CY7C027-20AXCT [CYPRESS]

Multi-Port SRAM, 32KX16, 20ns, CMOS, PQFP100, ROHS COMPLIANT, PLASTIC, MS-026, TQFP-100;
CY7C027-20AXCT
型号: CY7C027-20AXCT
厂家: CYPRESS    CYPRESS
描述:

Multi-Port SRAM, 32KX16, 20ns, CMOS, PQFP100, ROHS COMPLIANT, PLASTIC, MS-026, TQFP-100

静态存储器 内存集成电路
文件: 总19页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C027/028  
CY7C037/03832K/64K  
x 16/18 Dual-Port Static RAM  
CY7C027/028  
CY7C037/038  
32K/64K x 16/18 Dual-Port Static RAM  
Automatic power down  
Features  
Expandable data bus to 32 and 36 bits or more using  
Master/Slave chip select when using more than one device  
On-chip arbitration logic  
Semaphores included to permit software handshaking  
between ports  
INT flags for port-to-port communication  
Separate upper-byte and lower-byte control  
Dual chip enables  
True dual-ported memory cells which allow simultaneous  
access of the same memory location  
32K x 16 organization (CY7C027)  
64K x 16 organization (CY7C028)  
32K x 18 organization (CY7C037)  
64K x 18 organization (CY7C038)  
0.35 micron CMOS for optimum speed and power  
High speed access: 12[1], 15, and 20 ns  
Low operating power  
Pin select for Master or Slave  
Commercial and industrial temperature ranges  
Available in 100-pin TQFP  
Active: ICC = 180 mA (typical)  
Standby: ISB3 = 0.05 mA (typical)  
Fully asynchronous operation  
Pb-free packages available  
Logic Block Diagram  
R/WL  
UBL  
R/WR  
UBR  
CE0L  
CE0R  
CE1L  
CE1R  
CEL  
CER  
LBL  
LBR  
OEL  
OER  
8/9  
[2]  
8/9  
[2]  
I/O8/9L–I/O15/17L  
I/O8/9L–I/O15/17R  
8/9  
8/9  
I/O  
Control  
I/O  
Control  
[3]  
[3]  
I/O0L–I/O7/8L  
I/O0L–I/O7/8R  
15/16  
15/16  
Address  
Decode  
Address  
Decode  
True Dual-Ported  
RAM Array  
[4]  
[4]  
A0L–A14/15L  
A0R–A14/15R  
15/16  
15/16  
[4]  
[4]  
A0L–A14/15L  
A0R–A14/15R  
CEL  
CER  
OER  
Interrupt  
Semaphore  
Arbitration  
OEL  
R/WL  
SEML  
R/WR  
SEMR  
[5]  
[5]  
BUSYL  
BUSYR  
INTL  
UBL  
LBL  
INTR  
UBR  
LBR  
M/S  
Notes  
1. See page 6 for Load Conditions.  
2. I/O –I/O for x16 devices; I/O –I/O for x18 devices.  
8
15  
9
17  
3. I/O –I/O for x16 devices; I/O –I/O for x18 devices.  
0
7
0
8
4. A –A for 32K; A –A for 64K devices.  
0
14  
0
15  
5. BUSY is an output in master mode and an input in slave mode.  
Cypress Semiconductor Corporation  
Document #: 38-06042 Rev. *D  
198 Champion Court  
San Jose  
,
CA 95134-1709  
408-943-2600  
Revised December 10, 2008  
[+] Feedback  
 
 
 
 
 
