CY7C04312BV-133 [CYPRESS]

10 Gb/s 3.3V QuadPort DSE Family; 10 Gb / s的3.3V QuadPort DSE系列
CY7C04312BV-133
型号: CY7C04312BV-133
厂家: CYPRESS    CYPRESS
描述:

10 Gb/s 3.3V QuadPort DSE Family
10 Gb / s的3.3V QuadPort DSE系列

文件: 总37页 (文件大小:828K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
10 Gb/s 3.3V QuadPort™  
DSE Family  
BIST (Built-In Self-Test) controller  
DualChipEnablesonallportsforeasydepthexpansion  
Separate upper-byte and lower-byte controls on all  
ports  
Simple array partitioning (CY7C0430BV only)  
Internal maskregister controlscounter wrap-around  
Counter-Interrupt flags to indicate wrap-around  
Counter and mask registers readback on address  
Features  
QuadPort™ datapath switching element (DSE) family  
allows four independent ports of access for data path  
management and switching  
• High-bandwidth data throughput up to 10 Gb/s  
• 133-MHz[1] port speed x 18-bit-wide interface × 4 ports  
• High-speed clock to data access 4.2 ns (max.)  
Synchronous pipelined devices  
1-Mb, ½-Mb, and ¼-Mb switch arrays  
272-ball BGA package (27-mm × 27-mm × 1.27-mm ball  
pitch)  
64K/32K/16K × 18 device options  
0.25-micron CMOS for optimum speed/power  
IEEE 1149.1 JTAG boundary scan  
Commercial and industrial temperature ranges  
3.3V low operating power  
Active = 750 mA (maximum)  
Width and depth expansion capabilities  
Standby = 15 mA (maximum  
QuadPort DSE Family Applications  
PORT 1  
PORT 3  
PORT 2  
PORT 4  
BUFFERED SWITCH  
PORT 2  
PORT 3  
PORT 4  
PORT 1  
REDUNDANT DATA MIRROR  
Note:  
1. fMAX2 for commercial is 135 MHz and for industrial is 133 MHz.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-06027 Rev. *A  
Revised May 14, 2002  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
DATA PATH AGGREGATOR  
Processor 1  
QuadPort  
Pre-processed DATA Path  
Processed DATA Path  
DSE Family  
Processor 2  
DATA PATH MANAGER FOR  
PARALLEL PACKET PROCESSING  
Queue #1  
Queue #2  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
DATA CLASSIFICATION ENGINE  
address register. After externally loading the counter with the  
initial address the counter will self-increment the address inter-  
nally (more details to follow). The internal write pulse width is  
independent of the duration of the R/W input signal. The  
internal write pulse is self-timed to allow the shortest possible  
cycle times.  
Functional Description  
The CY7C043XXBV is a family of 10 Gb/s, true four-ported  
Datapath Switching Elements with port speeds of up to  
133 MHz[1]. The members of the family include 1-Mb  
(64K ×18), ½-Mb (32K x18), and ¼-Mb (16K × 18) options. All  
four ports may be clocked at independent frequencies from  
one another. Simultaneous reads are allowed for accesses to  
the same address location; however, simultaneous reading  
and writing to the same address is not allowed. Any port can  
write to a certain location while other ports are reading that  
location simultaneously, if the timing spec for port to port delay  
(tCCS) is met. The result of writing to the same location by more  
than one port at the same time is undefined.  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power  
consumption. One cycle is required with chip enables asserted  
to reactivate the outputs.  
The CY7C0430BV (64K × 18 device) is the only member of  
the family which contains burst contains for simple array parti-  
tioning. Counter enable inputs are provided to stall the  
operation of the address input and utilize the internal address  
generated by the internal counter for fast interleaved memory  
Data is registered for decreased cycle time. Clock to data valid  
tCD2 = 4.2 ns. Each port contains a burst counter on the input  
Document #: 38-06027 Rev. *A  
Page 2 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
applications. A ports burst counter is loaded with an external  
address when the ports Counter Load pin (CNTLD) is  
asserted LOW. When the ports Counter Increment pin  
(CNTINC) is asserted, the address counter will increment on  
each subsequent LOW-to- HIGH transition of that ports clock  
signal. This will read/write one word from/into each successive  
address location until CNTINC is deasserted. The counter can  
address the entire switch array and will loop back to the start.  
Counter Reset (CNTRST) is used to reset the burst counter.  
A counter-mask register is used to control the counter wrap.  
The counter and mask register operations are described in  
more details in the following sections.  
The counter or mask register values can be read back on the  
bidirectional address lines by activating MKRD or CNTRD,  
respectively.  
The new features included for the QuadPort DSE family  
include: readback of burst-counter internal address value on  
address lines, counter-mask registers to control the counter  
wrap-around, readback of mask register value on address  
lines, interrupt flags for message passing, BIST, JTAG for  
boundary scan, and asynchronous Master Reset.  
Top Level Logic Block Diagram  
Port 1 Operation-control Logic Blocks[2]  
Reset  
MRST  
Logic  
UBP1  
LBP1  
Port-1  
R/WP1  
TMS  
Control  
Logic  
JTAG  
OEP1  
TCK  
Controller  
TDO  
CE0P1  
TDI  
CE1P1  
CLKP1  
CLKBIST  
BIST  
18  
Port 1  
I/O0P1- I/O17P1  
Port 4 Logic Blocks[3]  
I/O  
CLKP1  
16  
A0P1A15P1  
[4]  
Port 1  
Port 4  
Port 1  
MKLDP1  
[4]  
Counter/  
Mask Reg/  
Address  
Decode  
CNTLDP1  
16K/32K/64K × 18  
QuadPort DSE  
Array  
[4]  
[4]  
CNTINCP1  
CNTRDP1  
[4]  
[4]  
MKRDP1  
CNTRSTP1  
INTP1  
[4]  
CNTINTP1  
Port 2  
Port 3  
Port 2 Logic Blocks[3]  
Port 3 Logic Blocks[3]  
Notes:  
2. Port 1 Control Logic Block is detailed on page 4.  
3. Port 2, Port 3, and Port 4 Logic Blocks are similar to Port 1 Logic Blocks.  
4. Counter functionality applies only to CY7C0430BV (64K × 18) device option. These pins are either GND or NC for CY7C04312BV and CY7C04314BV.  
Document #: 38-06027 Rev. *A  
Page 3 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Port 1 Operation-Control Logic Block Diagram  
(Address Readback is independent of CEs)  
R/WP1  
W
UBP1  
CE0P1  
CE1P1  
LBP1  
OEP1  
9
I/O9P1I/O17P1  
Port-1  
I/O  
Control  
9
I/O0P1I/O8P1  
Addr.  
Read  
Port 1  
Readback  
Register  
MRST  
16  
A0P1A15P1  
Port 1  
Mask Register  
[4]  
CNTRDP1  
MKRDP1  
Port 1  
Priority  
Decision  
Logic  
[4]  
16K/32K/64K × 18  
QuadPort  
DSE Array  
Address  
Decode  
[4]  
MKLDP1  
Port 1  
Counter/  
Address  
Register  
[4]  
CNTINCP1  
[4]  
CNTLDP1  
[4]  
CNTRSTP1  
CLKP1  
LBP1  
UBP1  
R/WP1  
CE0P1  
CE1P1  
Port 1  
Interrupt  
Logic  
MRST  
CNTINTP1  
[4]  
INTP1  
OEP1  
CLKP1  
MRST  
Document #: 38-06027 Rev. *A  
Page 4 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Pin Configuration  
272-ball Grid Array (BGA)  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
LB  
P1  
I/O17  
P2  
I/O15  
P2  
I/O13  
P2  
I/O11  
P2  
I/O9  
P2  
I/O16  
P1  
I/O14  
P1  
I/O12  
P1  
I/O10  
P1  
I/O10  
P4  
I/O12  
P4  
I/O14  
P4  
I/O16  
P4  
I/O9  
P3  
I/O11  
P3  
I/O13  
P3  
I/O15  
P3  
I/O17  
P3  
LB  
P4  
A
B
VDD1  
UB  
P1  
I/O16  
P2  
I/O14  
P2  
I/O12  
P2  
I/O10  
P2  
I/O17  
P1  
I/O13  
P1  
I/O11  
P1  
TMS  
TCK  
VSS  
TDI  
TDO  
VSS  
I/O11  
P4  
I/O13  
P4  
I/O17  
P4  
I/O10  
P3  
I/O12  
P3  
I/O14  
P3  
I/O16  
P3  
UB  
P4  
VDD1  
A14  
A15  
CE1  
P1  
CE0  
P1  
R/W  
P1  
I/O15  
P1  
VSS2  
VSS2  
VSS2  
VDD2  
I/O9  
P1  
I/O9  
P4  
VSS2  
VDD2  
VSS2  
VSS2  
I/O15  
P4  
R/W  
P4  
CE0  
P4  
CE1  
P4  
A15  
A14  
[9]  
[8]  
[8]  
[9]  
C
P1  
P1  
P4  
P4  
VSS1  
A12  
P1  
A13  
P1  
OE  
P1  
VDD2  
VSS2  
VDD  
VDD  
VSS2  
VDD2  
OE  
P4  
A13  
P4  
A12  
P4  
VSS1  
D
A10  
P1  
A11  
P1  
MKRD  
P1  
CNTRD  
CNTRD MKRD  
A11  
P4  
A10  
P4  
[6]  
[6]  
E
P1  
P4  
P4  
A7  
P1  
A8  
P1  
A9  
P1  
CNTINT  
CNTINT  
A9  
P4  
A8  
P4  
A7  
P4  
[7]  
[7]  
F
P1  
P4  
VSS1  
A5  
P1  
A6  
P1  
CNTINC  
CNTINC  
A6  
P4  
A5  
P4  
VSS1  
[6]  
[6]  
G
H
P1  
P4  
A3  
P1  
A4  
P1  
MKLD  
P1  
CNTLD  
CNTLD  
MKLD  
A4  
P4  
A3  
P4  
[6]  
[6]  
[6]  
P1  
P4  
P4  
[5]  
[5]  
[5]  
[5]  
VDD1  
A1  
P1  
A2  
P1  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
A2  
P4  
A1  
P4  
VDD1  
J
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
A0  
P1  
INT  
P1  
CNTRST  
CLK  
P1  
CLK  
P4  
CNTRST  
INT  
P4  
A0  
P4  
[6]  
[6]  
K
P1  
P4  
A0  
P2  
INT  
P2  
CNTRST  
VSS  
VSS  
CNTRST  
INT  
P3  
A0  
P3  
[6]  
[6]  
L
P2  
P3  
VDD1  
A1  
P2  
A2  
P2  
CLK  
P2  
CLK  
P3  
A2  
P3  
A1  
P3  
VDD1  
M
N
A3  
P2  
A4  
P2  
MKLD  
P2  
CNTLD  
CNTLD  
MKLD  
A4  
P3  
A3  
P3  
[6]  
[6]  
[6]  
P2  
P3  
P3  
VSS1  
A5  
P2  
