CY7C0430V-100BGC [CYPRESS]

3.3V 64K x 18 Synchronous QuadPort⑩ Static RAM; 3.3V 64K X 18同步QuadPort⑩静态RAM
CY7C0430V-100BGC
型号: CY7C0430V-100BGC
厂家: CYPRESS    CYPRESS
描述:

3.3V 64K x 18 Synchronous QuadPort⑩ Static RAM
3.3V 64K X 18同步QuadPort⑩静态RAM

存储 内存集成电路 静态存储器
文件: 总36页 (文件大小:903K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
30V  
PRELIMINARY  
CY7C0430V  
3.3V 64K x 18  
Synchronous QuadPort™ Static RAM  
• Counter wrap-around control  
Features  
— Internal mask register controls counter wrap-around  
• True four-ported memory cells which allow simulta-  
neous access of the same memory location  
• Synchronous Pipelined device  
— Counter-Interrupt flags to indicate wrap-around  
• Counter readback on address lines  
• Mask register readback on address lines  
• Interrupt flags for message passing  
— 64K x 18 organization  
• Pipelined output mode allows fast 133-MHz operation  
• High Bandwidth up to 10 Gbps (133 MHz x 18 bits wide  
x 4 ports)  
• 0.25-micron CMOS for optimum speed/power  
• High-speed clock to data access 4.7 ns (max.)  
• 3.3V Low operating power  
• Master reset for all ports  
• Width and depth expansion capabilities  
• DualChipEnablesonallportsforeasydepthexpansion  
• Separate upper-byte and lower-byte controls on all  
ports  
— Active = 750mA (maximum)  
• 272-BGA package (27 mm x 27 mm 1.27 mm ball pitch)  
• Commercial and Industrial temperature ranges  
• IEEE 1149.1 JTAG boundary scan  
— Standby = 1mA (maximum)  
• BIST (Built In Self Test) controller  
Top Level Logic Block Diagram  
Port 1 Operation-Control Logic Blocks[1]  
Reset  
MRST  
Logic  
UB  
P1  
LB  
R/W  
OE  
P1  
Port-1  
Control  
Logic  
P1  
P1  
TMS  
JTAG  
TCK  
Controller  
TDO  
CE  
CE  
TDI  
0P1  
1P1  
CLKBIST  
BIST  
CLK  
P1  
18  
Port 1  
I/O  
Port 4 Logic Blocks[2]  
I/O - I/O  
0P1  
17P1  
CLK  
P1  
16  
A
–A  
0P1  
15P1  
Port 1  
Port 2  
Port 4  
Port 1  
MKLD  
CNTLD  
P1  
Counter/  
Mask Reg/  
Address  
P1  
CNTINC  
CNTRD  
P1  
RAM  
Array  
P1  
MKRD  
Decode  
P1  
P1  
P1  
CNTRST  
INT  
CNTINT  
Port 3  
P1  
Port 2 Logic Blocks[2]  
Port 3 Logic Blocks[2]  
Notes:  
1. Port 1 Control Logic Block is detailed on page 2.  
2. Port 2, Port 3, and Port 4 Logic Blocks are similar to Port 1 Logic Blocks.  
For the most recent information, visit the Cypress web site at www.cypress.com  
Cypress Semiconductor Corporation 3901 North First Street San Jose CA 95134  
408-943-2600  
November 18, 1999  
PRELIMINARY  
CY7C0430V  
Port 1 Operation-Control Logic Block Diagram:  
(Address Readback is independent of CEs)  
R/WP1  
W
R
UBP1  
CE0P1  
CE1P1  
LBP1  
OEP1  
9
I/O9P1I/O17P1  
Port-1  
I/O  
Control  
9
I/O0P1I/O8P1  
Addr.  
Read  
Back  
Port 1  
Readback  
Register  
MRST  
16  
A0P1A15P1  
Port 1  
Mask Register  
CNTRDP1  
Port 1  
Priority  
Decision  
Logic  
MKRDP1  
MKLDP1  
RAM  
Array  
Address  
Decode  
Port 1  
Counter/  
Address  
Register  
CNTINCP1  
CNTLDP1  
CNTRSTP1  
LBP1  
CLKP1  
UBP1  
R/WP1  
CE0P1  
CE1P1  
Port 1  
Interrupt  
Logic  
MRST  
CNTINTP1  
INTP1  
OEP1  
CLKP1  
MRST  
2
PRELIMINARY  
CY7C0430V  
internal counter for fast interleaved memory applications. A  
port's burst counter is loaded with an external address when  
the port's Counter Load pin (CNTLD) is asserted LOW. When  
the port's Counter Increment pin (CNTINC) is asserted, the  
address counter will increment on each subsequent LOW-to-  
HIGH transition of that port's clock signal. This will read/write  
one word from/into each successive address location until  
CNTINC is deasserted. The counter can address the entire  
memory array and will loop back to the start. Counter Reset  
(CNTRST) is used to reset the burst counter. A counter-mask  
register is used to control the counter wrap. The counter and  
mask register operations are described in more details in the  
following sections.  
Functional Description  
The CY7C0430V is a 1-Mb synchronous true four-port Static  
RAM. This is a high-speed, low-power 3.3V CMOS dual-port  
static RAM. Four ports are provided, permitting independent,  
simultaneous access for reads from any location in memory. A  
particular port can write to a certain location while other ports  
are reading that location simultaneously. The result of writing  
to the same location by more than one port at the same time  
is undefined. Registers on control, address and data lines al-  
low for minimal set-up and hold time.  
Data is registered for decreased cycle time. Clock to data valid  
tCD2 = 4.7 ns. Each port contains a burst counter on the input  
address register. After externally loading the counter with the  
initial address the counter will self-increment the address in-  
ternally (more details to follow). The internal write pulse width  
is independent of the duration of the R/W input signal. The  
internal write pulse is self-timed to allow the shortest possible  
cycle times.  
The counter or mask register values can be read back on the  
bidirectional address lines by activating MKRD or CNTRD re-  
spectively.  
The new features added to the QuadPortas compared to  
standard synchronous dual-ports include: readback of  
burst-counter internal address value on address lines,  
counter-mask registers to control the counter wrap-around,  
readback of mask register value on address lines, interrupt  
flags for message passing, BIST, JTAG for boundary scan, and  
asynchronous Master Reset.  
A HIGH on CE0 or LOW on CE1 for one clock cycle will power  
down the internal circuitry to reduce the static power consump-  
tion. One cycle is required with chip enables asserted to reac-  
tivate the outputs.  
Counter enable inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
3
PRELIMINARY  
CY7C0430V  
Pin Configuration  
272-Ball Grid Array (BGA)  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
LB  
P1  
I/O17  
P2  
I/O15  
P2  
I/O13  
P2  
I/O11  
P2  
I/O9  
P2  
I/O16  
P1  
I/O14  
P1  
I/O12  
P1  
I/O10  
P1  
I/O10  
P4  
I/O12  
P4  
I/O14  
P4  
I/O16  
P4  
I/O9  
P3  
I/O11  
P3  
I/O13  
P3  
I/O15  
P3  
I/O17  
P3  
LB  
P4  
A
B
C
D
E
F
VDD1  
UB  
P1  
I/O16  
P2  
I/O14  
P2  
I/O12  
P2  
I/O10  
P2  
I/O17  
P1  
I/O13  
P1  
I/O11  
P1  
TMS  
TCK  
VSS  
TDI  
TDO  
VSS  
I/O11  
P4  
I/O13  
P4  
I/O17  
P4  
I/O10  
P3  
I/O12  
P3  
I/O14  
P3  
I/O16  
P3  
UB  
P4  
VDD1  
A14  
P1  
A15  
P1  
CE1  
P1  
CE0  
P1  
R/W  
P1  
I/O15  
P1  
VSS2  
VSS2  
VSS2  
VDD2  
I/O9  
P1  
I/O9  
P4  
VSS2  
VDD2  
VSS2  
VSS2  
I/O15  
P4  
R/W  
P4  
CE0  
P4  
CE1  
P4  
A15  
P4  
A14  
P4  
VSS1  
A12  
P1  
A13  
P1  
OE  
P1  
VDD2  
VSS2  
VDD  
VDD  
VSS2  
VDD2  
OE  
P4  
A13  
P4  
A12  
P4  
VSS1  
A10  
P1  
A11  
P1  
MKRD  
P1  
CNTRD  
P1  
CNTRD MKRD  
P4  
A11  
P4  
A10  
P4  
P4  
A7  
P1  
A8  
P1  
A9  
P1  
CNTINT  
P1  
CNTINT  
P4  
A9  
P4  
A8  
P4  
A7  
P4  
VSS1  
A5  
P1  
A6  
P1  
CNTINC  
P1  
CNTINC  
P4  
A6  
P4  
A5  
P4  
VSS1  
G
H
J
A3  
P1  
A4  
P1  
MKLD  
P1  
CNTLD  
P1  
CNTLD  
P4  
MKLD  
P4  
A4  
P4  
A3  
P4  
[3]  
[3]  
[3]  
[3]  
VDD1  
A1  
P1  
A2  
P1  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
A2  
P4  
A1  
P4  
VDD1  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
A0  
P1  
INT  
P1  
CNTRST  
P1  
CLK  
P1  
CLK  
P4  
CNTRST  
P4  
INT  
P4  
A0  
P4  
K
L
A0  
P2  
INT  
P2  
CNTRST  
P2  
VSS  
VSS  
CNTRST  
P3  
INT  
P3  
A0  
P3  
VDD1  
A1  
P2  
A2  
P2  
CLK  
P2  
CLK  
P3  
A2  
P3  
A1  
P3  
VDD1  
M
N
P
R
T
A3  
P2  
A4  
P2  
MKLD  
P2  
CNTLD  
P2  
CNTLD  
P3  
MKLD  
P3  
A4  
P3  
A3  
P3  
VSS1  
A5  
P2  
A6  
P2  
CNTINC  
P2  
CNTINC  
P3  
A6  
P3  
A5  
P3  
VSS1  
A7  
P2  
A8  
P2  
A9  
P2  
CNTINT  
P2  
CNTINT  
P3  
A9  
P3  
A8  
P3  
A7  
P3  
A10  
P2  
A11  
P2  
MKRD  
P2  
CNTRD  
P2  
CNTRD MKRD  
P3  
A11  
P3  
A10  
P3  
P3  
VSS1  
A12  
P2  
A13  
P2  
OE  
P2  
VDD2  
VSS2  
VSS2  
VSS2  
VDD2  
VSS2  
VDD  
VSS  
NC  
VSS  
NC  
VDD  
VDD2  
VSS2  
VSS2  
VSS2  
VSS2  
VDD2  
OE  
P3  
A13  
P3  
A12  
P3  
VSS1  
U
V
W
Y
A14  
P2  
A15  
P2  
CE1  
P2  
CE0  
P2  
R/W  
P2  
I/O6  
P2  
I/O0  
P2  
I/O0  
P3  
I/O6  
P3  
R/W  
P3  
CE0  
P3  
CE1  
P3  
A15  
P3  
A14  
P3  
VDD1  
UB  
P2  
I/O7  
P1  
I/O5  
P1  
I/O3  
P1  
I/O1  
P1  
I/O8  
P2  
I/O4  
P2  