CY7C027/028  
CY7C037/038  
Each port has independent control pins: dual chip enables (CE0  
and CE1), read or write enable (R/W), and output enable (OE).  
Two flags are provided on each port (BUSY and INT). BUSY  
signals that the port is trying to access the same location  
currently being accessed by the other port. The interrupt flag  
(INT) permits communication between ports or systems by  
means of a mail box. The semaphores are used to pass a flag,  
or token, from one port to the other to indicate that a shared  
resource is in use. The semaphore logic is comprised of eight  
shared latches. Only one side can control the latch (semaphore)  
at any time. Control of a semaphore indicates that a shared  
resource is in use. An automatic power down feature is controlled  
independently on each port by the chip enable pins.  
Functional Description  
The CY7C027/028 and CY7C037/038 are low power CMOS  
32K, 64K x 16/18 dual-port static RAMs. Various arbitration  
schemes are included on the devices to handle situations when  
multiple processors access the same piece of data. Two ports  
are provided, permitting independent, asynchronous access for  
reads and writes to any location in memory. The devices can be  
used as standalone 16 and 18-bit dual-port static RAMs or  
multiple devices can be combined to function as a 32/36-bit or  
wider master/slave dual-port static RAM. An M/S pin is provided  
for implementing 32/36-bit or wider memory applications without  
the need for separate master and slave devices or additional  
discrete logic. Application areas include interprocessor and  
multiprocessor designs, communications status buffering, and  
dual-port video/graphics memory.  
The CY7C027/028 and CY7C037/038 are available in 100-pin  
Thin Quad Plastic Flatpack (TQFP) packages.  
Pin Configurations  
Figure 1. 100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
A10L  
A11L  
A12L  
A13L  
A14L  
A15L  
NC  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A9R  
2
A10R  
A11R  
A12R  
A13R  
A14R  
A15R  
NC  
3
4
5
6
[6]  
[6]  
7
8
NC  
9
NC  
LBL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
LBR  
UBL  
UBR  
CE0R  
CE1R  
CE0L  
CE1L  
CY7C028 (64K x 16)  
CY7C027 (32K x 16)  
SEML  
VCC  
SEMR  
GND  
R/WL  
OEL  
R/WR  
OER  
GND  
GND  
GND  
GND  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
I/O10R  
I/O11L  
I/O10L  
24  
25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Note  
6. This pin is NC for CY7C027.  
Document #: 38-06042 Rev. *D  
Page 2 of 19  
[+] Feedback  
 
CY7C027/028  
CY7C037/038  
Pin Configurations (continued)  
Figure 2. 100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
A9L  
A10L  
A11L  
A12L  
A13L  
A14L  
A15L  
LBL  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
A8R  
2
A9R  
3
A10R  
A11R  
A12R  
A13R  
A14R  
4
5
6
[7]  
7
[7]  
8
A15R  
LBR  
UBL  
9
CE0L  
CE1L  
SEML  
R/WL  
OEL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
UBR  
CE0R  
CE1R  
CY7C038 (64K x 18)  
CY7C037 (32K x 18)  
SEMR  
R/WR  
GND  
VCC  
GND  
OER  
I/O17L  
I/O16L  
GND  
GND  
I/O17R  
GND  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
I/O16R  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
I/O11L  
I/O10L  
24  
25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Selection Guide  
CY7C027/028 CY7C027/028 CY7C027/028  
CY7C037/038 CY7C037/038 CY7C037/038  
Parameter  
Unit  
-12[1]  
12  
-15  
-20  
Maximum Access Time  
15  
20  
ns  
Typical Operating Current  
195  
55  
190  
50  
180  
45  
mA  
mA  
mA  
Typical Standby Current for ISB1 (Both ports TTL level)  
Typical Standby Current for ISB3 (Both ports CMOS level)  
0.05  
0.05  
0.05  
Note  
7. This pin is NC for CY7C037.  
Document #: 38-06042 Rev. *D  
Page 3 of 19  
[+] Feedback  
 
