CY7C0431V18-167BBI [CYPRESS]

Multi-Port SRAM, 128KX20, 3.5ns, CMOS, PBGA676;
CY7C0431V18-167BBI
型号: CY7C0431V18-167BBI
厂家: CYPRESS    CYPRESS
描述:

Multi-Port SRAM, 128KX20, 3.5ns, CMOS, PBGA676

时钟 静态存储器 内存集成电路
文件: 总51页 (文件大小:962K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C0452V18/0451V18/0450V18  
CY7C0431V18/0430V18  
PRELIMINARY  
QuadPort™ Datapath Switching Element (DSE) Family  
• Simple array partitioning (except CY7C0452V18)  
— Internal mask register for burst counter control  
Features  
• The QuadPort™ Datapath Switching Element (DSE)  
allows four independent ports of access for data path  
management and switching.  
— Counter-Interrupt flags to indicate terminal count  
— Block Retransmit Capability  
• Synchronous pipelined device  
— 128K x 40 (5 Mb) CY7C0452V18  
— 64K x 40 (2 Mb) CY7C0451V18  
— 32K x 40 (1 Mb) CY7C0450V18  
— 128K x 20 (2 Mb) CY7C0431V18  
— Counter and mask register readback on address  
lines  
• DualChipEnablesonallportsforeasydepthexpansion  
(except CY7C0452V18)  
• Separate byte select controls on all ports  
• BGA package (676 balls, 27 x 27 mm, 1.0 mm pitch)  
• Commercial and Industrial temperature ranges  
• IEEE 1149.1 JTAG boundary scan  
— 64K x 20 (1 Mb) CY7C0430V18  
• Clock operation up to 167 MHz  
• High Bandwidth up to 27 Gbps  
• LVTTL and SSTL2 I/O standard for I/O  
• LVPECL differential clock inputs  
• Impedance matching on data outputs  
• 1.8V Supply Voltage  
— Active = 1300 mA (maximum)  
— Standby = 500 mA (maximum)  
QuadPort DSE Applications  
PORT 1  
PORT 3  
PORT 2  
PORT 4  
BUFFERED SWITCH  
PORT 2  
PORT 3  
PORT 4  
PORT 1  
REDUNDANT DATA MIRROR  
PORT 1  
PORT 2  
PORT 3  
PORT 4  
DATA PATH AGGREGATOR  
Cypress Semiconductor Corporation  
Document #: 38-06065 Rev. **  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Revised August 2, 2002  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Pin Configuration  
676 Ball Grid Array (BGA) (CY7C0451V18)[1]  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
VSS  
AIO  
P1  
RWB  
P1  
VDD  
C
VDD  
C
VDD  
A
P1  
VDD  
A
P1  
VDD  
VDD  
VDD  
A
P1  
VDD  
A
P1  
VDD  
A
P1  
VDD  
A
P1  
VDD  
A
P4  
VDD  
A
P4  
VDD  
A
P4  
VDD  
A
P4  
VDD  
VDD  
VDD  
A
P4  
VDD  
A
P4  
VDD  
C
VDD  
C
RWB  
P4  
AIO  
P4  
VSS  
A
A
DIO  
P1  
B2B  
P1  
B3B  
P1  
MKL  
DB  
RETX  
B
CN-  
TRDB  
P1  
WRP  
0B  
VDD  
VDD  
NC  
CNTI  
NTB  
P1  
A2  
P1  
A7  
P1  
A12  
P1  
A12  
P4  
A7  
P4  
A2  
P4  
CNTI  
NTB  
P4  
VDD  
NC  
VDD  
WRP  
0B  
CN-  
TRDB  
P4  
RETX  
B
MKL  
DB  
B3B  
P4  
B2B  
P4  
DIO  
P4  
B
C
B
C
P1  
P1  
P1  
P4  
P4  
P4  
B0B  
P1  
B1B  
P1  
CE1  
P1  
CE0B  
P1  
CN-  
TRST  
B
CNTL  
DB  
P1  
CNTI  
NCB  
P1  
MKR  
DB  
P1  
INTB  
P1  
A3  
P1  
A8  
P1  
A13  
P1  
A13  
P4  
A8  
P4  
A3  
P4  
INTB  
P4  
MKR  
DB  
P4  
CNTI  
NCB  
P4  
CNTL  
DB  
P4  
CN-  
TRST  
B
CE0B  
P4  
CE1  
P4  
B1B  
P4  
B0B  
P4  
P1  
P4  
VDD  
Q
DQ0  
P1  
DQ1  
P1  
DQ2  
P1  
DQ3  
P1  
DQ4  
P1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
TRST  
TMS  
TCK  
NC  
NC  
TDI  
REA  
DYB  
P1  
A4  
P1  
A9  
P1  
A14  
P1  
A14  
P4  
A9  
P4  
A4  
P4  
REA  
DYB  
P4  
NC  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQ4  
P4  
DQ3  
P4  
DQ2  
P4  
DQ1  
P4  
DQ0  
P4  
VDD  
Q
D
E
D
E
P1  
P4  
VDD  
Q
P1  
DQ5  
P1  
DQ6  
P1  
DQ7  
P1  
DQ8  
P1  
DQ9  
P1  
A0  
P1  
A5  
P1  
A10  
P1  
A15  
P1  
A15  
P4  
A10  
P4  
A5  
P4  
A0  
P4  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
DQ9  
P4  
DQ8  
P4  
DQ7  
P4  
DQ6  
P4  
DQ5  
P4  
VDD  
Q
P4  
VDD  
Q
P1  
DQ10  
P1  
DQ11  
P1  
DQ12  
P1  
DQ13  
P1  
DQ14  
P1  
TDO  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
A1  
P1  
A6  
P1  
A11  
P1  
NC  
NC  
A11  
P4  
A6  
P4  
A1  
P4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
NC  
DQ14  
P4  
DQ13  
P4  
DQ12  
P4  
DQ11  
P4  
DQ10  
P4  
VDD  
Q
P4  
F
F
VDD  
Q
P1  
DQ15  
P1  
DQ16  
P1  
DQ17  
P1  
DQ18  
P1  
DQ19  
P1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
DQ19  
P4  
DQ18  
P4  
DQ17  
P4  
DQ16  
P4  
DQ15  
P4  
VDD  
Q
P4  
G
H
G
H
VDD  
VDD  
VDD  
VDD  
VDD  
C
ZQ  
P1  
OEB  
P1  
C+  
P1  
VSS  
VSS  
REFA  
P1  
REFA  
P1  
REFA  
P1  
REFA  
P1  
REFA  
P4  
REFA  
P4  
REFA  
P4  
REFA  
P4  
C+  
P4  
OEB  
P4  
ZQ  
P4  
VDD  
C
VDD  
VDD  
VDD  
VDD  
VDD  
Q
P1  
VDD  
DOFF  
B
P1  
C-  
P1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C-  
P4  
DOFF  
B
P4  
VDD  
VDD  
Q
P4  
J
J
VDD  
Q
P1  
DQ20  
P1  
DQ21  
P1  
DQ22  
P1  
DQ23  
P1  
DQ24  
P1  
REF  
Q
P1  
REF  
Q
P4  
DQ24  
P4  
DQ23  
P4  
DQ22  
P4  
DQ21  
P4  
DQ20  
P4  
VDD  
Q
P4  
K
K
VDD  
Q
P1  
DQ25  
P1  
DQ26  
P1  
DQ27  
P1  
DQ28  
P1  
DQ29  
P1  
REF  
Q
P1  
REF  
Q
P4  
DQ29  
P4  
DQ28  
P4  
DQ27  
P4  
DQ26  
P4  
DQ25  
P4  
VDD  
Q
P4  
L
L
VDD  
Q
P1  
DQ30  
P1  
DQ31  
P1  
DQ32  
P1  
DQ33  
P1  
DQ34  
P1  
REF  
Q
P1  
REF  
Q
P4  
DQ34  
P4  
DQ33  
P4  
DQ32  
P4  
DQ31  
P4  
DQ30  
P4  
VDD  
Q
P4  
M
N
M
N
VDD  
Q
P1  
DQ35  
P1  
DQ36  
P1  
DQ37  
P1  
DQ38  
P1  
DQ39  
P1  
REF  
Q
P1  
REF  
Q
P4  
DQ39  
P4  
DQ38  
P4  
DQ37  
P4  
DQ36  
P4  
DQ35  
P4  
VDD  
Q
P4  
VDD  
Q
P2  
DQ35  
P2  
DQ36  
P2  
DQ37  
P2  
DQ38  
P2  
DQ39  
P2  
REF  
Q
P2  
REF  
Q
P3  
DQ39  
P3  
DQ38  
P3  
DQ37  
P3  
DQ36  
P3  
DQ35  
P3  
VDD  
Q
P3  
P
P
VDD  
Q
P2  
DQ30  
P2  
DQ31  
P2  
DQ32  
P2  
DQ33  
P2  
DQ34  
P2  
REF  
Q
P2  
REF  
Q
P3  
DQ34  
P3  
DQ33  
P3  
DQ32  
P3  
DQ31  
P3  
DQ30  
P3  
VDD  
Q
P3  
R
R
VDD  
Q
P2  
DQ25  
P2  
DQ26  
P2  
DQ27  
P2  
DQ28  
P2  
DQ29  
P2  
REF  
Q
P2  
REF  
Q
P3  
DQ29  
P3  
DQ28  
P3  
DQ27  
P3  
DQ26  
P3  
DQ25  
P3  
VDD  
Q
P3  
T
T
VDD  
Q
P2  
DQ20  
P2  
DQ21  
P2  
DQ22  
P2  
DQ23  
P2  
DQ24  
P2  
REF  
Q
P2  
REF  
Q
P3  
DQ24  
P3  
DQ23  
P3  
DQ22  
P3  
DQ21  
P3  
DQ20  
P3  
VDD  
Q
P3  
U
U
VDD  
VDD  
VDD  
VDD  
VDD  
Q
P2  
VDD  
DOFF  
B
P2  
C-  
P2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
C-  
P3  
DOFF  
B
P3  
VDD  
VDD  
Q
P3  
VDD  
VDD  
VDD  
VDD  
V
V
VDD  
C
ZQ  
P2  
OEB  
P2  
C+  
P2  
REFA  
P2  
REFA  
P2  
REFA  
P2  
REFA  
P2  
REFA  
P3  
REFA  
P3  
REFA  
P3  
REFA  
P3  
C+  
P3  
OEB  
P3  
ZQ  
P3  
VDD  
C
W
Y
W
Y
VDD  
Q
P2  
DQ15  
P2  
DQ16  
P2  
DQ17  
P2  
DQ18  
P2  
DQ19  
P2  
MRS  
TB  
VSS  
VSS  
VSS  
VSS  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
DQ19  
P3  
DQ18  
P3  
DQ17  
P3  
DQ16  
P3  
DQ15  
P3  
VDD  
Q
P3  
VDD  
Q
P2  
DQ10  
P2  
DQ11  
P2  
DQ12  
P2  
DQ13  
P2  
DQ14  
P2  
NC  
NC  
NC  
A1  
P2  
A6  
P2  
A11  
P2  
A11  
P3  
A6  
P3  
A1  
P3  
DQ14  
P3  
DQ13  
P3  
DQ12  
P3  
DQ11  
P3  
DQ10  
P3  
VDD  
Q
P3  
AA  
AB  
AC  
AD  
AA  
AB  
AC  
AD  
VDD  
Q
P2  
DQ5  
P2  
DQ6  
P2  
DQ7  
P2  
DQ8  
P2  
DQ9  
P2  
NC  
A0  
P2  
A5  
P2  
A10  
P2  
A15  
P2  
A15  
P3  
A10  
P3  
A5  
P3  
A0  
P3  
DQ9  
P3  
DQ8  
P3  
DQ7  
P3  
DQ6  
P3  
DQ5  
P3  
VDD  
Q
P3  
VDD  
Q
P2  
DQ0  
P2  
DQ1  
P2  
DQ2  
P2  
DQ3  
P2  
DQ4  
P2  
NC  
REA  
DYB  
P2  
A4  
P2  
A9  
P2  
A14  
P2  
A14  
P3  
A9  
P3  
A4  
P3  
REA  
DYB  
P3  
DQ4  
P3  
DQ3  
P3  
DQ2  
P3  
DQ1  
P3  
DQ0  
P3  
VDD  
Q
P3  
B0B  
P2  
B1B  
P2  
CE1  
P2  
CE0B  
P2  
CN-  
TRST  
B
CNTL  
DB  
P2  
CNTI  
NCB  
P2  
MKR  
DB  
P2  
NC  
INTB  
P2  
A3  
P2  
A8  
P2  
A13  
P2  
A13  
P3  
A8  
P3  
A3  
P3  
INTB  
P3  
NC  
MKR  
DB  
P3  
CNTI  
NCB  
P3  
CNTL  
DB  
P3  
CN-  
TRST  
B
CE0B  
P3  
CE1  
P3  
B1B  
P3  
B0B  
P3  
P2  
P3  
DIO  
P2  
B2B  
P2  
B3B  
P2  
MKL  
DB  
RETX  
B
CN-  
TRDB  
P2  
WRP  
0B  
VDD  
VDD  
VDD  
VDD  
CNTI  
NTB  
P2  
A2  
P2  
A7  
P2  
A12  
P2  
A12  
P3  
A7  
P3  
A2  
P3  
CNTI  
NTB  
P3  
VDD  
VDD  
VDD  
VDD  
WRP  
0B  
CN-  
TRDB  
P3  
RETX  
B
MKL  
DB  
B3B  
P3  
B2B  
P3  
DIO  
P3  
AE  
AF  
AE  
AF  
P2  
P2  
P2  
P3  
P3  
P3  
VSS  
AIO  
P2  
RWB  
P2  
VDD  
C
VDD  
C
VDD  
A
P2  
VDD  
A
P2  
VDD  
A
P2  
VDD  
A
P2  
VDD  
A
P2  
VDD  
A
P2  
VDD  
A
P3  
VDD  
A
P3  
VDD  
A
P3  
VDD  
A
P3  
VDD  
A
P3  
VDD  
A
P3  
VDD  
C
VDD  
C
RWB  
P3  
AIO  
P3  
VSS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
Note:  
1. B Following a Pin name represents an active LOW signal. For example, B0B P1 = B0 P1.  
Document #: 38-06065 Rev. **  
Page 2 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
Table 1. 676 BGA Pin Table (CY7C0451V18)  
VSSPIN  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
CY7C0451V18  
VDD  
VSSPIN  
A1  
CY7C0451V18  
VSS  
AIO P1  
WRP0B P4  
CNTRDB P4  
RETXB P4  
MKLDB P4  
B3B P4  
A2  
A3  
RWB P1  
VDDC  
A4  
A5  
VDDC  
A6  
VDDA P1  
VDDA P1  
VDD  
B2B P4  
A7  
DIO P4  
A8  
B0B P1  
A9  
VDD  
C2  
B1B P1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
B1  
VDDA P1  
VDDA P1  
VDDA P1  
VDDA P1  
VDDA P4  
VDDA P4  
VDDA P4  
VDDA P4  
VDD  
C3  
CE1 P1  
C4  
CE0B P1  
CNTRSTB P1  
CNTLDB P1  
CNTINCB P1  
MKRDB P1  
NC  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
INTB P1  
A3 P1  
VDD  
A8 P1  
VDDA P4  
VDDA P4  
VDDC  
A13 P1  
A13 P4  
A8 P4  
VDDC  
A3 P4  
RWB P4  
AIO P4  
INTB P4  
NC  
VSS  
MKRDB P4  
CNTINCB P4  
CNTLDB P4  
CNTRSTB P4  
CE0B P4  
CE1 P4  
DIO P1  
B2B P1  
B3B P1  
MKLDB P1  
RETXB P1  
CNTRDB P1  
WRP0B P1  
VDD  
B2  
B3  
B4  
B5  
B6  
B1B P4  
B7  
B0B P4  
B8  
VDDQ P1  
DQ0 P1  
DQ1 P1  
DQ2 P1  
DQ3 P1  
DQ4 P1  
VSS  
B9  
VDD  
D2  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
CNTINTB P1  
A2 P1  
D3  
D4  
A7 P1  
D5  
A12 P1  
A12 P4  
A7 P4  
D6  
D7  
D8  
TRST  
A2 P4  
D9  
NC  
CNTINTB P4  
VDD  
D10  
READYB P1  
Document #: 38-06065 Rev. **  
Page 3 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
VSSPIN  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
CY7C0451V18  
A4 P1  
VSSPIN  
F3  
CY7C0451V18  
DQ11 P1  
DQ12 P1  
DQ13 P1  
DQ14 P1  
VSS  
A9 P1  
F4  
A14 P1  
A14 P4  
A9 P4  
F5  
F6  
F7  
A4 P4  
F8  
TCK  
READYB P4  
NC  
F9  
TDO  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
G1  
A1 P1  
A6 P1  
A11 P1  
NC  
NC  
VSS  
DQ4 P4  
DQ3 P4  
DQ2 P4  
DQ1 P4  
DQ0 P4  
VDDQ P4  
VDDQ P1  
DQ5 P1  
DQ6 P1  
DQ7 P1  
DQ8 P1  
DQ9 P1  
VSS  
NC  
A11 P4  
A6 P4  
A1 P4  
VSS  
VSS  
E2  
VSS  
E3  
DQ 14 P4  
DQ13 P4  
DQ12 P4  
DQ11 P4  
DQ10 P4  
VDDQ P4  
VDDQ P1  
DQ15 P1  
DQ16 P1  
DQ17 P1  
DQ18 P1  
DQ19 P1  
VSS  
E4  
E5  
E6  
E7  
E8  
TMS  
E9  
TDI  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
A0 P4  
G2  
A5 P1  
G3  
A10 P1  
A15 P1  
A15 P4  
A10 P4  
A5 P4  
G4  
G5  
G6  
G7  
G8  
NC  
A0 P1  
G9  
VSS  
NC  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
VSS  
VSS  
VSS  
VSS  
VSS  
DQ9 P4  
DQ8 P4  
DQ7 P4  
DQ6 P4  
DQ5 P4  
VDDQ P4  
VDDQ P1  
DQ10 P1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
F2  
VSS  
Document #: 38-06065 Rev. **  
Page 4 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
VSSPIN  
G21  
G22  
G23  
G24  
G25  
G26  
H1  
CY7C0451V18  
DQ19 P4  
DQ18 P4  
DQ17 P4  
DQ16 P4  
DQ15 P4  
VDDQ P4  
VDD  
VSSPIN  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
CY7C0451V18  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
H2  
VDD  
VSS  
H3  
VDDC  
CP4  
H4  
ZQ P1  
DOFFB P4  
VDD  
H5  
OEB P1  
C+ P1  
H6  
VDDQ P4  
VDD  
H7  
VSS  
H8  
VSS  
VDD  
H9  
VSS  
VDD1 P1  
DQ20 P1  
DQ21 P1  
DQ22 P1  
DQ23 P1  
DQ24 P1  
VSS  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
H26  
J1  
VREFA P1  
VREFA P1  
VREFA P1  
VREFA P1  
VREFA P4  
VREFA P4  
VREFA P4  
VREFA P4  
VSS  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
VREFQ P1  
VSS  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
L1  
VSS  
VSS  
VSS  
VSS  
VSS  
C+ P4  
VSS  
OEB P4  
ZQ P4  
VSS  
VSS  
VDDC  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VREFQ P4  
VSS  
J2  
VDD  
J3  
VDDQ P1  
VDD  
DQ24 P4  
DQ23 P4  
DQ22 P4  
DQ21 P4  
DQ20 P4  
VDDQ P4  
VDDQ P1  
DQ25 P1  
DQ26 P1  
DQ27 P1  
J4  
J5  
DOFFB P1  
CP1  
J6  
J7  
VSS  
J8  
VSS  
J9  
VSS  
J10  
J11  
J12  
VSS  
L2  
VSS  
L3  
VSS  
L4  
Document #: 38-06065 Rev. **  
Page 5 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