I/O2  
P2  
MRST CLKBIST  
I/O2  
P3  
I/O4  
P3  
I/O8  
P3  
I/O1  
P4  
I/O3  
P4  
I/O5  
P4  
I/O7  
P4  
UB  
P3  
VDD1  
LB  
P2  
I/O8  
P1  
I/O6  
P1  
I/O4  
P1  
I/O2  
P1  
I/O0  
P1  
1/O7  
P2  
I/O5  
P2  
I/O3  
P2  
I/O1  
P2  
I/O1  
P3  
I/O3  
P3  
I/O5  
P3  
I/O7  
P3  
I/O0  
P4  
I/O2  
P4  
I/O4  
P4  
I/O6  
P4  
I/O8  
P4  
LB  
P3  
Note:  
3. Central Leads are for thermal dissipation only. They are connected to device VSS  
.
4
PRELIMINARY  
CY7C0430V  
Selection Guide  
CY7C0430V  
-133  
CY7C0430V  
-100  
fMAX2 (MHz)  
133  
4.7  
100  
5.0  
Max Access Time (ns) (Clock to Data)  
Max Operating Current ICC (mA)  
750  
200  
1.0  
600  
150  
1.0  
Max Standby Current for ISB1 (mA) (All ports TTL Level)  
Max Standby Current for ISB3 (mA) (All ports CMOS Level)  
Pin Definitions  
Port 1  
Port 2  
Port 3  
Port 4  
Description  
Address Input/Output.  
A0P1A15P1  
A0P2A15P2  
A0P3A15P3  
A0P4A15P4  
I/O0P1I/O17P1 I/O0P2I/O17P2 I/O0P3I/O17P3 I/O0P4I/O17P4 Data Bus Input/Output.  
CLKP1  
CLKP2  
CLKP3  
CLKP4  
Clock Input. This input can be free running or strobed.  
Maximum clock input rate is fMAX  
.
LBP1  
LBP2  
LBP3  
LBP4  
Lower Byte Select Input. Asserting this signal LOW en-  
ables read and write operations to the lower byte. For  
read operations both the LB and OE signals must be as-  
serted to drive output data on the lower byte of the data  
pins.  
UBP1  
UBP2  
UBP3  
UBP4  
Upper Byte Select Input. Same function as LB, but to the  
upper byte.  
CE0P1,CE1P1  
CE0P2,CE1P2  
CE0P3,CE1P3  
CE0P4,CE1P4  
Chip Enable Input. To select any port, both CE0 AND CE1  
must be asserted to their active states (CE0 VIL and  
CE1 VIH).  
OEP1  
OEP2  
OEP3  
OEP4  
Output Enable Input. This signal must be asserted LOW  
to enable the I/O data lines during read operations. OE  
is asynchronous input.  
R/WP1  
MRST  
R/WP2  
R/WP3  
R/WP4  
Read/Write Enable Input. This signal is asserted LOW to  
write to the dual port memory array. For read operations,  
assert this pin HIGH.  
Master Reset Input. This is onesignal for All Ports. MRST  
is an asynchronous input. Asserting MRST LOW per-  
forms all of the reset functions as described in the text. A  
MRST operation is required at power-up.  
CNTRSTP1  
MKLDP1  
CNTRSTP2  
MKLDP2  
CNTRSTP3  
MKLDP3  
CNTRSTP4  
MKLDP4  
Counter Reset Input. Asserting this signal LOW resets  
the burst address counter of its respective port to zero.  
CNTRST is second to MRST in priority with respect to  
counter and mask register operations.  
Mask Register Load input. Asserting this signal LOW  
loads the mask register with the external address avail-  
able on the address lines. MKLD operation has higher  
priority over CNTLD operation.  
CNTLDP1  
CNTLDP2  
CNTLDP3  
CNTLDP4  
Counter Load Input. Asserting this signal LOW loads the  
burst counter with the external address present on the  
address pins.  
CNTINCP1  
CNTINCP2  
CNTINCP3  
CNTINCP4  
Counter Increment Input. Asserting this signal LOW in-  
crements the burst address counter of its respective port  
on each rising edge of CLK.  
5
PRELIMINARY  
CY7C0430V  
Pin Definitions (continued)  
Port 1  
Port 2  
Port 3  
Port 4  
Description  
CNTRDP1  
CNTRDP2  
CNTRDP3  
CNTRDP4  
Counter Readback Input. When asserted LOW, the inter-  
nal address value of the counter will be read back on the  
address lines. During CNTRD operation, both CNTLD  
and CNTINCmust be HIGH. Counter readback operation  
has higher priority over mask register readback opera-  
tion. Counter readback operation is independent of port  
chip enables. If address readback operation occurs with  
chip enables active (CE0 = LOW, CE1 = HIGH), the data  
lines (I/Os) will be three-stated. The readback timing will  
be valid after one no-operation cycle plus tCD2 from the  
rising edge of the next cycle.  
MKRDP1  
MKRDP2  
MKRDP3  
MKRDP4  
MaskRegister ReadbackInput. When asserted LOW, the  
value of the mask register will be readback on address  
lines. During mask register readback operation, all  
counter and MKLD inputs must be HIGH (see Counter  
and Mask Register Operations truth table). Mask register  
readback operation is independent of port chip enables.  
If address readback operation occurs with chip enables  
active (CE0 = LOW, CE1 = HIGH), the data lines (I/Os)  
will be three-stated. The readback will be valid after one  
no-operation cycle plus tCD2 from the rising edge of the  
next cycle.  
CNTINTP1  
INTP1  
CNTINTP2  
INTP2  
CNTINTP3  
INTP3  
CNTINTP4  
INTP4  
Counter Interrupt flag output. Flag is asserted LOW for  
one clock cycle when the counter wraps around to loca-  
tion zero.  
Interrupt flag output. Interrupt permits communications  
between all four ports. The upper four memory locations  
can be used for message passing. Example of operation:  
INTP4 is asserted LOW when another port writes to the  
mailbox location of Port 4. Flag is cleared when Port 4  
reads the contents of its mailbox. The same operation is  
applicable to Ports 1, 2, and 3.  
TMS  
JTAG Test Mode Select Input. It controls the advance of  
JTAG TAP state machine. State machine transitions oc-  
cur on the rising edge of TCK.  
TCK  
TDI  
JTAG Test Clock Input. This can be CLK of any port or an  
external clock connected to the JTAG TAP.  
JTAG Test Data Input. This is the only data input. TDI  
inputs will shift data serially in to the selected register.  
TDO  
JTAG Test Data Output. This is the only data output. TDO  
transitions occur on the falling edge of TCK. TDO normal-  
ly three-stated except when captured data is shifted out  
of the JTAG TAP.  
CLKBIST  
GND  
VSS  
BIST Clock Input.  
Thermal ground for heat dissipation.  
Ground Input.  
VDD  
Power Input.  
VSS1  
VDD1  
VSS2  
VDD2  
Address lines ground Input.  
Address lines power Input.  
Data lines ground Input.  
Data lines power Input.  
6
PRELIMINARY  
CY7C0430V  
DC Input Voltage ..................................... 0.5V to VCC+0.5V  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage ........................................... >2001V  
Latch-Up Current.....................................................>200 mA  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature ................................ 65°C to + 150°C  
Ambient Temperature with  
Power Applied............................................55°C to + 125°C  
Operating Range  
Ambient  
Supply Voltage to Ground Potential .............. 0.5V to + 4.6V  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
40°C to +85°C  
VDD  
DC Voltage Applied to  
Outputs in High Z State............................0.5V to VCC+0.5V  
3.3V ± 150 mV  
3.3V ± 150 mV  
Electrical Characteristics Over the Operating Range  
CY7C0430V  
-133  
Typ  
-100  
Typ  
Parameter  
Description  
Output HIGH Voltage  
Min.  
Max  
Min.  
Max  
Unit  
VOH  
2.4  
2.4  
V
(VCC = Min., IOH = 4.0 mA)  
VOL  
Output LOW Voltage  
(VCC = Min., IOH = +4.0 mA)  
0.4  
0.4  
V
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.0  
2.0  
V
0.8  
10  
0.8  
10  
V
Output Leakage Current  
10  
10  
µA  
mA  
mA  
mA  
mA  
Operating Current (VCC = Max.,  
IOUT = 0 mA) Outputs Disabled  
Indust.  
413  
80  
750  
330  
60  
600  
Coml.  
ISB1  
StandbyCurrent(4Portstoggling Indust.  
at TTL Levels,0 active) CE1-4  
VIH, f = fMAX  
200  
349  
150  
263  
Coml.  
ISB2  
StandbyCurrent(4Portstoggling Indust.  
atTTLLevels, 1 active)CE1 | CE2  
| CE3 | CE4 < VIH, f = fMAX  
170  
128  
mA  
mA  
Coml.  
ISB3  
ISB4  
Standby Current (4 Ports CMOS  
Level, 0 active) CE1-4 VIH, f = 0  
Indust.  
Coml.  
Indust.  
Coml.  
0.5  
1
0.5  
83  
1
mA  
µA  
Standby Current (3 Ports CMOS  
Level, 1 Port TTL active) CE1 |  
CE2 | CE3 | CE4 < VIH, f = fMAX  
110  
200  
151  
mA  
mA  
JTAG TAP Electrical Characteristics Over the Operating Range  
Parameter  
VOH1  
VOL1  
VIH  
Description  
Output HIGH Voltage  
Output LOW Voltage  
Input HIGH Voltage  
Input LOW Voltage  
Test Conditions  
Min.  
Max.  
Unit  
IOH = 4.0 mA  
2.4  
V
V
IOL = 4.0 mA  
0.4  
2.0  
V
VIL  
0.8  
V
IX  
Input Leakage Current GND VI VDD  
100  
100  
µA  
Capacitance  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max.  
Unit  
pF  
CIN  
TA = 25°C, f = 1 MHz,  
VCC = 3.3V  
8
8
COUT  
pF  
7
PRELIMINARY  