CY7C027/028  
CY7C037/038  
Pin Definitions  
Left Port  
CE0L, CE1L  
R/WL  
Right Port  
CE0R, CE1R  
Description  
Chip Enable (CE is LOW when CE0 VIL and CE1 VIH)  
Read/Write Enable  
R/WR  
OEL  
OER  
Output Enable  
A0L–A15L  
I/O0L–I/O17L  
SEML  
A0R–A15R  
I/O0R–I/O17R  
SEMR  
UBR  
Address (A0–A14 for 32K; A0–A15 for 64K devices)  
Data Bus Input/Output (I/O0–I/O15 for x16 devices; I/O0–I/O17 for x18)  
Semaphore Enable  
UBL  
Upper Byte Select (I/O8–I/O15 for x16 devices; I/O9–I/O17 for x18 devices)  
LBL  
LBR  
Lower Byte Select (I/O0–I/O7 for x16 devices; I/O0–I/O8 for x18 devices)  
INTL  
INTR  
Interrupt Flag  
Busy Flag  
BUSYL  
M/S  
BUSYR  
Master or Slave Select  
Power  
VCC  
GND  
Ground  
NC  
No Connect  
Document #: 38-06042 Rev. *D  
Page 4 of 19  
[+] Feedback  
CY7C027/028  
CY7C037/038  
Input Voltage[9] ...............................................–0.5V to +7.0V  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage........................................... >1100V  
Latch-Up Current.................................................... >200 mA  
Maximum Ratings[8]  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Storage Temperature .................................65  
°
C to +150  
°C  
Ambient Temperature with  
Power Applied ............................................55  
Operating Range  
°
C to +125  
°C  
Ambient  
Supply Voltage to Ground Potential................–0.3V to +7.0V  
Range  
Commercial  
Industrial[10]  
Temperature  
VCC  
DC Voltage Applied to Outputs  
in High Z State.............................................–0.5V to +7.0DC  
0
°
C to +70  
°
C
5V ± 10%  
5V ± 10%  
–40 C to +85°C  
°
Electrical Characteristics Over the Operating Range  
CY7C027/028  
CY7C037/038  
Symbol  
Parameter  
Unit  
-12[1]  
Typ  
-15  
-20  
Min  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
VOH  
Output HIGH Voltage (VCC = Min, IOH  
–4.0 mA)  
=
2.4  
2.4  
2.4  
V
V
VOL  
Output LOW Voltage (VCC = Min, IOH  
+4.0 mA)  
=
0.4  
0.4  
0.4  
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.2  
2.2  
2.2  
V
0.8  
10  
0.8  
10  
0.8  
10  
V
Output Leakage Current  
–10  
–10  
–10  
μA  
mA  
mA  
Operating Current (VCC=Max,  
OUT=0 mA)  
Com’l.  
Ind.[10]  
195  
55  
325  
190  
50  
280  
180  
305  
265  
290  
I
Outputs Disabled  
ISB1  
Standby Current (Both Ports  
TTL Level) CEL & CER VIH, f  
= fMAX  
Com’l.  
Ind.[10]  
75  
70  
45  
60  
65  
80  
mA  
mA  
ISB2  
ISB3  
Standby Current (One Port TTL Com’l.  
125  
205  
0.5  
120  
180  
0.5  
110  
125  
0.05  
0.05  
160  
175  
0.5  
0.5  
mA  
mA  
mA  
mA  
Level) CEL | CER VIH, f = fMAX  
Ind.[10]  
Com’l.  
Ind.[10]  
Standby Current (Both Ports  
CMOS Level) CEL & CER VCC  
– 0.2V, f = 0  
0.05  
0.05  
ISB4  
Standby Current (One Port  
Com’l.  
Ind.[10]  
115  
185  
110  
160  
100  
115  
140  
155  
mA  
mA  
CMOS Level) CEL | CER VIH,  
[11]  
f = fMAX  
Notes  
8. The voltage on any input or I/O pin cannot exceed the power pin during power up.  
9. Pulse width < 20 ns.  
10. Industrial parts are available in CY7C028 and CY7C038 only.  
11. f  
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS  
MAX  
RC RC  
level standby I  
SB3.  
Document #: 38-06042 Rev. *D  
Page 5 of 19  
[+] Feedback  
 
 
 
 
CY7C027/028  
CY7C037/038  
Capacitance[12]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
C, f = 1 MHz,  
CC = 5.0V  
Max  
10  
Unit  
pF  
CIN  
TA = 25°  
V
COUT  
10  
pF  
Figure 3. AC Test Loads and Waveforms  
5V  
5V  
R
TH  
= 250Ω  
R1 = 893Ω  
R2 = 347Ω  
OUTPUT  
C = 30 pF  
OUTPUT  
R1 = 893Ω  
OUTPUT  
C = 5 pF  
C = 30 pF  
R2 = 347Ω  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c) Three-State Delay(Load 2)  
(Used for tCKLZ, tOLZ, & tOHZ  
including scope and jig)  
(b) Thévenin Equivalent (Load 1)  
ALL INPUTPULSES  
3.0V  
GND  
90%  
90%  
10%  
3 ns  
10%  
3 ns  
AC Test Loads (Applicable to -12 only)[13]  
1.00  
0.90  
Z0 = 50Ω  
R = 50Ω  
OUTPUT  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
C
V
TH  
= 1.4V  
(a) Load 1 (-12 only)  
0
5
10  
15  
20  
25  
30  
(pF)  
Capacitance  
(b) Load Derating Curve  
Notes  
12. Tested initially and after any design or process changes that may affect these parameters.  
13. Test conditions: C = 0 pF.  
Document #: 38-06042 Rev. *D  
Page 6 of 19  
[+] Feedback  
 