A6  
P2  
CNTINC  
CNTINC  
A6  
P3  
A5  
P3  
VSS1  
[6]  
[6]  
P
P2  
P3  
A7  
P2  
A8  
P2  
A9  
P2  
CNTINT  
CNTINT  
A9  
P3  
A8  
P3  
A7  
P3  
[7]  
[7]  
R
P2  
P3  
A10  
P2  
A11  
P2  
MKRD  
P2  
CNTRD  
CNTRD MKRD  
[6] [6]  
A11  
P3  
A10  
P3  
[6]  
T
P2  
P3  
P3  
VSS1  
A12  
P2  
A13  
P2  
OE  
P2  
VDD2  
VSS2  
VSS2  
VSS2  
VDD2  
VSS2  
VDD  
VSS  
NC  
VSS  
NC  
VDD  
VDD2  
VSS2  
VSS2  
VSS2  
VSS2  
VDD2  
OE  
A13  
P3  
A12  
P3  
VSS1  
U
P3  
A14  
A15  
CE1  
P2  
CE0  
P2  
R/W  
P2  
I/O6  
P2  
I/O0  
P2  
I/O0  
P3  
I/O6  
P3  
R/W  
P3  
CE0  
P3  
CE1  
P3  
A15  
A14  
[9]  
[8]  
[8]  
[9]  
V
P2  
P2  
P3  
P3  
VDD1  
UB  
P2  
I/O7  
P1  
I/O5  
P1  
I/O3  
P1  
I/O1  
P1  
I/O8  
P2  
I/O4  
P2  
I/O2  
P2  
MRST CLKBIST  
I/O2  
P3  
I/O4  
P3  
I/O8  
P3  
I/O1  
P4  
I/O3  
P4  
I/O5  
P4  
I/O7  
P4  
UB  
P3  
VDD1  
W
Y
LB  
P2  
I/O8  
P1  
I/O6  
P1  
I/O4  
P1  
I/O2  
P1  
I/O0  
P1  
1/O7  
P2  
I/O5  
P2  
I/O3  
P2  
I/O1  
P2  
I/O1  
P3  
I/O3  
P3  
I/O5  
P3  
I/O7  
P3  
I/O0  
P4  
I/O2  
P4  
I/O4  
P4  
I/O6  
P4  
I/O8  
P4  
LB  
P3  
Notes:  
5. Central Leads are for thermal dissipation only. They are connected to device VSS  
6. Pin is VSS for CY7C04312BV and CY7C04314BV devices.  
.
7. Pin is NC for CY7C04312BV and CY7C04314BV devices.  
8. Pin is VSS for CY7C04312BV and CY7C04314BV devices.  
9. Pin is VSS for CY7C04314BV devices.  
Document #: 38-06027 Rev. *A  
Page 5 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Selection Guide  
CY7C04312BV  
-133  
CY7C04312BV  
-100  
Unit  
MHz  
ns  
fMAX2  
133[1]  
100  
5.0  
600  
150  
15  
Max Access Time (Clock to Data)  
Max Operating Current ICC  
4.2  
750  
200  
15  
mA  
mA  
mA  
Max Standby Current for ISB1 (All ports TTL Level)  
Max Standby Current for ISB3 (All ports CMOS Level)  
Pin Definitions  
Port 1  
Port 2  
Port 3  
Port 4  
Description  
Address Input/Output.  
A0P1A15P1  
A0P2A15P2  
A0P3A15P3  
A0P4A15P4  
I/O0P1I/O17P1 I/O0P2I/O17P2 I/O0P3I/O17P3 I/O0P4I/O17P4 Data Bus Input/Output.  
CLKP1  
CLKP2  
CLKP3  
CLKP4  
Clock Input. This input can be free running or strobed.  
Maximum clock input rate is fMAX  
.
LBP1  
LBP2  
LBP3  
LBP4  
Lower Byte Select Input. Asserting this signal LOW  
enables read and write operations to the lower byte. For  
read operations both the LB and OE signals must be  
asserted to drive output data on the lower byte of the data  
pins.  
UBP1  
UBP2  
UBP3  
UBP4  
Upper Byte Select Input. Same function as LB, but to  
the upper byte.  
CE0P1,CE1P1  
CE0P2,CE1P2  
CE0P3,CE1P3  
CE0P4,CE1P4  
Chip Enable Input. To select any port, both CE0 AND  
CE1 must be asserted to their active states (CE0 VIL  
and CE1 VIH).  
OEP1  
OEP2  
OEP3  
OEP4  
Output EnableInput. ThissignalmustbeassertedLOW  
to enable the I/O data lines during read operations. OE  
is asynchronous input.  
R/WP1  
MRST  
R/WP2  
R/WP3  
R/WP4  
Read/Write Enable Input. This signal is asserted LOW  
to write to the dual port memory array. For read opera-  
tions, assert this pin HIGH.  
Master Reset Input. This is one signal for All Ports.  
MRST is an asynchronous input. Asserting MRST LOW  
performsalloftheresetfunctionsasdescribedinthe text.  
A MRST operation is required at power-up.  
[6]  
[6]  
[6]  
[6]  
CNTRSTP1  
CNTRSTP2  
CNTRSTP3  
CNTRSTP4  
Counter Reset Input. Asserting this signal LOW resets  
the burst address counter of its respective port to zero.  
CNTRST is second to MRST in priority with respect to  
counter and mask register operations.  
[6]  
[6]  
[6]  
[6]  
MKLDP1  
MKLDP2  
MKLDP3  
MKLDP4  
Mask Register Load Input. Asserting this signal LOW  
loads the mask register with the external address  
available on the address lines. MKLD operation has  
higher priority over CNTLD operation.  
[6]  
[6]  
[6]  
[6]  
CNTLDP1  
CNTLDP2  
CNTLDP3  
CNTLDP4  
Counter Load Input. Asserting this signal LOW loads  
the burst counter with the external address present on  
the address pins.  
[6]  
[6]  
[6]  
[6]  
CNTINCP1  
CNTINCP2  
CNTINCP3  
CNTINCP4  
Counter Increment Input. Asserting this signal LOW  
increments the burst address counter of its respective  
port on each rising edge of CLK.  
Document #: 38-06027 Rev. *A  
Page 6 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Pin Definitions (continued)  
Port 1  
Port 2  
Port 3  
Port 4  
Description  
[6]  
[6]  
[6]  
[6]  
CNTRDP1  
CNTRDP2  
CNTRDP3  
CNTRDP4  
Counter Readback Input. When asserted LOW, the  
internal address value of the counter will be read back on  
the address lines. During CNTRD operation, both  
CNTLD and CNTINC must be HIGH. Counter readback  
operationhashigherpriorityovermaskregisterreadback  
operation. Counter readback operation is independent of  
port chip enables. If address readback operation occurs  
with chip enables active (CE0 = LOW, CE1 = HIGH), the  
datalines (I/Os)willbe three-stated. The readback timing  
will be valid after one no-operation cycle plus tCD2 from  
the rising edge of the next cycle.  
[6]  
[6]  
[6]  
[6]  
MKRDP1  
MKRDP2  
MKRDP3  
MKRDP4  
Mask Register Readback Input. When asserted LOW,  
the value of the mask register will be readback on  
address lines. During mask register readback operation,  
all counter and MKLD inputs must be HIGH (see Counter  
and Mask Register Operations truth table). Mask register  
readback operation is independent of port chip enables.  
If address readback operation occurs with chip enables  
active (CE0 = LOW, CE1 = HIGH), the data lines (I/Os)  
will be three-stated. The readback will be valid after one  
no-operation cycle plus tCD2 from the rising edge of the  
next cycle.  
[7]  
[7]  
[7]  
[7]  
CNTINTP1  
CNTINTP2  
INTP2  
CNTINTP3  
CNTINTP4  
INTP4  
Counter Interrupt Flag Output. Flag is asserted LOW  
for one clock cycle when the counter wraps around to  
location zero.  
INTP1  
INTP3  
Interrupt Flag Output. Interrupt permits communica-  
tions between all four ports. The upper four memory  
locations can be used for message passing. Example of  
operation: INTP4 is asserted LOW when another port  
writes to the mailbox location of Port 4. Flag is cleared  
when Port 4 reads the contents of its mailbox. The same  
operation is applicable to ports 1, 2, and 3.  
TMS  
JTAG Test Mode Select Input. It controls the advance  
of JTAG TAP state machine. State machine transitions  
occur on the rising edge of TCK.  
TCK  
TDI  
JTAG Test Clock Input. This can be CLK of any port or  
an external clock connected to the JTAG TAP.  
JTAG Test Data Input. This is the only data input. TDI  
inputs will shift data serially in to the selected register.  
TDO  
JTAG Test Data Output. This is the only data output.  
TDO transitions occur on the falling edge of TCK. TDO  
normally three-stated except when captured data is  
shifted out of the JTAG TAP.  
CLKBIST  
GND  
VSS  
BIST Clock Input.  
Thermal Ground for Heat Dissipation.  
Ground Input.  
VDD  
Power Input.  
VSS1  
VDD1  
VSS2  
VDD2  
Address Lines Ground Input.  
Address Lines Power Input.  
Data Lines Ground Input.  
Data Lines Power Input.  
Document #: 38-06027 Rev. *A  
Page 7 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage ..........................................> 2200V  
Latch-up Current.....................................................> 200 mA  
Storage Temperature ................................ 65°C to + 150°C  
Ambient Temperature with  
Power Applied............................................55°C to + 125°C  
Operating Range  
Supply Voltage to Ground Potential.............. 0.5V to + 4.6V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
VDD  
DC Voltage Applied to  
Outputs in High-Z State .........................0.5V to VCC + 0.5V  
3.3V ± 150 mV  
3.3V ± 150 mV  
40°C to +85°C  
DC Input Voltage....................................0.5V to VCC + 0.5V  
Electrical Characteristics Over the Operating Range  
CY7C043XXBV  
-100  
-133  
Parameter  
Description  
Output HIGH Voltage  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit  
VOH  
2.4  
2.4  
V
(VCC = Min., IOH = 4.0 mA)  
VOL  
Output LOW Voltage  
(VCC = Min., IOH = +4.0 mA)  
0.4  
0.4  
V
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
2.0  
V
V
0.8  
10  
0.8  
10  
Output Leakage Current  
10  
10  
µA  
mA  
Operating Current (VCC = Max., IOUT = 0 mA)  
Outputs Disabled, CE = VIL, f = fmax  
350  
80  
700  
300  
60  
550  
ISB1  
Standby Current (four ports toggling at TTL  
Levels,0 active)  
CE1-4 VIH, f = fMAX  
200  
300  
150  
250  
mA  
mA  
ISB2  
Standby Current (four ports toggling at TTL  
Levels, 1 active) CE1 | CE2 | CE3 | CE4 < VIL,  
f = fMAX  
150  
125  
ISB3  
ISB4  