VSSPIN  
L5  
CY7C0451V18  
DQ28 P1  
DQ29 P1  
VSS  
VSSPIN  
M23  
M24  
M25  
M26  
N1  
CY7C0451V18  
DQ32 P4  
DQ31 P4  
DQ30 P4  
VDDQ P4  
VDDQ P1  
DQ35 P1  
DQ36 P1  
DQ37 P1  
DQ38 P1  
DQ39 P1  
VSS  
L6  
L7  
L8  
VREFQ P1  
VSS  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
VSS  
N2  
VSS  
N3  
VSS  
N4  
VSS  
N5  
VSS  
N6  
VSS  
N7  
VSS  
N8  
VREFQ P1  
VSS  
VSS  
N9  
VSS  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
VSS  
VREFQ P4  
VSS  
VSS  
VSS  
DQ29 P4  
DQ28 P4  
DQ27 P4  
DQ26 P4  
DQ25 P4  
VDDQ P4  
VDDQ P1  
DQ30 P1  
DQ31 P1  
DQ32 P1  
DQ33 P1  
DQ34 P1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VREFQ P4  
VSS  
M2  
M3  
DQ39 P4  
DQ38 P4  
DQ37 P4  
DQ36 P4  
DQ35 P4  
VDDQ P4  
VDDQ P2  
DQ35 P2  
DQ36 P2  
DQ37 P2  
DQ38 P2  
DQ39 P2  
VSS  
M4  
M5  
M6  
M7  
M8  
VREFQ P1  
VSS  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
VSS  
P2  
VSS  
P3  
VSS  
P4  
VSS  
P5  
VSS  
P6  
VSS  
P7  
VSS  
P8  
VREFQ P2  
VSS  
VSS  
P9  
VSS  
P10  
P11  
P12  
P13  
P14  
VSS  
VREFQ P4  
VSS  
VSS  
VSS  
DQ34 P4  
DQ33 P4  
VSS  
VSS  
Document #: 38-06065 Rev. **  
Page 6 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
VSSPIN  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
P26  
R1  
CY7C0451V18  
VSS  
VSSPIN  
T7  
CY7C0451V18  
VSSVSS  
VREFQ P2  
VSS  
VSS  
T8  
VSS  
T9  
VSS  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
U1  
VSS  
VREFQ P3  
VSS  
VSS  
VSS  
DQ39 P3  
DQ38 P3  
DQ37 P3  
DQ36 P3  
DQ35 P3  
VDDQ P3  
VDDQ P2  
DQ30 P2  
DQ31 P2  
DQ32 P2  
DQ33 P2  
DQ34 P2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VREFQ P3  
VSS  
R2  
R3  
DQ29 P3  
DQ28 P3  
DQ27 P3  
DQ26 P3  
DQ25 P3  
VDDQ P3  
VDDQ P2  
DQ20 P2  
DQ21 P2  
DQ22 P2  
DQ23 P2  
DQ24 P2  
VSS  
R4  
R5  
R6  
R7  
R8  
VREFQ P2  
VSS  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
VSS  
U2  
VSS  
U3  
VSS  
U4  
VSS  
U5  
VSS  
U6  
VSS  
U7  
VSS  
U8  
VREFQ P2  
VSS  
VSS  
U9  
VSS  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
VSS  
VREFQ P3  
VSS  
VSS  
VSS  
DQ34 P3  
DQ33 P3  
DQ32 P3  
DQ31 P3  
DQ30 P3  
VDDQ P3  
VDDQ P2  
DQ25 P2  
DQ26 P2  
DQ27 P2  
DQ28 P2  
DQ29 P2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VREFQ P3  
VSS  
T2  
T3  
DQ24 P3  
DQ23 P3  
DQ22 P3  
DQ21 P3  
T4  
T5  
T6  
Document #: 38-06065 Rev. **  
Page 7 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
VSSPIN  
U25  
U26  
V1  
CY7C0451V18  
DQ20 P3  
VDDQ P3  
VDD  
VSSPIN  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
W26  
Y1  
CY7C0451V18  
VREFA P3  
VSS  
VSS  
V2  
VDD  
VSS  
V3  
VDDQ P2  
VDD  
C+ P3  
V4  
OEB P3  
ZQ P3  
VDDC  
V5  
DOFFB P2  
CP2  
VSS  
V6  
V7  
VDD  
V8  
VSS  
VDD  
V9  
VSS  
VDDQ P2  
DQ15 P2  
DQ16 P2  
DQ17 P2  
DQ18 P2  
DQ19 P2  
VSS  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
W1  
VSS  
Y2  
VSS  
Y3  
VSS  
Y4  
VSS  
Y5  
VSS  
Y6  
VSS  
Y7  
VSS  
Y8  
MRSTB  
VSS  
VSS  
Y9  
VSS  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
Y26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
VSS  
VSS  
VSS  
VSS  
VSS  
C- P3  
VSS  
DOFFB P3  
VDD  
VSS  
VSS  
VDDQ P3  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
W2  
VDD  
VSS  
W3  
VDDC  
ZQ P2  
OEB P2  
C+ P2  
VSS  
DQ19 P3  
DQ18 P3  
DQ17 P3  
DQ16 P3  
DQ15 P3  
VDDQ P3  
VDDQ P2  
DQ10 P2  
DQ11 P2  
DQ12 P2  
DQ13 P2  
DQ14 P2  
VSS  
W4  
W5  
W6  
W7  
W8  
VSS  
W9  
VSS  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
VREFA P2  
VREFA P2  
VREFA P2  
VREFA P2  
VREFA P3  
VREFA P3  
VREFA P3  
NC  
Document #: 38-06065 Rev. **  
Page 8 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
VSSPIN  
AA9  
CY7C0451V18  
NC  
VSSPIN  
AC1  
CY7C0451V18  
VDDQ P2  
DQ0 P2  
DQ1 P2  
DQ2 P2  
DQ3 P2  
DQ4 P2  
VSS  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
A1 P2  
AC2  
A6 P2  
AC3  
A11 P2  
NC  
AC4  
AC5  
NC  
AC6  
A11 P3  
A6 P3  
AC7  
AC8  
NC  
A1 P3  
AC9  
NC  
VSS  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
READYB P2  
A4 P2  
VSS  
VSS  
A9 P2  
DQ 14 P3  
DQ13 P3  
DQ12 P3  
DQ11 P3  
DQ10 P3  
VDDQ P3  
VDDQ P2  
DQ5 P2  
DQ6 P2  
DQ7 P2  
DQ8 P2  
DQ9 P2  
VSS  
A14 P2  
A14 P3  
A9 P3  
A4 P3  
READYB P3  
NC  
VSS  
AB2  
VSS  
AB3  
DQ4 P3  
DQ3 P3  
DQ2 P3  
DQ1 P3  
DQ0 P3  
VDDQ P3  
B0B P2  
B1B P2  
CE1 P2  
CE0B P2  
CNTRSTB P2  
CNTLDB P2  
CNTINCB P2  
MKRDB P2  
NC  
AB4  
AB5  
AB6  
AB7  
AB8  
NC  
AB9  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
A0 P2  
AD2  
A5 P2  
AD3  
A10 P2  
A15 P2  
A15 P3  
A10 P3  
A5 P3  
AD4  
AD5  
AD6  
AD7  
AD8  
A0 P3  
AD9  
VSS  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
INTB P2  
A3 P2  
VSS  
VSS  
A8 P2  
DQ9 P3  
DQ8 P3  
DQ7 P3  
DQ6 P3  
DQ5 P3  
VDDQ P3  
A13 P2  
A13 P3  
A8 P3  
A3 P3  
INTB P3  
NC  
Document #: 38-06065 Rev. **  
Page 9 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
Table 1. 676 BGA Pin Table (CY7C0451V18) (continued)  
VSSPIN  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
CY7C0451V18  
MKRDB P3  
CNTINCB P3  
CNTLDB P3  
CNTRSTB P3  
CE0B P3  
CE1 P3  
VSSPIN  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
CY7C0451V18  
VDDA P2  
VDDA P2  
VDDA P2  
VDDA P3  
VDDA P3  
VDDA P3  
VDDA P3  
VDD  
B1B P3  
B0B P3  
DIO P2  
VDD  
AE2  
B2B P2  
VDDA P3  
VDDA P3  
VDDC  
AE3  
B3B P2  
AE4  
MKLDB P2  
RETXB P2  
CNTRDB P2  
WRP0B P2  
VDD  
AE5  
VDDC  
AE6  
RWB P3  
AIO P3  
AE7  
AE8  
VSS  
AE9  
VDD  
Functional Description  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AF1  
CNTINTB P2  
A2 P2  
The CY7C0452V18/0451V18/0450V18/0431V18/0430V18 is  
a family of synchronous true four-ported Datapath Switching  
Element (DSE), up to 27 Gb/s and 5 Mb density. All four ports  
may be clocked at independent frequencies from one another.  
Writes and reads are permitted simultaneously from all four  
ports to the switch array. Simultaneous reads are allowed for  
accesses to the same address location; however, simulta-  
neous reading and writing to the same location is not allowed.  
A7 P2  
A12 P2  
A12 P3  
A7 P3  
A2 P3  
The QuadPort DSE family can be clocked with synchronous,  
pipelined accesses up to 167 MHz. Clock to data valid as low  
as tCD = 3.5 ns. Registers on control, address and data lines  
allow for minimal set-up and hold time.  
CNTINTB P3  
VDD  
VDD  
The QuadPort DSE family supports a burst counter for block  
transfers of data. The QuadPort DSE also supports features  
such as: impedance matching, memory block retransmit capa-  
bility, counter address readback, and mask address readback.  
WRP0B P3  
CNTRDB P3  
RETXB P3  
MKLDB P3  
B3B P3  
Burst Counter Operation  
Each port contains a burst counter on the input address regis-  
ter. After externally loading the counter with the initial address,  
the counter will self-increment the address internally (more de-  
tails to follow). The internal write pulse width is independent of  
the duration of the R/W input signal. The internal write pulse is  
self-timed to allow the shortest possible cycle times.  
B2B P3  
DIO P3  
VSS  
AF2  
AIO P2  
Counter enable inputs are provided to block the external ad-  
dress input and utilize the internal address generated by the  
internal counter for fast interleaved memory applications. A  
ports burst counter is loaded with an external address when  
the ports Counter Load pin (CNTLD) is asserted LOW. When  
the ports Counter Increment pin (CNTINC) is asserted, the  
address counter will increment on each subsequent LOW-to-  
HIGH transition of that ports clock signal. This will read/write  
one word from/into each successive address location until  
CNTINC is deasserted. The counter can address the entire  
memory array and will loop back to the start. Counter Reset  
AF3  
RWB P2  
VDDC  
AF4  
AF5  
VDDC  
AF6  
VDDA P2  
VDDA P2  
VDD  
AF7  
AF8  
AF9  
VDD  
AF10  
VDDA P2  
Document #: 38-06065 Rev. **  
Page 10 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
(CNTRST) is used to reset the unmasked portion of burst  
counter. A counter-mask register is used to control the counter  
wrap. The counter and mask register operations are described  
in more detail in the following sections.  
traces on the PCB cause these effects. These mismatches  
cause reflections on the board, which can dramatically impact  
a system's ability to transmit data. One of the most common  
ways used to solve this problem is to place terminating resis-  
tors on each trace on the board. These resistor nets ensure  
that the impedance of the device's I/O matches the traces on  
the board. This approach, though, can have a huge impact on  
the amount of board space required in a system. The Quad-  
Port DSE solves both problems by allowing the designer to set  
the impedance of the I/O driver to match the impedance of the  
on board traces.  
The counter or mask register values can be read back on the  
bidirectional address lines by activating CNTRD or MKRD, re-  
spectively.  
Block Retransmit  
Retransmit is a feature that allows the reread of a block of  
memory more than once without the need to reload the initial  
address. This eliminates the need for external logic to store  
and route data. It also reduces the complexity of the system  
design and saves board space. An internal mirror registeris  
used to store the initially loaded address counter value. When  
the counter unmasked portion reaches its maximum value set  
by the mask register, it will wrap back to the initial value stored  
in this mirror register. If WRP = 0 the unmasked bits will wrap  
to zero. The mirror register value will be loaded into the  
counter when RETX is asserted LOW. When WRP = 1 the  
unmasked bit can wrap to mirror register. If the counter is con-  
tinuously configured in increment mode, it will increment again  
to its maximum value and wraps back to the value initially  
stored into the mirror register,thus allowing the access of the  
same data repeatedly without the need for any external logic.  
Each port of the QuadPort DSE has a Variable Impedance  
Sense (VIS) circuit. The circuit sets the output impedance for  
the DQ bus. The calibration circuit has one input called ZQ. A  
calibrating resistor (RQ) is connected between ZQ and  
ground. The value of RQ must be 5X the value of the intended  
line impedance driven by the QuadPort DSE. The allowable  
range of RQ to guarantee impedance matching with a toler-  
ance of ±15% is between 175and 500. When MRST is  
asserted LOW, the VIS control circuitry is reset and Ready is  
deasserted. When MRST is released, the VIS circuit begins  
the process of matching the DQ output impedance to 0.2*RQ.  
Ready will be asserted within 1024 cycles of each port's re-  
spective clock. Each port's DQ output impedance is guaran-  
teed to be in the correct range when its Ready output is assert-  
ed LOW. The output impedance is adjusted to account for  
drifts in supply voltage and temperature every 1024 port clock  
cycles thereafter. The user may also choose to disable vari-  
Programmable I/Os  
Each port will have two strapping pins that are used to select  
the I/O standard used by data and address/control. S0 will set  
the I/O standard for data and S1 will set the I/O standard for  
address and control. Either LVTTL or SSTL2 Class 1 I/Os will  
be selected as shown.  
able impedance matching by connecting ZQ directly to VDD  
.
When VIS is disabled, The DQ output impedance will be  
less-than equal 75Ω.  
Variable Impedance Parameters  
I/O Standard Strapping Codes  
Parameter Minimum Maximum Units  
Tolerance  
±2%  
Strapping Pin Value  
I/O Standard Selected  
LVTTL  
RQ Value  
175  
35  
500  
100  
0
1
Output  
±15%  
Impedance  
SSTL2  
Reset Time  
NA  
NA  
1024  
1024  
cycles  
cycles  
NA  
NA  
Variable Impedance Sense  
Update  
Time  
Another problem that is often encountered in high-speed digi-  
tal design is what is commonly known as transmission line  
effects. Impedance mismatches between devices and the  
Document #: 38-06065 Rev. **  
Page 11 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Port 1 Operation-Control Logic Blocks[2, 3]  
