max  
Unit  
50  
mA  
tZZS  
2tCYC  
ns  
ns  
ns  
ns  
tZZREC  
tZZI  
2tCYC  
0
ZZ active to sleep current  
2tCYC  
tRZZI  
ZZ Inactive to exit sleep current  
Truth Table[2, 3, 4, 5, 6, 7, 8]  
Address  
Used  
Operation  
CE ZZ ADV/LD WE BWx  
OE  
CEN CLK  
L-H  
DQ  
Deselect Cycle  
None  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
X
X
H
X
H
X
L
X
X
X
X
X
X
L
X
X
L
L
L
L
L
L
L
L
L
L
L
Three-State  
Three-State  
Data Out (Q)  
Data Out (Q)  
Three-State  
Three-State  
Data In (D)  
Data In (D)  
Three-State  
Three-State  
Continue Deselect Cycle  
None  
L-H  
Read Cycle (Begin Burst)  
Read Cycle (Continue Burst)  
NOP/Dummy Read (Begin Burst)  
Dummy Read (Continue Burst)  
Write Cycle (Begin Burst)  
External  
Next  
L-H  
X
L
H
L
L
L-H  
External  
Next  
H
H
X
X
X
X
X
X
L-H  
X
L
H
L
L-H  
External  
Next  
L-H  
Write Cycle (Continue Burst)  
NOP/WRITE ABORT (Begin Burst)  
WRITE ABORT (Continue Burst)  
IGNORE CLOCK EDGE (Stall)  
X
L
H
L
X
L
L
L-H  
None  
H
H
X
X
L-H  
Next  
X
X
X
H
X
X
X
X
X
L-H  
Current  
None  
H
X
L-H  
X
SLEEP MODE  
Three-State  
Notes:  
2. X = “Don’t Care”, H = Logic HIGH, L = Logic LOW, CE stands for ALL Chip Enables active. BWx = L signifies at least one Byte Write Select is active, BWx =  
Valid signifies that the desired Byte Write Selects are asserted, see Write Cycle Description table for details.  
3. Write is defined by WE and BW . See Write Cycle Description table for details.  
X
4. When a write cycle is detected, all I/Os are three-stated, even during Byte Writes.  
5. The DQ and DQP pins are controlled by the current cycle and the OE signal.  
6. CEN = H inserts wait states.  
7. Device will power-up deselected and the I/Os in a three-state condition, regardless of OE.  
8. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle DQs and DQP = Three-state when  
X
OE is inactive or when the device is deselected, and DQs = data when OE is active.  
Document #: 38-05537 Rev. *B  
Page 8 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Partial Write Cycle Description[2, 3, 4, 9]  
Function (CY7C1354CV25)  
Read  
BWd  
BWc  
X
H
H
H
H
L
BWb  
X
H
H
L
BWa  
X
H
L
WE  
H
L
X
H
H
H
H
H
H
H
H
L
Write –No bytes written  
Write Byte a– (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Bytes b, a  
L
L
H
L
L
L
Write Byte c – (DQc and DQPc)  
Write Bytes c, a  
L
H
H
L
H
L
L
L
Write Bytes c, b  
L
L
H
L
Write Bytes c, b, a  
L
L
L
Write Byte d – (DQd and DQPd)  
Write Bytes d, a  
L
H
H
H
H
L
H
H
L
H
L
L
L
Write Bytes d, b  
L
L
H
L
Write Bytes d, b, a  
L
L
L
Write Bytes d, c  
L
L
H
H
L
H
L
Write Bytes d, c, a  
L
L
L
Write Bytes d, c, b  
L
L
L
H
L
Write All Bytes  
L
L
L
L
Partial Write Cycle Description[2, 3, 4, 9]  
Function (CY7C1356CV25)  
Read  
WE  
H
L
BWb  
BWa  
x
H
H
L
x
H
L
Write – No Bytes Written  
Write Byte a (DQa and DQPa)  
Write Byte b – (DQb and DQPb)  
Write Both Bytes  
L
L
H
L
L
L
The CY7C1354CV25/CY7C1356CV25 contains  
controller, instruction register, boundary scan register, bypass  
register, and ID register.  
a
TAP  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C1354CV25/CY7C1356CV25 incorporates a serial  
boundary scan test access port (TAP) in the BGA package  
only. The TQFP package does not offer this functionality. This  
part operates in accordance with IEEE Standard 1149.1-1900,  
but doesn’t have the set of functions required for full 1149.1  
compliance. These functions from the IEEE specification are  
excluded because their inclusion places an added delay in the  
critical speed path of the SRAM. Note the TAP controller  
functions in a manner that does not conflict with the operation  
of other devices using 1149.1 fully compliant TAPs. The TAP  
operates using JEDEC-standard 2.5V I/O logic levels.  