CY7C0430V  
AC Test Load  
Z0 = 50  
R = 50  
Z0 = 50  
R = 50  
OUTPUT  
OUTPUT  
[4]  
C
5 pF  
V
TH  
= 1.5V  
V
TH  
= 1.5V  
(b) Three-State Delay  
(a) Normal Load  
1.5V  
50Ω  
TDO  
Z =50Ω  
0
C = 10 pF  
3.0V  
GND  
90%  
10%  
90%  
10%  
GND  
t
t
F
R
(c) TAP Load  
ALL INPUT PULSES  
Note:  
4. Test Conditions: C = 10 pF.  
8
PRELIMINARY  
CY7C0430V  
Switching Characteristics Over the Industrial Operating Range  
CY7C0430V  
133  
100  
Parameter  
fMAX2  
tCYC2  
tCH2  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Maximum Frequency  
Clock Cycle Time  
Clock HIGH Time  
Clock LOW Time  
Clock Rise Time  
133  
100  
7.5  
3
10  
4
tCL2  
3
4
tR  
2
2
3
3
tF  
Clock Fall Time  
tSA  
Address Set-up Time  
Address Hold Time  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
0.5  
3
0.5  
3
tHA  
tSC  
Chip Enable Set-up Time  
Chip Enable Hold Time  
R/W Set-up Time  
tHC  
0.5  
3
tSW  
tHW  
R/W Hold Time  
0.5  
3
tSD  
Input Data Set-up Time  
Input Data Hold Time  
Byte Set-up Time  
tHD  
0.5  
3
tSB  
tHB  
Byte Hold Time  
0.5  
3
tSCLD  
tHCLD  
tSCINC  
tHCINC  
tSCRST  
tHCRST  
tSCRD  
tHCRD  
tSMLD  
tHMLD  
tSMRD  
tHMRD  
tOE  
CNTLD Set-up Time  
CNTLD Hold Time  
0.5  
3
CNTINC Set-up Time  
CNTINC Hold Time  
0.5  
3
CNTRST Set-up Time  
CNTRST Hold Time  
0.5  
3
CNTRD Set-up Time  
CNTRD Hold Time  
0.5  
3
MKLD Set-up Time  
MKLD Hold Time  
0.5  
3
MKRD Set-up Time  
MKRD Hold Time  
0.5  
Output Enable to Data Valid  
OE to LOW Z  
6.5  
8
[5]  
tOLZ  
1
1
1
1
[5]  
tOHZ  
OE to HIGH Z  
6
7
5
5
5
tCD2  
tCA2  
tCM2  
tDC  
Clock to Data Valid  
4.7  
4.7  
4.7  
Clock to Counter Address Readback Valid  
Clock to Mask Register readback Valid  
Data Output Hold After Clock HIGH  
Clock HIGH to Output High Z  
Clock HIGH to Output LOW Z  
Clock to INT Set Time  
Clock to INT Reset Time  
Clock to CNTINT Set Time  
Clock to CNTINT Reset Time  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[6]  
tCKHZ  
4.8  
6.8  
[6]  
tCKLZ  
tSINT  
6.5  
6.5  
6.5  
6.5  
8
8
8
8
tRINT  
tSCINT  
tRCINT  
9
PRELIMINARY  
CY7C0430V  
Switching Characteristics Over the Industrial Operating Range (continued)  
CY7C0430V  
133  
100  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Unit  
Master Reset Timing  
tRS  
Master Reset Pulse Width  
Master Reset Set-up Time  
7.5  
6.0  
7.5  
10  
8.5  
10  
ns  
ns  
ns  
ns  
tRSS  
tRSR  
tRSF  
Master Reset Recovery Time  
Master Reset to Interrupt Flag Reset Time  
Master Reset to Counter Interrupt Flag Reset Time  
6.5  
6.5  
8
8
tRScntint  
Port to Port Delays  
tCCS  
Clock to Clock Set-up Time  
6.5  
9
ns  
Notes:  
5. This parameter is guaranteed by design, but it is not production tested.  
6. Valid for both address and data outputs.  
10  
PRELIMINARY  
CY7C0430V  
JTAG Timing and Switching Waveforms  
CY7C0430V  
Max. Min.  
133  
100  
Parameter  
fJTAG  
tTCYC  
tTH  
Description  
Maximum JTAG TAP Controller Frequency  
TCK Clock Cycle Time  
Min.  
Max.  
Unit  
MHz  
ns  
10  
10  
100  
40  
40  
10  
10  
10  
10  
100  
40  
40  
10  
10  
10  
10  
TCK Clock High Time  
ns  
tTL  
TCK Clock Low Time  
ns  
tTMSS  
tTMSH  
tTDIS  
TMS Setup to TCK Clock Rise  
TMS Hold After TCK Clock Rise  
TDI Setup to TCK Clock Rise  
TDI Hold after TCK Clock Rise  
TCK Clock Low to TDO Valid  
TCK Clock Low to TDO Invalid  
ns  
ns  
ns  
tTDIH  
ns  
tTDOV  
tTDOX  
20  
20  
ns  
0
0
ns  
tTL  
tTH  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
11  
PRELIMINARY  
CY7C0430V  
Switching Waveforms  
Master Reset  
t
RS  
MRST  
t
RSF  
ALL  
ADDRESS/  
DATA  
LINES  
t
RSR  
t
RSS  
ALL  
OTHER  
INPUTS  
INACTIVE  
ACTIVE  
TMS  
CNTINT  
INT  
TDO  
Read Cycle[7, 8, 9, 10, 11]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
t
t
t
t
SC  
HC  
SC  
HC  
LB  
t
SB  
t
HB  
UB  
R/W  
t
t
t
t
SW  
SA  
HW  
HA  
ADDRESS  
A
A
A
A
n+3  
n
n+1  
n+2  
t
1 Latency  
t
DC  
CD2  
DATA  
OUT  
Q
Q
Q
n+2  
n
n+1  
t
OHZ  
t
t
CKLZ  
OLZ  
OE  
tOE  
Notes:  
7. OE is asynchronously controlled; all other inputs (excluding MRST) are synchronous to the rising clock edge.  
8. CNTLD= VIL, MKLD= VIH, CNTINC = x, and MRST=CNTRST = VIH  
9. The output is disabled (high-impedance state) by CE=VIH following the next rising edge of the clock.  
.
10. Addresses do not have to be accessed sequentially. Note 8 indicates that address is constantly loaded on the rising edge of the CLK. Numbers are for reference  
only.  
11. CE is internal signal. CE = VIL if CE0 = VIL and CE1 = VIH  
.
12  
PRELIMINARY  
CY7C0430V  
Switching Waveforms (continued)  
Bank Select Read[12, 13]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
t
t
HA  
SA  
A
A
4
ADDRESS  
A
A
A
A
3
(B1)  
(B1)  
5
0
1
2
t
t
HC  
SC  
CE  
t
t
t
t
t
t
t
CD2  
HC  
CD2  
CD2  
CKHZ  
CKHZ  
SC  
Q
Q
Q
3
DATA  
1
0
OUT(B1)  
t
t
HA  
SA  
t
t
t
CKLZ  
DC  
DC  
A
A
4
A
ADDRESS  
A
0
A
A
3
5
(B2)  
1
2
t
t
HC  
SC  
CE  
(B2)  
t
t
t
CD2  
t
CD2  
CKHZ  
t
SC  
HC  
DATA  
OUT(B2)  
Q
Q
4
2
t
t
CKLZ  
CKLZ  
Read-to-Write-to-Read (OE = VIL)[14, 15, 16, 17]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
t
t
HC  
SC  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
A
A
n+4  
n
n+1  
n+2  
n+2  
n+3  
ADDRESS  
t
t
SD HD  
t
t
HA  
SA  
DATA  
D
n+2  
IN  
t
t
t
CD2  
CD2  
CKHZ  
Q
Q
n
n+3  
DATA  
OUT  
t
CKLZ  
READ  
NO OPERATION  
WRITE  
READ  
Notes:  
12. In this depth expansion example, B1 represents Bank #1 and B2 is Bank #2; Each Bank consists of one Cypress Quadport device from this data sheet.  
ADDRESS(B1) = ADDRESS(B2)  
13. LB = UB = OE = CNTLD = VIL; MRST= CNTRST= MKLD = VIH  
14. Output state (HIGH, LOW, or High-Impedance) is determined by the previous cycle control signals.  
.
.
15. LB = UB = CNTLD = VIL; MRST= CNTRST= MKLD =VIH  
.
16. Addresses do not have to be accessed sequentially since CNTLD= VIL constantly loads the address on the rising edge of the CLK; numbers are for reference only.  
17. During No operation,data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.  
13  
PRELIMINARY  
CY7C0430V  
Switching Waveforms (continued)  
Read-to-Write-to-Read (OE Controlled)[14, 15, 16, 17]  
t
CYC2  
t
t
CL2  
CH2  
CLK  
CE  
t
t
HC  
SC  
t
t
HW  
SW  
R/W  
t
t
HW  
SW  
A
A
A
A
A
A
n+5  
n
n+1  
n+2  
n+3  
n+4  
ADDRESS  
t
t
HA  
t
t
SA  
SD HD  
D
DATA  
D
n+2  
IN  
n+3  
t
t
CD2  
CD2  
DATA  
Q
t
OUT  
Q
n
n+4  
t
OHZ  
CKLZ  
OE  
READ  
WRITE  
READ  
Read with Address Counter Advance[18, 19]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
ADDRESS  
A
n
t
t
HCLD  
SCLD  
CNTLD  
t
t
SCINC  
HCINC  
CNTINC  
t
CD2  
DATA  
OUT  
Q
Q
Q
Q
Q
Q
n+3  
x1  
x
n
n+1  
n+2  
t
READ  
DC  
COUNTER HOLD  
READ WITH COUNTER  
READ WITH COUNTER  
EXTERNAL  
ADDRESS  
Notes:  
18. CE0 = OE = LB = UB = VIL; CE1 = R/W = CNTRST = MRST = MKLD = MKRD = CNTRD = VIH  
.
19. The Internal Addressis equal to the External Addresswhen CNTLD= VIL.  
14  
PRELIMINARY  
CY7C0430V  
Switching Waveforms (continued)  
Write with Address Counter Advance [19, 20]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
A
ADDRESS  
n
INTERNAL  
ADDRESS  
A
A
A
A
A
n+4  
n
n+1  
n+2  
n+3  
t
t
HAD  
SAD  
CNTLD  
CNTINC  
t
t
HCN  
SCN  
D
D
D
D
D
D
n+4  
DATA  
n
n+1  
n+1  
n+2  
n+3  
IN  
t
t
HD  
SD  
WRITE EXTERNAL  
ADDRESS  
WRITE WITH WRITE COUNTER  
COUNTER HOLD  
WRITE WITH COUNTER  
Note:  
20. CE0 = LB = UB = R/W = VIL; CE1 = CNTRST = MRST = MKLD = MKRD = CNTRD = VIH.  
15  
PRELIMINARY  
CY7C0430V  
Switching Waveforms (continued)  
Counter Reset [16, 21, 22]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
t
t
HA  
SA  
A
A
ADDRESS  
n
n+1  
INTERNAL  
ADDRESS  
A
A
A
A
A
n+1  
X
0
1
n
t
t
HW  
SW  
R/W  
t
t
HCLD  
SCLD  
CNTLD  
CNTINC  
CNTRST  
t
t
HCRST  
SCRST  
t
t
HD  
SD  
DATA  
D
IN  
0
DATA  
Q
Q
Q
n
OUT  
0
1
COUNTER  
RESET  
WRITE  
ADDRESS 0  
READ  
ADDRESS 0  
READ  
ADDRESS 1  
READ  
ADDRESS n  
Notes:  
21. CE0 = LB = UB = VIL; CE1 = MRST = MKLD = MKRD = CNTRD = VIH  
.
22. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset.  
16  
PRELIMINARY  
CY7C0430V  
Switching Waveforms (continued)  
Load and Read Address Counter[23]  
t
CYC2  
t
t
CH2  
CL2  
Note 24  
Note 25  
CLK  
t
t
t
CA2  
HA  
SA  
t
t
CKHZ  
CKLZ  
[26]  
n+2  
A0-A15  
A
A
n
t
t
HCLD  
SCLD  
CNTLD  
CNTINC  
t
t
SCINC  