 
CY7C027/028  
CY7C037/038  
Switching Characteristics Over the Operating Range[14]  
CY7C027/028  
CY7C037/038  
Parameter  
Description  
Unit  
-20  
-12[1]  
Max  
-15  
Min  
12  
3
Min  
15  
3
Max  
Min  
Max  
Read Cycle  
tRC  
Read Cycle Time  
20  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE LOW to Low Z  
12  
15  
20  
tOHA  
[15]  
tACE  
tDOE  
tLZOE  
12  
8
15  
10  
20  
12  
[16, 17, 18]  
[16, 17, 18]  
3
3
0
3
3
0
3
3
0
tHZOE  
OE HIGH to High Z  
10  
10  
10  
10  
12  
12  
[16, 17, 18]  
tLZCE  
CE LOW to Low Z  
[16, 17, 18]  
tHZCE  
CE HIGH to High Z  
[18]  
tPU  
tPD  
CE LOW to Power Up  
CE HIGH to Power Down  
Byte Enable Access Time  
[18]  
12  
12  
15  
15  
20  
20  
[15]  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
12  
10  
10  
0
15  
12  
12  
0
20  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[15]  
tSCE  
tAW  
tHA  
CE LOW to Write End  
Address Valid to Write End  
Address Hold From Write End  
Address Setup to Write Start  
Write Pulse Width  
[15]  
tSA  
tPWE  
tSD  
0
0
0
10  
10  
0
12  
10  
0
15  
15  
0
Data Setup to Write End  
Data Hold From Write End  
R/W LOW to High Z  
tHD  
[17, 18]  
tHZWE  
10  
10  
12  
[17, 18]  
tLZWE  
R/W HIGH to Low Z  
3
3
3
[19]  
tWDD  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
25  
20  
30  
25  
45  
30  
[19]  
tDDD  
Busy Timing[20]  
tBLA  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Setup for Priority  
12  
12  
12  
12  
15  
15  
15  
15  
20  
20  
20  
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBHA  
tBLC  
tBHC  
tPS  
5
0
5
0
5
0
tWB  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
tWH  
11  
13  
15  
[21]  
tBDD  
12  
15  
20  
Notes  
14. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I /I  
OI OH  
and 30 pF load capacitance.  
15. To access RAM, CE=L, UB=L, SEM=H. To access semaphore, CE=H and SEM=L. Either condition must be valid for the entire t  
time.  
SCE  
16. At any given temperature and voltage condition for any given device, t  
17. Test conditions used are Load 2.  
is less than t  
and t  
is less than t  
.
HZCE  
LZCE  
HZOE  
LZOE  
18. This parameter is guaranteed by design, but it is not production tested.  
19. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Figure 11.  
20. Test conditions used are Load 1.  
Document #: 38-06042 Rev. *D  
Page 7 of 19  
[+] Feedback  
 
 
 
 
 
 
 
CY7C027/028  
CY7C037/038  
Switching Characteristics Over the Operating Range[14] (continued)  
CY7C027/028  
CY7C037/038  
Parameter  
Description  
Unit  
-20  
-12[1]  
Max  
-15  
Min  
Min  
Max  
Min  
Max  
INTERRUPT TIMING[20]  
tINS  
INT Set Time  
12  
12  
15  
15  
20  
20  
ns  
ns  
tINR  
INT Reset Time  
SEMAPHORE TIMING  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
5
10  
5
10  
5
ns  
ns  
ns  
ns  
5
5
5
tSAA  
12  
15  
20  
Timing  
Data Retention Mode  
Data Retention Mode  
4.5V  
The CY7C027/028 and CY7C037/038 are designed with battery  
backup in mind. Data retention voltage and supply current are  
guaranteed over temperature. The following rules ensure data  
retention:  
V
CC  
4.5V  
V
CC  
> 2.0V  
t
RC  
1. Chip enable (CE) must be held HIGH during data retention,  
within VCC to VCC – 0.2V.  
V
CC  
to V – 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between VCC – 0.2V and 70% of VCC during  
the power up and power down transitions.  
3. The RAM can begin operation >tRC after VCC reaches the  
minimum operating voltage (4.5V).  
Parameter  
Test Conditions[22]  
Max  
1.5  
Unit  
ICCDR1  
At VCCDR = 2V  
mA  
Notes  
21. t  
is a calculated parameter and is the greater of t  
–t  
(actual) or t  
–t (actual).  
BDD  
WDD PWE  
DDD SD  
22. CE = V , V = GND to V , T = 25°C. This parameter is guaranteed but not tested.  
CC  
in  
CC  
A
Document #: 38-06042 Rev. *D  
Page 8 of 19  
[+] Feedback  
 