Disabling the JTAG Feature  
It is possible to operate the SRAM without using the JTAG  
feature. To disable the TAP controller, TCK must be tied  
LOW(VSS) to prevent clocking of the device. TDI and TMS are  
internally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
Note:  
9. Table only lists a partial listing of the byte write combinations. Any combination of BW is valid. Appropriate write will be done based on which byte write is active.  
X
Document #: 38-05537 Rev. *B  
Page 9 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
TAP Controller State Diagram[10]  
TAP Controller Block Diagram  
0
TEST-LOGIC  
1
RESET  
0
Bypass Register  
2
1
0
1
1
1
RUN-TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
Selection  
Circuitry  
Instruction Register  
31 30 29  
Identification Register  
Selection  
0
0
TDI  
TDO  
Circuitr  
y
1
1
.
.
.
2
1
0
CAPTURE-DR  
CAPTURE-IR  
0
0
x
.
.
.
.
. 2 1 0  
SHIFT-DR  
0
SHIFT-IR  
0
Boundary Scan Register  
TAP CONTROLLER  
1
1
1
1
EXIT1-DR  
EXIT1-IR  
0
0
TCK  
TMS  
PAUSE-DR  
0
PAUSE-IR  
0
1
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
Performing a TAP Reset  
UPDATE-DR  
UPDATE-IR  
A RESET is performed by forcing TMS HIGH (VDD) for five  
rising edges of TCK. This RESET does not affect the operation  
of the SRAM and may be performed while the SRAM is  
operating.  
1
0
1
0
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a High-Z state.  
Test Access Port (TAP)  
Test Clock (TCK)  
TAP Registers  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Registers are connected between the TDI and TDO balls and  
allow data to be scanned into and out of the SRAM test  
circuitry. Only one register can be selected at a time through  
the instruction register. Data is serially loaded into the TDI ball  
on the rising edge of TCK. Data is output on the TDO ball on  
the falling edge of TCK.  
Test MODE SELECT (TMS)  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this ball unconnected if the TAP is not used. The ball is  
pulled up internally, resulting in a logic HIGH level.  
Instruction Register  
Three-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO balls as shown in the Tap Controller Block  
Diagram. Upon power-up, the instruction register is loaded  
with the IDCODE instruction. It is also loaded with the IDCODE  
instruction if the controller is placed in a reset state as  
described in the previous section.  
Test Data-In (TDI)  
The TDI ball is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see Figure . TDI  
is internally pulled up and can be unconnected if the TAP is  
unused in an application. TDI is connected to the most signif-  
icant bit (MSB) of any register. (See Tap Controller Block  
Diagram.)  
When the TAP controller is in the Capture-IR state, the two  
least significant bits are loaded with a binary “01” pattern to  
allow for fault isolation of the board-level serial test data path.  
Bypass Register  
Test Data-Out (TDO)  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain chips. The bypass  
register is a single-bit register that can be placed between the  
TDI and TDO balls. This allows data to be shifted through the  
SRAM with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
The TDO output ball is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine. The output changes on the  
falling edge of TCK. TDO is connected to the least significant  
bit (LSB) of any register. (See Tap Controller State Diagram.)  
Note:  
10. The 0/1 next to each state represents the value of TMS at the rising edge of the TCK.  
Document #: 38-05537 Rev. *B  
Page 10 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Boundary Scan Register  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 20 MHz, while the SRAM clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is  
possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
The boundary scan register is connected to all the input and  
bidirectional balls on the SRAM.  
The boundary scan register is loaded with the contents of the  
RAM I/O ring when the TAP controller is in the Capture-DR  
state and is then placed between the TDI and TDO balls when  
the controller is moved to the Shift-DR state. The EXTEST,  
SAMPLE/PRELOAD and SAMPLE Z instructions can be used  
to capture the contents of the I/O ring.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the SRAM signal must be stabilized  
long enough to meet the TAP controller's capture set-up plus  
hold times (tCS and tCH). The SRAM clock input might not be  
captured correctly if there is no way in a design to stop (or  
slow) the clock during a SAMPLE/PRELOAD instruction. If this  
is an issue, it is still possible to capture all other signals and  
simply ignore the value of the CK and CK# captured in the  
boundary scan register.  
The Boundary Scan Order tables show the order in which the  
bits are connected. Each bit corresponds to one of the bumps  
on the SRAM package. The MSB of the register is connected  
to TDI, and the LSB is connected to TDO.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the SRAM and can be shifted out when the TAP controller  
is in the Shift-DR state. The ID register has a vendor code and  
other information described in the Identification Register  
Definitions table.  
Once the data is captured, it is possible to shift out the data by  
putting the TAP into the Shift-DR state. This places the  
boundary scan register between the TDI and TDO pins.  