HCINC  
t
t
HCRD  
SCRD  
CNTRD  
INTERNAL  
ADDRESS  
A
A
A
n+2  
A
A
n
n+1  
n+2  
n+2  
t
DC  
t
t
CD2  
t
CKLZ  
CKHZ  
DATA  
OUT  
Q
n+2  
Q
Q
Q
Q
Q
x1  
x
n
n+1  
n+2  
LOAD  
READ DATA WITH COUNTER  
READ  
EXTERNAL  
ADDRESS  
INTERNAL  
ADDRESS  
Notes:  
23. CE0 = OE = LB = UB = VIL; CE1 = R/W = CNTRST = MRST = MKLD = MKRD = VIH  
24. Address in output mode. Host must not be driving address bus after time tCKLZ in next clock cycle.  
25. Address in input mode. Host can drive address bus after tCKHZ  
26. This is the value of the address counter being read out on the address lines.  
.
.
17  
PRELIMINARY  
CY7C0430V  
Switching Waveforms (continued)  
Load and Read Mask Register [27]  
t
CYC2  
t
t
CH2  
CL2  
Note 24  
Note 25  
CLK  
t
t
t
CA2  
HA  
SA  
t
t
CKHZ  
CKLZ  
[28]  
A0-A15  
A
A
n
n
t
t
HMLD  
SMLD  
MKLD  
MKRD  
t
t
HMRD  
SMRD  
MASK  
INTERNAL  
VALUE  
A
A
A
n
A
A
n
n
n
n
READ  
LOAD  
A
n+2  
MASK-REGISTER  
VALUE  
MASK REGISTER  
VALUE  
Notes:  
27. CE0 = OE = LB = UB = VIL; CE1 = R/W = CNTRST = MRST = CNTLD = CNTRD = CNTINC =VIH  
28. This is the value of the Mask Register read out on the address lines.  
.
18  
PRELIMINARY  
CY7C0430V  
Switching Waveforms (continued)  
Port 1 Write to Port 2 Read[29, 30, 31]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
P1  
t
HA  
t
SA  
PORT-1  
ADDRESS  
A
n
t
t
HW  
SW  
R/W  
P1  
t
CKHZ  
t
SD  
t
HD  
t
CKLZ  
PORT-1  
DATA  
D
n
IN  
t
CCS  
t
CYC2  
t
CL2  
CLK  
P2  
t
CH2  
t
t
SA  
HA  
PORT-2  
ADDRESS  
A
n
R/W  
P2  
t
CD2  
PORT-2  
DATA  
Q
n
OUT  
t
DC  
Notes:  
29. CE0 = OE = LB = UB = CNTLD =VIL; CE1 = CNTRST = MRST = MKLD = MKRD = CNTRD = CNTINC =VIH  
.
30. This timing is valid when one port is writing, and one or more of the three other ports is reading the same location at the same time. If tCCS is violated, indeterminate  
data will be read out.  
31. If tCCS< minimum specified value, then Port 2 will read the most recent data (written by Port 1) only (2*tCYC2 + tCD2) after the rising edge of Port 2's clock. If tCCS  
> minimum specified value, then Port 2 will read the most recent data (written by Port 1) (tCYC2 + tCD2) after the rising edge of Port 2's clock.  
19  
PRELIMINARY  
CY7C0430V  
Switching Waveforms (continued)  
Counter Interrupt [32, 33, 34]  
t
CYC2  
t
t
CH2  
CL2  
CLK  
EXTERNAL  
ADDRESS  
007Fh  
xx7Dh  
t
t
HMLD  
SMLD  
MKLD  
t
SCLD  
t
HCLD  
CNTLD  
t
t
HCINC  
SCINC  
CNTINC  
COUNTER  
INTERNAL  
ADDRESS  
xx7Dh  
A
xx7Eh  
xx7Fh  
xx00h  
xx00h  
n
t
SCINT  
t
RCINT  
CNTINT  
Mailbox Interrupt Timing[35, 36, 37, 38, 39]  
tCYC2  
tCH2  
tCL2  
CLKP1  
t
t
HA  
SA  
PORT-1  
ADDRESS  
A
FFFE  
A
n
A
A
n+3  
n+1  
n+2  
t
SINT  
t
INT  
RINT  
P2  
t
CYC2  
t
t
CH2  
CL2  
CLK  
P2  
t
t
HA  
SA  
PORT-2  
ADDRESS  
FFFE  
A
A
m+1  
A
A
m+4  
m
m+3  
Notes:  
32. CE0 = OE = LB = UB = VIL; CE1 = R/W = CNTRST = MRST = CNTRD = MKRD = VIH  
.
33. CNTINT is always driven.  
34. CNTINC goes LOW as the counter address masked portion is incremented from xx7Fh to xx00h. The xis dont care.”  
35. CE0 = OE = LB = UB = CNTLD =VIL; CE1 = CNTRST = MRST = CNTRD = CNTINC = MKRD = MKLD =VIH  
.
36. Address FFFEis the mailbox location for Port 2.  
37. Port 1 is configured for Write operation, and Port 2 is configured for Read operation.  
38. Port 1 and Port 2 are used for simplicity. All four ports can write to or read from any mailbox.  
39. Interrupt flag is set with respect to the rising edge of the write clock, and is reset with respect to the rising edge of the read clock.  
20  
PRELIMINARY  
CY7C0430V  
Table 1. Read/Write and Enable Operation (Any Port)[40, 41, 42]  
Inputs  
Outputs  
I/O0I/O17  
High-Z  
OE  
CLK  
CE0  
CE1  
R/W  
Operation  
X
H
X
X
Deselected  
Deselected  
Write  
X
X
L
X
L
L
L
L
X
L
High-Z  
DIN  
H
H
H
H
X
DOUT  
High-Z  
Read  
H
X
Outputs Disabled  
Table 2. Address Counter and Counter-Mask Register Control Operation (Any Port)[40, 43, 44]  
CLK MRST CNTRST MKLD CNTLD CNTINC CNTRD MKRD Mode  
Operation  
X
L
X
X
X
X
X
X
Master- Counter/Address Register Reset and Mask  
Reset Register Set (resets entire chip as per reset  
state table)  
H
H
H
L
H
H
X
L
X
X
L
X
X
X
X
X
X
X
X
X
Reset Counter/Address Register Reset  
Load  
Load  
Load of Address Lines into Mask Register  
H
Load of Address Lines into Counter/Address  
Register  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
X
L
X
X
L
Incre- Counter Increment  
ment  
H
H
H
Read- Readback Counter on Address Lines  
back  
H
H
Read- Readback Mask Register on Address Lines  
back  
H
Hold  
Counter Hold  
Notes:  
40. X= dont care,” “H= VIH, L= VIL  
.
41. OE is an asynchronous input signal.  
42. When CE changes state, deselection and read happen after one cycle of latency.  
43. CE0 = OE = VIL; CE1 = R/W = VIH  
.
44. Counter operation and mask register operation is independent of Chip Enables.  
21  
PRELIMINARY  
CY7C0430V  
for Port 1, FFFE is the mailbox for Port 2, FFFD is the mailbox  
for Port 3, and FFFC is the mailbox for Port 4. Table 3 shows  
that in order to set Port 1 INTP1 flag, a write by any other port  
to address FFFF will assert INTP1 LOW. A read of FFFF loca-  
tion by Port 1 will reset INTP1 HIGH. When one port writes to  
the other ports mailbox, the Interrupt flag (INT) of the port that  
the mailbox belongs to is asserted LOW. The Interrupt is reset  
when the owner (port) of the mailbox reads the contents of the  
mailbox. The interrupt flag is set in a flow-through mode (i.e.,  
it follows the clock edge of the writing port). Also, the flag is  
reset in a flow-through mode (i.e., it follows the clock edge of  
the reading port).  
Master Reset  
The QuadPort undergoes a complete reset by taking its Mas-  
ter Reset (MRST) input LOW. The Master Reset input can  
switch asynchronously to the clocks. A Master Reset initializes  
the internal burst counters to zero, and the counter mask reg-  
isters to all ones (completely unmasked). A Master Reset also  
forces the Mailbox Interrupt (INT) flags and the Counter Inter-  
rupt (CNTINT) flags HIGH, resets the BIST controller, and  
takes all registered control signals to a deselected read  
state[45]. A Master Reset must be performed on the QuadPort  
after power-up.  
Each port can read the other ports mailbox without resetting  
the interrupt. If an application does not require message pass-  
ing, INT pins should be treated as no-connect and should be  
left floating. When two ports or more write to the same mailbox  
at the same time INT will be asserted but the contents of the  
mailbox are not guaranteed to be valid.  
Interrupts  
The upper four memory locations may be used for message  
passing and permit communications between ports. Table 3  
shows the interrupt operation for all ports. For the 1-Meg  
QuadPort, the highest memory location FFFF is the mailbox  
Table 3. Interrupt Operation Example  
Port 1  
A0P115P1  
Port 2  
Port 3  
A0P315P3  
Port 4  
A0P415P4  
Function  
INTP1  
A0P215P2  
FFFF  
X
INTP2  
INTP3  
INTP4  
Set Port 1 INTP1 Flag  
Reset Port 1 INTP1 Flag  
Set Port 2 INTP2 Flag  
Reset Port 2 INTP2 Flag  
Set Port 3 INTP3 Flag  
Reset Port 3 INTP3 Flag  
Set Port 4 INTP4 Flag  
X
FFFF  
FFFE  
X
L
H
X
X
X
X
X
X
X
X
L
FFFF  
X
X
X
X
X
L
FFFF  
X
X
X
X
X
X
X
L
X
FFFE  
X
FFFE  
X
FFFE  
FFFD  
X
H
X
X
X
X
FFFD  
X
X
FFFD  
X
FFFD  
FFFC  
X
H
X
X
FFFC  
X
FFFC  
X
X
Reset Port 4 INTP4 Flag  
FFFC  
H
Note:  
45. During Master Reset the control signals will be set to a deselected read state: CE0I = LBI = UBI = R/WI = MKLDI = MKRDI = CNTRDI = CNTRSTI = CNTLDI =  
CNTINCI = VIH; CE1I = VIL. The Isuffix on all these signals denotes that these are the internal registered equivalent of the associated pin signals.  
22  
PRELIMINARY  
CY7C0430V  
vides a block diagram of the readback operation. Table 2 lists  
control signals required for counter operations. The signals are  
listed based on their priority. For example, master reset takes  
precedence over counter reset, and counter load has lower  
priority than mask register load (described below). All counter  
operations are independent of Chip Enables (CE0 and CE1).  
When the address readback operation is performed the data  
I/Os are three-stated (if CEs are active) and one-clock cycle  
(no-operation cycle) latency is experienced. The address will  
be read at time tCA2 from the rising edge of the clock following  
the no-operation cycle. The read back address can be either  
of the burst counter or the mask register based on the levels  
of Counter Read signal (CNTRD) and Mask Register Read  
signal (MKRD). Both signals are synchronized to the port's  
clock as shown in Table 2. Counter read has a higher priority  
than mask read.  
Address Counter Control Operations  
Counter enable inputs are provided to stall the operation of the  
address input and utilize the internal address generated by the  
internal counter for the fast interleaved memory applications.  
A ports burst counter is loaded with the ports Counter Load  
pin (CNTLD). When the ports Counter Increment (CNTINC) is  
asserted, the address counter will increment on each LOW to  
HIGH transition of that ports clock signal. This will read/write  
one word from/into each successive address location until  
CNTINC is deasserted. Depending on the mask register state,  
the counter can address the entire memory array and will loop  
back to start. Counter Reset (CNTRST) is used to reset the  
Burst Counter (the Mask Register value is unaffected). When  
using the counter in readback mode, the internal address val-  
ue of the counter will be read back on the address lines when  
Counter Readback Signal (CNTRD) is asserted. Figure 1 pro-  
Read back  
Register  
CNTRD  
MKRD  
Addr.  
Read  
Back  
MKLD = 1  
Memory  
Array  
Mask  
Register  
Bidirectional  
Address Lines  
Counter/  
Address  
Register  
CNTINC = 1  
CNTLD = 1  
CNTRST = 1  
CLK  
Figure 1. Counter and Mask Register Read Back on Address Lines  
23  
PRELIMINARY  
CY7C0430V  
Counter-Mask Register  
CNTINT  
Example:  
Load  
Counter-Mask  
Register = 3F  
H
0
0
0s  
0
1
1
1
1
1
1
215 214  
26 25 24 23 22 21 20  
Counter Address  
Mask  
Register  
bit-0  
Blocked Address  
Load  
Address  
Counter = 8  
H
H
L
X
X
Xs  
Xs  
Xs  
X
0
0
1
0
0
0
1
215 214  
26 25 24 23 22 21 20  
Address  
Counter  
bit-0  
Max  
Address  
Register  
X
X
X
1
1
1
1
1
215 214  
26 25 24 23 22 21 20  
Max + 1  
Address  
Register  
X
X
X
0
0
0
0
0
0
215 214  
26 25 24 23 22 21 20  
Figure 2. Programmable Counter-Mask Register Operation[46]  
Note:  
46. The Xin this diagram represents the counter upper-bits.  
The burst counter has a mask register that controls when and  
where the counter wraps. An interrupt flag (CNTINT) is assert-  
ed for one clock cycle when the unmasked portion of the  
counter address wraps around from all ones (CNTINC must be  
asserted) to all zeros. The example in Figure 2 shows the  
counter mask register loaded with a mask value of 003F un-  
masking the first 6 bits with bit 0as the LSB and bit 15as  
the MSB. The maximum value the mask register can be loaded  
with is FFFF. Setting the mask register to this value allows the  
counter to access the entire memory space. The address  
counter is then loaded with an initial value of XXX8. The  
blockedaddresses (in this case, the 6th address through the  
15th address) are loaded with an address but do not increment  
once loaded. The counter address will start at address XXX8.  
With CNTINC asserted LOW, the counter will increment its  
internal address value till it reaches the mask register value of  
3F and wraps around the memory block to location XXX0.  
Therefore, the counter uses the mask-register to define  
wrap-around point. The mask register of every port is loaded  
when MKLD (mask register load) for that port is LOW. When  
MKRD is LOW, the value of the mask register can be read out  
on address lines in a manner similar to counter read back op-  
eration (see Table 2 for required conditions).  
will increment by two and the address values are even. If the  
loaded value for address counter bit 0 is 1,the counter will  
increment by two and the address values are odd. This oper-  
ations allows the user to achieve a 36-bit interface using any  
two ports, where the counter of one port counts even address-  
es and the counter of the other port counts odd addresses.  
This even-odd address scheme stores one half of the 36-bit  
word in even memory locations, and the other half in odd mem-  
ory locations. CNTINT will be asserted when the unmasked  
portion of the counter wraps to all zeros. Loading mask regis-  
ter bit 0 with 1allows the counter to increment the address  
value sequentially.  
Table 2 groups the operations of the mask register with the  
operations of the address counter. Address counter and mask  
register signals are all synchronized to the port's clock CLK.  
Master reset (MRST) is the only asynchronous signal listed on  
Table 2. Signals are listed based on their priority going from  
left column to right column with MRST being the highest. A  
LOW on MRST will reset both counter register to all zeros and  
mask register to all ones. On the other hand, a LOW on  
CNTRST will only clear the address counter register to zeros  
and the mask register will remain intact.  
There are four operations for the counter and mask register:  
When the burst counter is loaded with an address higher than  
the mask register value, the higher addresses will form the  
masked portion of the counter address and are called blocked  
addresses. The blocked addresses will not be changed or af-  
fected by the counter increment operation. The only exception  
is mask register bit 0. It can be masked to allow the address  
counter to increment by two. If the mask register bit 0 is loaded  
with a logic value of 0,then address counter bit 0 is masked  
and can not be changed during counter increment operation.  
If the loaded value for address counter bit 0 is 0,the counter  
1. Load operation: When CNTLD or MKLD is LOW, the ad-  
dress counter or the mask register is loaded with the ad-  
dress value presented at the address lines. This value rang-  
es from 0 to FFFF (64K). The mask register load operation  
has a higher priority over the address counter load opera-  
tion.  
2. Increment: Once the address counter is loaded with an ex-  
ternal address, the counter can internally increment the ad-  
dress value by asserting CNTINC LOW. The counter can  
24  
PRELIMINARY  
CY7C0430V  
address the entire memory array (depend on the value of  
the mask register) and loop back to location 0. The incre-  
ment operation is second in priority to load operation.  
Test Data-In (TDI)  
The TDI pin is used to serially input information into the regis-  
ters and can be connected to the input of any of the registers.  
The register between TDI and TDO is chosen by the instruc-  
tion that is loaded into the TAP instruction register. For infor-  
mation on loading the instruction register, see the TAP Con-  
troller State Diagram. TDI is internally pulled up and can be  
unconnected if the TAP is unused in an application. TDI is  
connected to the most significant bit (MSB) on any register.  
3. Readback: the internal value of either the burst counter or  
themaskregistercanbereadoutontheaddresslineswhen  
CNTRD or MKRD is LOW. Counter readback has higher  
priority over mask register readback. A no-operation delay  
cycle is experienced when readback operation is per-  
formed. The address will be valid after tCA2 (for counter  
readback) or tCM2 (for mask readback) from the following  
port's clock rising edge. Address readback operation is in-  
dependent of the port's chip enables (CE0 and CE1). If ad-  
dress readback occurs while the port is enabled (chip en-  
ables active), the data lines (I/Os) will be three-stated.  
Test Data Out (TDO)  
The TDO output pin is used to serially clock data-out from the  
registers. The output is active depending upon the current  
state of the TAP state machine (see TAP Controller State Dia-  
gram (FSM)). The output changes on the falling edge of TCK.  
TDO is connected to the least significant bit (LSB) of any reg-  
ister.  
4. Hold operation: In order to hold the value of the address  
counter at certain address, all signals in Table 2 have to be  
HIGH. This operation has the least priority. This operation  
is useful in many applications where wait states are needed  
or when address is available few cycles ahead of data.  
Performing a TAP Reset  
A Reset is performed by forcing TMS HIGH (VDD) for five rising  
edges of TCK. This RESET does not affect the operation of the  
QuadPort and may be performed while the device is operating.  
At power-up, the TAP is reset internally to ensure that TDO  
comes up in a high-Z state.  
The counter and mask register operations are totally indepen-  
dent of port chip enables.  
IEEE 1149.1 Serial Boundary Scan (JTAG) and  
Memory Built-In-Self-Test (MBIST)  
TAP Registers  
The CY7C0430V incorporates a serial boundary scan test ac-  
cess port (TAP). This port operates in accordance with IEEE  
Standard 1149.1-1900. Note that the TAP controller functions  
in a manner that does not conflict with the operation of other  
devices using 1149.1 fully compliant TAPs. The TAP operates  
using JEDEC standard 3.3V I/O logic levels. It is composed of  
three input connections and one output connection required by  
the test logic defined by the standard. Memory BIST circuitry  
will also be controlled through the TAP interface. All MBIST  
instructions are compliant to the JTAG standard. An external  
clock (CLKBIST) is provided to allow the user to run BIST at  
speeds higher than 100 MHz. CLKBIST is multiplexed internal-  
ly with the ports clocks during BIST operation.  
Registers are connected between the TDI and TDO pins and  
allow data to be scanned into and out of the QuadPort test  
circuitry. Only one register can be selected at a time through  
the instruction registers. Data is serially loaded into the TDI pin  
on the rising edge of TCK. Data is output on the TDO pin on  
the falling edge of TCK.  
Instruction Register  
Four-bit instructions can be serially loaded into the instruction  
register. This register is loaded when it is placed between the  
TDI and TDO pins as shown in the following JTAG/BIST Con-  
troller diagram. Upon power-up, the instruction register is load-  
ed with the IDCODE instruction. It is also loaded with the  
IDCODE instruction if the controller is placed in a reset state  
as described in the previous section.  
Disabling the JTAG Feature  
It is possible to operate the QuadPort without using the JTAG  
feature. To disable the TAP controller, TCK must be tied LOW  
(VSS) to prevent clocking of the device. TDI and TMS are in-  
ternally pulled up and may be unconnected. They may alter-  
nately be connected to VDD through a pull-up resistor. TDO  
should be left unconnected. CLKBIST must be tied LOW to  
disable the MBIST. Upon power-up, the device will come up in  
a reset state which will not interfere with the operation of the  
device.  
When the TAP controller is in the CaptureIR state, the two least  
significant bits are loaded with a binary 01pattern to allow for  
fault isolation of the board level serial test path.  
Bypass Register  
To save time when serially shifting data through registers, it is  
sometimes advantageous to skip certain devices. The bypass  
register is a single-bit register that can be placed between TDI  
and TDO pins. This allows data to be shifted through the  
QuadPort with minimal delay. The bypass register is set LOW  
(VSS) when the BYPASS instruction is executed.  
Test Access Port (TAP) - Test Clock (TCK)  
The test clock is used only with the TAP controller. All inputs  
are captured on the rising edge of TCK. All outputs are driven  
from the falling edge of TCK.  
Boundary Scan Register  
The boundary scan register is connected to all the input and  
output pins on the QuadPort. The boundary scan register is  
loaded with the contents of the QP Input and Output ring when  
the TAP controller is in the Capture-DR state and is then  
placed between the TDI and TDO pins when the controller is  
moved to the Shift-DR state. The EXTEST, and SAM-  
PLE/PRELOAD instructions can be used to capture the con-  
tents of the Input and Output ring.  
Test Mode Select  
The TMS input is used to give commands to the TAP controller  
and is sampled on the rising edge of TCK. It is allowable to  
leave this pin unconnected if the TAP is not used. The pin is  
pulled up internally, resulting in a logic HIGH level.  
25  
PRELIMINARY  
CY7C0430V  
Identification (ID) Register  
but there is no guarantee as to the value that will be captured.  
Repeatable results may not be possible.  
The ID register is loaded with a vendor-specific, 32-bit code  
during the Capture-DR state when the IDCODE command is  
loaded in the instruction register. The IDCODE is hardwired  
into the QuadPort and can be shifted out when the TAP con-  
troller is in the Shift-DR state. The ID register has a vendor  
code and other information described in the Identification Reg-  
ister Definitions table.  
To guarantee that the boundary scan register will capture the  
correct value of a signal, the QuadPort signal must be stabi-  
lized long enough to meet the TAP controller's capture set-up  
plus hold times. Once the data is captured, it is possible to shift  
out the data by putting the TAP into the Shift-DR state. This  
places the boundary scan register between the TDI and TDO  
pins. If the TAP controller goes into the Update-DR state, the  
sampled data will be updated.  
TAP Instruction Set  
Sixteen different instructions are possible with the 4-bit instruc-  
tion register. All combinations are listed in Table 6, Instruction  
Codes. Seven of these instructions (codes) are listed as RE-  
SERVED and should not be used. The other nine instructions  
are described in detail below.  
BYPASS  
When the BYPASS instruction is loaded in the instruction reg-  
ister and the TAP is placed in a Shift-DR state, the bypass  
register is placed between the TDI and TDO pins. The advan-  
tage of the BYPASS instruction is that it shortens the boundary  
scan path when multiple devices are connected together on a  
board.  
The TAP controller used in this QuadPort is fully compliant to  
the 1149.1 convention. The TAP controller can be used to load  
address, data or control signals into the QuadPort and can  
preload the Input or output buffers. The QuadPort implements  
all of the 1149.1 instructions except INTEST. Table 6 lists all  
instructions.  
CLAMP  
The optional CLAMP instruction allows the state of the signals  
driven from QuadPort pins to be determined from the bound-  
ary-scan register while the BYPASS register is selected as the  
serial path between TDI and TDO. CLAMP controls boundary  
cells to 1 or 0.  
Instructions are loaded into the TAP controller during the  
Shift-IR state when the instruction register is placed between  
TDI and TDO. During this state, instructions are shifted  
through the instruction register through the TDI and TDO pins.  
To execute the instruction once it is shifted in, the TAP control-  
ler needs to be moved into the Update-IR state.  
RUNBIST  
RUNBIST instruction provides the user with a means of run-  
ning a user-accessible self-test function within the QuadPort  
as a result of a single instruction. This permits all components  
on a board that offer the RUNBIST instruction to execute their  
self-tests concurrently, providing a quick check for the board.  
The QuadPort MBIST provides two modes of operation once  
the TAP controller is loaded with the RUNBIST instruction:  
EXTEST  
EXTEST is a mandatory 1149.1 instruction which is to be exe-  
cuted whenever the instruction register is loaded with all 0s. EX-  
TEST allows circuitry external to the QuadPort package to be  
tested. Boundary-scan register cells at output pins are used to  
apply test stimuli, while those at input pins capture test results.  
Non-Debug Mode (Go-NoGo)  
IDCODE  
The non-debug mode is a go-nogo test used simply to run  
BIST and obtain pass-fail information after the test is run. In  
addition to that, the total number of failures encountered can  
be obtained. This information is used to aid the debug mode  
(explained next) of operation. The pass-fail information and  
failure count is scanned out using the JTAG interface. An  
MBIST Result Register (MRR) will be used to store the  
pass-fail results. The MRR is a 25-bit register that will be con-  
nected between TDI and TDO during the internal scan  
(INT_SCAN) operation. The MRR will contain the total number  
of fail read cycles of the entire MBIST sequence. MRR[0] (bit  
0) is the Pass/Fail bit. A 1indicates some type of failure oc-  
curred, and a 0indicates entire memory pass.  
The IDCODE instruction causes a vendor-specific, 32-bit code  
to be loaded into the instruction register. It also places the  
instruction register between the TDI and TDO pins and allows  
the IDCODE to be shifted out of the device when the TAP con-  
troller enters the Shift-DR state. The IDCODE instruction is  
loaded into the instruction register upon power-up or whenever  
the TAP controller is given a test logic reset state.  
High-Z  
The High-Z instruction causes the boundary scan register to  
be connected between the TDI and TDO pins when the TAP  
controller is in a Shift-DR state. It also places all QuadPort  
outputs into a High-Z state.  
In order to run BIST in non-debug mode, the 2-bit MBIST Con-  
trol Register (MCR) is loaded with the default value 00, and  
the TAP controllers finite state machine (FSM), which is syn-  
chronous to TCK, transitions to Run Test/Idle state. The entire  
MBIST test will be performed with a deterministic number of  
TCK cycles depending on the TCK and CLKBIST frequency.  
SAMPLE / PRELOAD  
SAMPLE / PRELOAD is a 1149.1 mandatory instruction.  
When the SAMPLE / PRELOAD instructions loaded into the  
instruction register and the TAP controller in the Capture-DR  
state, a snapshot of data on the inputs and output pins is cap-  
tured in the boundary scan register.  
tCYC[CLKBIST]  
--------------------------------------------  
× m + SPC  
tCYC  
=
tCYC[TCK]  
The user must be aware that the TAP controller clock can only  
operate at a frequency up to 10 MHz, while the QuadPort clock  
operates more than an order of magnitude faster. Because  
there is a large difference in the clock frequencies, it is possible  
that during the Capture-DR state, an input or output will under-  
go a transition. The TAP may then try to capture a signal while  
in transition (metastable state). This will not harm the device,  
tCYC is total number of TCK cycles required to run MBIST.  
SPC is the Synchronization Padding Cycles (46 cycles)  
m is a constant represents the number of read and write oper-  
ations required to run MBIST algorithms (31,195,136).  
26  
PRELIMINARY  
CY7C0430V  
Once the entire MBIST sequence is completed, supplying ex-  
tra TCK or CLKBIST cycles will have no effect on the MBIST  
controller state or the pass-fail status.  
be scanned out at the end of the BIST operations. If the value  
is 0then BIST must be repeated to capture the next failing  
packet. If it is 1,it means that the last failing packets have  
been scanned out. A trailer similar to the header represents  
the end of a packet.  
Debug Mode  
With the RUNBIST instruction loaded and the MCR loaded  
with the value of 01, and the FSM transitions to  
RUN_TEST/IDLE state, the MBIST goes into RUNBIST-debug  
mode. The debug mode will be used to provide complete fail-  
ure analysis information at the board level. It is recommended  
that the user runs the non-debug mode first and then the de-  
bug mode in order to save test time and to set an upper bound  
on the number of scan outs that will be needed. The failure  
data will be scanned out automatically once a failure occurs  
using the JTAG TAP interface. The failure data will be repre-  
sented by a 100-bit packet given below. The 100-bit Memory  
debug Register (MDR) will be connected between TDI and  
TDO, and will be shifted out on TDO, which is synchronized to  
TCK.  
MCR_SCAN  
This instruction will connect the Memory BIST Control Regis-  
ter (MCR) between TDI and TDO. The default value (upon  
master reset) is 00. Shift_DR state will allow modifying the  
MCR to extend the MBIST functionality.  
MBIST Control States  
Thirty-five states are listed in Table 7. Four data algorithms are  
used in debug mode: moving inversion (MIA), march_2 (M2A),  
checkerboard (CBA), and unique address algorithm (UAA).  
Only Port 1 can write MIA, M2A, and CBA data to the memory.  
All four ports can read any algorithm data from the QP mem-  
ory. Ports 2, 3, and 4 will only write UAA data.  
Figure 3 is a representation of the 100-bit MDR packet. The  
packet follows a 2-bit header that has a logic 1value, and  
represents two TCK cycles. MDR[97:26] represent the BIST  
comparator values of all four ports (each port has 18 data  
lines). A value of 1indicates a bit failure. The scanned out  
data is from MSB to LSB. MDR[25:10] represent the failing  
address (MSB to LSB). The state of the BIST controller is  
scanned out using MDR[9:4]. Bit 2 is the Test Done bit. A 0”  
in bit 2 means test not complete. The user has to monitor this  
bit at every packet to determine if more failure packets need to  
Boundary Scan Cells (BSC)  
Table 9 lists all QuadPort I/Os with their associated BSC. No-  
tice that the cells have even numbers. Every I/O has two  
boundary scan cells. Bidirectional signals (address lines, data-  
lines) require two cells so that one (the odd cell) is used to  
control a three-state buffer. Input only and output only signals  
have an extra dummy cell (odd cells) that are used to ease  
device layout.  
99  
98  
1
1
62  
97  
P4_IO(17-9)  
P3_IO(17-9)  
P3_IO(8-0)  
P2_IO(17-9)  
P2_IO(8-0)  
P1_IO(17-9)  
P1_IO(8-0)  
61  
26  
P4_IO(8-0)  
25  
10  
A(15-0)  
4
9
MBIST_State  
3
P/F  
2
TD  
1
0
1
1
Figure 3. MBIST Debug Register Packet  
27  
PRELIMINARY  
CY7C0430V  
TAP Controller State Diagram (FSM)[47]  
TEST-LOGIC  
RESET  
1
0
0
1
1
1
RUN_TEST/  
IDLE  
SELECT  
SELECT  
DR-SCAN  
IR-SCAN  
0
0
1
1
CAPTURE-DR  
CAPTURE-IR  
0
0
SHIFT-DR  
0
SHIFT-IR  
0
1
1
EXIT1-DR  
0
1
EXIT1-IR  
0
1
0
0
PAUSE-DR  
1
PAUSE-IR  
1
0
0
EXIT2-DR  
1
EXIT2-IR  
1
UPDATE-DR  
UPDATE-IR  
1
1
0
0
Note:  
47. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.  
28  
PRELIMINARY  
CY7C0430V  
JTAG/BIST TAP Controller Block Diagram  
0
Bypass Register (BYR)  
1
0
MBIST Control Register (MCR)  
3 2  
1
0
Instruction Register (IR)  
24 23  
0
Selection  
Circuitry  
MBIST Result Register (MRR)  
TDI  
TDO  
31 30 29  
0
Identification Register (IDR)  
(MUX)  
99  
0
MBIST Debug Register (MDR)  
0
391  
Boundary Scan Register (BSR)  
BIST  
CONTROLLER  
TAP  
CONTROLLER  
TCK  
CLKBIST  
TMS  
MRST  
MEMORY  
CELL  
29  
PRELIMINARY  
CY7C0430V  
JTAG Timing Waveform  
tTL  
tTH  
Test Clock  
TCK  
tTCYC  
tTMSS  
tTMSH  
Test Mode Select  
TMS  
tTDIS  
tTDIH  
Test Data-In  
TDI  
Test Data-Out  
TDO  
tTDOX  
tTDOV  
Table 4. Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number  
(31:28)  
0h  
Reserved for version number  
Cypress Device ID  
(27:12)  
C000h  
34h  
1
Defines Cypress part number  
Cypress JEDEC ID  
(11:1)  
Allows unique identification of QuadPort vendor  
Indicate the presence of an ID register  
ID Register Presence  
(0)  
30  
PRELIMINARY  
CY7C0430V  
Table 5. Scan Registers Sizes  
Register Name  
Bit Size  
Instruction (IR)  
4
Bypass (BYR)  
1
Identification (IDR)  
MBIST Control (MCR)  
MBIST Result (MRR)  
MBIST Debug (MDR)  
Boundary Scan (BSR)  
32  
2
25  
100  
392  
Table 6. Instruction Identification Codes  
Instruction Code  
EXTEST  
Description  
0000  
Captures the Input/Output ring contents. Places the boundary scan register  
(BSR) between the TDI and TDO.  
BYPASS  
IDCODE  
1111  
0111  
Places the bypass register (BYR) between TDI and TDO.  
Loads the ID register (IDR) with the vendor ID code and places the register  
between TDI and TDO.  
HIGHZ  
0110  
Places the boundary scan register between TDI and TDO. Forces all Quad-  
Port output drivers to a High-Z state. Uses BYR.  
CLAMP  
0101  
0001  
Controls boundary to 1/0. Uses BYR.  
SAMPLE/PRELOAD  
Captures the Input/Output ring contents. Places the boundary scan register  
(BSR) between TDI and TDO.  
RUNBIST  
1000  
0010  
0011  
Invokes MBIST. Places the MBIST Debug register (MDR) between TDI and  
TDO.  
INT_SCAN  
MCR_SCAN  
RESERVED  
Scans out pass-fail information. Places MBIST Result Register (MRR) be-  
tween TDI and TDO.  
Presets RUNBIST mode. Places MBIST Control Register (MCR) between  
TDI and TDO.  
All other codes  
Seven combinations are reserved. Do not use other than the above.  
Table 7. MBIST Control States  
States Code  
State Name  
Description  
000001  
movi_zeros  
Port 1 write all zeros to the QP memory using Moving Inversion Algorithm  