Standby Current (four ports CMOS Level, 0  
active) CE14 VIH, f = 0  
1.5  
15  
1.5  
85  
15  
mA  
mA  
Standby Current (four ports CMOS Level, 1  
active and toggling) CE1 | CE2 | CE3 | CE4 <  
VIL, f = fMAX  
110  
290  
240  
JTAG TAP Electrical Characteristics Over the Operating Range  
Parameter  
VOH1  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Test Conditions  
IOH = 4.0 mA  
Min.  
Max.  
Unit  
V
2.4  
VOL1  
VIH  
VIL  
IX  
IOL = 4.0 mA  
0.4  
V
2.0  
V
0.8  
V
Input Leakage Current  
GND VI VDD  
100  
100  
µA  
Capacitance  
Parameter  
Description  
Test Conditions  
TA = 25°C, f = 1 MHz,  
VCC = 3.3V  
Max.  
Unit  
pF  
CIN (All Pins)  
Input Capacitance  
Output Capacitance  
Input Capacitance  
Output Capacitance  
10  
10  
15  
15  
COUT (All Pins)  
CIN (CLK Pins)  
COUT (CLK Pins)  
pF  
pF  
pF  
Document #: 38-06027 Rev. *A  
Page 8 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
AC Test Load  
Z0 = 50  
R = 50Ω  
Z0 = 50  
R = 50Ω  
OUTPUT  
OUTPUT  
[10]  
C
5 pF  
V
TH  
= 1.5V  
V
TH  
= 1.5V  
(a) Normal Load  
Z0 = 50  
R = 50Ω  
OUTPUT  
5 pF  
V
TH  
= 3.3V  
1.5V  
(b) Three-State Delay  
50Ω  
TDO  
Z =50Ω  
0
C = 10 pF  
3.0V  
GND  
90%  
10%  
90%  
10%  
GND  
t
t
F
R
(c) TAP Load  
All Input Pulses  
Note:  
10. Test conditions: C = 10 pF.  
Document #: 38-06027 Rev. *A  
Page 9 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
[11]  
Switching Characteristics Over the Industrial Operating Range  
CY7C04312BV  
-133  
-100  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[12]  
fMAX2  
Maximum Frequency  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
Clock Rise Time  
133  
100  
[12]  
tCYC2  
7.5  
3
10  
4
tCH2  
tCL2  
3
4
tR  
2
2
3
3
tF  
Clock Fall Time  
tSA  
Address Set-up Time  
Address Hold Time  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
3
0.7  
3
tHA  
tSC  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
tHC  
0.7  
3
tSW  
tHW  
R/W Hold Time  
0.7  
3
tSD  
Input Data Set-up Time  
Input Data Hold Time  
Byte Set-up Time  
tHD  
0.7  
3
tSB  
tHB  
Byte Hold Time  
0.7  
3
tSCLD  
tHCLD  
tSCINC  
tHCINC  
tSCRST  
tHCRST  
tSCRD  
tHCRD  
tSMLD  
tHMLD  
tSMRD  
tHMRD  
tOE  
CNTLD Set-up Time  
CNTLD Hold Time  
0.7  
3
CNTINC Set-up Time  
CNTINC Hold Time  
0.7  
3
CNTRST Set-up Time  
CNTRST Hold Time  
0.7  
3
CNTRD Set-up Time  
CNTRD Hold Time  
0.7  
3
MKLD Set-up Time  
MKLD Hold Time  
0.7  
3
MKRD Set-up Time  
MKRD Hold Time  
0.7  
Output Enable to Data Valid  
OE to Low-Z  
6.5  
8
[13]  
tOLZ  
1
1
1
1
[13]  
tOHZ  
OE to High-Z  
6
7
5
5
5
tCD2  
tCA2  
tCM2  
tDC  
Clock to Data Valid  
4.2  
4.7  
4.7  
Clock to Counter Address Readback Valid  
Clock to Mask Register Readback Valid  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High-Z  
Clock HIGH to Output Low-Z  
1
1
1
1
1
1
[14]  
tCKHZ  
4.8  
6.8  
[14]  
tCKLZ  
Notes:  
11. If data is simultaneously written and read to the same address location and tCCS is violated, the data read from the address, as well as the subsequent data  
remaining in the address is undefined.  
12.  
fMAX2 for commercial is 135 MHz. tCYC2 Min. for commercial is 7.4 ns.  
13. This parameter is guaranteed by design, but it is not production tested.  
14. Valid for both address and data outputs.  
Document #: 38-06027 Rev. *A  
Page 10 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Characteristics Over the Industrial Operating Range (continued)[11]  
CY7C04312BV  
-133  
-100  
Parameter  
tSINT  
Description  
Clock to INT Set Time  
Min.  
Max.  
7.5  
Min.  
Max.  
10  
Unit  
ns  
1
1
1
1
1
1
1
1
tRINT  
Clock to INT Reset Time  
Clock to CNTINT Set Time  
Clock to CNTINT Reset Time  
7.5  
10  
ns  
tSCINT  
tRCINT  
7.5  
10  
ns  
7.5  
10  
ns  
Master Reset Timing  
tRS  
Master Reset Pulse Width  
7.5  
7.5  
10  
10  
ns  
ns  
ns  
tRSR  
tROF  
Master Reset Recovery Time  
Master Reset to Output Flags Reset Time  
6.5  
8
Port to Port Delays  
[11]  
tCCS  
Clock to Clock Set-up Time (time required after a write  
before you can read the same address location)  
6.5  
9
ns  
JTAG Timing and Switching Waveforms  
CY7C043XXBV  
133/100  
Parameter  
fJTAG  
tTCYC  
tTH  
Description  
Maximum JTAG TAP Controller Frequency  
TCK Clock Cycle Time  
Min.  
Max.  
Unit  
MHz  
ns  
10  
100  
40  
40  
20  
20  
20  
20  
TCK Clock High Time  
ns  
tTL  
TCK Clock Low Time  
ns  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
fBIST  
tBH  
TMS Set-up to TCK Clock Rise  
TMS Hold After TCK Clock Rise  
TDI Set-up to TCK Clock Rise  
TDI Hold after TCK Clock Rise  
TCK Clock Low to TDO Valid  
TCK Clock Low to TDO Invalid  
Maximum CLKBIST Frequency  
CLKBIST High Time  
ns  
ns  
ns  
ns  
20  
50  
ns  
0
ns  
MHz  
ns  
6
6
tBL  
CLKBIST Low Time  
ns  
Document #: 38-06027 Rev. *A  
Page 11 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
tTH  
tTL  
Test Clock  
TCK  
tTCYC  
tTMSH  
tTMSS  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Switching Waveforms  
Master Reset[15]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
t
RS  
MRST  
t
RSF  
ALL  
ADDRESS/  
DATA  
LINES  
t
t
S
RSR  
ALL  
OTHER  
INPUTS  
INACTIVE  
ACTIVE  
[16]  
TMS  
CNTINT  
INT  
TDO  
Notes:  
15. tS is the set-up time required for all input control signals.  
16. To Reset the test port without resetting the device, TMS must be held low for five clock cycles.  
Document #: 38-06027 Rev. *A  
Page 12 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Read Cycle[17, 18, 19, 20, 21]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
t
t
t
t
HC  
SC  
HC  
SC  
LB  
t
SB  
t
HB  
UB  
R/W  
t
t
t
t
SW  
SA  
HW  
HA  
ADDRESS  
A
A
A
A
n+3  
n
n+1  
n+2  
t
1 Latency  
t
DC  
CD2  
DATA  
OUT  
Q
Q
Q
n+2  
n
n+1  
t
OHZ  
t
t
CKLZ  
OLZ  
OE  
tOE  
Notes:  
17. OE is asynchronously controlled; all other inputs (excluding MRST) are synchronous to the rising clock edge.  
18. CNTLD = VIL, MKLD = VIH, CNTINC = x, and MRST = CNTRST = VIH  
19. The output is disabled (high-impedance state) by CE = VIH following the next rising edge of the clock.  
.
20. Addresses do not have to be accessed sequentially. Note 18 indicates that address is constantly loaded on the rising edge of the CLK. Numbers are for reference  
only.  
21. CE is internal signal. CE = VIL if CE0 = VIL and CE1 = VIH  
.
Document #: 38-06027 Rev. *A  
Page 13 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Bank Select Read[22, 23]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
t
t
t
HA  
SA  
ADDRESS  
A
A
A
A
A
A
3
4
(B1)  
(B1)  
5
0
1
2
t
HC  
SC  
CE  
t
t
t
t
t
t
t
CD2  
CD2  
CD2  
CKHZ  
HC  
CKHZ  
SC  
Q
Q
Q
3
DATA  
0
1
OUT(B1)  
t
t
HA  
SA  
t
t
t
CKLZ  
DC  
DC  
A
A
4
A
ADDRESS  
CE  
A
0
A
A
3
5
(B2)  
1
2
t
t
HC  
SC  
(B2)  
t
t
t
CD2  
t
CD2  
CKHZ  
t
SC  
HC  
DATA  
OUT(B2)  
Q
Q
4
2
t
t
CKLZ  
CKLZ  
Read-to-Write-to-Read (OE = VIL)[24, 25, 26, 27]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
t
t
HC  
SC  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
A
A
n+4  
n
n+1  
n+2  
n+2  
n+3  
ADDRESS  
t
t
SD HD  
t
t
HA  
SA  
DATA  
D
IN  
n+2  
t
t
t
CD2  
CD2  
CKHZ  
Q
Q
n
n+3  
DATA  
OUT  
t
CKLZ  
Read  
No Operation  
Write  
Read  
Notes:  
22. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each bank consists of one QuadPort DSE device from this data sheet.  
ADDRESS(B1) = ADDRESS(B2)  
23. LB = UB = OE = CNTLD = VIL; MRST = CNTRST= MKLD = VIH  
24. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.  
.
.
25. LB = UB = CNTLD = VIL; MRST = CNTRST = MKLD = VIH  
.
26. Addresses do not have to be accessed sequentially since CNTLD = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference only.  
27. During No Operation,data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
Document #: 38-06027 Rev. *A  
Page 14 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Read-to-Write-to-Read (OE Controlled)[24, 25, 26, 27]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
t
t
HC  
SC  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
A
A
n+5  
n
n+1  
n+2  
n+3  
n+4  
ADDRESS  
t
t
HA  
t
t
SA  
SD HD  
D
DATA  
D
n+2  
IN  
n+3  
t
t
CD2  
CD2  
DATA  
Q
t
OUT  
Q
n
n+4  
t
OHZ  
CKLZ  
OE  
Read  
Write  
Read  
Read with Address Counter Advance[28, 29]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
ADDRESS  
A
n
t
t
HCLD  
SCLD  
CNTLD  
t
t
SCINC  
HCINC  
CNTINC  
t
CD2  
DATA  
OUT  
Q
Q
Q
Q
Q
Q
n+3  
x1  
x
n
n+1  
n+2  
t
Read  
DC  
Counter Hold  
Read with Counter  
Read with Counter  
External  
Address  
Notes:  
28. CE0 = OE = LB = UB = VIL; CE1 = R/W = CNTRST = MRST = MKLD = MKRD = CNTRD = VIH  
.
29. The Internal Addressis equal to the External Addresswhen CNTLD = VIL.  
Document #: 38-06027 Rev. *A  
Page 15 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Write with Address Counter Advance [29, 30, 31]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
A
ADDRESS  
n
INTERNAL  
ADDRESS  
A
A
A
A
A
n+4  
n
n+1  
n+2  
n+3  
t
t
HCLD  
SCLD  
CNTLD  
CNTINC  
t
t
HCINC  
SCINC  
D
D
D
D
D
D
n+4  
DATA  
n
n+1  
n+1  
n+2  
n+3  
IN  
t
t
HD  
SD  
Write External  
Address  
Write with  
Counter  
Write Counter  
Hold  
Write with Counter  
Notes:  
30. CE0 = LB = UB = R/W = VIL; CE1 = CNTRST = MRST = MKLD = MKRD = CNTRD = VIH.  
31. Counter operation is only available on the CY7C0430BV. The CY7C04312BV and CY7C04314BV do not support the counter functions.  
Document #: 38-06027 Rev. *A  
Page 16 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Counter Reset [26, 31, 32, 33]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
A
A
ADDRESS  
n
n+1  
INTERNAL  
ADDRESS  
A
A
A
A
A
n+1  
X
0
1
n
t
t
HW  
SW  
R/W  
t
t
HCLD  
SCLD  
CNTLD  
CNTINC  
CNTRST  
A
t
t
n+2  
SCRST  
HCRST  
t
t
HD  
SD  
DATA  
D
IN  
0
DATA  
Q
Q
Q
n
OUT  
0
1
Counter  
Reset  
Write  
Address 0  
Read  
Address 0  
Read  
Address 1  
Read  
Address n  
Notes:  
32. CE0 = LB = UB = VIL; CE1 = MRST = MKLD = MKRD = CNTRD = VIH  
.
33. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.  
Document #: 38-06027 Rev. *A  
Page 17 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Load and Read Address Counter[31, 34]  
t
CYC2  
t
t
CH2  
CL2  
Note 35  
Note 36  
CLK  
t
t
t
CA2  
HA  
SA  
t
t
CKHZ  
CKLZ  
A0-A15  
[37]  
A
A
n
n+2  
t
t
HCLD  
SCLD  
CNTLD  
CNTINC  
t
t
SCINC  
HCINC  
t
t
HCRD  
SCRD  
CNTRD  
INTERNAL  
ADDRESS  
A
A
A
n+2  
A
A
n
n+1  
n+2  
n+2  
t
DC  
t
t
CD2  
t
CKLZ  
CKHZ  
DATA  
OUT  
Q
Q
Q
Q
Q
Q
n+2  
x1  
x
n
n+1  
n+2  
Load  
Read Data with Counter  
Read  
External  
Address  
Internal  
Address  
Notes:  
34. CE0 = OE = LB = UB = VIL; CE1 = R/W = CNTRST = MRST = MKLD = MKRD = VIH  
35. Address in output mode. Host must not be driving address bus after time tCKLZ in next clock cycle.  
36. Address in input mode. Host can drive address bus after tCKHZ  
.
.
37. This is the value of the address counter being read out on the address lines.  
Document #: 38-06027 Rev. *A  
Page 18 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Load and Read Mask Register [31, 38]  
t
CYC2  
t
t
CH2  
CL2  
Note 35  
t
Note 36  
CLK  
t
t
t
CA2  
HA  
SA  
t
CKHZ  
CKLZ  
A0-A15  
[39]  
A
A
n
n
t
t
HMLD  
SMLD  
MKLD  
MKRD  
t
t
HMRD  
SMRD  
MASK  
INTERNAL  
VALUE  
A
A
A
n
A
A
n
n
n
n
Read  
Load  
Mask Register  
Value  
Mask Register  
Value  
Notes:  
38. CE0 = OE = LB = UB = VIL; CE1 = R/W = CNTRST = MRST = CNTLD = CNTRD = CNTINC =VIH  
39. This is the value of the Mask Register read out on the address lines.  
.
Document #: 38-06027 Rev. *A  
Page 19 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Port 1 Write to Port 2 Read[40, 41, 42]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
P1  
t
HA  
t
SA  
PORT-1  
ADDRESS  
A
n
t
t
HW  
SW  
R/W  
P1  
t
CKHZ  
t
SD  
t
HD  
t
CKLZ  
PORT-1  
DATA  
D
n
IN  
t
CCS  
t
CYC2  
t
CL2  
CLK  
P2  
t
CH2  
t
t
SA  
HA  
PORT-2  
ADDRESS  
A
n
R/W  
P2  
t
CD2  
PORT-2  
DATA  
Q
n
OUT  
t
DC  
Notes:  
40. CE0 = OE = LB = UB = CNTLD =VIL; CE1 = CNTRST = MRST = MKLD = MKRD = CNTRD = CNTINC =VIH  
.
41. This timing is valid when one port is writing, and one or more of the three other ports is reading the same location at the same time. If tCCS is violated, indeterminate  
data will be read out.  
42. If tCCS< minimum specified value, then Port 2 will read the most recent data (written by Port 1) only (2*tCYC2 + tCD2) after the rising edge of Port 2s clock. If  
t
CCS > minimum specified value, then Port 2 will read the most recent data (written by Port 1) (tCYC2 + tCD2) after the rising edge of Port 2s clock.  
Document #: 38-06027 Rev. *A  
Page 20 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Switching Waveforms (continued)  
Counter Interrupt [31, 43, 44, 45]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
EXTERNAL  
ADDRESS  
007Fh  
xx7Dh  
t
t
HMLD  
SMLD  
MKLD  
t
SCLD  
t
HCLD  
CNTLD  
t
t
HCINC  
SCINC  
CNTINC  
COUNTER  
INTERNAL  
ADDRESS  
xx7Dh  
A
xx7Eh  
xx7Fh  
xx00h  
xx00h  
n
t
SCINT  
t
RCINT  
CNTINT  
Mailbox Interrupt Timing[46, 47, 48, 49, 50]  
tCYC2  
tCH2  
tCL2  
CLKP1  
t
t
HA  
SA  
PORT-1  
ADDRESS  
A
FFFE  
A
n
A
A
n+3  
n+1  
n+2  
t
SINT  
t
INT  
RINT  
P2  
t
CYC2  
t
t
CH2  
CL2  
CLK  
P2  
t
t
HA  
SA  
PORT-2  
ADDRESS  
FFFE  
A
A
m+1  
A
A
m+4  
m
m+3  
Notes:  
43. CE0 = OE = LB = UB = VIL; CE1 = R/W = CNTRST = MRST = CNTRD = MKRD = VIH  
.
44. CNTINT is always driven.  
45. CNTINC goes LOW as the counter address masked portion is incremented from xx7Fh to xx00h. The xis Dont Care.”  
46. CE0 = OE = LB = UB = CNTLD =VIL; CE1 = CNTRST = MRST = CNTRD = CNTINC = MKRD = MKLD =VIH  
.
47. Address FFFEis the mailbox location for Port 2.  
48. Port 1 is configured for Write operation, and Port 2 is configured for Read operation.  
49. Port 1 and Port 2 are used for simplicity. All four ports can write to or read from any mailbox.  
50. Interrupt flag is set with respect to the rising edge of the write clock, and is reset with respect to the rising edge of the read clock.  
Document #: 38-06027 Rev. *A  
Page 21 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Table 1. Read/Write and Enable Operation (Any Port)[51, 52, 53]  
Inputs  
Outputs  
I/O0I/O17  
High-Z  
OE  
CLK  
CE0  
CE1  
R/W  
Operation  
X
H
X
X
Deselected  
Deselected  
Write  
X
X
L
X
L
L
L
L
X
L
High-Z  
DIN  
H
H
H
H
X
DOUT  
High-Z  
Read  
H
X
Outputs Disabled  
Table 2. Address Counter and Counter-Mask Register Control Operation (Any Port)[31, 51, 54, 55]  
CLK MRST CNTRST MKLD CNTLD CNTINC CNTRD MKRD Mode Operation  
Master- Counter/Address Register Reset and Mask  
X
L
X
X
X
X
X
X
Reset  
Register Set (resets entire chip as per reset  
state table)  
H
H
H
L
H
H
X
L
X
X
L
X
X
X
X
X
X
X
X
X
Reset  
Load  
Load  
Counter/Address Register Reset  
Load of Address Lines into Mask Register  
H
LoadofAddressLinesintoCounter/Address  
Register  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
X
L
X
X
L
Increment Counter Increment  
H
H
H
Readback Readback Counter on Address Lines  
Readback Readback Mask Register on Address Lines  
H
H
H
Hold  
Counter Hold  
Notes:  
51. X= Dont Care,” “H= VIH, L= VIL  
.
52. OE is an asynchronous input signal.  
53. When CE changes state, deselection and read happen after one cycle of latency.  
54. CE0 = OE = VIL; CE1 = R/W = VIH  
.
55. Counter operation and mask register operation are independent of Chip Enables.  
Document #: 38-06027 Rev. *A  
Page 22 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
the mailbox for Port 1, FFFE is the mailbox for Port 2, FFFD is  
the mailbox for Port 3, and FFFC is the mailbox for Port 4.  
Table 3 shows that in order to set Port 1 INTP1 flag, a write by  
any other port to address FFFF will assert INTP1 LOW. A read  
of FFFF location by Port 1 will reset INTP1 HIGH. When one  
port writes to the other ports mailbox, the Interrupt flag (INT)  
of the port that the mailbox belongs to is asserted LOW. The  
Interrupt is reset when the owner (port) of the mailbox reads  
the contents of the mailbox. The interrupt flag is set in a  
flow-through mode (i.e., it follows the clock edge of the writing  
port). Also, the flag is reset in a flow-through mode (i.e., it  
follows the clock edge of the reading port).  
Master Reset  
The QuadPort DSE device undergoes a complete reset by  
taking its Master Reset (MRST) input LOW. The Master Reset  
input can switch asynchronously to the clocks. A Master Reset  
initializes the internal burst counters to zero, and the counter  
mask registers to all ones (completely unmasked). A Master  
Reset also forces the Mailbox Interrupt (INT) flags and the  
Counter Interrupt (CNTINT) flags HIGH, resets the BIST  
controller, and takes all registered control signals to a  
deselected read state.[56] A Master Reset must be performed  
on the QuadPort DSE device after power-up.  
Each port can read the other ports mailbox without resetting  
the interrupt. If an application does not require message  
passing, INT pins should be treated as no-connect and should  
be left floating. When two ports or more write to the same  
mailbox at the same time INT will be asserted but the contents  
of the mailbox are not guaranteed to be valid.  
Interrupts  
The upper four memory locations may be used for message  
passing and permit communications between ports. Table 3  
shows the interrupt operation for all ports. For the 1-Mb  
QuadPort DSE device, the highest memory location FFFF is  
Table 3. Interrupt Operation Example  
Port 1  
Port 2  
Port 3  
A0P315P3  
Port 4  
A0P415P4  
INTP  
4
Function  
A0P115P1  
INTP1  
A0P215P2  
FFFF  
X
INTP2  
INTP3  
Set Port 1 INTP1 Flag  
Reset Port 1 INTP1 Flag  
Set Port 2 INTP2 Flag  
Reset Port 2 INTP2 Flag  
Set Port 3 INTP3 Flag  
Reset Port 3 INTP3 Flag  
Set Port 4 INTP4 Flag  
X
FFFF  
FFFE  
X
L
H
X
X
X
X
X
X
X
X
L
FFFF  
X
X
X
X
X
L
FFFF  
X
X
X
X
X
X
X
L
X
FFFE  
X
FFFE  
X
FFFE  
FFFD  
X
H
X
X
X
X
FFFD  
X
X
FFFD  
X
FFFD  
FFFC  
X
H
X
X
FFFC  
X
FFFC  
X
X
Reset Port 4 INTP4 Flag  
FFFC  
H
Note:  
56. During Master Reset the control signals will be set to a deselected read state: CE0I = LBI = UBI = R/WI = MKLDI = MKRDI = CNTRDI = CNTRSTI = CNTLDI =  
CNTINCI = VIH; CE1I = VIL. The Isuffix on all these signals denotes that these are the internal registered equivalent of the associated pin signals.  
Address Counter Control Operations[31]  
Figure 1 provides a block diagram of the readback operation.  
Table 2 lists control signals required for counter operations.  
Counter enable inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
internal counter for the fast interleaved memory applications.  
A ports burst counter is loaded with the ports Counter Load  
pin (CNTLD). When the ports Counter Increment (CNTINC) is  
asserted, the address counter will increment on each LOW to  
HIGH transition of that ports clock signal. This will read/write  
one word from/into each successive address location until  
CNTINC is deasserted. Depending on the mask register state,  
the counter can address the entire memory array and will loop  
back to start. Counter Reset (CNTRST) is used to reset the  
Burst Counter (the Mask Register value is unaffected). When  
using the counter in readback mode, the internal address  
value of the counter will be read back on the address lines  
when Counter Readback Signal (CNTRD) is asserted.  
The signals are listed based on their priority. For example,  
Master Reset takes precedence over Counter Reset, and  
Counter Load has lower priority than Mask Register Load  
(described below). All counter operations are independent of  
Chip Enables (CE0 and CE1). When the address readback  
operation is performed the data I/Os are three-stated (if CEs  
are active) and one-clock cycle (no-operation cycle) latency is  
experienced. The address will be read at time tCA2 from the  
rising edge of the clock following the no-operation cycle. The  
read back address can be either of the burst counter or the  
mask register based on the levels of Counter Read signal  
(CNTRD) and Mask Register Read signal (MKRD). Both  
signals are synchronized to the port's clock as shown in  
Table 2. Counter read has a higher priority than mask read.  
Document #: 38-06027 Rev. *A  
Page 23 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Readback  
Register  
CNTRD  
MKRD  
Addr.  
Readback  
MKLD = 1  
Memory  
Array  
Mask  
Register  
Bidirectional  
Address Lines  
Counter/  
Address  
Register  
CNTINC = 1  
CNTLD = 1  
CNTRST = 1  
CLK  
Figure 1. Counter and Mask Register Read Back on Address Lines  
Counter-Mask Register[31]  
CNTINT  
H
Example:  
Load  
Counter-Mask  
Register = 3F  
0
0
0s  
0
1
1
1
1
1
1
215 214  
26 25 24 23 22 21 20  
Counter Address  
Mask  
Register  
bit-0  
Blocked Address  
Load  
Address  
Counter = 8  
H
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
1
215 214  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1
1
215 214  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
X
X
X
0
0
0
0
0
0
215 214  
26 25 24 23 22 21 20  
Figure 2. Programmable Counter-Mask Register Operation[57]  
The burst counter has a mask register that controls when and  
where the counter wraps. An interrupt flag (CNTINT) is  
asserted for one clock cycle when the unmasked portion of the  
counter address wraps around from all ones (CNTINC must be  
asserted) to all zeros. The example in Figure 2 shows the  
counter mask register loaded with a mask value of 003F  
unmasking the first 6 bits with bit 0as the LSB and bit 15”  
as the MSB. The maximum value the mask register can be  
loaded with is FFFF. Setting the mask register to this value  
allows the counter to access the entire memory space. The  
address counter is then loaded with an initial value of XXX8.  
The blockedaddresses (in this case, the 6th address through  
Document #: 38-06027 Rev. *A  
Page 24 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
the 15th address) are loaded with an address but do not  
increment once loaded. The counter address will start at  
address XXX8. With CNTINC asserted LOW, the counter will  
increment its internal address value till it reaches the mask  
register value of 3F and wraps around the memory block to  
location XXX0. Therefore, the counter uses the mask-register  
to define wrap-around point. The mask register of every port  
is loaded when MKLD (mask register load) for that port is  
LOW. When MKRD is LOW, the value of the mask register can  
be read out on address lines in a manner similar to counter  
read back operation (see Table 2 for required conditions).  
readback) or tCM2 (for mask readback) from the following  
port's clock rising edge. Address readback operation is in-  
dependent of the port's chip enables (CE0 and CE1). If ad-  
dress readback occurs while the port is enabled (chip en-  
ables active), the data lines (I/Os) will be three-stated.  
4. Hold operation: In order to hold the value of the address  
counter at certain address, all signals in Table 2 have to be  
HIGH. This operation has the least priority. This operation  
is useful in many applications where wait states are needed  
or when address is available few cycles ahead of data.  
The counter and mask register operations are totally  
independent of port chip enables.  
When the burst counter is loaded with an address higher than  
the mask register value, the higher addresses will form the  
masked portion of the counter address and are called blocked  
addresses. The blocked addresses will not be changed or  
affected by the counter increment operation. The only  
exception is mask register bit 0. It can be masked to allow the  
address counter to increment by two. If the mask register bit 0  
is loaded with a logic value of 0,then address counter bit 0  
is masked and can not be changed during counter increment  
operation. If the loaded value for address counter bit 0 is 0,”  
the counter will increment by two and the address values are  
even. If the loaded value for address counter bit 0 is 1,the  
counter will increment by two and the address values are odd.  
This operations allows the user to achieve a 36-bit interface  
using any two ports, where the counter of one port counts even  
addresses and the counter of the other port counts odd  
addresses. This even-odd address scheme stores one half of  
the 36-bit word in even memory locations, and the other half  
in odd memory locations. CNTINT will be asserted when the  
unmasked portion of the counter wraps to all zeros. Loading  
mask register bit 0 with 1allows the counter to increment the  
address value sequentially.  
IEEE 1149.1 Serial Boundary Scan (JTAG) and  
Memory Built-In-Self-Test (MBIST)  
The CY7C0430BV incorporates a serial boundary scan test  
access port (TAP). This port is fully compatible with IEEE  
Standard 1149.1-2001[58]. The TAP operates using JEDEC  
standard 3.3V I/O logic levels. It is composed of three input  
connections and one output connection required by the test  
logic defined by the standard. Memory BIST circuitry will also  
be controlled through the TAP interface. All MBIST instructions  
are compliant to the JTAG standard. An external clock  
(CLKBIST) is provided to allow the user to run BIST at speeds  
up to 50 MHz. CLKBIST is multiplexed internally with the ports  
clocks during BIST operation.  
Disabling the JTAG Feature  
It is possible to operate the QuadPort DSE device without  
using the JTAG feature. To disable the TAP controller, TCK  
must be tied LOW (VSS) to prevent clocking of the device. TDI  
and TMS are internally pulled up and may be unconnected.  
They may alternately be connected to VDD through a pull-up  
resistor. TDO should be left unconnected. CLKBIST must be  
tied LOW to disable the MBIST. Upon power-up, the device will  
come up in a reset state which will not interfere with the  
operation of the device.  
Table 2 groups the operations of the mask register with the  
operations of the address counter. Address counter and mask  
register signals are all synchronized to the port's clock CLK.  
Master reset (MRST) is the only asynchronous signal listed on  
Table 2. Signals are listed based on their priority going from  
left column to right column with MRST being the highest. A  
LOW on MRST will reset both counter register to all zeros and  
mask register to all ones. On the other hand, a LOW on  
CNTRST will only clear the address counter register to zeros  
and the mask register will remain intact.  
Test Access Port (TAP)Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
There are four operations for the counter and mask register:  
Test Mode Select  
1. Load operation: When CNTLD or MKLD is LOW, the ad-  
dress counter or the mask register is loaded with the ad-  
dress value presented at the address lines. This value rang-  
es from 0 to FFFF (64K). The mask register load operation  
has a higher priority over the address counter load opera-  
tion.  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
Test Data-In (TDI)  
2. Increment: Once the address counter is loaded with an ex-  
ternal address, the counter can internally increment the ad-  
dress value by asserting CNTINC LOW. The counter can  
address the entire memory array (depend on the value of  
the mask register) and loop back to location 0. The incre-  
ment operation is second in priority to load operation.  
The TDI pin is used to serially input information into the  
registers and can be connected to the input of any of the  
registers. The register between TDI and TDO is chosen by the  
instruction that is loaded into the TAP instruction register. For  
information on loading the instruction register, see the TAP  
Controller State Diagram. TDI is internally pulled up and can  
be unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) on any register.  
3. Readback: the internal value of either the burst counter or  
themaskregistercanbereadoutontheaddresslineswhen  
CNTRD or MKRD is LOW. Counter readback has higher  
priority over mask register readback. A no-operation delay  
cycle is experienced when readback operation is per-  
formed. The address will be valid after tCA2 (for counter  
Notes:  
57. The Xin this diagram represents the counter upper-bits.  
58. Master Reset will reset the JTAG controller.  
Document #: 38-06027 Rev. *A  
Page 25 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Test Data Out (TDO)  
TAP Instruction Set  
The TDO output pin is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine (see TAP Controller State  
Diagram (FSM)). The output changes on the falling edge of  
TCK. TDO is connected to the least significant bit (LSB) of any  
register.  
Sixteen different instructions are possible with the 4-bit  
instruction register. All combinations are listed in Table 6,  
Instruction Codes. Seven of these instructions (codes) are  
listed as RESERVED and should not be used. The other nine  
instructions are described in detail below.  
The TAP controller used in this QuadPort DSE device is fully  
compatible[58] with the 1149.1 convention. The TAP controller  
can be used to load address, data or control signals into the  
QuadPort DSE device and can preload the Input or output  
buffers. The QuadPort DSE device implements all of the  
1149.1 instructions except INTEST. Table 6 lists all instruc-  
tions.  
Performing a TAP Reset  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of  
the QuadPort DSE device and may be performed while the  
device is operating. At power-up, the TAP is reset internally to  
ensure that TDO comes up in a High-Z state.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP  
controller needs to be moved into the Update-IR state.  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the QuadPort DSE  
device test circuitry. Only one register can be selected at a  
time through the instruction registers. Data is serially loaded  
into the TDI pin on the rising edge of TCK. Data is output on  
the TDO pin on the falling edge of TCK.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be  
executed whenever the instruction register is loaded with all 0s.  
EXTEST allows circuitry external to the QuadPort DSE device  
package to be tested. Boundary-scan register cells at output pins  
are used to apply test stimuli, while those at input pins capture  
test results.  
Instruction Register  
Four-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the following JTAG/BIST  
Controller diagram. Upon power-up, the instruction register is  
loaded with the IDCODE instruction. It is also loaded with the  
IDCODE instruction if the controller is placed in a reset state  
as described in the previous section.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the identification register. It also places the  
identification register between the TDI and TDO pins and  
allows the IDCODE to be shifted out of the device when the  
TAP controller enters the Shift-DR state. The IDCODE  
instruction is loaded into the instruction register upon  
power-up or whenever the TAP controller is given a test logic  
reset state.  
When the TAP controller is in the CaptureIR state, the two  
least significant bits are loaded with a binary 01pattern to  
allow for fault isolation of the board level serial test path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain devices. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
QuadPort DSE device with minimal delay. The bypass register  
is set LOW (VSS) when the BYPASS instruction is executed.  
High-Z  
The High-Z instruction causes the bypass register to be  
connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all QuadPort  
DSE device outputs into a High-Z state.  
Boundary Scan Register  
SAMPLE/PRELOAD  
The boundary scan register is connected to all the input and  
output pins on the QuadPort DSE device. The boundary scan  
register is loaded with the contents of the QuadPort DSE  
device Input and Output ring when the TAP controller is in the  
Capture-DR state and is then placed between the TDI and  
TDO pins when the controller is moved to the Shift-DR state.  
The EXTEST, and SAMPLE/PRELOAD instructions can be  
used to capture the contents of the Input and Output ring.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions loaded into the  
instruction register and the TAP controller in the Capture-DR  
state, a snapshot of data on the inputs and output pins is  
captured in the boundary scan register.  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the QuadPort DSE  
device clock operates more than an order of magnitude faster.  
Because there is a large difference in the clock frequencies, it  
is possible that during the Capture-DR state, an input or output  
will undergo a transition. The TAP may then try to capture a  
signal while in transition (metastable state). This will not harm  
the device, but there is no guarantee as to the value that will  
be captured. Repeatable results may not be possible.  
Identification (ID) Register  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the QuadPort DSE device and can be shifted out when the  
TAP controller is in the Shift-DR state. The ID register has a  
vendor code and other information described in the Identifi-  
cation Register Definitions table.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the QuadPort DSE device signal  
must be stabilized long enough to meet the TAP controllers  
Document #: 38-06027 Rev. *A  
Page 26 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
capture set-up plus hold times. Once the data is captured, it is  
possible to shift out the data by putting the TAP into the  
Shift-DR state. This places the boundary scan register  
between the TDI and TDO pins. If the TAP controller goes into  
the Update-DR state, the sampled data will be updated.  
connected between TDI and TDO during the internal scan  
(INT_SCAN) operation. The MRR will contain the total number  
of fail read cycles of the entire MBIST sequence. MRR[0] (bit  
0) is the Pass/Fail bit. A 1indicates some type of failure  
occurred, and a 0indicates entire memory pass.  
In order to run BIST in non-debug mode, the two-bit MBIST  
Control Register (MCR) is loaded with the default value 00,  
and the TAP controllers finite state machine (FSM), which is  
synchronous to TCK, transitions to Run Test/Idle state. The  
entire MBIST test will be performed with a deterministic  
number of TCK cycles depending on the TCK and CLKBIST  
frequency.  
BYPASS  
When the BYPASS instruction is loaded in the instruction  
register and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The  
advantage of the BYPASS instruction is that it shortens the  
boundary scan path when multiple devices are connected  
together on a board.  
tCYC[CLKBIST]  
--------------------------------------------  
× m + SPC  
tCYC  
=
t
CYC[TCK]  
CLAMP  
The optional CLAMP instruction allows the state of the signals  
driven from QuadPort DSE device pins to be determined from  
the boundary-scan register while the BYPASS register is  
selected as the serial path between TDI and TDO. CLAMP  
controls boundary cells to 1 or 0.  
tCYC is total number of TCK cycles required to run MBIST.  
SPC is the Synchronization Padding Cycles (46 cycles).  
m is a constant represents the number of read and write opera-  
tions required to run MBIST algorithms (31195136).  
Once the entire MBIST sequence is completed, supplying  
extra TCK or CLKBIST cycles will have no effect on the MBIST  
controller state or the pass-fail status.  
CYBIST  
CYBIST instruction provides the user with a means of running  
a user-accessible self-test function within the QuadPort DSE  
device as a result of a single instruction. This permits all  
components on a board that offer the CYBIST instruction to  
execute their self-tests concurrently, providing a quick check  
for the board. The QuadPort DSE device MBIST provides two  
modes of operation once the TAP controller is loaded with the  
CYBIST instruction:  
Debug Mode  
With the CYBIST instruction loaded and the MCR loaded with  
the value of 01,and the FSM transitions to RUN_TEST/IDLE  
state, the MBIST goes into CYBIST-debug mode. The debug  
mode will be used to provide complete failure analysis infor-  
mation at the board level. It is recommended that the user runs  
the non-debug mode first and then the debug mode in order to  
save test time and to set an upper bound on the number of  
scan outs that will be needed. The failure data will be scanned  
out automatically once a failure occurs using the JTAG TAP  
interface. The failure data will be represented by a 100-bit  
packet given below. The 100-bit Memory Debug Register  
(MDR) will be connected between TDI and TDO, and will be  
shifted out on TDO, which is synchronized to TCK.  
Non-Debug Mode (Go-NoGo)  
The non-debug mode is a go-nogo test used simply to run  
BIST and obtain pass-fail information after the test is run. In  
addition to that, the total number of failures encountered can  
be obtained. This information is used to aid the debug mode  
(explained next) of operation. The pass-fail information and  
failure count is scanned out using the JTAG interface. An  
MBIST Result Register (MRR) will be used to store the  
pass-fail results. The MRR is a 25-bit register that will be  
Document #: 38-06027 Rev. *A  
Page 27 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
99  
98  
1
1
62  
26  
97  
P4_IO(17-9)  
P3_IO(17-9)  
P3_IO(8-0)  
P2_IO(17-9)  
P2_IO(8-0)  
P1_IO(17-9)  
P1_IO(8-0)  
61  
P4_IO(8-0)  
25  
10  
A(15-0)  
4
9
MBIST_State  
3
P/F  
2
TD  
1
0
1
1
Figure 3. MBIST Debug Register Packet  
Figure 3 is a representation of the 100-bit MDR packet. The  
packet follows a two-bit header that has a logic 1value, and  
represents two TCK cycles. MDR[97:26] represent the BIST  
comparator values of all four ports (each port has 18 data  
lines). A value of 1indicates a bit failure. The scanned out  
data is from LSB to MSB. MDR[25:10] represent the failing  
address (MSB to LSB). The state of the BIST controller is  
scanned out using MDR[9:4]. Bit 2 is the Test Done bit. A 0”  
in bit 2 means test not complete. The user has to monitor this  
bit at every packet to determine if more failure packets need  
to be scanned out at the end of the BIST operations. If the  
value is 0then BIST must be repeated to capture the next  
failing packet. If it is 1,it means that the last failing packets  
have been scanned out. A trailer similar to the header repre-  
sents the end of a packet.  
(upon master reset) is 00.Shift_DR state will allow modifying  
the MCR to extend the MBIST functionality.  
MBIST Control States  
Thirty-five states are listed in Table 7. Four data algorithms are  
used in debug mode: moving inversion (MIA), march_2 (M2A),  
checkerboard (CBA), and unique address algorithm (UAA).  
Only Port 1 can write MIA, M2A, and CBA data to the memory.  
All four ports can read any algorithm data from the QuadPort  
DSE device memory. Ports 2, 3, and 4 will only write UAA data.  
Boundary Scan Cells (BSC)  
Table 9 lists all QuadPort DSE family I/Os with their associated  
BSC. Note that the cells have even numbers. Every I/O has  
two boundary scan cells. Bidirectional signals (address lines,  
datalines) require two cells so that one (the odd cell) is used  
to control a three-state buffer. Input only and output only  
signals have an extra dummy cell (odd cells) that are used to  
ease device layout.  
MCR_SCAN  
This instruction will connect the Memory BIST Control  
Register (MCR) between TDI and TDO. The default value  
Document #: 38-06027 Rev. *A  
Page 28 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
TAP Controller State Diagram (FSM)[59]  
TEST-LOGIC  
1
RESET  
0
1
1
1
RUN_TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
59. The 0/1next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-06027 Rev. *A  
Page 29 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
JTAG/BIST TAP Controller Block Diagram  
0
Bypass Register (BYR)  
1
0
MBIST Control Register (MCR)  
3 2  
1
0
Instruction Register (IR)  
24 23  
0
Selection  
Circuitry  
MBIST Result Register (MRR)  
TDI  
TDO  
31 30 29  
0
Identification Register (IDR)  
(MUX)  
99  
0
MBIST Debug Register (MDR)  
0
391  
Boundary Scan Register (BSR)  
BIST  
CONTROLLER  
TAP  
CONTROLLER  
TCK  
CLKBIST  
TMS  
MRST  
MEMORY  
CELL  
Table 4. Identification Register Definitions  
Instruction Field  
Value  
Description  
Reserved for version number  
Defines Cypress part number  
Revision Number (31:28)  
Cypress Device ID (27:12)  
Cypress JEDEC ID (11:1)  
ID Register Presence (0)  
1h  
C000h  
34h  
1
Allows unique identification of QuadPort DSE device vendor  
Indicate the presence of an ID register  
Document #: 38-06027 Rev. *A  
Page 30 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Table 5. Scan Registers Sizes  
Register Name  
Bit Size  
Instruction (IR)  
4
Bypass (BYR)  
1
Identification (IDR)  
MBIST Control (MCR)  
MBIST Result (MRR)  
MBIST Debug (MDR)  
Boundary Scan (BSR)  
32  
2
25  
100  
392  
Table 6. Instruction Identification Codes  
Instruction Code  
EXTEST  
Description  
0000  
Captures the Input/Output ring contents. Places the boundary scan register (BSR)  
between the TDI and TDO.  
BYPASS  
IDCODE  
1111  
0111  
Places the bypass register (BYR) between TDI and TDO.  
Loads the ID register (IDR) with the vendor ID code and places the register  
between TDI and TDO.  
HIGHZ  
0110  
0101  
Places the BYR between TDI and TDO. Forces all QuadPort DSE device output  
drivers to a High-Z state.  
CLAMP  
Controls boundary to 1/0. Uses BYR.  
SAMPLE/PRELOAD 0001  
Captures the Input/Output ring contents. Places the boundary scan register (BSR)  
between TDI and TDO.  
CYBIST  
1000  
0010  
Invokes MBIST. Places the MBIST Debug register (MDR) between TDI and TDO.  
INT_SCAN  
Scansout pass-fail information. Places MBIST Result Register (MRR) between TDI  
and TDO.  
MCR_SCAN  
RESERVED  
0011  
Presets CYBIST mode. Places MBIST Control Register (MCR) between TDI and  
TDO.  
All other codes Seven combinations are reserved. Do not use other than the above.  
Table 7. MBIST Control States  
States Code  
State Name  
Description  
000001  
movi_zeros  
Port 1 write all zeros to the QuadPort DSE device memory using Moving  
Inversion Algorithm (MIA).  
000011  
000010  
movi_1_upcnt  
Up count from 0 to 64K (depth of QuadPort DSE device). All ports read 0s,  
then Port 1 writes 1s to all memory locations using MIA, then all ports read  
1s. MIA read0_write1_read1 (MIA_r0w1r1).  
movi_0_upcnt  
Up count from 0 to 64K. All ports read 1s, then Port 1 writes 0s, then all ports  
read 0s (MIA_r1w0r0).  
000110  
000111  
000101  
movi_1_downcnt  
movi_0_downcnt  
movi_read  
Down count from 64K to 0. MIA_r0w1r1.  
Down count MIA_r1w0r0.  
Read all 0s.  
000100  
001100  
001101  
001111  
mar2_zeros  
Port 1 write all zeros to memory using March2 Algorithm (M2A).  
Up count M2A_r0w1r1.  
mar2_1_upcnt  
mar2_0_upcnt  
mar2_1_downcnt  
Up count M2A_r1w0r0.  
Down count M2A_r0w1r1.  
Document #: 38-06027 Rev. *A  
Page 31 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Table 7. MBIST Control States (continued)  
States Code  
001110  
State Name  
mar2_0_downcnt  
mar2_read  
Description  
Down count M2A_r1w0r0.  
Read all 0s.  
001010  
001011  
001001  
001000  
011000  
chkr_w  
Port 1 writes topological checkerboard data to memory.  
All ports read topological checkerboard data.  
chkr_r  
n_chkr_w  
n_chkr_r  
Port 1 write inverse topological checkerboard data.  
All ports read inverse topological checkerboard data.  
011001  
011011  
011010  
011110  
011111  
011101  
uaddr_zeros2  
uaddr_write2  
uaddr_read2  
uaddr_ones2  
n_uaddr_write2  
n_uaddr_read2  
Port 2 write all zeros to memory using Unique Address Algorithm (UAA).  
Port 2 writes every address value into its memory location (UAA).  
All ports read UAA data.  
Port 2 writes all ones to memory.  
Port 2 writes inverse address value into memory.  
All ports read inverse UAA data.  
011001  
011011  
011010  
011110  
011111  
011101  
uaddr_zeros3  
uaddr_write3  
uaddr_read3  
uaddr_ones3  
n_uaddr_write3  
n_uaddr_read3  
Port 3 write all zeros to memory using Unique Address Algorithm (UAA).  
Port 3 writes every address value into its memory location (UAA).  
All ports read UAA data.  
Port 3 writes all ones to memory.  
Port 3 writes inverse address value into memory.  
All ports read inverse UAA data.  
011001  
011011  
011010  
011110  
011111  
011101  
uaddr_zeros4  
uaddr_write4  
uaddr_read4  
uaddr_ones4  
n_uaddr_write4  
n_uaddr_read4  
Port 4 write all zeros to memory using Unique Address Algorithm (UAA).  
Port 4 writes every address value into its memory location (UAA).  
All ports read UAA data.  
Port 4 writes all ones to memory.  
Port 4 writes inverse address value into memory.  
All ports read inverse UAA data.  
110010  
complete  
Test complete.  
Table 9. Boundary Scan Order (continued)  
Table 8. MBIST Control Register (MCR)  
MCR[1:0]  
Cell #  
16  
Signal Name  
A7_P4  
Bump (Ball) ID  
Mode  
00  
01  
10  
11  
Non-Debug  
Debug  
F20  
F19  
F18  
E20  
E19  
D19  
D18  
C20  
C19  
F17  
K18  
H18  
H17  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
A8_P4  
Reserved  
Reserved  
A9_P4  
A10_P4  
A11_P4  
Table 9. Boundary Scan Order  
A12_P4  
Cell #  
Signal Name  
A0_P4  
Bump (Ball) ID  
A13_P4  
2
4
6
8
K20  
J19  
A14_P4  
A1_P4  
A2_P4  
A3_P4  
A4_P4  
A5_P4  
A6_P4  
A15_P4  
J18  
CNTINT_P4  
CNTRST_P4  
MKLD_P4  
CNTLD_P4  
H20  
H19  
G19  
G18  
10  
12  
14  
Document #: 38-06027 Rev. *A  
Page 32 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
42 CNTINC_P4  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
124 CLK_P3  
G17  
E17  
E18  
A20  
B19  
D17  
C16  
C18  
C17  
K19  
K17  
L20  
M19  
M18  
N20  
N19  
P19  
P18  
R20  
R19  
R18  
T20  
T19  
U19  
U18  
V20  
V19  
R17  
L18  
N18  
N17  
P17  
T17  
T18  
Y20  
W19  
U17  
V16  
V18  
V17  
L19  
M17  
Y15  
W15  
Y16  
W16  
Y17  
W17  
Y18  
W18  
Y19  
V12  
Y11  
W12  
Y12  
W13  
Y13  
V15  
Y14  
W14  
Y6  
44  
CNTRD_P4  
MKRD_P4  
LB_P4  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
162  
164  
166  
168  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
194  
196  
198  
200  
202  
204  
IO0_P4  
IO1_P4  
IO2_P4  
IO3_P4  
IO4_P4  
IO5_P4  
IO6_P4  
IO7_P4  
IO8_P4  
IO0_P3  
IO1_P3  
IO2_P3  
IO3_P3  
IO4_P3  
IO5_P3  
IO6_P3  
IO7_P3  
IO8_P3  
IO0_P1  
IO1_P1  
IO2_P1  
IO3_P1  
IO4_P1  
IO5_P1  
IO6_P1  
IO7_P1  
IO8_P1  
IO0_P2  
IO1_P2  
IO2_P2  
IO3_P2  
IO4_P2  
IO5_P2  
IO6_P2  
IO7_P2  
IO8_P2  
A0_P2  
46  
48  
50  
UB_P4  
52  
OE_P4  
54  
R/W_P4  
CE1_P4  
CE0_P4  
INT_P4  
56  
58  
60  
62  
CLK_P4  
A0_P3  
64  
66  
A1_P3  
68  
A2_P3  
70  
A3_P3  
72  
A4_P3  
74  
A5_P3  
76  
A6_P3  
78  
A7_P3  
80  
A8_P3  
82  
A9_P3  
W6  
Y5  
84  
A10_P3  
A11_P3  
A12_P3  
A13_P3  
A14_P3  
A15_P3  
CNTINT_P3  
CNTRST_P3  
MKLD_P3  
CNTLD_P3  
CNTINC_P3  
CNTRD_P3  
MKRD_P3  
LB_P3  
86  
W5  
Y4  
88  
90  
W4  
Y3  
92  
94  
W3  
Y2  
96  
98  
V9  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
Y10  
W9  
Y9  
W8  
Y8  
V6  
UB_P3  
Y7  
OE_P3  
W7  
L1  
R/W_P3  
CE1_P3  
CE0_P3  
INT_P3  
A1_P2  
M2  
A2_P2  
M3  
A3_P2  
N1  
Document #: 38-06027 Rev. *A  
Page 33 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
206 A4_P2  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
288 A14_P1  
N2  
P2  
P3  
R1  
R2  
R3  
T1  
T2  
U2  
U3  
V1  
V2  
R4  
L3  
C1  
C2  
F4  
208  
210  
212  
214  
216  
218  
220  
222  
224  
226  
228  
230  
232  
234  
236  
238  
240  
242  
244  
246  
248  
250  
252  
254  
256  
258  
260  
262  
264  
266  
268  
270  
272  
274  
276  
278  
280  
282  
284  
286  
A5_P2  
290  
292  
294  
296  
298  
300  
302  
304  
306  
308  
310  
312  
314  
316  
318  
320  
322  
324  
326  
328  
330  
332  
334  
336  
338  
340  
342  
344  
346  
348  
350  
352  
354  
356  
358  
360  
362  
364  
366  
368  
A15_P1  
A6_P2  
CNTINT_P1  
CNTRST_P1  
MKLD_P1  
CNTLD_P1  
CNTINC_P1  
CNTRD_P1  
MKRD_P1  
LB_P1  
A7_P2  
K3  
H3  
H4  
G4  
E4  
E3  
A1  
B2  
D4  
C5  
C3  
C4  
K2  
K4  
A6  
B6  
A5  
B5  
A4  
B4  
A3  
B3  
A2  
C9  
A10  
B9  
A9  
B8  
A8  
C6  
A7  
B7  
A15  
B15  
A16  
B16  
A17  
B17  
A8_P2  
A9_P2  
A10_P2  
A11_P2  
A12_P2  
A13_P2  
A14_P2  
A15_P2  
CNTINT_P2  
CNTRST_P2  
MKLD_P2  
CNTLD_P2  
CNTINC_P2  
CNTRD_P2  
MKRD_P2  
LB_P2  
UB_P1  
OE_P1  
R/W_P1  
CE1_P1  
CE0_P1  
INT_P1  
N3  
N4  
P4  
T4  
T3  
Y1  
W2  
U4  
V5  
V3  
V4  
L2  
CLK_P1  
IO9_P2  
IO10_P2  
IO11_P2  
IO12_P2  
IO13_P2  
IO14_P2  
IO15_P2  
IO16_P2  
IO17_P2  
IO9_P1  
UB_P2  
OE_P2  
R/W_P2  
CE1_P2  
CE0_P2  
INT_P2  
CLK_P2  
A0_P1  
M4  
K1  
J2  
IO10_P1  
IO11_P1  
IO12_P1  
IO13_P1  
IO14_P1  
IO15_P1  
IO16_P1  
IO17_P1  
IO9_P3  
A1_P1  
A2_P1  
J3  
A3_P1  
H1  
H2  
G2  
G3  
F1  
F2  
F3  
E1  
E2  
D2  
D3  
A4_P1  
A5_P1  
A6_P1  
A7_P1  
A8_P1  
A9_P1  
IO10_P3  
IO11_P3  
IO12_P3  
IO13_P3  
IO14_P3  
A10_P1  
A11_P1  
A12_P1  
A13_P1  
Document #: 38-06027 Rev. *A  
Page 34 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
370 IO15_P3  
A18  
B18  
A19  
C12  
A11  
B12  
A12  
B13  
A13  
C15  
A14  
B14  
372  
374  
376  
378  
380  
382  
384  
386  
388  
390  
392  
IO16_P3  
IO17_P3  
IO9_P4  
IO10_P4  
IO11_P4  
IO12_P4  
IO13_P4  
IO14_P4  
IO15_P4  
IO16_P4  
IO17_P4  
Ordering Information  
10 Gb/s 3.3V QuadPort DSE Family 1 Mb (64K × 18)  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C0430BV-133BGC  
CY7C0430BV-133BGI  
CY7C0430BV-100BGC  
CY7C0430BV-100BGI  
Package Type  
272-ball Grid Array (BGA)  
133  
BG272  
BG272  
BG272  
BG272  
Commercial  
Industrial  
272-ball Grid Array (BGA)  
272-ball Grid Array (BGA)  
272-ball Grid Array (BGA)  
100  
Commercial  
Industrial  
10 Gb/s 3.3V QuadPort DSE Family 1/2 Mb (32K x 18)  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C04312BV-133BGC  
CY7C04312BV-100BGC  
Package Type  
133  
100  
BG272  
BG272  
272-ball Grid Array (BGA)  
272-ball Grid Array (BGA)  
Commercial  
10 Gb/s 3.3V QuadPort DSE Family 1/4 Mb (16K x 18)  
Speed  
(MHz)  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C04314BV-133BGC  
CY7C04314BV-100BGC  
Package Type  
133  
100  
BG272  
BG272  
272-ball Grid Array (BGA)  
272-ball Grid Array (BGA)  
Commercial  
Document #: 38-06027 Rev. *A  
Page 35 of 37  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Package Diagram  
272-ball Ball Grid Array (27 x 27 x 1.27 mm) BG272  
51-85130  
QuadPort is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document  
are the trademarks of their respective holders.  
Document #: 38-06027 Rev. *A  
Page 36 of 37  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C0430BV  
CY7C04312BV  
CY7C04314BV  
Document Title: CY7C430BV, CY7C04312BV, CY7C04314BV 10 Gb/s 3.3V QuadPort DSE Family  
Document Number: 38-06027  
Issue  
Orig. of  
Change  
REV.  
**  
ECN NO.  
109906  
115042  
Date  
Description of Change  
09/10/01  
05/23/02  
SZV  
FSG  
Change from Spec number: 38-01052 to 38-06027  
*A  
Remove Preliminary, TM from DSE.  
Change RUNBIST to CYBIST.  
Updated ISB values.  
Added notes 9 and 14.  
Increased commercial prime bin to 135 MHz.  
Document #: 38-06027 Rev. *A  
Page 37 of 37  

相关型号:

CY7C04312BV-133BGC

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04314BV

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04314BV-100BGC

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04314BV-133BGC

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C0431V18-100BBC

Multi-Port SRAM, 128KX20, 4.5ns, CMOS, PBGA676
CYPRESS

CY7C0431V18-133BBC

Multi-Port SRAM, 128KX20, 4ns, CMOS, PBGA676
CYPRESS

CY7C0431V18-167BBC

Multi-Port SRAM, 128KX20, 3.5ns, CMOS, PBGA676
CYPRESS

CY7C0431V18-167BBI

Multi-Port SRAM, 128KX20, 3.5ns, CMOS, PBGA676
CYPRESS

CY7C0450V18-100BBC

Multi-Port SRAM, 32KX40, 4.5ns, CMOS, PBGA676
CYPRESS

CY7C0450V18-133BBC

Multi-Port SRAM, 32KX40, 4ns, CMOS, PBGA676
CYPRESS

CY7C0450V18-167BBC

Multi-Port SRAM, 32KX40, 3.5ns, CMOS, PBGA676
CYPRESS

CY7C0451V18-100BBC

Multi-Port SRAM, 64KX40, 4.5ns, CMOS, PBGA676
CYPRESS