PRELOAD allows an initial data pattern to be placed at the  
latched parallel outputs of the boundary scan register cells  
prior to the selection of another boundary scan test operation.  
TAP Instruction Set  
The shifting of data for the SAMPLE and PRELOAD phases  
can occur concurrently when required - that is, while data  
captured is shifted out, the preloaded data can be shifted in.  
Overview  
Eight different instructions are possible with the three bit  
instruction register. All combinations are listed in the  
Instruction Codes table. Three of these instructions are listed  
as RESERVED and should not be used. The other five instruc-  
tions are described in detail below.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO balls.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
EXTEST  
The EXTEST instruction enables the preloaded data to be  
driven out through the system output pins. This instruction also  
selects the boundary scan register to be connected for serial  
access between the TDI and TDO in the shift-DR controller  
state.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO balls and allows  
the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state.  
EXTEST OUTPUT BUS TRI-STATE  
The IDCODE instruction is loaded into the instruction register  
upon power-up or whenever the TAP controller is given a test  
logic reset state.  
IEEE Standard 1149.1 mandates that the TAP controller be  
able to put the output bus into a tri-state mode.  
The boundary scan register has a special bit located at bit #85  
(for 119-BGA package), bit #89 (for 165-FBGA package).  
When this scan cell, called the “extest output bus tristate”, is  
latched into the preload register during the “Update-DR” state  
in the TAP controller, it will directly control the state of the  
output (Q-bus) pins, when the EXTEST is entered as the  
current instruction. When HIGH, it will enable the output  
buffers to drive the output bus. When LOW, this bit will place  
the output bus into a High-Z condition.  
SAMPLE Z  
The SAMPLE Z instruction causes the boundary scan register  
to be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. The SAMPLE Z command puts  
the output bus into a High-Z state until the next command is  
given during the “Update IR” state.  
SAMPLE/PRELOAD  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the  
instruction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
This bit can be set by entering the SAMPLE/PRELOAD or  
EXTEST command, and then shifting the desired bit into that  
cell, during the “Shift-DR” state. During “Update-DR,” the value  
loaded into that shift-register cell will latch into the preload  
register. When the EXTEST instruction is entered, this bit will  
directly control the output Q-bus pins. Note that this bit is  
Document #: 38-05537 Rev. *B  
Page 11 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
pre-set HIGH to enable the output when the device is  
powered-up, and also when the TAP controller is in the  
Test-Logic-Reset” state.  
Reserved  
These instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
TAP Timing  
1
2
3
4
5
6
Test Clock  
(TCK)  
t
t
t
CYC  
TH  
TL  
t
t
t
t
TMSS  
TDIS  
TMSH  
Test Mode Select  
(TMS)  
TDIH  
Test Data-In  
(TDI)  
t
TDOV  
t
TDOX  
Test Data-Out  
(TDO)  
DON’T CARE  
UNDEFINED  
TAP AC Switching Characteristics Over the Operating Range[11, 12]  
Parameter  
Clock  
tTCYC  
tTF  
Description  
Min.  
Max.  
Unit  
TCK Clock Cycle Time  
TCK Clock Frequency  
TCK Clock HIGH time  
TCK Clock LOW time  
50  
ns  
MHz  
ns  
20  
tTH  
25  
25  
tTL  
ns  
Output Times  
tTDOV TCK Clock LOW to TDO Valid  
tTDOX TCK Clock LOW to TDO Invalid  
Set-up Times  
tTMSS TMS Set-up to TCK Clock Rise  
tTDIS  
5
ns  
ns  
0
5
5
5
ns  
ns  
TDI Set-up to TCK Clock Rise  
Capture Set-up to TCK Rise  
tCS  
Hold Times  
tTMSH  
tTDIH  
TMS hold after TCK Clock Rise  
TDI Hold after Clock Rise  
5
5
5
ns  
ns  
ns  
tCH  
Capture Hold after Clock Rise  
Notes:  
11. t and t refer to the set-up and hold time requirements of latching data from the boundary scan register.  
CS  
CH  
12. Test conditions are specified using the load in TAP AC test Conditions. t /t = 1ns.  
R
F
Document #: 38-05537 Rev. *B  
Page 12 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
2.5V TAP AC Test Conditions  
2.5V TAP AC Output Load Equivalent  
1.25V  
Input pulse levels ........................................ VSS to 2.5V  
Input rise and fall time .................................................... 1 ns  
Input timing reference levels ........................................1.25V  
Output reference levels ................................................1.25V  
Test load termination supply voltage.............................1.25V  
50  
TDO  
ZO= 50Ω  
20pF  
TAP DC Electrical Characteristics And Operating Conditions  
(0°C < TA < +70°C; Vdd = 2.5V ±0.125V unless otherwise noted)[13]  
Parameter  
VOH1  
Description  
Test Conditions  
Min.  