CY7C027/028  
CY7C037/038  
Switching Waveforms  
Figure 4. Read Cycle No. 1 (Either Port Address Access)[23 ,24, 25]  
t
RC  
ADDRESS  
DATA OUT  
t
AA  
t
t
OHA  
OHA  
PREVIOUS DATAVALID  
DATA VALID  
Figure 5. Read Cycle No. 2 (Either Port CE/OE Access)[23, 26, 27]  
t
ACE  
CE and  
LB or UB  
t
HZCE  
t
DOE  
OE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
I
CC  
CURRENT  
I
SB  
Figure 6. Read Cycle No. 3 (Either Port)[23, 25, 26, 27]  
t
RC  
ADDRESS  
UB or LB  
t
AA  
t
OHA  
t
t
HZCE  
t
t
LZCE  
LZCE  
t
ABE  
CE  
HZCE  
t
ACE  
DATA OUT  
Notes  
23. R/W is HIGH for read cycles.  
24. Device is continuously selected CE = V and UB or LB = V . This waveform cannot be used for semaphore reads.  
IL  
IL  
25. OE = V .  
IL  
26. Address valid prior to or coincident with CE transition LOW.  
27. To access RAM, CE = V , UB or LB = V , SEM = V . To access semaphore, CE = V , SEM = V .  
IL  
IL  
IH  
IH  
IL  
Document #: 38-06042 Rev. *D  
Page 9 of 19  
[+] Feedback  
 
 
 
 
 
CY7C027/028  
CY7C037/038  
Switching Waveforms (continued)  
Figure 7. Write Cycle No. 1: R/W Controlled Timing[28, 29, 30, 31]  
t
WC  
ADDRESS  
OE  
[34]  
t
HZOE  
t
AW  
[32,33]  
CE  
[31]  
PWE  
t
t
t
HA  
SA  
R/W  
DATAOUT  
DATA IN  
[34]  
HZWE  
t
t
LZWE  
NOTE 35  
NOTE 35  
t
t
HD  
SD  
Figure 8. Write Cycle No. 2: CE Controlled Timing[28, 29, 30, 34, 35]  
t
WC  
ADDRESS  
t
AW  
[32,33]  
CE  
t
t
t
HA  
SA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes  
28. R/W must be HIGH during all address transitions.  
29. A write occurs during the overlap (t or t ) of a LOW CE or SEM and a LOW UB or LB.  
SCE  
PWE  
30. t is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
HA  
31. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data  
PWE  
HZWE SD  
to be placed on the bus for the required t . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be  
SD  
as short as the specified t  
.
PWE  
32. To access RAM, CE = V , SEM = V  
.
IH  
IL  
33. To access upper byte, CE = V , UB = V , SEM = V .  
IL  
IL  
IL  
IL  
IH  
IH  
To access lower byte, CE = V , LB = V , SEM = V .  
34. Transition is measured ±500 mV from steady state with a 5 pF load (including scope and jig). This parameter is sampled and not 100% tested.  
35. During this period, the I/O pins are in the output state, and input signals must not be applied.  
36. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high impedance state.  
Document #: 38-06042 Rev. *D  
Page 10 of 19  
[+] Feedback  
 
 
 
 
 
 
 
 
 
 
CY7C027/028  
CY7C037/038  
Switching Waveforms (continued)  
Figure 9. Semaphore Read After Write Timing, Either Side[37]  
t
t
OHA  
SAA  
A –A  
0
VALID ADRESS  
VALID ADRESS  
2
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
t
PWE  
SA  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Figure 10. Timing Diagram of Semaphore Contention[38, 39, 40]  
A
0L  
–A  
2L  
MATCH  
R/W  
L
SEM  
–A  
L
t
SPS  
A
MATCH  
0R  
2R  
R/W  
R
SEM  
R
Notes  
37. CE = HIGH for the duration of the above timing (both write and read cycle).  
38. I/O = I/O = LOW (request semaphore); CE = CE = HIGH.  
0R  
0L  
R
L
39. Semaphores are reset (available to both ports) at cycle start.  
40. If t is violated, the semaphore is definitely obtained by one side or the other, but which side gets the semaphore is unpredictable.  
SPS  
Document #: 38-06042 Rev. *D  
Page 11 of 19  
[+] Feedback  
 
 
 
 
CY7C027/028  
CY7C037/038  
Switching Waveforms (continued)  
Figure 11. Timing Diagram of Read with BUSY (M/S=HIGH)[41]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATA IN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Figure 12. Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note  
41. CE = CE = LOW.  
L
R
Document #: 38-06042 Rev. *D  
Page 12 of 19  
[+] Feedback  
 