READY  
DOFF  
B0  
P1  
Reset  
Logic  
MRST  
B1  
B2  
P1  
P1  
B3P1  
Port-1  
Control  
Logic  
TMS  
TCK  
TDI  
R/W  
P1  
JTAG  
TDO  
Controller  
OE  
P1  
CE0P1  
CE  
TRST  
1P1  
DIO  
AIO  
P1  
P1  
C-  
C+  
P1  
P1  
40  
Port 1  
I/O  
Port 4 Logic Blocks[4]  
I/O -I/O  
0P1  
39P1  
ZQ  
P1  
16  
A
A  
15P1  
0P1  
Port 1  
Port 4  
QuadPort DSE  
MKLD  
Port 1  
P1  
CNTLD  
Counter/  
Mask Reg/  
Address  
P1  
CNTINC  
CNTRD  
P1  
P1  
Array  
5/2/1 Meg  
128/64/32Kx40  
128/64Kx20  
MKRD  
P1  
P1  
Decode  
CNTRST  
WRP  
P1  
P1  
P1  
RETX  
INT  
Port 2  
Port 3  
CNTINT  
P1  
Port 3 Logic Blocks[4]  
Port 2 Logic Blocks[4]  
Notes:  
2. CY7C0431/0430V18 (x 20) has 20 I/O pins instead of 40.  
3. CY7C0452/0431V18 (128K) have 17 address bits instead of 16. CY7C0451/0430V18 (64K) have 16 address bits. CY7C0450V18 (32K) has 15 address bits  
instead of 16.  
4. Port 2, Port 3, and Port 4 Logic Blocks are similar to Port 1 Logic Blocks.  
Document #: 38-06065 Rev. **  
Page 12 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Pin Definitions  
Port 1  
Port 2  
Port 3  
Port 4  
Description  
VSS  
VDD  
Ground supply for the core, address/control, data, or  
clock.  
Power supply for the core.  
The user must ensure that VDD ramps simultaneously or  
ahead of all other device power supplies.  
VDDA P1  
VDDQ P1  
VDDA P2  
VDDQ P2  
VDDA P3  
VDDQ P3  
VDDC  
VDDA P4  
Power supply for address/control I/O on port x  
Power supply for data I/O on port x  
Power supply for clock I/O  
VDDQ P4  
VREFA P1  
VREFA P2  
VREFA P3  
VREFA P4  
Pins must be connected to I/O reference voltage if us-  
ing SSTL I/O on address/control on port x  
VREFQ P1  
VREFQ P2  
VREFQ P3  
VREFQ P4  
Pins must be connected to I/O reference voltage if us-  
ing SSTL I/O on data on port x  
[3]  
[3]  
[3]  
[3]  
A0P1A15P1  
.
A0P2A15P2  
DQ0P2  
DQ39P2  
.
A0P3A15P3  
.
A0P4A15P4  
.
Address Input/Output  
Data Bus Input/Output  
DQ0P1  
DQ0P3  
DQ0P4  
[2]  
[2]  
[2]  
[2]  
DQ39P1  
DQ39P3  
DQ39P4  
C+P1  
C+P2  
C+P3  
C+P4  
Positive Clock Input. C+ is used to capture synchronous  
inputs to the device. This input can be free running or  
strobed. Maximum clock input rate is fMAX  
.
CP1  
CP2  
CP3  
CP4  
NegativeClockInput. Cis usedtocapturesynchronous  
inputs to the device and must be equal to C frequency.  
This input can be free running or strobed. Maximum clock  
input rate is fMAX  
.
DIOP1  
DIOP2  
DIOP3  
DIOP4  
Data Pin I/O Standard Select Input. This pin will select  
the I/O standard of the data pins. A HIGH signal will select  
thepins toswitchatSSTL2levels. A LOWsignalwillselect  
the pins to switch at LVTTL levels. The pins must be  
strapped to either VCC or VSS upon power-up.  
AIOP1  
AIOP2  
AIOP3  
AIOP4  
Address/Control Pin I/O Standard Select Input. This  
pin will select the I/O standard of the address and control  
pins. A HIGH signal will select the pins to switch at SSTL2  
levels. A LOW signal will select the pins to switch at LVTTL  
levels. The pins must be strapped to either VCC or VSS  
upon power-up.  
B0P1  
B1P1  
B0P2  
B0P3  
B1P3  
B0P4  
B1P4  
Byte 0 Select Input. Asserting this signal LOW enables  
read and write operations to byte 0. For read operations  
both the B0 and OE signals must be asserted to drive  
output data on the lower byte of the data pins.  
B1P2  
Byte 1 Select Input. Same function as B0, but to byte 1.  
Byte 2 Select Input. Same function as B0, but to byte 2.  
Byte 3 Select Input. Same function as B0, but to byte 3.  
[5]  
[5]  
[5]  
[5]  
B2P1  
B2P  
B2P3  
B2P4  
2
[5]  
[5]  
[5]  
[5]  
B3P1  
B3P2  
B3P3  
B3P4  
CE0P1,CE1P1  
CE0P2,CE1P2  
CE0P3,CE1P3  
CE0P4,CE1P4  
Chip EnableInput. Toselect any port, bothCE0 AND CE1  
must be asserted to their active states (CE0 VIL and CE1  
VIH).  
OEP1  
OEP2  
OEP3  
OEP4  
Output Enable Input. This signal must be asserted LOW  
to enable the I/O data lines during read operations. OE is  
asynchronous input.  
R/WP1  
R/WP2  
R/WP3  
R/WP4  
Read/Write Enable Input. This signal is asserted LOW to  
write to the QuadPort memory array. For read operations,  
assert this pin HIGH.  
Note:  
5. Not available for CY7C0431/0430V18 (x 20)  
Document #: 38-06065 Rev. **  
Page 13 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Pin Definitions (continued)  
Port 1  
Port 2  
Port 3  
Port 4  
Description  
MRST  
Master Reset Input. This is onesignal for all Ports. MRST  
isanasynchronousinput. AssertingMRSTLOW performs  
all of the reset functions as described in the text. A MRST  
operation must be performed at power-up.  
[6]  
[6]  
[6]  
[6]  
CNTRSTP1  
CNTRSTP2  
CNTRSTP3  
CNTRSTP4  
Counter Reset Input. Asserting this signal LOW resets  
the unmasked portion of the burst address counter of its  
respective port to zero. CNTRST is second to MRST in  
priority with respect to counter and mask register opera-  
tions.  
[6]  
[6]  
[6]  
[6]  
MKLDP1  
MKLDP2  
MKLDP3  
MKLDP4  
Mask Register Load Input. Asserting this signal LOW  
loads the mask register with the external address avail-  
able on the address lines. MKLD operation has higher pri-  
ority over CNTLD operation.  
[6]  
[6]  
[6]  
[6]  
CNTLDP1  
CNTLDP2  
CNTLDP3  
CNTLDP4  
Counter Load Input. Asserting this signal LOW loads the  
burst counter with the external address present on the  
address pins.  
[6]  
[6]  
[6]  
[6]  
CNTINCP1  
CNTINCP2  
CNTINCP3  
CNTINCP4  
Counter Increment Input. Asserting this signal LOW in-  
crements the burst address counter of its respective port  
on each rising edge of C.  
[6]  
[6]  
[6]  
[6]  
CNTRDP1  
CNTRDP2  
CNTRDP3  
CNTRDP4  
Counter Readback Input. When asserted LOW, the in-  
ternal address value of the counter will be read back on  
the address lines. During CNTRD operation, both CNTLD  
and CNTINC must be HIGH. Counter readback operation  
has higher priority over mask register readback operation.  
Counter readback operation is independent of port chip  
enables. If address readback operation occurs with chip  
enables active (CE0 = LOW, CE1 = HIGH), the data lines  
(I/Os) will be three-stated.  
[6]  
[6]  
[6]  
[6]  
MKRDP1  
MKRDP2  
MKRDP3  
MKRDP4  
Mask Register Readback Input. When asserted LOW,  
the value of the mask register will be readback on address  
lines. During mask register readback operation, all  
counter and MKLD inputsmustbeHIGH(seeCounter and  
Mask Register Operations truth table). Mask register read-  
back operation is independent of port chip enables. DQ is  
three-stated regardless of the chip enables. When the in-  
ternal counter is driven to the address pins, the DQ pins  
are three-stated.  
[6]  
[6]  
[6]  
[6]  
CNTINTP1  
CNTINTP2  
INTP2  
CNTINTP3  
CNTINTP4  
INTP4  
Counter Interrupt Flag Output. Flag is assertedLOW for  
one clock cycle when the counter reaches maximum  
count.  
INTP1  
INTP3  
Interrupt Flag Output. Interrupt permits communications  
between all four ports. The upper four memory locations  
can be used for message passing. Example of operation:  
INTP4 is asserted LOW when another port writes to the  
mailbox location of Port 4. Flag is cleared when Port 4  
reads the contents of its mailbox. The same operation is  
applicable to Ports 1, 2, and 3.  
[6]  
[6]  
[6]  
[6]  
WRPP1  
WRPP2  
WRPP3  
WRPP4  
When the burst counter reaches the maximum count,  
the unmasked bits will wrap to 0 if WRP is asserted LOW.  
Otherwise, the counter will be loaded with the contents of  
the mirror register.  
[6]  
[6]  
[6]  
[6]  
RETXP1  
RETXP2  
RETXP3  
RETXP4  
When RETX is asserted LOW the burst counter is loaded  
with the contents of the mirror register.  
Note:  
6. Not available on CY7C0452V18  
Document #: 38-06065 Rev. **  
Page 14 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Pin Definitions (continued)  
Port 1  
ZQP1  
Port 2  
ZQP2  
Port 3  
ZQP3  
Port 4  
ZQP4  
Description  
Output Impedance Matching Input. This input is used to  
adjust the device data outputs impedance to match the  
system data bus impedance. Output impedance is set to  
0.2 x RQ, where RQ is a resistor connected between ZQ  
and ground. The acceptable resistor values for RQ is  
175to 500. Alternately, this pin can be connected di-  
rectly to VDD, which disables impedance matching. This  
pin cannot be connected directly to VSS or left floating.  
READYP1  
DOFFP1  
READYP2  
DOFFP2  
READYP3  
DOFFP3  
READYP4  
DOFFP4  
Output pin indicates the port is ready for operation.  
The DLL has been properly locked to the clock input sig-  
nals.  
The DLL requires 1024 cycles to lock following a master  
reset operation.  
DLL off input pin disables the integrated Delay Locked  
Loop circuit for the port. DOFF can be toggled LOW then  
HIGH to reset the DLL for the associated port. That port  
will require 1024 cycles for the DLL to relock, but the other  
3 ports are unaffected.  
TRST  
JTAG Port Reset  
TCK  
JTAG Test Clock Input. This can be CLK of any port or  
an external clock connected to the JTAG TAP.  
TDI  
JTAG Test Data Input. This is the only data input. TDI  
inputs will shift data serially in to the selected register.  
TDO  
JTAG Test Data Output. This is the only data output. TDO  
transitions occur on the falling edgeof TCK. TDO normally  
three-stated except when captured data is shifted out of  
the JTAG TAP.  
TMS  
JTAG Test Mode Select Input. It controls the advance of  
JTAG TAP state machine. State machine transitions occur  
on the rising edge of TCK.  
Document #: 38-06065 Rev. **  
Page 15 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
DC Input Voltage for SSTL2 ..........................0.3V to + 2.7V  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage (HBM) ................................ >2200V  
Static Discharge Voltage (CDM)..................................>750V  
Latch-Up Current.....................................................>200 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature ................................ 40°C to + 125°C  
Ambient Temperature with  
Power Applied............................................40°C to + 125°C  
Supply Voltage to Ground Potential.............. 0.5V to + 1.9V  
Operating Ranges  
DC Voltage Applied to  
Outputs in High Z State for LVTTL ................ 0.3V to + 3.9V  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
VDD  
DC Input Voltage........................................... 0.3V to + 3.9V  
1.8V ± 5%  
1.8V ± 5%  
DC Voltage Applied to  
Outputs in High Z State for SSTL2................ 0.3V to + 2.7V  
Current Characteristics Over the Operating Range  
CY7C0452V18/0451V18/0450V18/0431V18/0430V18  
-167 -133 -100  
Parameter  
Description  
Typ.  
Max.  
Typ.  
Max.  
Typ.  
Max.  
Unit  
ICC  
Core Operating Current (VDD = Max., IOUT = 0 mA)  
Outputs Disabled, CE = VIL, f = fmax  
900  
1300  
700  
1100  
500  
900  
mA  
ISB  
Core Standby Current (4 Ports CMOS Level, 0 ac-  
tive) CE1-4 VIH, f = 0  
200  
32  
500  
40  
150  
29  
500  
36  
100  
26  
500  
32  
mA  
mA  
mA  
ICCQ  
ISBQ  
I/O Operating Current per port  
(VDDQ = Max, no external load, f = fmax  
)
I/O Standby Current per port  
(VDDQ = Max, (no external load, f = 0)  
OR Outputs Disabled  
12  
20  
12  
20  
12  
20  
ICCA  
ISBA  
ICCC  
ISBC  
Address/ Control Operating Current per port  
(VDDA = Max, no external load, f = fmax  
24  
12  
8
30  
15  
10  
10  
22  
12  
8
27  
15  
10  
10  
20  
12  
8
24  
15  
10  
10  
mA  
mA  
mA  
mA  
)
Address/Control Standby Current per port  
(VDDA = Max, no external load, f = 0)  
Clock / JTAG Operating Current Total  
(VDDC = Max, f = fmax  
)
Clock / JTAG Standby Current Total  
(VDDC = Max, CE1-4 VIH)  
8
8
8
Document #: 38-06065 Rev. **  
Page 16 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Electrical Characteristics  
CY7C0452V18/0451V18/0450V18/0431V18/  
0430V18  
Parameter  
VDDQ/A  
VREF  
VTT  
I/O Type  
Description  
Min.  
2.3  
Max.  
2.7  
Unit  
V
SSTL2-Class 1 Supply Voltage  
Reference Voltage  
1.15  
1.35  
V
Termination Voltage  
VREF 0.04  
VREF + 0.18  
0.3  
VREF + 0.04  
VDDQ + 0.3  
VREF 0.18  
100  
V
VIH  
Input High Voltage  
V
VIL  
Input Low Voltage (VDDQ = 2.3V2.7V)  
V
IOZ  
Output Leakage Current  
100  
µA  
mA  
mA  
IOH  
Output Source Current (VDDQ = 2.3V)  
Output Sink Current (VDDQ = 2.3V)  
7.6  
IOL  
7.6  
VDDQ/A  
VIH  
LVTTL  
Supply Voltage  
3.0  
2.0  
3.6  
VDD + 0.3  
0.8  
V
V
Input High Voltage  
VIL  
Input Low Voltage  
0.3  
2.4  
V
VOH  
VOL  
IOZ  
Output High Voltage (IOH = 8 mA)  
Output Low Voltage (IOL = 8 mA)  
Output Leakage Current  
V
0.4  
V
100  
100  
µA  
VDDC  
VIH  
LVPECL  
(Clocks only)  
Supply Voltage  
3.0  
3.6  
V
V
Input High Voltage  
Input Low Voltage  
Input Differential Voltage  
VDD 1.2  
VDD 1.85  
600  
VDD 0.85  
VDD 1.45  
1000  
VIL  
V
VIDIF  
mV  
JTAG TAP Electrical Characteristics Over the Operating Range  
Parameter  
VOH1  
VOL1  
Description  
Test Conditions  
Min.  
Max.  
Unit  
V
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
IOH = 8.0 mA  
2.4  
IOL = 8.0 mA  
0.4  
0.8  
V
VIH  
2.0  
V
VIL  
V
Capacitance  
Parameter  
Description  
Test Conditions  
Max.  
Unit  
pF  
CIN (ALL PINS)  
COUT (ALL PINS)  
CIN (C PINS)  
Input Capacitance  
TA = 25°C, f = 1 MHz,  
VCC = 3.3V  
10  
10  
15  
Output Capacitance  
Input Capacitance  
pF  
pF  
Document #: 38-06065 Rev. **  
Page 17 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
AC Test Load  
Z
= 50  
R = 50Ω  
R = 50Ω  
0
OUTPUT  
OUTPUT  
Z
= 50Ω  
R = 50Ω  
0
5 pF  
OUTPUT  
[7]  
C
V
= 1.5V  
= 3.3V  
TH  
Z = 50Ω  
0
V
TH  
= 1.5V  
5 pF  
(a) Normal Load (LVTTL)  
V
TH  
Z
= 50Ω  
R = 50Ω  
0
(b) Three-state Delay  
OUTPUT  
[7]  
R
= 25Ω  
S
C
V
TT  
= 0.5 * V  
DDQ  
3.0V  
GND  
90%  
10%  
90%  
10%  
(a) Normal Load (SSTL2 Class 1)  
t = 1.6 ns  
t = 1.6 ns  
f
r
1.5V  
LVTTL INPUTS  
50Ω  
TDO  
V
= VREF + 0.35V  
IHmin(AC)  
Z = 50Ω  
V
0
SWING (MAX)  
= 1.5V  
VREF = 1.25V  
V
C = 20 pF  
= VREF 0.35V  
ILmax(AC)  
deltaT  
deltaT  
)/deltaT = 1.0 V/ns  
ILMAX(AC)  
GND  
(c) TAP Load  
SLEW = (V  
IHMIN(AC)  
V  
SSTL2 INPUTS  
LVPECL Input Waveform  
VDD_CLK  
VIH(MAX)  
VIH(MIN)  
90%  
90%  
10%  
VIDIF  
VIL(MAX)  
VIL(MIN)  
VSS_CLK  
10%  
tr / tf  
tr = Rise Time <= 0.6 ns  
tf = Fall Time <= 0.6 ns  
All timing referenced to C+ and C- crossing  
LVPECL INPUTS  
Note:  
7. Test Conditions: C = 10 pF.  
Document #: 38-06065 Rev. **  
Page 18 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Characteristics Over the Commercial/Industrial Operating Range  
CY7C0452V18/0451V18/0450V18/0431V18/0430V18  
-167 -133 -100  
Parameter  
qualifier  
Description  
Maximum Operating Frequency  
Clock Cycle Time  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
fMAX  
tCYC  
tCH  
tCL  
tR  
167  
133  
100  
6
7.5  
3.4  
3.4  
10  
4.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock HIGH Time  
2.7  
2.7  
Clock LOW Time  
Clock Rise Time  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
tF  
Clock Fall Time  
tSD  
tHD  
Input Data Set-up Time  
Input Data Hold Time  
WRP0 Set-up Time  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
1.9  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
2.3  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
3.0  
0.7  
tSWRP  
tHWRP  
tSRT  
WRP0 Hold Time  
RETX Set-up Time  
tHRT  
tSA  
RETX Hold Time  
Address Set-up Time  
Address Hold Time  
tHA  
tSB  
Byte Set-up Time  
tHB  
Byte Hold Time  
tSC  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
tHC  
tSW  
tHW  
R/W Hold Time  
tSCLD  
tHCLD  
tSCINC  
tHCINC  
tSCRD  
tHCRD  
tSRST  
tHRST  
tSMLD  
tHMLD  
tSMRD  
tHMRD  
tOE  
CNTLD Set-up Time  
CNTLD Hold Time  
CNTINC Set-up Time  
CNTINC Hold Time  
CNTRD Set-up Time  
CNTRD Hold Time  
CNTRST Set-up Time  
CNTRST Hold Time  
MKLD Set-up Time  
MKLD Hold Time  
MKRD Set-up Time  
MKRD Hold Time  
Output Enable to Data Valid  
Output Enable to Low Z  
Output Enable to High Z  
Clock to Counter Addr. Readback Valid  
Address Output Hold After Clock HIGH  
Clock High to Address Output High Z  
5.5  
6.5  
8.5  
tOLZ  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
tOHZ  
tCA  
5.5  
6.0  
5.5  
7.5  
8.5  
10  
tAC  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
tCKHZA  
6.0  
7.5  
10.0  
Document #: 38-06065 Rev. **  
Page 19 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Characteristics Over the Commercial/Industrial Operating Range (continued)  
CY7C0452V18/0451V18/0450V18/0431V18/0430V18  
-167 -133 -100  
Parameter  
qualifier  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
tCKLZA  
Clock High to Address Output Low Z  
1.0  
1.0  
1.0  
tCM  
Clock to Master Register Readback  
Valid  
6.0  
3.5  
7.5  
4.0  
10  
ns  
tCD  
with DLL Clock to DQ Valid  
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
tDC  
with DLL DQ/A Output Hold After Clock HIGH  
with DLL Clock High to DQ/A Output Low Z  
with DLL Clock High to DQ/A Output High Z  
1.0  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
tCKLZ  
tCKHZ  
tCD2  
tDC2  
3.5  
4.7  
4.0  
6.0  
4.5  
7.0  
no DLL  
no DLL  
Clock to DQ Valid (DOFF=0)  
DQ/A Output Hold After Clock HIGH  
(DOFF=0)  
1.0  
1.0  
1.0  
5.0  
1.0  
1.0  
1.0  
6.5  
1.0  
1.0  
1.0  
9.0  
tCKHZ2  
tCKLZ2  
no DLL  
no DLL  
Clock HIGH to DQ/A Output High Z  
(DOFF=0)  
4.7  
6.0  
7.0  
ns  
ns  
Clock HIGH to DQ/A Output Low Z  
(DOFF=0)  
tCCS  
tSCINT  
tRCINT  
tSINT  
tRINT  
tRS  
Clock to Clock Set-up Time  
Clock to CNTINT LOW  
Clock to CNTINT HIGH  
Clock to INT LOW  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.7  
4.7  
7.5  
7.5  
6
6
9
9
7
7
10  
10  
Clock to INT HIGH  
Master Reset Pulse Width  
Master Reset Recovery Time  
24  
18  
30  
40  
30  
tRSR  
tRSF  
22.5  
Master Reset to Outputs  
Inactive/High Z  
18  
22.5  
30  
tRDY  
fJTAG  
tTCYC  
tTH  
Master Reset Release to Port Ready  
JTAG TAP Controller Frequency  
TCK Cycle Time  
1024  
10  
1024  
10  
1024 Cycles  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
100  
40  
40  
10  
10  
10  
10  
100  
40  
40  
10  
10  
10  
10  
100  
40  
40  
10  
10  
10  
10  
TCK High Time  
tTL  
TCK Low Time  
tTMSS  
tTMSH  
tTDIS  
tTDIH  
tTDOV  
tTDOX  
tTRS  
TMS Set-Up to TCK Rise  
TMS Hold to TCK Rise  
TDI Set-Up to TCK Rise  
TDI Hold to TCK Rise  
TCK Low to TDO Valid  
TCK Low to TDO Invalid  
TRST Pulse Width  
20.0  
20  
20.0  
0
0
0
24  
30  
40  
Document #: 38-06065 Rev. **  
Page 20 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
JTAG Timing and Switching Waveforms  
t
t
TH  
TL  
Test Clock  
TCK  
t
TCYC  
t
TMSS  
t
TMSH  
Test Mode Select  
TMS  
t
TDIS  
t
TDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
t
TDOX  
t
TDOV  
Document #: 38-06065 Rev. **  
Page 21 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms  
Master Reset[8, 9, 10]  
t
CYC  
t
t
CH  
CL  
C+  
t
t
t
CH  
CHCH  
CL  
C–  
t
t
RSR  
RS  
MRST  
READY  
t
t
RDY  
RSF  
[2]  
DQ  
39:0  
[3]  
A
16:0  
CNTINT  
INT  
[9]  
t
S
All Control Inputs  
TRST  
INACTIVE  
ACTIVE  
t
TRS  
Notes:  
8. A master reset cycle is required after power-up  
9. The parameter tS represents the set-up time required for each input  
10. At power up, TRST must be asserted low for at least tTRS to ensure the TAP controller is in the Test-Logic-Reset state.  
Document #: 38-06065 Rev. **  
Page 22 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Read Cycle[6, 7, 13]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CL  
CHC  
CHCH  
CH  
C–  
t
t
HW  
SW  
R/W  
t
t
HA  
SA  
[3]  
16:0  
A
A
A
A
A
A
A
n+5  
n
n+1  
n+2  
n+3  
n+4  
t
t
CD  
DC  
[2]  
DQ  
Q
Q
Q
Q
Q
Q
n+1  
39:0  
x-3  
x-2  
x-1  
x
n
Write Cycle[11, 14]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
t
t
HW  
SW  
R/W  
t
t
SA  
HA  
HD  
[3]  
A
A
A
D
A
A
D
A
D
16:0  
n
n+1  
n+2  
n+2  
n+3  
n+4  
t
t
SD  
[2]  
DQ  
D
D
39:0  
n
n+1  
n+3  
n+4  
Notes:  
11. n is the address for location n. Dn is data written to location n. Qn is the data read from location n.  
12. There are 3 cycles of latency for data to reach the DQ bus in response to a read instruction  
A
13. CE0 = OE = B3 = B2 = B1 = B0 = CNTLD = VIL, MRST = CE1 = CNTRST = MKLD = VIH, CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
14. CE0 = B3 = B2 = B1 = B0 = CNTLD = VIL, MRST = CE1 = CNTRST = MKLD = VIH, OE = CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 23 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Bank Select Read During Depth Expansion[11, 15, 16]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
t
t
SA  
HA  
HC  
[3]  
16:0(B1)  
A
A
A
A
A
A
A
A
n+6  
n
n+1  
n+2  
n+3  
n+4  
n+5  
t
t
SC  
CE0  
(B1)  
t
t
t
CKLZ  
CD  
CKHZ  
[2]  
DQ  
Q
Q
n+2  
39:0(B1)  
n
t
t
SA  
HA  
[3]  
A
A
A
A
A
A
A
A
n+6  
16:0(B2)  
n
n+1  
n+2  
n+3  
n+4  
n+5  
t
t
SC  
HC  
CE1  
(B2)  
t
t
t
t
CKLZ  
DC  
CKHZ  
CD  
[2]  
DQ  
Q
Q
Q
Q
Q
n+1  
39:0(B2)  
x3  
x-2  
x-1  
x
Notes:  
15. B1 represents Bank #1 and B2 represents Bank #2. Each bank consists of one QuadPort DSE device. A(B1) = A(B2)  
16. CE0(B2) = OE = B3 = B2 = B1 = B0 = CNTLD = VIL, MRST = CE1(B1) = R/W = CNTRST = MKLD = VIH, CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 24 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Bank Select Write During Depth Expansion[11, 15, 17]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
t
t
SA  
SC  
SD  
HA  
HC  
HD  
[3]  
A
A
A
A
A
A
A
A
16:0(B1)  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
t
t
t
t
CE0  
(B1)  
[2]  
DQ  
D
D
A
D
A
D
A
D
A
D
A
D
A
39:0(B1)  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
t
t
SA  
SC  
SD  
HA  
HC  
HD  
[3]  
A
A
16:0(B2)  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
t
t
t
t
CE1  
(B2)  
[2]  
DQ  
D
D
D
D
D
D
D
39:0(B2)  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
Note:  
17. CE0(B2) = OE = B3 = B2 = B1 = B0 = R/W = CNTLD = VIL, MRST = CE1(B1) = CNTRST = MKLD = VIH,CNTINC = RETX = WRP0 = CNTRD = MKRD= X  
Document #: 38-06065 Rev. **  
Page 25 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Read-to-Write (OE = VIL)[11, 12, 18, 19, 20, 21]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CL  
CHCH  
CHCH  
CH  
C–  
t
t
t
t
HA  
SA  
HA  
SA  
[3]  
A
A
A
A
D
A
D
16:0  
x
n
n+1  
n+2  
t
t
t
t
HW  
SW  
HW  
SW  
R/W  
t
t
t
t
t
HD  
DC  
CD  
CKHZ  
SD  
[2]  
39:0  
DQ  
Q
Q
Q
Q
Q
D
n
x-4  
x-3  
x-2  
x-1  
x
n+1  
n+2  
Read-to-Write (OE Controlled)[11, 12, 22, 23, 24]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CL  
CHCH  
CHCH  
CH  
C–  
t
t
t
t
HA  
SA  
HA  
SA  
[3]  
A
A
A
A
A
A
A
A
A
n+4  
16:0  
x+2  
x+3  
x+4  
n
n+1  
n+2  
n+3  
t
t
t
t
HW  
SW  
HW  
SW  
R/W  
OE  
t
t
t
t
t
HD  
DC  
CD  
OH  
SD  
[2]  
39:0  
DQ  
Q
Q
Q
D
D
D
D
D
n+4  
x-2  
x-1  
x
n
n+1  
n+2  
n+3  
Notes:  
18. When OE = VIL, the last read operation is allowed to complete before the DQ bus is three-stated and the user is allowed to drive write data.  
19. Four dummy writes should be issued to accomplish bus turnaround. The fifth write instruction is the first valid write.  
20. The address should be held constant during the four dummy writes and first valid write instruction to avoid data corruption.  
21. CE0 = OE = B3 = B2 = B1 = B0 = CNTLD = VIL, MRST = CE1 = CNTRST = MKLD = VIH, CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
22. OE should be deasserted and tOHZ allowed to elapse before the first write operation is issued.  
23. Any read scheduled to complete after OE is asserted will be preempted.  
24. CE0 = B3 = B2 = B1 = B0 = CNTLD = VIL, MRST = CE1 = CNTRST = MKLD = VIH, CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 26 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Byte Enable Write[11, 25]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CL  
CHCH  
CHCH  
CH  
C–  
t
t
HW  
SW  
R/W  
[3]  
A
A
n
16:0  
t
t
t
CD  
SD  
HD  
[2,5]  
[2,5]  
[2]  
DQ  
DQ  
DQ  
DQ  
0x000  
0x3FF  
0x3FF  
0x3FF  
0x3FF  
0x155  
0x155  
0x2AA  
0x2AA  
0x155  
0x3FF  
0x2AA  
0x000  
39:30  
29:20  
19:10  
0x000  
0x000  
0x000  
[2]  
9:0  
t
t
HB  
SB  
[5]  
B
3
[5]  
B
2
1
0
B
B
Note:  