Max.  
Unit  
2.0  
V
Output HIGH Voltage IOH = -1.0 mA, VDDQ = 2.5V  
Output HIGH Voltage IOH = -100 µA,VDDQ = 2.5V  
Output LOW Voltage IOL = 8.0 mA, VDDQ = 2.5V  
Output LOW Voltage IOL = 100 µA  
Input HIGH Voltage  
2.1  
V
V
VOH2  
VOL1  
VOL2  
VIH  
0.4  
0.2  
VDDQ = 2.5V  
V
VDDQ = 2.5V  
VDDQ = 2.5V  
1.7  
-0.3  
-5  
VDD + 0.3  
V
0.7  
5
V
VIL  
Input LOW Voltage  
µA  
IX  
Input Load Current  
GND < VIN < VDDQ  
Identification Register Definitions  
Instruction Field  
Revision Number (31:29)  
Cypress Device ID (28:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
CY7C1354CV25  
000  
01011001000100110 01011001000010110 Reserved for future use.  
CY7C1356CV25  
Description  
000  
Reserved for version number.  
00000110100  
1
00000110100  
1
Allows unique identification of SRAM vendor.  
Indicate the presence of an ID register.  
Scan Register Sizes  
Register Name  
Bit Size  
Instruction  
3
Bypass  
1
ID  
32  
69  
69  
Boundary Scan Order (119-ball BGA package)  
Boundary Scan Order (165-ball fBGA package)  
Identification Codes  
Instruction  
EXTEST  
Code  
Description  
000 Captures the Input/Output ring contents. Places the boundary scan register between the TDI and  
TDO. Forces all SRAM outputs to High-Z state.  
IDCODE  
001 Loads the ID register with the vendor ID code and places the register between TDI and TDO. This  
operation does not affect SRAM operation.  
SAMPLE Z  
RESERVED  
010 Captures the Input/Output contents. Places the boundary scan register between TDI and TDO.  
Forces all SRAM output drivers to a High-Z state.  
011  
Do Not Use: This instruction is reserved for future use.  
SAMPLE/PRELOAD 100 Captures the Input/Output ring contents. Places the boundary scanregister between TDI and TDO.  
Does not affect the SRAM operation.  
Note:  
13. All voltages referenced to VSS (GND).  
Document #: 38-05537 Rev. *B  
Page 13 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Identification Codes (continued)  
Instruction  
RESERVED  
Code  
Description  
101 Do Not Use: This instruction is reserved for future use.  
RESERVED  
BYPASS  
110  
111  
Do Not Use: This instruction is reserved for future use.  
Places the bypass register between TDI and TDO. This operation does not affect SRAM operation.  
Boundary Scan Exit Order (×36) (continued)  
Boundary Scan Exit Order (×36)  
Bit #  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
119-Ball ID  
165-Ball ID  
Bit #  
1
119-Ball ID  
K4  
H4  
M4  
F4  
165-Ball ID  
B6  
P2  
P1  
L2  
N1  
L2  
K2  
J2  
2
B7  
3
A7  
K1  
N2  
N1  
M2  
L1  
4
B8  
M2  
M1  
L1  
K1  
J1  
5
B4  
G4  
C3  
B3  
D6  
H7  
G6  
E6  
D7  
E7  
F6  
A8  
6
A9  
7
B10  
A10  
C11  
E10  
F10  
G10  
D10  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
J11  
K11  
L11  
M11  
N11  
R11  
R10  
P10  
R9  
8
K2  
9
Not Bonded  
(Preset to 1)  
Not Bonded  
(Preset to 1)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
H1  
G2  
E2  
D1  
H2  
G1  
F2  
E1  
D2  
C2  
A2  
E4  
B2  
L3  
G2  
F2  
E2  
D2  
G1  
F1  
E1  
D1  
C1  
B2  
A2  
A3  
B3  
B4  
A4  
A5  
B5  
A6  
G7  
H6  
T7  
K7  
L6  
N6  
P7  
N7  
M6  
L7  
G3  
G5  
L5  
K6  
P6  
T4  
B6  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
R6  
T5  
Boundary Scan Exit Order (×18)  
Bit #  
119-Ball ID  
165-Ball ID  
B6  
P9  
1
2
3
4
5
6
7
8
9
K4  
H4  
M4  
F4  
B4  
G4  
C3  
B3  
T2  
R8  
B7  
P8  
A7  
R6  
B8  
P6  
A8  
R4  
A9  
P4  
B10  
A10  
A11  
T3  
R3  
R2  
R3  
P3  
R1  
Document #: 38-05537 Rev. *B  
Page 14 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Boundary Scan Exit Order (×18) (continued)  
Boundary Scan Exit Order (×18) (continued)  
Bit #  
119-Ball ID  
165-Ball ID  
Bit #  
48  
119-Ball ID  
165-Ball ID  
10  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
M2  
L1  
L1  
K1  
J1  
49  
11  
12  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
50  
K2  
51  
Not Bonded  
(Preset to 1)  
Not Bonded  
(Preset to 1)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