CY7C027/028  
CY7C037/038  
Switching Waveforms (continued)  
Figure 13. Busy Timing Diagram No.1 (CE Arbitration)[42]  
CELValid First:  
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CER ValidFirst:  
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
R
t
PS  
CE  
L
L
t
t
BHC  
BLC  
BUSY  
Figure 14. Busy Timing Diagram No. 2 (Address Arbitration)[42]  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
R
t
t
BHA  
BLA  
BUSY  
R
Right AddressValid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
Note  
42. If t is violated, the busy signal is asserted on one side or the other, but there is no guarantee to which side BUSY is asserted.  
PS  
Document #: 38-06042 Rev. *D  
Page 13 of 19  
[+] Feedback  
 
CY7C027/028  
CY7C037/038  
Switching Waveforms (continued)  
Figure 15. Interrupt Timing Diagrams  
Left Side Sets INTR:  
t
WC  
ADDRESS  
WRITE 7FFF (FFFF for CY7C028/38)  
[43]  
L
t
HA  
CE  
L
R/W  
INT  
L
R
[44]  
t
INS  
Right Side Clears INTR:  
t
RC  
READ 7FFF  
(FFFF for CY7C028/38)  
ADDRESS  
R
CE  
R
[44]  
t
INR  
R/W  
R
OE  
R
INT  
R
:
Right Side Sets INTL  
t
WC  
ADDRESS  
R
WRITE 7FFE (FFFE for CY7C028/38)  
[43]  
t
HA  
CE  
R
R
R/W  
INT  
L
[44]  
INS  
t
Left SideClears INTL:  
t
RC  
READ 7FFE  
(FFFE for CY7C028/38)  
ADDRESS  
CE  
R
L
[44]  
t
INR  
R/W  
OE  
L
L
L
INT  
Notes  
43. t depends on which enable pin (CE or R/W ) is deasserted first.  
HA  
L
L
44. t  
or t  
depends on which enable pin (CE or R/W ) is asserted last.  
INS  
INR L L  
Document #: 38-06042 Rev. *D  
Page 14 of 19  
[+] Feedback  
 