25. CE0 = OE = CNTLD = VIL, MRST = CE1 = CNTRST = MKLD = VIH, CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 27 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Byte Enable Read[11, 26]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CL  
CHCH  
CHCH  
CH  
C–  
t
t
HW  
SW  
R/W  
[3]  
A
A
n
16:0  
t
t
t
CKHZ  
SD  
HD  
[2,5]  
[2,5]  
[2]  
DQ  
DQ  
DQ  
DQ  
0x000  
0x3FF  
0x155  
0x2AA  
0x000  
39:30  
29:20  
19:10  
t
CKLZ  
0x3FF  
t
CD  
0x155  
0x2AA  
[2]  
9:0  
t
t
HB  
SB  
[5]  
B
3
[5]  
B
2
1
0
B
B
Note:  
26. CE0 = OE = CNTLD = VIL, MRST = CE1 = CNTRST = MKLD = VIH, CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 28 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Read with Address Counter Advance[6, 11, 27]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
t
t
SA  
HA  
[3]  
16:0  
A
A
n
Internal address  
CNTLD  
A
A
A
A
n+3  
n
n+1  
n+2  
t
t
HCLD  
SCLD  
t
t
HCINC  
SCINC  
CNTINC  
[2]  
t
t
DC  
CD  
DQ  
Q
Q
Q
Q
Q
Q
n+2  
39:0  
x-2  
x-1  
x
n
n+1  
Note:  
27. CE0 = OE = B3 = B2 = B1 = B0 = VIL, MRST = CE1 = R/W = CNTRST = MKLD = RETX = VIH, WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 29 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Write with Address Counter Advance[6, 11, 28]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CH  
CL  
CHCH  
C–  
t
t
SA  
HA  
[3]  
16:0  
A
A
n
Internal address  
A
A
A
A
n+3  
n
n+1  
n+2  
t
t
HCLD  
SCL  
CNTLD  
t
t
HCINC  
SCINC  
CNTINC  
[2]  
t
t
HD  
SD  
DQ  
D
D
D
D
D
D
D
n+5  
39:0  
n
n+1  
n+2  
n+2  
n+3  
n+4  
Note:  
28. CE0 = B3 = B2 = B1 = B0 = R/W = VIL, MRST = CE1 = CNTRST = MKLD = RETX = VIH, OE = WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 30 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Counter Reset[6, 11, 29, 30, 31]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
t
t
SA  
HA  
[3]  
A
OX1755  
16:0  
Internal address  
0X17550  
0X17551  
0X17000  
0X17001  
0X17002  
t
t
SCLD  
HCLD  
CNTLD  
t
t
HCINC  
SCINC  
CNTINC  
CNTRST  
t
t
HRST  
SRST  
t
t
HW  
SW  
R/W  
t
t
DC  
CD  
[2]  
39:0  
DQ  
Q
Q
Q
17000  
17550  
17551  
Notes:  
29. Only umasked bits of the burst counter are reset in response to a CNTRST operation. MASK = 0x00FFF.  
30. CE0 = OE = B3 = B2 = B1 = B0 = VIL, MRST = CE1 = CNTRST = MKLD = RETX = VIH, R/W = WRP0 = CNTRD = MKRD = X  
31. MASK = 0x00FFF.  
Document #: 38-06065 Rev. **  
Page 31 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Counter Interrupt (WRP = VIH)[6, 11, 31, 32, 31, 33, 34, 35, 36, 37, 38]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
t
t
SA  
HA  
[3]  
A
O 17FFC  
X
16:0  
Internal address  
0 17FFC  
0 17FFD  
0 17FFE  
0 17FFF  
0 17FFC  
X
X
X
X
X
t
t
HCLD  
SCLD  
CNTLD  
CNTNC  
CNTINT  
R/W  
t
t
HCINC  
SCINC  
t
t
RCINT  
SCINT  
t
t
HW  
SW  
t
t
DC  
CD  
[2]  
39:0  
DQ  
Q
Q
Q
17FFE  
17FFC  
17FFD  
Notes:  
32. The internal burst counter reaches its maximum count when each bit is either masked or equal to 1.  
33. Each port has a mirror register that loads the external address value in response to a CNTLD operation.  
34. All bits of the mirror register are reset to 0 in response to a MRST operation.  
35. Unmasked bits of the mirror register are reset to 0 in response to a CNTRST operation.  
36. The value in the mirror register is unaffected by all other burst counter operations including CNTINC.  
37. When WRP0 = VIH, the internal burst counter is loaded with the contents of the mirror register on the cycle after COUNT = maximum count.  
38. CE0 = OE = B3 = B2 = B1 = B0 = VIL, MRST = CE1 = CNTRST = MKLD = RETX = VIH, CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 32 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Counter Interrupt (WRP = VIL)[6, 11, 31, 32, 39, 40]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
t
t
HA  
SA  
[3]  
16:0  
A
O 17FFC  
X
Internal address  
0 17FFC  
0 17FFD  
0 17FFE  
0 17FFF  
0 17000  
X
X
X
X
X
t
t
HCLD  
SCLD  
CNTLD  
CNTNC  
CNTINT  
R/W  
t
t
HCINC  
SCINC  
t
t
RCINT  
SCINT  
t
t
HW  
SW  
t
CD  
[2]  
DQ  
Q
Q
Q
17FFE  
39:0  
17FFC  
17FFD  
t
DC  
Notes:  
39. When WRP0 = VIL, the unmasked bits of the burst counter are reset to 0 on the cycle after COUNT = maximum count.  
40. CE0 = OE = B3 = B2 = B1 = B0 = VIL, MRST = CE1 = CNTRST = MKLD = RETX = VIH, CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 33 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Forced Retransmit[6, 11, 31, 32, 33, 34, 35, 36, 41, 42]  
t
CYC  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
t
t
SA  
HA  
[3]  
16:0  
A
A
n
Internal address  
A
A
A
A
A
n+1  
n
n+1  
n+2  
n
t
t
SCLD  
HCLD  
CNTLD  
CNTINC  
RETX  
R/W  
t
t
HCINC  
SCINC  
t
t
HRT  
SRT  
t
t
HW  
SW  
t
t
DC  
CD  
[2]  
DQ  
Q
Q
Q
n+2  
39:0  
n
n+1  
Notes:  
41. When RETX= VIL, the value in the mirror register is loaded to the burst counter regardless of the counters current value.  
42. CE0 = OE = B3 = B2 = B1 = B0 = VIL, MRST = CE1 = CNTRST = MKLD = VIH, WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 34 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Load and Read Address Counter[6, 11, 43]  
t
CY  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHC  
CH  
CL  
C–  
t
t
t
t
CKHZ  
SA  
HA  
CKLZ  
[3]  
A
A
A
n+1  
16:0  
n
t
t
t
CA2  
SCLD  
HCLD  
CNTLD  
CNTINC  
CNTRD  
R/W  
t
t
HCINC  
SCIN  
t
t
HCRD  
SCR  
t
t
t
t
CKLZ  
CD  
DC  
CKHZ  
[2]  
39:0  
DQ  
Q
Q
Q
n+1  
n
n+1  
Note:  
43. CE0 = OE = B3 = B2 = B1 = B0 = VIL, MRST = CE1 = CNTRST = MKLD = RETX = VIH, WRP0 = MKRD = X  
Document #: 38-06065 Rev. **  
Page 35 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Load and Read Mask Register[6, 11, 44]  
t
CY  
t
t
CL  
CH  
C+  
t
t
CL  
CH  
C–  
t
t
t
t
CKHZ  
SA  
HA  
CKLZ  
[3]  
0x17FF  
A
0x17FFC  
16:0  
t
t
t
CA2  
SMLD  
HMLD  
MKLD  
MKRD  
R/W  
t
t
HM-  
SM-  
t
t
t
t
CKLZ  
CKHZ  
CKLZ  
CKHZ  
[2]  
39:0  
DQ  
Note:  
44. CE0 = OE = B3 = B2 = B1 = B0 = VIL, MRST = CE1 = CNTRST = CNTLD = CNTINC = RETX = CNTRD = VIH, WRP0 = X  
Document #: 38-06065 Rev. **  
Page 36 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Mailbox Interrupt[11, 45, 46, 47, 48]  
t
CYC  
t
t
CL  
CH  
C+  
(P1)  
t
t
t
t
CHCH  
CHC  
CH  
CL  
C–  
(P1)  
t
HA  
[3]  
A
0x1FFF  
16:0(P1)  
R/W  
(P1)  
t
t
HD  
SD  
[2]  
39:0(P1)  
DQ  
D
1FFFE  
t
t
RINT  
SINT  
INT  
(P2)  
(P2)  
t
t
CL  
CH  
C+  
t
t
t
t
CHCH  
CHC  
CH  
CL  
C–  
(P2)  
t
t
HA  
SA  
[3]  
A
0x1FFFE  
16:0(P2)  
t
t
HW  
SW  
R/W  
(P2)  
t
t
CD  
DC  
[2]  
39:0(P2)  
DQ  
Q
1FFFE  
Notes:  
45. Port 1 Mailbox Address = 0x1FFFF, Port 2 Mailbox Address = 0x1FFFE, Port 3 Mailbox Address = 0x1FFFD, Port Mailbox Address = 0x1FFFC  
46. There is one cycle of latency between writing a mailbox location and the INT flag being asserted LOW.  
47. There is one cycle of latency between reading a mailbox location and the INT flag being deasserted HIGH.  
48. CE0 = OE = B3 = B2 = B1 = B0 = CNTLD = VIL, MRST = CE1 = CNTRST = MKLD = VIH, CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 37 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Switching Waveforms (continued)  
Port 1 Write to Port 2 Read[11, 49, 50, 51]  
t
CYC  
t
t
CL  
CH  
C+  
(P1)  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
(P1)  
t
t
SA  
HA  
[3]  
A
A
16:0(P1)  
n
t
t
SW  
HW  
HD  
R/W  
(P1)  
t
t
SD  
[2]  
DQ  
D
39:0(P1)  
n
t
CCS  
t
t
CL  
CH  
C+  
(P2)  
t
t
t
t
CHCH  
CHCH  
CH  
CL  
C–  
(P2)  
t
t
HA  
SA  
[3]  
A
A
n
16:0(P2)  
t
t
HW  
SW  
R/W  
(P2)  
t
t
DC  
CD  
[2]  
DQ  
Q
n
39:0(P2)  
Notes:  
49. If tCCS is not allowed to elapse between the write on Port 1 and the Read on Port 2, the data resulting from the read operation is indeterminate.  
50. This waveform applies to write to read operations on any two ports.  
51. CE0 = OE = B3 = B2 = B1 = B0 = CNTLD = VIL, MRST = CE1 = CNTRST = MKLD = VIH, CNTINC = RETX = WRP0 = CNTRD = MKRD = X  
Document #: 38-06065 Rev. **  
Page 38 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 2. Read/Write and Enable Operation (Any Port)[52, 53, 54]  
Inputs  
Outputs  
I/O0I/O39  
High-Z  
OE  
C
CE0  
CE1  
R/W  
Operation  
X
H
X
X
Deselected  
X
X
L
X
L
L
L
L
X
L
High-Z  
DIN  
Deselected  
Write  
H
H
H
H
X
DOUT  
High-Z  
Read  
H
X
Outputs Disabled  
Table 3. Address Counter and Counter-Mask Register Control Operation (Any Port)[6, 52, 55, 56]  
C
MRST  
CNTRST  
MKLD CNTLD  
RETX  
CNTINC  
CNTRD  
MKRD  
Mode  
Operation  
X
L
X
X
X
X
X
X
X
Master Counter/Address Register Reset and  
Reset Mask Register Set (resets entire chip as  
per reset state table)  
H
H
L
X
L
X
X
X
X
X
X
X
X
X
X
Reset Counter/Address Register Reset  
H
Load Load of Address Lines into Mask Regis-  
ter  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
X
L
X
X
L
X
X
X
L
X
X
X
X
L
Load Load of Address Lines into Counter/Ad-  
dress Register  
H
H
H
H
H
Re-  
Load address from Mask Register  
Transmit  
H
H
H
H
Incre- Counter Increment  
ment  
H
H
H
Read- Readback Counter on Address Lines  
back  
H
H
Read- Readback Mask Register on Address  
back  
Lines  
H
Hold  
Counter Hold  
Notes:  
52. X= Dont Care,” “H= VIH, L= VIL  
.
53. OE is an asynchronous input signal.  
54. When CE changes state, deselection and read happen after one cycle of latency.  
55. CE0 = OE = VIL; CE1 = R/W = VIH  
.
56. Counter operation and mask register operation are independent of Chip Enables.  
Document #: 38-06065 Rev. **  
Page 39 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Master Reset  
READY Outputs  
The QuadPort DSE has a global asynchronous master reset  
input, MRST. A complete device reset can be initiated at any  
time by asserting MRST LOW. A master reset cycle is required  
at power-up. MRST must remain asserted for at least tRS. Ad-  
ditionally, MRST should not be released until all power sup-  
plies are fully ramped and all port clocks are stable. Asserting  
MRST will have the following effects:  
The QuadPort DSE output circuitry includes some advanced  
features that enhance the user's interface to the DQ bus. Each  
port includes an on-board DLL that is used to reduce all output  
timing parameters. Each port also has a VIS circuit that match-  
es the DQ output driver impedance to one fifth of an external  
calibration resistor (0.2 * RQ). The user can use the VIS circuit  
to match the output driver impedance to the board trace im-  
pedance, which eliminates the requirement for external series  
match resistors. Both the DLL and VIS circuits require a cali-  
bration period. Calibration cannot start before the supplies for  
each port have ramped and the clock inputs are stable. Both  
the DLL and VIS circuits are reset when MRST is asserted.  
Calibration of both circuits starts when MRST is released.  
1. Ready is deasserted (driven HIGH).  
2. All DQ and address are three-stated. (No effect on  
JTAG/TAP signals)  
3. The internal burst counter for each port is reset to all 0s.  
4. The internal mirror register for each port is reset to all 0s.  
When either the DLL or VIS circuits are enabled, the device  
will not be fully functional until the calibration period has  
elapsed. This is indicated to the user by the READY output for  
each port. When MRST is asserted (LOW), READY is deas-  
serted (HIGH). READY will not be asserted until both the DLL  
and VIS circuits have completed calibration. READY is guar-  
anteed to be asserted within 1024 clock cycles after MRST is  
released.  
5. The internal mask register for each port is set to all 1s (fully  
unmasked state).  
6. All pipeline control registers will be set to an inactive state.  
7. All mailbox and burst counter interrupts will be deasserted  
(driven HIGH).  
8. The control circuitry for the internal delay-locked-loops  
(DLLs) and variable impedance sense (VIS) circuitry for all  
ports will be reset.  
Any operation that results in data being driven to the DQ bus  
is prohibited before READY is asserted. All other operations  
are allowed during the period between the release of MRST  
and the assertion of READY.  
The circuitry for each port includes a delay-lock-loop (DLL)  
and variable impedance sense (VIS). The DLL and VIS circuits  
require a fully ramped power supply and stable clock to oper-  
ate correctly. Releasing MRST is a signal to QuadPort DSE  
that all power supplies have fully ramped and all port clocks  
are stable. At this time the DLL lock sequence and VIS match-  
ing procedure will commence. Each ports READY signal will  
be asserted (LOW) when the DLL is locked and output imped-  
ance matched to 0.2 * RQ. READY will be asserted within  
1024 clock cycles of MRSTs release. Releasing MRST has  
the following effects:  
The DLL circuit can be disabled by asserting DOFF. The VIS  
can be disabled by connection the ZQ input to VDD. If both  
circuits are disabled when MRST is asserted, READY will be  
asserted within two clock cycles after MRST is released.  
Interrupts  
The upper four memory locations may be used for message  
passing and permit communications between ports. Table 4  
shows the interrupt operation for all ports. For the 2-Meg  
QuadPort DSE, the highest memory location FFFF is the mail-  
box for Port 1, FFFE is the mailbox for Port 2, FFFD is the  
mailbox for Port 3, and FFFC is the mailbox for Port 4. Table  
4 shows that in order to set Port 1 INTP1 flag, a write by any  
other port to address FFFF will assert INTP1 LOW. A read of  
FFFF location by Port 1 will reset INTP1 HIGH. When one port  
writes to the other ports mailbox, the Interrupt flag (INT) of the  
port that the mailbox belongs to is asserted LOW. The Interrupt  
is reset when the owner (port) of the mailbox reads the con-  
tents of the mailbox.  
1. DLL circuit starts lock procedure.  
2. VIS circuit starts matching output impedance.  
3. READY for each port is asserted within 1024 clock cycles  
of the clock for the respective port. If both the DLL and VIS  
circuitry for a port are disabled (DOFF = 0 and VIS = VCC),  
then the ports READY is asserted within 2 clock cycles.  
The following operation commences independent of the  
READY output state.  
4. Data and address outputs remain in three-state, but the  
three-state control passes to the control pipeline.  
Each port can read the other ports mailbox without resetting  
the interrupt. If an application does not require message pass-  
ing, INT pins should be treated as no-connect and should be  
left floating. When two ports or more write to the same mailbox  
at the same time INT will be asserted but the contents of the  
mailbox are not guaranteed to be valid.  
5. The burst counter is released from reset.  
6. The mirror register is released from reset.  
7. The mask register is released from preset.  
8. External control inputs are allowed to latch into the control  
pipeline.  
9. All mailbox and burst counter interrupts are released from  
preset.  
Document #: 38-06065 Rev. **  
Page 40 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 4. Interrupt Operation Example[57]  
Port 1  
Port 2  
A0P215P2  
Port 3  
A0P315P3  
Port 4  
A0P415P4  
Function  
A0P115P1  
X
INTP1  
INTP2  
INTP3  
INTP4  
Set Port 1 INTP1 Flag  
Reset Port 1 INTP1 Flag  
Set Port 2 INTP2 Flag  
Reset Port 2 INTP2 Flag  
Set Port 3 INTP3 Flag  
Reset Port 3 INTP3 Flag  
Set Port 4 INTP4 Flag  
L
H
X
X
X
X
X
X
FFFF  
X
X
X
L
FFFF  
X
X
X
X
X
L
FFFF  
X
X
X
X
X
X
X
L
FFFF  
FFFE  
X
X
FFFE  
X
FFFE  
X
FFFE  
FFFD  
X
H
X
X
X
X
FFFD  
X
X
FFFD  
X
FFFD  
FFFC  
X
H
X
X
FFFC  
X
FFFC  
X
X
Reset Port 4 INTP4 Flag  
FFFC  
H
Note:  
57. During Master Reset the control signals will be set to a deselected read state: CE0i = B1i = B2i = B3i = B4i = R/Wi = MKLDi = MKRDi = CNTRDi = CNTRSTi =  
CNTLDi = CNTINCi = VIH; CE1i = VIL. The isuffix on all these signals denotes that these are the internal registered equivalent of the associated pin signals.  
Document #: 38-06065 Rev. **  
Page 41 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Address Counter Control Operations[6]  
internal address value of the counter will be read back on the  
address lines when the Counter Readback Signal (CNTRD) is  
asserted. Figure 1 provides a block diagram of the readback  
operation. Table 3 lists control signals required for counter op-  
erations. The signals are listed based on their priority. For ex-  
ample, Master Reset takes precedence over Counter Reset,  
and Counter Load has lower priority than Mask Register Load  
(described below). All counter operations are independent of  
Chip Enables (CE0 and CE1).The read back address can be  
either of the burst counter or the mask register based on the  
levels of Counter Read signal (CNTRD) and Mask Register  
Read signal (MKRD). Both signals are synchronized to the  
port's clock as shown in Table 3. Counter read has a higher  
priority than mask read.  
Counter enable inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
internal counter for the fast interleaved memory applications.  
A ports burst counter is loaded with the ports Counter Load  
pin (CNTLD). When the ports Counter Increment (CNTINC) is  
asserted, the address counter will increment on each transi-  
tion of that ports clock signal. This will read/write one word  
from/into each successive address location until CNTINC is  
deasserted. Depending on the mask register state, the counter  
can address the entire memory array and will loop back to  
start. Counter Reset (CNTRST) is used to reset the Burst  
Counter (the Mask Register value is unaffected, the unmasked  
bits are reset). When using the counter in readback mode, the  
Read back  
Register  
CNTRD  
MKRD  
Addr.  
Read  
Back  
QuadPort  
MKLD = 1  
DSE  
Array  
Mask  
Register  
Bidirectional  
Address Lines  
Counter/  
Address  
Register  
WRP = 1  
RETX = 1  
CNTINC = 1  
CNTLD = 1  
CNTRST = 1  
CLK  
Figure 1. Counter and Mask Register Read Back on Address Lines  
Document #: 38-06065 Rev. **  
Page 42 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Counter-Mask Register  
CNTINT  
H
Example:  
Load  
Counter-Mask  
0
0
0s  
0
1
1
1
1
1
1
Register = 3F  
215 214  
26 25 24 23 22 21 20  
Counter Address  
Mask  
Register  
bit-0  
Blocked Address  
Load  
Address  
Counter = 8  
H
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
1
215 214  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1
1
215 214  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
X
X
X
0
0
0
0
0
0
215 214  
26 25 24 23 22 21 20  
Figure 2. Programmable Counter-Mask Register Operation[58]  
The burst counter has a mask register that controls when and  
where the counter wraps. An interrupt flag (CNTINT) is assert-  
ed for one clock cycle when the unmasked portion of the  
counter address reaches maximum count (all 1s). The exam-  
ple in Figure 2 shows the counter mask register loaded with a  
mask value of 003F unmasking the first 6 bits with bit 0as  
the LSB and bit 15as the MSB. The maximum value the  
mask register can be loaded with is FFFF. Setting the mask  
register to this value allows the counter to access the entire  
memory space. The address counter is then loaded with an  
initial value of XXX8. The blockedaddresses (in this case,  
the 6th address through the 15th address) are loaded with an  
address but do not increment once loaded. The counter ad-  
dress will start at address XXX8. With CNTINC asserted LOW,  
the counter will increment its internal address value till it reach-  
es the mask register value of 3F and wraps around the mem-  
ory block to location XXX0. Therefore, the counter uses the  
mask-register to define wrap-around point. The mask register  
of a port is loaded when MKLD (mask register load) for that  
port is LOW. When MKRD is LOW, the value of the mask reg-  
ister can be read out on the address lines in a manner similar  
to the counter read back operation (see Table 3 for required  
conditions).  
If the loaded value for address counter bit 0 is 0,the counter  
will increment by two and the address values are even. If the  
loaded value for address counter bit 0 is 1,the counter will  
increment by two and the address values are odd. This oper-  
ation allows the user to achieve an 80-bit interface using any  
two ports, where the counter of one port counts even address-  
es and the counter of the other port counts odd addresses.  
This even-odd address scheme stores one half of an 80-bit  
word in even memory locations, and the other half in odd mem-  
ory locations. CNTINT will be asserted when the unmasked  
portion of the counter reaches its maximum count. Loading  
mask register bit 0 with 1allows the counter to increment the  
address value sequentially.  
Table 3 groups the operations of the mask register with the  
operations of the address counter. Address counter and mask  
register signals are all synchronized to the port's clock C+.  
Master reset (MRST) is the only asynchronous signal listed on  
Table 3. Signals are listed based on their priority going from  
left column to right column with MRST being the highest. A  
LOW on MRST will reset the counter register to all zeros and  
the mask register to all ones. On the other hand, a LOW on  
CNTRST will only clear the address counter register to zeros  
and the mask register will remain unaffected.  
When the burst counter is loaded with an address higher than  
the mask register value, the higher addresses will form the  
masked portion of the counter address and are called blocked  
addresses. The blocked addresses will not be changed or af-  
fected by the counter increment operation. The only exception  
is mask register bit 0. It can be masked to allow the address  
counter to increment by two. If the mask register bit 0 is loaded  
with a logic value of 0,then address counter bit 0 is masked  
and can not be changed during counter increment operation.  
There are four operations for the counter and mask register:  
1. Load operation: When CNTLD or MKLD is LOW, the ad-  
dress counter or the mask register is loaded with the ad-  
dress value presented at the address lines. This value rang-  
es from 0 to FFFF (64K). The mask register load operation  
has a higher priority over the address counter load opera-  
tion.  
Note:  
58. The Xin this diagram represents the counter upper-bits.  
Document #: 38-06065 Rev. **  
Page 43 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
2. Increment: Once the address counter is loaded with an ex-  
ternal address, the counter can internally increment the ad-  
dress value by asserting CNTINC LOW. The counter can  
address the entire memory array (depend on the value of  
the mask register) and loop back to location 0. The incre-  
ment operation is second in priority to the load operation.  
Test Data Out (TDO)  
The TDO output pin is used to serially clock data out from the  
registers. The output is active depending upon the current  
state of the TAP state machine (see TAP Controller State Dia-  
gram (FSM)). The output changes on the falling edge of TCK.  
TDO is connected to the least significant bit (LSB) of any reg-  
ister.  
3. Readback: The internal value of either the burst counter or  
themaskregistercanbereadoutontheaddresslineswhen  
CNTRD or MKRD is LOW. Counter readback has higher  
priority over mask register readback. Counter and mask  
register readback have the same latency as memory READ  
operations, i.e., three (3) cycles. The address will be valid  
after tCA2 (for counter readback) or tCM2 (for mask read-  
back) from the ports third following clock rising edge. Ad-  
dress readback operation is independent of the ports chip  
enables (CE0 and CE1). If address readback occurs while  
the port is enabled (chip enables active), the data lines  
(I/Os) will be three-stated, during the cycle the address is  
driven from the part.  
Test Reset (TRSTB)  
This input provides for asynchronous initialization of the TAP  
controller. According to IEEE 1149.1-2001 the TAP controller  
shall be asynchronously reset to the TEST-Logic_reset con-  
troller state when a 0 logic is applied to TRSTB. TAP initializa-  
tion is independent of system initialization (MRSTB).  
TAP Registers  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the QuadPort DSE  
test circuitry. Only one register can be selected at a time  
through the instruction registers. Data is serially loaded into  
the TDI pin on the rising edge of TCK. Data is output on the  
TDO pin on the falling edge of TCK.  
4. Hold operation: In order to hold the value of the address  
counter at certain address, all signals in Table 3 have to be  
HIGH. This operation has the least priority. This operation  
is useful in many applications where wait states are needed  
or when the address is available few cycles ahead of data.  
Instruction Register  
Four-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the following JTAG/BIST Con-  
troller diagram. Upon power-up, the instruction register is load-  
ed with the IDCODE instruction. It is also loaded with the ID-  
CODE instruction if the controller is placed in a reset state as  
described in the Test Reset section. When the TAP controller  
is in the CaptureIR state, the two least significant bits are load-  
ed with a binary 01pattern to allow for fault isolation of the  
board level serial test path.  
The counter and mask register operations are totally indepen-  
dent of port chip enables.  
IEEE 1149.1 Serial Boundary Scan (JTAG)  
The CY7C0452/451/450/431/430V18 incorporates a serial  
boundary scan test access port (TAP). This port operates in  
accordance with IEEE Standard 1149.1-2001. Note that the  
TAP controller functions in a manner that does not conflict with  
the operation of other devices using 1149.1 fully compliant  
TAPs. The TAP operates using JEDEC standard 3.3V I/O logic  
levels. It is composed of four input connections and one output  
connection required by the test logic defined by the standard.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain devices. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
QuadPort DSE with minimal delay. The bypass register is set  
LOW (VSS) when the BYPASS instruction is executed.  
Disabling the JTAG Feature  
It is possible to operate the QuadPort DSE without using the  
JTAG feature, by setting TRST* to ground (VSS)  
.
Test Access Port (TAP) Test Clock (TCK)  
Boundary Scan Register  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
The boundary scan register is connected to all the input and  
output pins on the QuadPort DSE. The boundary scan register  
is loaded with the contents of the QP Input and Output ring  
when the TAP controller is in the Capture-DR state and is then  
placed between the TDI and TDO pins when the controller is  
moved to the Shift-DR state. The EXTEST, and SAM-  
PLE/PRELOAD instructions can be used to capture the con-  
tents of the Input and Output ring.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
Identification (ID) Register  
Test Data-In (TDI)  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the QuadPort DSE and can be shifted out when the TAP  
controller is in the Shift-DR state. The ID register has a vendor  
code and other information described in the Identification Reg-  
ister Definitions table.  
The TDI pin is used to serially input information into the regis-  
ters and can be connected to the input of any of the registers.  
The register between TDI and TDO is chosen by the instruc-  
tion that is loaded into the TAP instruction register. For infor-  
mation on loading the instruction register, see the TAP Con-  
troller State Diagram. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) on any register.  
Document #: 38-06065 Rev. **  
Page 44 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
TAP Instruction Set  
SAMPLE/PRELOAD  
Sixteen different instructions are possible with the 4-bit instruc-  
tion register. All combinations are listed in Table 6, Instruction  
Codes. Seven of these instructions (codes) are listed as RE-  
SERVED and should not be used. The other nine instructions  
are described in detail below. The TAP controller used in this  
QuadPort DSE is fully compliant to the 1149.1 convention. The  
TAP controller can be used to load address, data or control  
signals into the QuadPort DSE and can preload the Input or  
output buffers. The QuadPort DSE implements all of the  
1149.1 instructions except INTEST. Table 6 lists all instruc-  
tions. Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP control-  
ler needs to be moved into the Update-IR state.  
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When  
the SAMPLE/PRELOAD instructions are loaded into the in-  
struction register and the TAP controller is in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register. The user must be aware  
that the TAP controller clock can only operate at a frequency  
up to 10 MHz, while the QuadPort DSE clock operates more  
than an order of magnitude faster. Because there is a large  
difference in the clock frequencies, it is possible that during the  
Capture-DR state, an input or output will undergo a transition.  
The TAP may then try to capture a signal while in transition  
(metastable state). This will not harm the device, but there is  
no guarantee as to the value that will be captured. Repeatable  
results may not be possible. To guarantee that the boundary  
scan register will capture the correct value of a signal, the  
QuadPort DSE signal must be stabilized long enough to meet  
the TAP controllers capture set-up plus hold times. Once the  
data is captured, it is possible to shift out the data by putting  
the TAP into the Shift-DR state. This places the boundary scan  
register between the TDI and TDO pins. If the TAP controller  
goes into the Update-DR state, the sampled data will be up-  
dated.  
EXTEST  
EXTEST is a mandatory 1149.1 instruction that is to be exe-  
cuted whenever the instruction register is loaded with all 0s.  
EXTEST allows circuitry external to the QuadPort DSE pack-  
age to be tested. Boundary-scan register cells at output pins  
are used to apply test stimuli, while those at input pins capture  
test results.  
BYPASS  
When the BYPASS instruction is loaded in the instruction reg-  
ister and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The advan-  
tage of the BYPASS instruction is that it shortens the boundary  
scan path when multiple devices are connected together on a  
board.  
IDCODE  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the identification register. It also places the  
identification register between the TDI and TDO pins and al-  
lows the IDCODE to be shifted out of the device when the TAP  
controller enters the Shift-DR state. The IDCODE instruction  
is loaded into the instruction register upon power-up or  
when-ever the TAP controller is given a test logic reset state.  
CLAMP  
The optional CLAMP instruction allows the state of the signals  
driven from QuadPort DSE pins to be determined from the  
boundary-scan register while the BYPASS register is selected  
as the serial path between TDI and TDO. CLAMP controls  
boundary cells to 1 or 0.  
High-Z  
The High-Z instruction causes the bypass register to be con-  
nected between the TDI and TDO pins when the TAP control-  
ler is in a Shift-DR state. It also places all QuadPort DSE out-  
puts into a High-Z state.  
Document #: 38-06065 Rev. **  
Page 45 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Tap Controller State Diagram (FSM)[59]  
TEST-LOGIC  
1
RESET  
1
1
1
RUN_TEST/  
IDLE  
SELECT  
DR-SCAN  
SELECT  
IR-SCAN  
0
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
59. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
Document #: 38-06065 Rev. **  
Page 46 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
0
Bypass Register (BYR)  
3
2
1
0
Instruction Register (IR)  
0
31 30 29  
Identification Register (IDR)  
Selection  
TDO  
Circuitry  
TDI  
39 38 37  
0
EID Register  
(MUX)  
63 62 61  
0
VIS Register  
557  
0
Boundary Scan Register (BSR)  
TAP  
CONTROLLER  
TCK  
TMS  
TRST  
Document #: 38-06065 Rev. **  
Page 47 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Table 5. Scan Registers Sizes  
Register Name  
Bit Size  
Bypass (BYR)  
Instruction (IR)  
1
4
Identification (IDR)  
32  
40  
64  
558  
Electrical Identification Register (EID)  
Variable Impedance Register (VIS)  
Boundary Scan (BSR)  
Table 6. Instruction Identification Codes  
Instruction  
Bypass  
Code  
Description  
1111  
Places the bypass register (BYR) between TDI and TDO.  
Sample/Preload  
Extest[60]  
1000  
Captures the Input/Output ring contents. Places the boundary scan register (BSR)  
between TDI and TDO.  
0000  
1011  
Captures the Input/Output ring contents. Places the boundary scan register (BSR)  
between the TDI and TDO.  
Idcode  
Loads the ID register (IDR) with the vendor ID code and places the register be-  
tween TDI and TDO.  
Clamp[60]  
Highz[60]  
0100  
0111  
Controls boundary to 1/0. Uses BYR.  
Places the BYR between TDI and TDO. Forces all QuadPort DSE output drivers  
to a High-Z state.  
Intest[60]  
0001  
Allows testing of the on-chip system logic while the component is assembled on  
the board. The test stimuli are shifted in one at a time and applied to the on-chip  
system logic.  
Eidcode  
VIS  
1001  
1010  
Loads the Electrical Identification Register (EID) with the vendor Electrical ID code  
and places the register between TDI and TDO.  
Loads the Variable Impedance Register (VIS) with the vendor VIS ID code and  
places the register between TDI and TDO.  
Note:  
60. Instruction that requires a master reset after completion before using the chip in normal mode  
Document #: 38-06065 Rev. **  
Page 48 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Ordering Information  
128K x 40 1.8V Synchronous QuadPort DSE  
Speed  
Package  
Name  
Operating  
(MHz)  
Ordering Code  
CY7C0452V18-167BBI  
CY7C0452V18-167BBC  
CY7C0452V18-133BBI  
CY7C0452V18-133BBC  
CY7C0452V18-100BBC  
Package Type  
Range  
167  
BB676  
BB676  
BB676  
BB676  
BB676  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Industrial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Industrial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
133  
100  
64K x 40 1.8V Synchronous QuadPort DSE  
Speed  
Package  
Name  
Operating  
(MHz)  
Ordering Code  
CY7C0451V18-167BBI  
CY7C0451V18-167BBC  
CY7C0451V18-133BBI  
CY7C0451V18-133BBC  
CY7C0451V18-100BBC  
Package Type  
Range  
167  
BB676  
BB676  
BB676  
BB676  
BB676  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Industrial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Industrial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
133  
100  
32K x 40 1.8V Synchronous QuadPort DSE  
Speed  
(MHz)  
167  
Package  
Name  
Operating  
Ordering Code  
CY7C0450V18-167BBC  
CY7C0450V18-133BBC  
CY7C0450V18-100BBC  
Package Type  
Range  
BB676  
BB676  
BB676  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
133  
100  
128K x 20 1.8V Synchronous QuadPort DSE  
Speed  
Package  
Name  
Operating  
(MHz)  
Ordering Code  
CY7C0431V18-167BBI  
CY7C0431V18-167BBC  
CY7C0431V18-133BBC  
CY7C0431V18-100BBC  
Package Type  
Range  
167  
BB676  
BB676  
BB676  
BB676  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Industrial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
133  
100  
64K x 20 1.8V Synchronous QuadPort DSE  
Speed  
Package  
Name  
Operating  
(MHz)  
Ordering Code  
CY7C0430V18-167BBC  
CY7C0430V18-133BBC  
CY7C0430V18-100BBC  
Package Type  
Range  
167  
BB676  
BB676  
BB676  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
Ball Grid Array (BGA) 27 x 27 mm, 1.0-mm pitch Commercial  
133  
100  
Document #: 38-06065 Rev. **  
Page 49 of 51  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Package Diagram  
676-Ball FBGA (27 x 27 x 1.6 mm) BB676  
51-85125-*B  
QuadPort is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document  
may be the trademarks of their respective holders.  
Document #: 38-06065 Rev. **  
Page 50 of 51  
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C0452V18/0451V18/0450V18  
PRELIMINARY  
CY7C0431V18/0430V18  
Document Title: CY7C0452V18/0451V18/0450V18/0431V18/0430V18 QuadPortDatapath Switching Element (DSE)  
Family  
Document Number: 38-06065  
Issue  
Date  
Orig. of  
Change  
REV.  
ECN NO.  
Description of Change  
**  
117356  
08/02/02  
OOR  
New Data Sheet  
Document #: 38-06065 Rev. **  
Page 51 of 51  

相关型号:

CY7C0450V18-100BBC

Multi-Port SRAM, 32KX40, 4.5ns, CMOS, PBGA676
CYPRESS

CY7C0450V18-133BBC

Multi-Port SRAM, 32KX40, 4ns, CMOS, PBGA676
CYPRESS

CY7C0450V18-167BBC

Multi-Port SRAM, 32KX40, 3.5ns, CMOS, PBGA676
CYPRESS

CY7C0451V18-100BBC

Multi-Port SRAM, 64KX40, 4.5ns, CMOS, PBGA676
CYPRESS

CY7C0451V18-133BBC

Multi-Port SRAM, 64KX40, 4ns, CMOS, PBGA676,
CYPRESS

CY7C0451V18-167BBC

Multi-Port SRAM, 64KX40, 3.5ns, CMOS, PBGA676,
CYPRESS

CY7C0451V18-167BBI

Multi-Port SRAM, 64KX40, 3.5ns, CMOS, PBGA676
CYPRESS

CY7C0452V18-100BBC

Multi-Port SRAM, 128KX40, 4.5ns, CMOS, PBGA676
CYPRESS

CY7C0452V18-133BBC

Multi-Port SRAM, 128KX40, 4ns, CMOS, PBGA676
CYPRESS

CY7C0452V18-167BBC

Multi-Port SRAM, 128KX40, 3.5ns, CMOS, PBGA676
CYPRESS

CY7C056V

3.3V 16K/32K x 36 FLEx36⑩ Asynchronous Dual-Port Static RAM
CYPRESS

CY7C056V-10AC

3.3V 16K/32K x 36 FLEx36⑩ Asynchronous Dual-Port Static RAM
CYPRESS