52  
53  
54  
55  
56  
H1  
G2  
E2  
D1  
G2  
F2  
E2  
D2  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
D6  
E7  
F6  
G7  
H6  
T7  
K7  
L6  
C11  
D11  
E11  
F11  
G11  
H11  
J10  
K10  
L10  
M10  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
57  
58  
59  
60  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
N6  
P7  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
24  
25  
26  
27  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
61  
62  
63  
64  
65  
C2  
A2  
E4  
B2  
B2  
A2  
A3  
B3  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
66  
67  
G3  
Not Bonded  
(Preset to 0)  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
T6  
A3  
C5  
B5  
A5  
C6  
A6  
P4  
N4  
R6  
T5  
T3  
R2  
R3  
R11  
R10  
P10  
R9  
P9  
Not Bonded  
(Preset to 0  
A4  
68  
69  
69  
69  
68  
69  
66  
L5  
B6  
B6  
B6  
L5  
B6  
G3  
B5  
A6  
A6  
A6  
B5  
A6  
R8  
P8  
R6  
P6  
Not Bonded  
(Preset to 0)  
R4  
P4  
67  
Not Bonded  
(Preset to 0  
A4  
R3  
P3  
68  
69  
L5  
B6  
B5  
A6  
R1  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
43  
44  
45  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
Not Bonded  
(Preset to 0)  
46  
47  
P2  
N1  
N1  
M1  
Document #: 38-05537 Rev. *B  
Page 15 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Current into Outputs (LOW)......................................... 20 mA  
Maximum Ratings  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-up Current.................................................... > 200 mA  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VDD /VDDQ  
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V  
DC to Outputs in Three-State.............. –0.5V to VDDQ + 0.5V  
DC Input Voltage....................................–0.5V to VDD + 0.5V  
2.5V +_ 5%  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range[14, 15]  
Parameter  
VDD  
Description  
Test Conditions  
Min.  
2.375  
2.375  
2.0  
Max.  
Unit  
V
Power Supply Voltage  
I/O Supply Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
2.625  
VDD  
VDDQ  
VOH  
VOL  
VIH  
VIL  
V
VDD = Min., IOH = 1.0 mA  
V
VDD = Min., IOL= 1.0 mA  
0.4  
V
VDDQ = 2.5V  
1.7  
–0.3  
–5  
VDD + 0.3V  
V
Input LOW Voltage[14] VDDQ = 2.5V  
0.7  
5
V
IX  
Input Load  
GND VI VDDQ  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
Input Current of MODE Input = VSS  
Input = VDD  
–30  
5
Input Current of ZZ  
Input = VSS  
Input = VDD  
–5  
–5  
30  
5
IOZ  
IDD  
Output Leakage Current GND VI VDD, Output Disabled  
VDD Operating Supply VDD = Max., IOUT = 0 mA,  
f = fMAX = 1/tCYC  
4.4-ns cycle, 225 MHz  
250  
220  
180  
130  
120  
110  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
ISB1  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected, 4.4-ns cycle, 225 MHz  
VIN VIH or VIN VIL, f = fMAX =  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
1/tCYC  
ISB2  
Automatic CE  
Power-down  
Current—CMOS Inputs f = 0  
Max. VDD, Device Deselected, All speed grades  
VIN 0.3V or VIN > VDDQ 0.3V,  
35  
mA  
ISB3  
Automatic CE  
Power-down  
Current—CMOS Inputs f = fMAX = 1/tCYC  
Max. VDD, Device Deselected, 4.4-ns cycle, 225 MHz  
120  
110  
100  
mA  
mA  
mA  
VIN 0.3V or VIN > VDDQ 0.3V,  
5-ns cycle, 200 MHz  
6-ns cycle, 167 MHz  
ISB4  
Automatic CE  
Power-down  
Current—TTL Inputs  
Max. VDD, Device Deselected, All speed grades  
VIN VIH or VIN VIL, f = 0  
40  
mA  
Shaded areas contain advance information.  
Thermal Resistance[16]  
Parameters  
ΘJA  
Description  
Test Conditions  
BGA Typ.  
fBGA Typ.  
TQFP Typ.  
Unit  
Thermal Resistance  
(Junction to Ambient)  
Test conditions follow standard  
test methods and procedures  
for measuring thermal  
25  
27  
25  
°C/W  
ΘJC  
Thermal Resistance  
(Junction to Case)  
6
6
9
°C/W  
impedance, per EIA / JESD51.  
Notes:  
14. Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than t  
/2), undershoot: V (AC)> –2V (Pulse width less than t  
/2).  