 
CY7C027/028  
CY7C037/038  
Busy  
Architecture  
The CY7C027/028 and CY7C037/038 provide on-chip  
arbitration to resolve simultaneous memory location access  
(contention). If both ports’ CEs are asserted and an address  
match occurs within tPS of each other, the busy logic determines  
which port has access. If tPS is violated, one port definitely gains  
permission to the location, but it is not predictable which port gets  
that permission. BUSY is asserted tBLA after an address match  
or tBLC after CE is taken LOW.  
The CY7C027/028 and CY7C037/038 consist of an array of 32K  
and 64K words of 16 and 18 bits each of dual-port RAM cells, I/O  
and address lines, and control signals (CE, OE, R/W). These  
control pins permit independent access for reads or writes to any  
location in memory. To handle simultaneous writes/reads to the  
same location, a BUSY pin is provided on each port. Two  
interrupt (INT) pins can be used for port-to-port communication.  
Two semaphore (SEM) control pins are used for allocating  
shared resources. With the M/S pin, the devices can function as  
a master (BUSY pins are outputs) or as a slave (BUSY pins are  
inputs). The devices also have an automatic power down feature  
controlled by CE. Each port is provided with its own output  
enable control (OE), which allows data to be read from the  
device.  
Master/Slave  
A M/S pin is provided to expand the word width by configuring  
the device as either a master or a slave. The BUSY output of the  
master is connected to the BUSY input of the slave. This allows  
the device to interface to a master device with no external  
components. Writing to slave devices must be delayed until after  
the BUSY input has settled (tBLC or tBLA), otherwise, the slave  
chip may begin a write cycle during a contention situation. When  
tied HIGH, the M/S pin allows the device to be used as a master  
and, therefore, the BUSY line is an output. BUSY can then be  
used to send the arbitration outcome to a slave.  
Functional Description  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W to guarantee a valid write. A write operation is controlled  
by either the R/W pin (see Figure 7) or the CE pin (see Figure 8).  
Required inputs for non-contention operations are summarized  
in Table 1.  
Semaphore Operation  
The CY7C027/028 and CY7C037/038 provide eight semaphore  
latches, which are separate from the dual-port memory locations.  
Semaphores are used to reserve resources that are shared  
between the two ports.The state of the semaphore indicates that  
a resource is in use. For example, if the left port wants to request  
a given resource, it sets a latch by writing a zero to a semaphore  
location. The left port then verifies its success in setting the latch  
by reading it. After writing to the semaphore, SEM or OE must  
be deasserted for tSOP before attempting to read the semaphore.  
The semaphore value is available tSWRD + tDOE after the rising  
edge of the semaphore write. If the left port was successful  
(reads a zero), it assumes control of the shared resource,  
otherwise (reads a one) it assumes the right port has control and  
continues to poll the semaphore. When the right side has relin-  
quished control of the semaphore (by writing a one), the left side  
succeeds in gaining control of the semaphore. If the left side no  
longer requires the semaphore, a one is written to cancel its  
request.  
If a location is being written to by one port and the opposite port  
attempts to read that location, a port-to-port flowthrough delay  
must occur before the data is read on the output; otherwise the  
data read is not deterministic. Data is valid on the port tDDD after  
the data is presented on the other port.  
Read Operation  
When reading the device, the user must assert both the OE and  
CE pins. Data is available tACE after CE or tDOE after OE is  
asserted. If the user wishes to access a semaphore flag, then the  
SEM pin must be asserted instead of the CE pin, and OE must  
also be asserted.  
Interrupts  
The upper two memory locations may be used for message  
passing. The highest memory location (7FFF for the  
CY7C027/37, FFFF for the CY7C028/38) is the mailbox for the  
right port and the second-highest memory location (7FFE for the  
CY7C027/37, FFFE for the CY7C028/38) is the mailbox for the  
left port. When one port writes to the other port’s mailbox, an  
interrupt is generated to the owner. The interrupt is reset when  
the owner reads the contents of the mailbox. The message is  
user defined.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE  
must remain HIGH during SEM LOW). A0–2 represents the  
semaphore address. OE and R/W are used in the same manner  
as a normal memory access. When writing or reading a  
semaphore, the other address pins have no effect.  
When writing to the semaphore, only I/O0 is used. If a zero is  
written to the left port of an available semaphore, a one appears  
at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing zero  
(the left port in this case). If the left port now relinquishes control  
by writing a one to the semaphore, the semaphore is set to one  
for both sides. However, if the right port had requested the  
semaphore (written a zero) while the left port had control, the  
right port would immediately own the semaphore as soon as the  
left port released it. Table 3 shows sample semaphore opera-  
tions.  
Each port can read the other port’s mailbox without resetting the  
interrupt. The active state of the busy signal (to a port) prevents  
the port from setting the interrupt to the winning port. Also, an  
active busy to a port prevents that port from reading its own  
mailbox and, thus, resetting the interrupt to it.  
If an application does not require message passing, do not  
connect the interrupt pin to the processor’s interrupt request  
input pin.  
The operation of the interrupts and their interaction with Busy is  
summarized in Table 2.  
When reading a semaphore, all sixteen/eighteen data lines  
output the semaphore value. The read value is latched in an  
Document #: 38-06042 Rev. *D  
Page 15 of 19  
[+] Feedback  
CY7C027/028  
CY7C037/038  
output register to prevent the semaphore from changing state  
during a write from the other port. If both ports attempt to access  
the semaphore within tSPS of each other, the semaphore is  
definitely obtained by one side or the other, but there is no  
guarantee which side controls the semaphore.  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
CE  
H
X
L
R/W  
X
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
H
H
H
H
H
H
X
I/O9I/O17  
High Z  
I/O0I/O8  
High Z  
Operation  
Deselected: Power Down  
Deselected: Power Down  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
X
High Z  
High Z  
L
Data In  
High Z  
High Z  
L
L
H
L
Data In  
Data In  
High Z  
L
L
L
Data In  
Data Out  
High Z  
L
H
H
H
X
L
H
L
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
Data Out  
Data Out  
High Z  
L
L
L
Data Out  
High Z  
X
H
X
H
H
L
X
X
H
X
X
X
H
X
Outputs Disabled  
H
H
L
Data Out  
Data Out  
Data In  
Data Out  
Data Out  
Data In  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
L
L
X
L
X
X
H
H
L
Data In  
Data In  
Write DIN0 into Semaphore Flag  
L
L
X
X
X
X
L
X
L
L
L
Not Allowed  
Not Allowed  
X
Table 2. Interrupt Operation Example (assumes BUSYL = BUSYR = HIGH)[23]  
Left Port  
Right Port  
Function  
R/WL CEL  
OEL  
X
A0L–14L  
7FFF  
X
INTL R/WR CER  
OER  
X
A0R–14R  
X
INTR  
L[25]  
H[24]  
X
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
L
X
X
X
L
X
X
L
X
X
X
L
X
L
L
X
X
X
L
7FFF  
7FFE  
X
X
X
L[24]  
H[25]  
X
L
7FFE  
X
X
X
Table 3. Semaphore Operation Example  
Function I/O0I/O17 Left I/O0I/O17 Right  
Status  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left port has semaphore token  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
Left port writes 1 to semaphore  
Notes  
23. A  
and A  
, FFFF/FFFE for the CY7C028/038.  
0R–15R  
0L–15L  
24. If BUSY = L, then no change.  
R
25. If BUSY = L, then no change.  
L
Document #: 38-06042 Rev. *D  
Page 16 of 19  
[+] Feedback  
 