(MIA).  
000011  
000010  
movi_1_upcnt  
Up count from 0 to 64K (depth of QP). All ports read 0s, then Port 1 writes 1s  
to all memory locations using MIA, then all ports read 1s. MIA  
read0_write1_read1 (MIA_r0w1r1).  
movi_0_upcnt  
Up count from 0 to 64K. All ports read 1s, then Port 1 writes 0s, then all ports  
read 0s (MIA_r1w0r0).  
000110  
000111  
000101  
movi_1_downcnt  
movi_0_downcnt  
movi_read  
Down count from 64K to 0. MIA_r0w1r1.  
Down count MIA_r1w0r0.  
Read all 0s.  
000100  
001100  
mar2_zeros  
Port 1 write all zeros to memory using March2 Algorithm (M2A).  
Up count M2A_r0w1r1.  
mar2_1_upcnt  
31  
PRELIMINARY  
CY7C0430V  
Table 7. MBIST Control States  
States Code  
001101  
State Name  
mar2_0_upcnt  
Description  
Up count M2A_r1w0r0.  
Down count M2A_r0w1r1.  
Down count M2A_r1w0r0.  
Read all 0s.  
001111  
mar2_1_downcnt  
mar2_0_downcnt  
mar2_read  
001110  
001010  
001011  
001001  
001000  
011000  
chkr_w  
Port 1 writes topological checkerboard data to memory.  
All ports read topological checkerboard data.  
chkr_r  
n_chkr_w  
n_chkr_r  
Port 1 write inverse topological checkerboard data.  
All ports read inverse topological checkerboard data.  
011001  
011011  
011010  
011110  
011111  
011101  
uaddr_zeros2  
uaddr_write2  
uaddr_read2  
uaddr_ones2  
n_uaddr_write2  
n_uaddr_read2  
Port 2 write all zeros to memory using Unique Address Algorithm (UAA).  
Port 2 writes every address value into its memory location (UAA).  
All ports read UAA data.  
Port 2 writes all ones to memory.  
Port 2 writes inverse address value into memory.  
All ports read inverse UAA data.  
011001  
011011  
011010  
011110  
011111  
011101  
uaddr_zeros3  
uaddr_write3  
uaddr_read3  
uaddr_ones3  
n_uaddr_write3  
n_uaddr_read3  
Port 3 write all zeros to memory using Unique Address Algorithm (UAA).  
Port 3 writes every address value into its memory location (UAA).  
All ports read UAA data.  
Port 3 writes all ones to memory.  
Port 3 writes inverse address value into memory.  
All ports read inverse UAA data.  
011001  
011011  
011010  
011110  
011111  
011101  
uaddr_zeros4  
uaddr_write4  
uaddr_read4  
uaddr_ones4  
n_uaddr_write4  
n_uaddr_read4  
Port 4 write all zeros to memory using Unique Address Algorithm (UAA).  
Port 4 writes every address value into its memory location (UAA).  
All ports read UAA data.  
Port 4 writes all ones to memory.  
Port 4 writes inverse address value into memory.  
All ports read inverse UAA data.  
110010  
complete  
Test complete.  
Table 8. MBIST Control Register (MCR)  
MCR[1:0]  
Mode  
00  
01  
10  
11  
Non-Debug  
Debug  
Reserved  
Reserved  
32  
PRELIMINARY  
CY7C0430V  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
84 A10_P3  
Table 9. Boundary Scan Order  
Cell # Signal Name  
A0_P4  
Bump (Ball) ID  
T20  
T19  
U19  
U18  
V20  
V19  
R17  
L18  
N18  
N17  
P17  
T17  
T18  
Y20  
W19  
U17  
V16  
V18  
V17  
L19  
M17  
Y15  
W15  
Y16  
W16  
Y17  
W17  
Y18  
W18  
Y19  
V12  
Y11  
W12  
Y12  
W13  
Y13  
V15  
Y14  
W14  
Y6  
2
4
6
8
K20  
J19  
86  
A11_P3  
A12_P3  
A13_P3  
A14_P3  
A15_P3  
CNTINT_P3  
CNTRST_P3  
MKLD_P3  
CNTLD_P3  
CNTINC_P3  
CNTRD_P3  
MKRD_P3  
LB_P3  
A1_P4  
88  
A2_P4  
J18  
90  
A3_P4  
H20  
H19  
G19  
G18  
F20  
F19  
F18  
E20  
E19  
D19  
D18  
C20  
C19  
F17  
K18  
H18  
H17  
G17  
E17  
E18  
A20  
B19  
D17  
C16  
C18  
C17  
K19  
K17  
L20  
M19  
M18  
N20  
N19  
P19  
P18  
R20  
R19  
R18  
92  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
64  
66  
68  
70  
72  
74  
76  
78  
80  
82  
A4_P4  
94  
A5_P4  
96  
A6_P4  
98  
A7_P4  
100  
102  
104  
106  
108  
110  
112  
114  
116  
118  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
162  
164  
A8_P4  
A9_P4  
A10_P4  
A11_P4  
A12_P4  
A13_P4  
A14_P4  
A15_P4  
CNTINT_P4  
CNTRST_P4  
MKLD_P4  
CNTLD_P4  
CNTINC_P4  
CNTRD_P4  
MKRD_P4  
LB_P4  
UB_P3  
OE_P3  
R/W_P3  
CE1_P3  
CE0_P3  
INT_P3  
CLK_P3  
IO0_P4  
IO1_P4  
IO2_P4  
IO3_P4  
UB_P4  
IO4_P4  
OE_P4  
IO5_P4  
R/W_P4  
CE1_P4  
CE0_P4  
INT_P4  
CLK_P4  
A0_P3  
IO6_P4  
IO7_P4  
IO8_P4  
IO0_P3  
IO1_P3  
IO2_P3  
A1_P3  
IO3_P3  
A2_P3  
IO4_P3  
A3_P3  
IO5_P3  
A4_P3  
IO6_P3  
A5_P3  
IO7_P3  
A6_P3  
IO8_P3  
A7_P3  
IO0_P1  
A8_P3  
IO1_P1  
W6  
A9_P3  
33  
PRELIMINARY  
CY7C0430V  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
166 IO2_P1  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
248 OE_P2  
Y5  
W5  
Y4  
W4  
Y3  
W3  
Y2  
V9  
Y10  
W9  
Y9  
W8  
Y8  
V6  
Y7  
W7  
L1  
U4  
V5  
V3  
V4  
L2  
168  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
194  
196  
198  
200  
202  
204  
206  
208  
210  
212  
214  
216  
218  
220  
222  
224  
226  
228  
230  
232  
234  
236  
238  
240  
242  
244  
246  
IO3_P1  
IO4_P1  
IO5_P1  
IO6_P1  
IO7_P1  
IO8_P1  
IO0_P2  
IO1_P2  
IO2_P2  
IO3_P2  
IO4_P2  
IO5_P2  
IO6_P2  
IO7_P2  
IO8_P2  
A0_P2  
250  
252  
254  
256  
258  
260  
262  
264  
266  
268  
270  
272  
274  
276  
278  
280  
282  
284  
286  
288  
290  
292  
294  
296  
298  
300  
302  
304  
306  
308  
310  
312  
314  
316  
318  
320  
322  
324  
326  
328  
R/W_P2  
CE1_P2  
CE0_P2  
INT_P2  
CLK_P2  
A0_P1  
M4  
K1  
J2  
A1_P1  
A2_P1  
J3  
A3_P1  
H1  
H2  
G2  
G3  
F1  
F2  
F3  
E20  
E2  
D2  
D3  
C1  
C2  
F4  
K3  
H3  
H4  
G4  
E4  
E3  
A1  
B2  
D4  
C5  
C3  
C4  
K2  
K4  
A6  
B6  
A5  
B5  
A4_P1  
A5_P1  
A6_P1  
A7_P1  
A8_P1  
A9_P1  
A10_P1  
A11_P1  
A12_P1  
A13_P1  
A14_P1  
A15_P1  
CNTINT_P1  
CNTRST_P1  
MKLD_P1  
CNTLD_P1  
CNTINC_P1  
CNTRD_P1  
MKRD_P1  
LB_P1  
A1_P2  
M2  
M3  
N1  
N2  
P2  
P3  
R1  
R2  
R3  
T1  
A2_P2  
A3_P2  
A4_P2  
A5_P2  
A6_P2  
A7_P2  
A8_P2  
A9_P2  
A10_P2  
A11_P2  
A12_P2  
A13_P2  
A14_P2  
A15_P2  
CNTINT_P2  
CNTRST_P2  
MKLD_P2  
CNTLD_P2  
CNTINC_P2  
CNTRD_P2  
MKRD_P2  
LB_P2  
T2  
U2  
U3  
V1  
V2  
R4  
L3  
UB_P1  
OE_P1  
R/W_P1  
CE1_P1  
CE0_P1  
INT_P1  
N3  
N4  
P2  
T4  
CLK_P1  
IO9_P2  
T3  
IO10_P2  
IO11_P2  
IO12_P2  
Y1  
W2  
UB_P2  
34  
PRELIMINARY  
CY7C0430V  
Table 9. Boundary Scan Order (continued)  
Cell # Signal Name Bump (Ball) ID  
330 IO13_P2  
A4  
332  
334  
336  
338  
340  
342  
344  
346  
348  
350  
352  
354  
356  
358  
360  
362  
364  
366  
368  
370  
372  
374  
376  
378  
380  
382  
384  
386  
388  
390  
392  
IO14_P2  
IO15_P2  
IO16_P2  
IO17_P2  
IO9_P1  
B4  
A3  
B3  
A2  
C9  
IO10_P1  
IO11_P1  
IO12_P1  
IO13_P1  
IO14_P1  
IO15_P1  
IO16_P1  
IO17_P1  
IO9_P3  
A10  
B9  
A9  
B8  
A8  
C6  
A7  
B7  
A15  
B15  
A16  
B16  
A17  
B17  
A18  
B18  
A19  
C12  
A11  
B12  
A12  
B13  
A13  
C15  
A14  
B14  
IO10_P3  
IO11_P3  
IO12_P3  
IO13_P3  
IO14_P3  
IO15_P3  
IO16_P3  
IO17_P3  
IO9_P4  
IO10_P4  
IO11_P4  
IO12_P4  
IO13_P4  
IO14_P4  
IO15_P4  
IO16_P4  
IO17_P4  
35  
PRELIMINARY  
CY7C0430V  
Ordering Information  
64K x 18 3.3V Synchronous QuadPort SRAM  
Speed  
Package  
Name  
Operating  
Range  
(MHz)  
Ordering Code  
CY7C0430V-133BGC  
CY7C0430V-133BGI  
CY7C0430V-100BGC  
CY7C0430V-100BGI  
Package Type  
272-Ball Grid Array (BGA)  
133  
BG272  
BG272  
BG272  
BG272  
Commercial  
Industrial  
272-Ball Grid Array (BGA)  
272-Ball Grid Array (BGA)  
272-Ball Grid Array (BGA)  
100  
Commercial  
Industrial  
Document #: 38-00882  
Package Diagram  
272-Ball Grid Array (27 x 27 x 2.33 mm) BG272  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7C0430V-100BGI

3.3V 64K x 18 Synchronous QuadPort⑩ Static RAM
CYPRESS

CY7C0430V-133BGC

3.3V 64K x 18 Synchronous QuadPort⑩ Static RAM
CYPRESS

CY7C0430V-133BGI

3.3V 64K x 18 Synchronous QuadPort⑩ Static RAM
CYPRESS

CY7C0430V18-100BBC

Multi-Port SRAM, 64KX20, 4.5ns, CMOS, PBGA676
CYPRESS

CY7C0430V18-133BBC

Multi-Port SRAM, 64KX20, 4ns, CMOS, PBGA676
CYPRESS

CY7C04312BV

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04312BV-100

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04312BV-100BGC

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04312BV-133

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04312BV-133BGC

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04314BV

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS

CY7C04314BV-100BGC

10 Gb/s 3.3V QuadPort DSE Family
CYPRESS