CYC  
IL  
CYC  
15. T  
: Assumes a linear ramp from 0V to V  
(min.) within 200 ms. During this time V < V and V  
< V  
.
Power-up  
IH  
DD  
DDQ  
DD  
DD  
16. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-05537 Rev. *B  
Page 16 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Capacitance[16]  
Parameter  
Description  
Test Conditions  
BGA Max.  
fBGA Max.  
TQFP Max.  
Unit  
pF  
CIN  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
DD = 2.5V, VDDQ = 2.5V  
5
5
7
5
5
7
5
5
5
V
CCLK  
CI/O  
Clock Input Capacitance  
Input/Output Capacitance  
pF  
pF  
AC Test Loads and Waveforms  
2.5V I/O Test Load  
R = 1667Ω  
2.5V  
OUTPUT  
OUTPUT  
ALL INPUT PULSES  
90%  
VDDQ  
GND  
90%  
10%  
Z = 50Ω  
0
10%  
R = 50Ω  
L
5 pF  
INCLUDING  
R =1538Ω  
1ns  
1ns  
V = 1.25V  
T
JIG AND  
SCOPE  
(a)  
(b)  
(c)  
Switching Characteristics Over the Operating Range [18, 19]  
-225  
Max.  
-200  
-167  
Parameter  
Description  
Min.  
Min.  
Max.  
Min.  
Max.  
Unit  
[17]  
tPower  
VCC (typical) to the First Access Read or  
Write  
1
1
1
ms  
Clock  
tCYC  
Clock Cycle Time  
Maximum Operating Frequency  
Clock HIGH  
4.4  
5
6
ns  
MHz  
ns  
FMAX  
tCH  
225  
200  
167  
1.8  
1.8  
2.0  
2.0  
2.4  
2.4  
tCL  
Clock LOW  
ns  
Output Times  
tCO  
Data Output Valid after CLK Rise  
OE LOW to Output Valid  
2.8  
2.8  
3.2  
3.2  
3.5  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEOV  
tDOH  
Data Output Hold after CLK Rise  
Clock to High-Z[20, 21, 22]  
Clock to Low-Z[20, 21, 22]  
1.25  
1.25  
1.25  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
tCHZ  
2.8  
2.8  
3.2  
3.2  
3.5  
3.5  
tCLZ  
HIGH to Output High-Z[20, 21, 22]  
OE LOW to Output Low-Z[20, 21, 22]  
tEOHZ  
tEOLZ  
Set-up Times  
tAS  
OE  
0
0
0
Address Set-up before CLK Rise  
Data Input Set-up before CLK Rise  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
tCENS  
tWES  
CEN Set-up before CLK Rise  
WE, BWx Set-up before CLK Rise  
tALS  
ADV/LD Set-up before CLK Rise  
Chip Select Set-up  
tCES  
Shaded areas contain advance information.  
Notes:  
17. This part has a voltage regulator internally; t  
is the time power needs to be supplied above V minimum initially, before a Read or Write operation can be  
DD  
power  
initiated.  
18. Timing reference level is when V  
= 2.5V.  
DDQ  
19. Test conditions shown in (a) of AC Test Loads unless otherwise noted.  
20. t , t , t , and t are specified with AC test conditions shown in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.  
CHZ CLZ EOLZ  
EOHZ  
21. At any given voltage and temperature, t  
is less than t  
and t  
is less than t  
to eliminate bus contention between SRAMs when sharing the same  
CLZ  
EOHZ  
EOLZ  
CHZ  
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed  
to achieve High-Z prior to Low-Z under the same system conditions.  
22. This parameter is sampled and not 100% tested.  
Document #: 38-05537 Rev. *B  
Page 17 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Switching Characteristics Over the Operating Range (continued)[18, 19]  
-225  
-200  
-167  
Parameter  
Hold Times  
tAH  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
Address Hold after CLK Rise  
Data Input Hold after CLK Rise  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
tCENH  
CEN Hold after CLK Rise  
tWEH  
WE, BWx Hold after CLK Rise  
tALH  
ADV/LD Hold after CLK Rise  
tCEH  
Chip Select Hold after CLK Rise  
Switching Waveforms  
Read/Write Timing[23,24,25]  
1
2
3
4
5
6
7
8
9
10  
t
CYC  
t
CLK  
t
t
t
CENS CENH  
CL  
CH  
CEN  
t
t
CES  
CEH  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A4  
CO  
A3  
A5  
A6  
A7  
ADDRESS  
t
t
t
t
DS  
DH  
t
t
t
DOH  
OEV  
CLZ  
CHZ  
t
t
AS  
AH  
Data  
D(A1)  
D(A2)  
D(A2+1)  
Q(A3)  
Q(A4)  
OEHZ  
Q(A4+1)  
D(A5)  
Q(A6  
-Out (DQ)  
t
t
DOH  
t
OELZ  
OE  
WRITE  
D(A1)  
WRITE  
D(A2)  
BURST  
WRITE  
READ  
Q(A3)  
READ  
Q(A4)  
BURST  
READ  
WRITE  
D(A5)  
READ  
Q(A6)  
WRITE  
D(A7)  
DESELECT  
D(A2+1)  
Q(A4+1)  
DON’T CARE  
UNDEFINED  
Notes:  
23. For this waveform ZZ is tied low.  
24. When CE is LOW, CE is LOW, CE is HIGH and CE is LOW. When CE is HIGH,CE is HIGH or CE is LOW or CE is HIGH.  
1
2
3
1
2
3
25. Order of the Burst sequence is determined by the status of the MODE (0=Linear, 1=Interleaved).Burst operations are optional.  
Document #: 38-05537 Rev. *B  
Page 18 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Switching Waveforms (continued)  
NOP, STALL and DESELECT CYCLES[23,24,26]  
1
2
3
4
5
6
7
8
9
10  
CLK  
CEN  
CE  
ADV/LD  
WE  
BW  
X
A1  
A2  
A3  
A4  
A5  
ADDRESS  
t
CHZ  
D(A4)  
D(A1)  
Q(A2)  
Q(A3)  
Q(A5)  
Data  
In-Out (DQ)  
WRITE  
D(A1)  
READ  
Q(A2)  
STALL  
READ  
Q(A3)  
WRITE  
D(A4)  
STALL  
NOP  
READ  
Q(A5)  
DESELECT  
CONTINUE  
DESELECT  
DON’T CARE  
UNDEFINED  
ZZ Mode Timing[27,28]  
CLK  
t
t
ZZ  
ZZREC  
ZZ  
t
ZZI  
I
SUPPLY  
I
DDZZ  
t
RZZI  
ALL INPUTS  
(except ZZ)  
DESELECT or READ Only  
Outputs (Q)  
High-Z  
DON’T CARE  
26. The IGNORE CLOCK EDGE or STALL cycle (Clock 3) illustrated CEN being used to create a pause. A write is not performed during this cycle  
27. Device must be deselected when entering ZZ mode. See cycle description table for all possible signal conditions to deselect the device.  
28. I/Os are in High-Z when exiting ZZ sleep mode.  
Document #: 38-05537 Rev. *B  
Page 19 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Ordering Information  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
225  
CY7C1354CV25-225AXC  
CY7C1356CV25-225AXC  
CY7C1354CV25-225AXI  
CY7C1356CV25-225AXI  
CY7C1354CV25-225BGC  
CY7C1356CV25-225BGC  
CY7C1354CV25-225BGI  
CY7C1356CV25-225BGI  
CY7C1354CV25-225BZC  
CY7C1356CV25-225BZC  
CY7C1354CV25-225BZI  
CY7C1356CV25-225BZI  
CY7C1354CV25-225BGXC  
CY7C1356CV25-225BGXC  
CY7C1354CV25-225BGXI  
CY7C1356CV25-225BGXI  
CY7C1354CV25-225BZXC  
CY7C1356CV25-225BZXC  
CY7C1354CV25-225BZXI  
CY7C1356CV25-225BZXI  
CY7C1354CV25-200AXC  
CY7C1356CV25-200AXC  
CY7C1354CV25-200AXI  
CY7C1356CV25-200AXI  
CY7C1354CV25-200BGC  
CY7C1356CV25-200BGC  
CY7C1354CV25-200BGI  
CY7C1356CV25-200BGI  
CY7C1354CV25-200BZC  
CY7C1356CV25-200BZC  
CY7C1354CV25-200BZI  
CY7C1356CV25-200BZI  
CY7C1354CV25-200BGXC  
CY7C1356CV25-200BGXC  
CY7C1354CV25-200BGXI  
CY7C1356CV25-200BGXI  
CY7C1354CV25-200BZXC  
CY7C1356CV25-200BZXC  
CY7C1354CV25-200BZXI  
CY7C1356CV25-200BZXI  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
Commercial  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
Industrial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
Industrial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Commercial  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Industrial  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Commercial  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Industrial  
Commercial  
Industrial  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x  
15 x 1.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x  
15 x 1.4 mm)  
200  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
Commercial  
Industrial  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
Industrial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Commercial  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Industrial  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Commercial  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Industrial  
Commercial  
Industrial  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x  
15 x 1.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x  
15 x 1.4 mm)  
Document #: 38-05537 Rev. *B  
Page 20 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Ordering Information (continued)  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
Package Type  
167  
CY7C1354CV25-167AXC  
CY7C1356CV25-167AXC  
CY7C1354CV25-167AXI  
CY7C1356CV25-167AXI  
CY7C1354CV25-167BGC  
CY7C1356CV25-167BGC  
CY7C1354CV25-167BGI  
CY7C1356CV25-167BGI  
CY7C1354CV25-167BZC  
CY7C1356CV25-167BZC  
CY7C1354CV25-167BZI  
CY7C1356CV25-167BZI  
CY7C1354CV25-167BGXC  
CY7C1356CV25-167BGXC  
CY7C1354CV25-167BGXI  
CY7C1356CV25-167BGXI  
CY7C1354CV25-167BZXC  
CY7C1356CV25-167BZXC  
CY7C1354CV25-167BZXI  
CY7C1356CV25-167BZXI  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
Commercial  
A101  
Lead-Free 100-lead Thin Quad Flat Pack (14 x 20 x  
1.4 mm)  
Industrial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Commercial  
Industrial  
BG119 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Commercial  
BB165D 165-ball Fine Pitch Ball Grid Array (13 x 15 x 1.4 mm) Industrial  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm) Commercial  
BG119 Lead-Free 119-ball Ball Grid Array (14 x 22 x 2.4 mm)  
Industrial  
Commercial  
Industrial  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x  
15 x 1.4 mm)  
BB165D Lead-Free 165-ball Fine Pitch Ball Grid Array (13 x  
15 x 1.4 mm)  
Shaded areas contain advance information. Please contact your local Cypress sales representative for availability of these parts. Lead-free BGX package will be  
available in 2005.  
Document #: 38-05537 Rev. *B  
Page 21 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Package Diagrams  
100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101  
DIMENSIONS ARE IN MILLIMETERS.  
ꢁ6.00 0.20  
ꢁ4.00 0.ꢁ0  
ꢁ.40 0.05  
ꢁ00  
ꢀꢁ  
ꢀ0  
0.30 0.0ꢀ  
0.65  
TYP.  
ꢁ2° ꢁ°  
(ꢀX)  
SEE DETAIL  
A
30  
5ꢁ  
3ꢁ  
50  
0.20 MAX.  
ꢁ.60 MAX.  
R 0.0ꢀ MIN.  
0.20 MAX.  
0° MIN.  
STAND-OFF  
0.05 MIN.  
0.ꢁ5 MAX.  
SEATING PLANE  
0.25  
GAUGE PLANE  
R 0.0ꢀ MIN.  
0.20 MAX.  
0°-7°  
0.60 0.ꢁ5  
0.20 MIN.  
ꢁ.00 REF.  
51-85050-*A  
DETAIL  
A
Document #: 38-05537 Rev. *B  
Page 22 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Package Diagrams (continued)  
119-Lead BGA (14 x 22 x 2.4mm) BG119  
51-85115-*B  
Document #: 38-05537 Rev. *B  
Page 23 of 25  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Package Diagrams (continued)  
165 FBGA 13 x 15 x 1.40 MM BB165D  
51-85180-**  
NoBL and No Bus Latency are trademarks of Cypress Semiconductor Corporation. ZBT is a trademark of Integrated Device  
Technology. All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-05537 Rev. *B  
Page 24 of 25  
© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C1354CV25  
CY7C1356CV25  
PRELIMINARY  
Document History Page  
Document Title: CY7C1354CV25/CY7C1356CV25 9-Mbit (256K x 36/512K x 18) Pipelined SRAM  
with NoBL™ Architecture  
Document Number: 38-05537  
Orig. of  
REV.  
**  
ECN No. Issue Date Change  
Description of Change  
242032  
278969  
284929  
See ECN  
See ECN  
See ECN  
RKF  
RKF  
New data sheet  
*A  
Changed Boundary Scan order to match the B Rev of these devices  
*B  
RKF  
VBL  
Included DC Characteristics Table  
Changed ISB1 and ISB3 from DC Characteristic table as follows:  
ISB1: 225 MHz -> 130 mA, 200 MHz -> 120 mA, 167 MHz -> 110 mA  
ISB3: 225 MHz -> 120 mA, 200 MHz -> 110 mA, 167 MHz -> 100 mA  
Changed IDDZZ to 50mA.  
Added BG and BZ pkg lead-free part numbers to ordering info section.  
Document #: 38-05537 Rev. *B  
Page 25 of 25  

相关型号:

CY7C1354CV25-167AXI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BGC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BGI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BGXC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BGXI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BZC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BZI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BZXC

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-167BZXI

9-Mbit ( 256K x 36/512K x 18 ) Pipelined SRAM with NoBL-TM Architecture
CYPRESS

CY7C1354CV25-200AXC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1354CV25-200AXI

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS

CY7C1354CV25-200BGC

9-Mbit (256K x 36/512K x 18) Pipelined SRAM with NoBL⑩ Architecture
CYPRESS