 
 
CY7C027/028  
CY7C037/038  
Ordering Information  
32K x16 Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
12[1]  
15  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
CY7C027-12AC  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Industrial  
CY7C027-15AC  
CY7C027-15AXI  
CY7C027-20AC  
CY7C027-20AXC  
100-Pin Thin Quad Flat Pack  
100-Pin Pb-Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
20  
Commercial  
Commercial  
100-Pin Pb-Free Thin Quad Flat Pack  
64K x16 Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
12[1]  
CY7C028-12AC  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
CY7C028-12AXC  
CY7C028-15AC  
CY7C028-15AXC  
CY7C028-15AI  
CY7C028-15AXI  
CY7C028-20AC  
CY7C028-20AI  
100-Pin Pb-Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
15  
20  
100-Pin Pb-Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Pb-Free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Industrial  
Commercial  
Industrial  
100-Pin Thin Quad Flat Pack  
32K x18 Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
12[1]  
15  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
CY7C037-12AC  
A100  
A100  
A100  
Commercial  
Commercial  
Commercial  
CY7C037-15AC  
CY7C037-20AC  
20  
64K x18 Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
12[1]  
15  
Ordering Code  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
CY7C038-12AC  
A100  
A100  
A100  
A100  
Commercial  
Commercial  
Commercial  
Industrial  
CY7C038-15AC  
CY7C038-20AC  
CY7C038-20AI  
20  
Document #: 38-06042 Rev. *D  
Page 17 of 19  
[+] Feedback  
CY7C027/028  
CY7C037/038  
Package Diagram  
Figure 16. 100-Pin Pb-Free Thin Plastic Quad Flat Pack (TQFP) A100  
51-85048-*C  
Document #: 38-06042 Rev. *D  
Page 18 of 19  
[+] Feedback  
CY7C027/028  
CY7C037/038  
Document History Page  
Document Title: CY7C027/028, CY7C037/038 32K/64K x 16/18 Dual-Port Static RAM  
Document Number: 38-06042  
Orig. of  
Change  
Submission  
Date  
Rev.  
ECN No.  
Description of Change  
**  
110190  
122292  
236765  
377454  
SZV  
RBI  
09/29/01  
12/27/02  
6/23/04  
Change from Spec number: 38-00666 to 38-06042  
*A  
*B  
*C  
Power up requirements added to Maximum Ratings Information  
Removed cross information from features section  
YDT  
PCX  
See ECN Added Pb-Free Logo  
Added Pb-Free parts to ordering information:  
CY7C027-20AXC, CY7C028-12AXC, CY7C028-15AXC, CY7C028-15AI,  
CY7C028-15AXI  
*D  
2623540 VKN/PYRS  
12/17/08  
Added CY7C027-15AXI in the Ordering information table  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
PSoC Solutions  
General  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
Clocks & Buffers  
Wireless  
Memories  
CAN 2.0b  
Image Sensors  
USB  
psoc.cypress.com/usb  
© Cypress Semiconductor Corporation, 2001-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document #: 38-06042 Rev. *D  
Revised December 10, 2008  
Page 19 of 19  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C027AV-25AXI

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027V

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027V-15AC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027V-15ACT

Dual-Port SRAM, 32KX16, 15ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C027V-15AXC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027V-15AXI

3.3 V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027V-15AXIT

Multi-Port SRAM, 32KX16, 15ns, CMOS, PQFP100, ROHS COMPLIANT, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C027V-20AC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027V-20AXC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027V-25AC

3.3V 32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027V-25AI

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, PLASTIC, MS-026, TQFP-100
CYPRESS

CY7C027V-25AIT

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS