CY7C026AV-25AXI [CYPRESS]

3.3V 4K/8K/16K x 16/18 Dual-Port Static RAM; 3.3V 4K / 8K / 16K X 16/18双端口静态RAM
CY7C026AV-25AXI
型号: CY7C026AV-25AXI
厂家: CYPRESS    CYPRESS
描述:

3.3V 4K/8K/16K x 16/18 Dual-Port Static RAM
3.3V 4K / 8K / 16K X 16/18双端口静态RAM

文件: 总19页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
3.3V 4K/8K/16K x 16/18 Dual-Port Static RAM  
• Automatic power-down  
Features  
• Expandable data bus to 32/36 bits or more using  
Master/Slave chip select when using more than one  
device  
• True dual-ported memory cells which allow  
simultaneous access of the same memory location  
• 4/8/16K × 16 organization (CY7C024AV/025AV/026AV)  
• 4/8K × 18 organization (CY7C0241AV/0251AV)  
• 16K × 18 organization (CY7C036AV)  
• 0.35-micron CMOS for optimum speed/power  
• High-speed access: 20 and 25 ns  
• On-chip arbitration logic  
• Semaphores included to permit software handshaking  
between ports  
• INT flag for port-to-port communication  
• Separate upper-byte and lower-byte control  
• Pin select for Master or Slave  
• Low operating power  
• Commercial and industrial temperature ranges  
• Available in 100-pin Lead (Pb)-free TQFP and 100-pin  
TQFP  
— Active: ICC = 115 mA (typical)  
Standby: ISB3 = 10 μA (typical)  
• Fully asynchronous operation  
Logic Block Diagram  
R/WL  
UBL  
R/WR  
UBR  
CEL  
CER  
LBL  
LBR  
OEL  
OER  
[1]  
8/9  
[1]  
8/9  
I/O8/9L–I/O15/17L  
I/O8/9L–I/O15/17R  
[2]  
8/9  
8/9  
I/O  
Control  
I/O  
Control  
[2]  
I/O0L–I/O7/8L  
I/O0L–I/O7/8R  
12/13/14  
12/13/14  
[3]  
[3]  
Address  
Decode  
Address  
Decode  
True Dual-Ported  
A0L–A11/1213L  
A0R–A11/12/13R  
RAM Array  
[3]  
[3]  
12/13/14  
12/13/14  
A0L–A11/12/13L  
A0R–A11/12/13R  
CER  
CEL  
Interrupt  
Semaphore  
Arbitration  
OEL  
R/WL  
OER  
R/WR  
SEML  
[4]  
SEMR  
[4]  
BUSYL  
INTL  
UBL  
BUSYR  
INTR  
UBR  
LBL  
M/S  
LBR  
Notes:  
1. I/O –I/O for x16 devices; I/O –I/O for x18 devices.  
8
15  
9
17  
2. I/O –I/O for x16 devices; I/O –I/O for x18 devices.  
0
7
0
8
3. A –A for 4K devices; A –A for 8K devices; A –A for 16K devices.  
0
11  
0
12  
0
13  
4. BUSY is an output in master mode and an input in slave mode.  
Cypress Semiconductor Corporation  
Document #: 38-06052 Rev. *H  
3901 North First Street  
San Jose, CA 95134  
408-943-2600  
Revised June 15, 2005  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Pin Configurations  
100-Pin TQFP  
Top View  
100 9998 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
NC  
NC  
NC  
NC  
1
NC  
NC  
NC  
2
3
4
72  
71  
70  
69  
NC  
A
5L  
I/O  
10L  
5
6
7
8
A
4L  
I/O  
I/O  
11L  
12L  
A
3L  
A
2L  
68  
I/O  
13L  
A
1L  
67  
66  
GND  
9
A
0L  
I/O  
I/O  
10  
11  
12  
13  
14L  
15L  
INT  
BUSY  
GND  
M/S  
L
65  
64  
63  
62  
L
V
CC  
CY7C024AV (4K × 16)  
CY7C025AV (8K × 16)  
GND  
I/O  
0R  
I/O  
1R  
14  
BUSY  
INT  
61  
60  
59  
58  
R
15  
16  
17  
R
I/O  
2R  
A
0R  
V
CC  
A
1R  
I/O  
3R  
18  
19  
20  
21  
A
2R  
57  
56  
55  
54  
53  
I/O  
4R  
I/O  
5R  
I/O  
6R  
A
3R  
A
4R  
NC  
NC  
NC  
NC  
NC  
22  
23  
NC  
NC  
52  
51  
24  
25  
NC  
26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 4748 49 50  
Notes:  
5.  
6.  
A
A
on the CY7C025AV.  
on the CY7C025AV.  
12L  
12R  
Document #: 38-06052 Rev. *H  
Page 2 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Pin Configurations (continued)  
Top View  
100-Pin TQFP  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
NC  
NC  
NC  
NC  
1
NC  
NC  
2
3
4
I/O  
8L  
17L  
11L  
72  
71  
70  
69  
I/O  
I/O  
A
5L  
5
6
7
8
A
4L  
I/O  
12L  
I/O  
13L  
A
A
A
3L  
2L  
1L  
0L  
68  
I/O  
14L  
67  
66  
GND  
9
A
I/O  
I/O  
10  
11  
12  
13  
15L  
16L  
INT  
BUSY  
GND  
M/S  
L
65  
64  
63  
62  
L
V
CC  
CY7C0241AV (4K × 18)  
CY7C0251AV (8K × 18)  
GND  
I/O  
0R  
I/O  
1R  
14  
BUSY  
INT  
61  
60  
59  
58  
R
15  
16  
17  
18  
19  
20  
21  
R
I/O  
2R  
A
A
A
0R  
1R  
V
CC  
I/O  
3R  
57  
56  
55  
54  
53  
2R  
3R  
I/O  
4R  
I/O  
5R  
I/O  
6R  
I/O  
8R  
A
A
4R  
NC  
NC  
NC  
22  
23  
I/O  
17R  
52  
51  
NC  
NC  
24  
25  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
10099 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
NC  
1
NC  
NC  
NC  
NC  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
2
3
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A6L  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
INTL  
BUSYL  
GND  
M/S  
BUSYR  
INTR  
A0R  
A1R  
A2R  
A3R  
A4R  
A5R  
NC  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
I/O14L  
I/O15L  
VCC  
GND  
CY7C026AV (16K × 16)  
I/O0R  
I/O1R  
I/O2R  
VCC  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
NC  
NC  
NC  
NC  
24  
25  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Notes:  
7.  
8.  
A
A
on the CY7C0251AV.  
on the CY7C0251AVC.  
12L  
12R  
Document #: 38-06052 Rev. *H  
Page 3 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Pin Configurations (continued)  
100-Pin TQFP  
Top View  
100 9998 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
NC  
NC  
NC  
1
NC  
NC  
2
3
4
73  
72  
71  
70  
69  
I/O  
8L  
A
13L  
I/O  
17L  
A
5L  
I/O  
11L  
5
6
7
8
A
4L  
I/O  
12L  
A
3L  
I/O  
13L  
A
68  
67  
66  
2L  
I/O  
14L  
A
1L  
GND  
9
A
0L  
I/O  
15L  
10  
11  
12  
13  
INT  
BUSY  
GND  
M/S  
L
65  
64  
63  
62  
I/O  
16L  
L
V
CC  
CY7C036AV (16K × 18)  
GND  
I/O  
0R  
I/O  
1R  
14  
15  
16  
17  
BUSY  
INT  
61  
60  
59  
58  
R
R
I/O  
2R  
A
0R  
V
CC  
A
1R  
I/O  
3R  
18  
19  
20  
21  
A
2R  
57  
56  
55  
54  
53  
I/O  
A
3R  
4R  
I/O  
A
4R  
5R  
I/O  
A
13R  
6R  
I/O  
8R  
22  
23  
NC  
NC  
NC  
I/O  
17R  
52  
51  
NC  
NC  
24  
25  
26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 4748 49 50  
Selection Guide  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
-20  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
-25  
Unit  
ns  
Maximum Access Time  
20  
120  
35  
25  
115  
30  
Typical Operating Current  
mA  
mA  
Typical Standby Current for ISB1  
(Both ports TTL Level)  
Typical Standby Current for ISB3  
(Both ports CMOS Level)  
10  
10  
μA  
Document #: 38-06052 Rev. *H  
Page 4 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Pin Definitions  
Left Port  
CEL  
Right Port  
Description  
CER  
Chip Enable.  
R/WL  
R/WR  
OER  
Read/Write Enable.  
Output Enable.  
OEL  
A0L–A13L  
I/O0L–I/O17L  
SEML  
UBL  
A0R–A13R  
I/O0R–I/O17R  
SEMR  
Address (A0–A11 for 4K devices; A0–A12 for 8K devices; A0–A13 for 16K).  
Data Bus Input/Output.  
Semaphore Enable.  
UBR  
Upper Byte Select (I/O8–I/O15 for x16 devices; I/O9–I/O17 for x18 devices).  
LBL  
LBR  
Lower Byte Select (I/O0–I/O7 for x16 devices; I/O0–I/O8 for x18 devices).  
INTL  
INTR  
Interrupt Flag.  
Busy Flag.  
BUSYL  
M/S  
BUSYR  
Master or Slave Select.  
Power.  
VCC  
GND  
Ground.  
NC  
No Connect.  
currently being accessed by the other port. The Interrupt flag  
(INT) permits communication between ports or systems by  
Architecture  
The CY7C024AV/025AV/026AV and CY7C0241AV/0251AV/  
036AV consist of an array of 4K, 8K, and 16K words of 16 and  
18 bits each of dual-port RAM cells, I/O and address lines, and  
control signals (CE, OE, R/W). These control pins permit  
independent access for reads or writes to any location in  
memory. To handle simultaneous writes/reads to the same  
location, a BUSY pin is provided on each port. Two Interrupt  
(INT) pins can be utilized for port-to-port communication. Two  
Semaphore (SEM) control pins are used for allocating shared  
resources. With the M/S pin, the devices can function as a  
master (BUSY pins are outputs) or as a slave (BUSY pins are  
inputs). The devices also have an automatic power-down  
feature controlled by CE. Each port is provided with its own  
output enable control (OE), which allows data to be read from  
the device.  
means of a mail box. The semaphores are used to pass a flag,  
or token, from one port to the other to indicate that a shared  
resource is in use. The semaphore logic is comprised of eight  
shared latches. Only one side can control the latch  
(semaphore) at any time. Control of a semaphore indicates  
that a shared resource is in use. An automatic power-down  
feature is controlled independently on each port by a Chip  
Select (CE) pin.  
The CY7C024AV/025AV/026AV and CY7C0241AV/0251AV/  
036AV are available in 100-pin Lead (Pb)-free Thin Quad Flat  
Pack (TQFP) and 100-pin TQFP.  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W in order to guarantee a valid write. A write operation is  
controlled by either the R/W pin (see Write Cycle No. 1  
waveform) or the CE pin (see Write Cycle No. 2 waveform).  
Required inputs for non-contention operations are summa-  
rized in Table 1.  
Functional Description  
The CY7C024AV/025AV/026AV and CY7C0241AV/0251AV  
/036AV are low-power CMOS 4K, 8K, and 16K ×16/18  
dual-port static RAMs. Various arbitration schemes are  
included on the devices to handle situations when multiple  
processors access the same piece of data. Two ports are  
provided, permitting independent, asynchronous access for  
reads and writes to any location in memory. The devices can  
be utilized as standalone 16/18-bit dual-port static RAMs or  
multiple devices can be combined in order to function as a  
32/36-bit or wider master/slave dual-port static RAM. An M/S  
pin is provided for implementing 32/36-bit or wider memory  
applications without the need for separate master and slave  
devices or additional discrete logic. Application areas include  
interprocessor/multiprocessor designs, communications  
status buffering, and dual-port video/graphics memory.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must occur before the data is read on the output;  
otherwise the data read is not deterministic. Data will be valid  
on the port tDDD after the data is presented on the other port.  
Read Operation  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available tACE after CE or tDOE after  
OE is asserted. If the user wishes to access a semaphore flag,  
then the SEM pin must be asserted instead of the CE pin, and  
OE must also be asserted.  
Interrupts  
Each port has independent control pins: Chip Enable (CE),  
Read or Write Enable (R/W), and Output Enable (OE). Two  
flags are provided on each port (BUSY and INT). BUSY  
signals that the port is trying to access the same location  
The upper two memory locations may be used for message  
passing. The highest memory location (FFF for the  
CY7C024AV/41AV, 1FFF for the CY7C025AV/51AV, 3FFF for  
Document #: 38-06052 Rev. *H  
Page 5 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
the CY7C026AV/36AV) is the mailbox for the right port and the  
second-highest memory location (FFE for the CY7C024AV/  
41AV, 1FFE for the CY7C025AV/51AV, 3FFE for the  
CY7C026AV/36AV) is the mailbox for the left port. When one  
port writes to the other port’s mailbox, an interrupt is generated  
to the owner. The interrupt is reset when the owner reads the  
contents of the mailbox. The message is user defined.  
Semaphore Operation  
The CY7C024AV/025AV/026AV and CY7C0241AV/0251AV/  
036AV provide eight semaphore latches, which are separate  
from the dual-port memory locations. Semaphores are used to  
reserve resources that are shared between the two ports. The  
state of the semaphore indicates that a resource is in use. For  
example, if the left port wants to request a given resource, it  
sets a latch by writing a zero to a semaphore location. The left  
port then verifies its success in setting the latch by reading it.  
After writing to the semaphore, SEM or OE must be  
deasserted for tSOP before attempting to read the semaphore.  
The semaphore value will be available tSWRD + tDOE after the  
rising edge of the semaphore write. If the left port was  
successful (reads a zero), it assumes control of the shared  
resource, otherwise (reads a one) it assumes the right port has  
control and continues to poll the semaphore. When the right  
side has relinquished control of the semaphore (by writing a  
one), the left side will succeed in gaining control of the  
semaphore. If the left side no longer requires the semaphore,  
a one is written to cancel its request.  
Each port can read the other port’s mailbox without resetting  
the interrupt. The active state of the busy signal (to a port)  
prevents the port from setting the interrupt to the winning port.  
Also, an active busy to a port prevents that port from reading  
its own mailbox and, thus, resetting the interrupt to it.  
If an application does not require message passing, do not  
connect the interrupt pin to the processor’s interrupt request  
input pin.  
The operation of the interrupts and their interaction with Busy  
are summarized in Table 2.  
Busy  
The CY7C024AV/025AV/026AV and CY7C0241AV/0251AV/  
036AV provide on-chip arbitration to resolve simultaneous  
memory location access (contention). If both ports’ CEs are  
asserted and an address match occurs within tPS of each  
other, the busy logic will determine which port has access. If  
tPS is violated, one port will definitely gain permission to the  
location, but it is not predictable which port will get that  
permission. BUSY will be asserted tBLA after an address  
match or tBLC after CE is taken LOW.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE  
must remain HIGH during SEM LOW). A0–2 represents the  
semaphore address. OE and R/W are used in the same  
manner as a normal memory access. When writing or reading  
a semaphore, the other address pins have no effect.  
When writing to the semaphore, only I/O0 is used. If a zero is  
written to the left port of an available semaphore, a one will  
appear at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing zero  
(the left port in this case). If the left port now relinquishes  
control by writing a one to the semaphore, the semaphore will  
be set to one for both sides. However, if the right port had  
requested the semaphore (written a zero) while the left port  
had control, the right port would immediately own the  
semaphore as soon as the left port released it. Table 3 shows  
sample semaphore operations.  
Master/Slave  
A M/S pin is provided in order to expand the word width by  
configuring the device as either a master or a slave. The BUSY  
output of the master is connected to the BUSY input of the  
slave. This will allow the device to interface to a master device  
with no external components. Writing to slave devices must be  
delayed until after the BUSY input has settled (tBLC or tBLA),  
otherwise, the slave chip may begin a write cycle during a  
contention situation. When tied HIGH, the M/S pin allows the  
device to be used as a master and, therefore, the BUSY line  
is an output. BUSY can then be used to send the arbitration  
outcome to a slave.  
When reading a semaphore, all sixteen/eighteen data lines  
output the semaphore value. The read value is latched in an  
output register to prevent the semaphore from changing state  
during a write from the other port. If both ports attempt to  
access the semaphore within tSPS of each other, the  
semaphore will definitely be obtained by one side or the other,  
but there is no guarantee which side will control the  
semaphore.  
Document #: 38-06052 Rev. *H  
Page 6 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
CE  
H
X
L
R/W  
X
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
H
H
H
H
H
H
X
I/O9I/O17  
High Z  
I/O0I/O8  
High Z  
Operation  
Deselected: Power-Down  
Deselected: Power-Down  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
X
High Z  
High Z  
L
Data In  
High Z  
High Z  
L
L
H
L
Data In  
Data In  
High Z  
L
L
L
Data In  
Data Out  
High Z  
L
H
H
H
X
L
H
L
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
Data Out  
Data Out  
High Z  
L
L
L
Data Out  
High Z  
X
H
X
H
H
L
X
X
H
X
X
X
H
X
Outputs Disabled  
H
H
L
Data Out  
Data Out  
Data In  
Data Out  
Data Out  
Data In  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
L
L
X
L
X
X
H
H
L
Data In  
Data In  
Write DIN0 into Semaphore Flag  
L
L
X
X
X
X
L
X
L
L
L
Not Allowed  
Not Allowed  
X
Table 2. Interrupt Operation Example (assumes BUSYL = BUSYR = HIGH)[9]  
Left Port  
Right Port  
Function  
R/WL CEL  
OEL  
X
A0L–13L  
FFF[12]  
X
INTL R/WR CER  
OER  
X
A0R–13R  
INTR  
L[11]  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
L
X
X
X
L
X
X
L
X
X
X
L
X
L
L
X
X
X
X
L
FFF (or 1/3FFF) H[10]  
X
X
L[10]  
H[11]  
X
1FFE (or 1/3FFE)  
X
X
X
L
1FFE[12]  
X
X
Table 3. Semaphore Operation Example  
Function I/O0I/O17 Left I/O0I/O17 Right  
Status  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore-free  
Left Port has semaphore token  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore-free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore-free  
Left port writes 1 to semaphore  
Notes:  
9. See Functional Description for specific highest memory locations by device.  
10. If BUSY =L, then no change.  
R
11. If BUSY =L, then no change.  
L
12. See Functional Description for specific addresses by device.  
Document #: 38-06052 Rev. *H  
Page 7 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
DC Input Voltage[14]............................... –0.5V to VCC + 0.5V  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage.......................................... > 2001V  
Latch-up Current.................................................... > 200 mA  
Maximum Ratings[13]  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................55°C to +125°C  
Operating Range  
Range  
Commercial  
Industrial[15]  
Ambient Temperature  
0°C to +70°C  
VCC  
Supply Voltage to Ground Potential............... –0.5V to +4.6V  
3.3V ± 300 mV  
3.3V ± 300 mV  
DC Voltage Applied to  
Outputs in High-Z State..........................–0.5V to VCC + 0.5V  
–40°C to +85°C  
Electrical Characteristics Over the Operating Range  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
-20  
-25  
Parameter  
VOH  
Description  
Output HIGH Voltage (VCC=3.3V)  
Output LOW Voltage  
Min.  
Typ. Max. Min. Typ. Max. Unit  
2.4  
2.4  
2.0  
V
VOL  
VIH  
VIL  
IOZ  
IIX  
0.4  
0.4  
V
Input HIGH Voltage  
2.0  
–0.3[16]  
–10  
V
Input LOW Voltage  
0.8  
10  
0.8  
10  
V
Output Leakage Current  
Input Leakage Current  
–10  
–10  
μA  
μA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
μA  
mA  
mA  
–10  
10  
10  
ICC  
Operating Current (VCC = Max.,  
Com’l.  
120  
35  
75  
175  
115  
135  
30  
40  
65  
75  
10  
10  
60  
70  
165  
185  
40  
IOUT = 0 mA) Outputs Disabled  
Ind.[15]  
Com’l.  
Ind.[15]  
Com’l.  
Ind.[15]  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current (Both Ports TTL Level)  
CEL & CER VIH, f = fMAX  
45  
110  
500  
95  
50  
Standby Current (One Port TTL Level)  
CEL | CER VIH, f = fMAX  
95  
105  
500  
500  
80  
Standby Current (Both Ports CMOS Level) Com’l.  
CEL & CER VCC0.2V, f = 0  
10  
Ind.[15]  
Standby Current (One Port CMOS Level)  
Com’l.  
Ind.[15]  
70  
[17]  
CEL | CER VIH, f = fMAX  
90  
Capacitance[18]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
CC = 3.3V  
Max.  
10  
Unit  
CIN  
pF  
pF  
V
COUT  
10  
Notes:  
13. The Voltage on any input or I/O pin can not exceed the power pin during power-up.  
14. Pulse width < 20 ns.  
15. Industrial parts are available in CY7C026AV and CY7C036AV only.  
16. VIL > –1.5V for pulse width less than 10ns.  
17.  
f
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level  
MAX RC RC  
standby I  
.
SB3  
18. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-06052 Rev. *H  
Page 8 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
AC Test Loads and Waveforms  
3.3V  
3.3V  
R
TH  
= 250Ω  
R1 = 590Ω  
OUTPUT  
C = 30pF  
OUTPUT  
R1 = 590Ω  
OUTPUT  
C = 30 pF  
R2 = 435Ω  
C = 5 pF  
R2 = 435Ω  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c) Three-State Delay (Load 2)  
(Used for tLZ, tHZ, tHZWE, and tLZWE  
(b) Thévenin Equivalent (Load 1)  
ALL INPUTPULSES  
including scope and jig)  
3.0V  
GND  
90%  
90%  
10%  
3 ns  
10%  
3 ns  
Switching Characteristics Over the Operating Range [19]  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
-20  
-25  
Parameter  
Description  
Min.  
20  
Max.  
Min.  
25  
3
Max.  
Unit  
Read Cycle  
tRC  
Read Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
20  
25  
tOHA  
3
[20]  
tACE  
tDOE  
tLZOE  
20  
12  
25  
13  
[21, 22, 23]  
[21, 22, 23]  
3
3
0
3
3
0
tHZOE  
OE HIGH to High Z  
12  
12  
15  
15  
[21, 22, 23]  
tLZCE  
CE LOW to Low Z  
[21, 22, 23]  
tHZCE  
CE HIGH to High Z  
[23]  
tPU  
tPD  
CE LOW to Power-Up  
CE HIGH to Power-Down  
Byte Enable Access Time  
[23]  
20  
20  
25  
25  
[20]  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
[20]  
tSCE  
tAW  
tHA  
CE LOW to Write End  
Address Valid to Write End  
Address Hold From Write End  
Address Set-up to Write Start  
Write Pulse Width  
[20]  
tSA  
0
0
tPWE  
15  
20  
Notes:  
19. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
/I and 30-pF load capacitance.  
I
OI OH  
20. To access RAM, CE = L, UB = L, SEM = H. To access semaphore, CE = H and SEM = L. Either condition must be valid for the entire t  
time.  
SCE  
21. At any given temperature and voltage condition for any given device, t  
22. Test conditions used are Load 3.  
is less than t  
and t  
is less than t  
.
HZCE  
LZCE  
HZOE  
LZOE  
23. This parameter is guaranteed but not tested. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing  
with Busy waveform.  
Document #: 38-06052 Rev. *H  
Page 9 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Characteristics Over the Operating Range (continued)[19]  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
-20  
-25  
Parameter  
Description  
Data Set-up to Write End  
Min.  
15  
Max.  
Min.  
15  
0
Max.  
Unit  
ns  
tSD  
tHD  
tHZWE  
Data Hold From Write End  
R/W LOW to High Z  
0
ns  
[22, 23]  
12  
15  
ns  
[22, 23]  
tLZWE  
R/W HIGH to Low Z  
3
0
ns  
[24]  
tWDD  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
45  
30  
50  
35  
ns  
[24]  
tDDD  
ns  
Busy Timing[25]  
tBLA  
tBHA  
tBLC  
tBHC  
tPS  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
20  
20  
20  
17  
20  
20  
20  
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY HIGH from CE HIGH  
Port Set-up for Priority  
5
0
5
0
tWB  
tWH  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
15  
17  
[26]  
tBDD  
20  
25  
Interrupt Timing[25]  
tINS  
INT Set Time  
20  
20  
20  
20  
ns  
ns  
tINR  
INT Reset Time  
Semaphore Timing  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
5
12  
5
ns  
ns  
ns  
ns  
5
5
tSAA  
20  
25  
Data Retention Mode  
Timing  
The CY7C024AV/025AV/026AV and CY7C0241AV/0251AV/  
036AV are designed with battery backup in mind. Data  
retention voltage and supply current are guaranteed over  
temperature. The following rules ensure data retention:  
Data Retention Mode  
3.0V  
V
CC  
3.0V  
V
CC  
> 2.0V  
t
RC  
1. Chip Enable (CE) must be held HIGH during data retention,  
within VCC to VCC – 0.2V.  
V
CC  
to V – 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between VCC – 0.2V and 70% of VCC  
during the power-up and power-down transitions.  
3. The RAM can begin operation >tRC after VCC reaches the  
minimum operating voltage (3.0V).  
Parameter  
Test Conditions[27]  
Max.  
Unit  
ICCDR1  
@ VCCDR = 2V  
50  
μA  
Notes:  
24. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.  
25. Test conditions used are Load 2.  
26.  
t
is a calculated parameter and is the greater of t  
– t  
(actual) or t  
– t (actual).  
BDD  
WDD  
PWE  
DDD SD  
27. CE = V , V = GND to V , T = 25°C. This parameter is guaranteed but not tested.  
CC  
in  
CC  
A
Document #: 38-06052 Rev. *H  
Page 10 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Waveforms  
Read Cycle No. 1 (Either Port Address Access)[28, 29, 30]  
t
RC  
ADDRESS  
DATA OUT  
t
AA  
t
t
OHA  
OHA  
PREVIOUS DATAVALID  
DATA VALID  
Read Cycle No. 2 (Either Port CE/OE Access)[28, 31, 32]  
t
ACE  
CE and  
LB or UB  
t
HZCE  
t
DOE  
OE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
I
CC  
CURRENT  
I
SB  
Read Cycle No. 3 (Either Port)[28, 30, 31, 32]  
t
RC  
ADDRESS  
t
AA  
t
OHA  
UB or LB  
t
t
HZCE  
t
t
LZCE  
LZCE  
t
ABE  
CE  
HZCE  
t
ACE  
DATA OUT  
Notes:  
28. R/W is HIGH for read cycles.  
29. Device is continuously selected CE = V and UB or LB = V . This waveform cannot be used for semaphore reads.  
IL  
IL  
30. OE = V .  
IL  
31. Address valid prior to or coincident with CE transition LOW.  
32. To access RAM, CE = V , UB or LB = V , SEM = V . To access semaphore, CE = V , SEM = V .  
IL  
IL  
IH  
IH  
IL  
Document #: 38-06052 Rev. *H  
Page 11 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Waveforms (continued)  
Write Cycle No. 1: R/W Controlled Timing[33, 34, 35, 36]  
t
WC  
ADDRESS  
OE  
[39]  
t
HZOE  
t
AW  
[37, 38]  
CE  
[36]  
PWE  
t
t
t
HA  
SA  
R/W  
DATAOUT  
DATA IN  
[39]  
HZWE  
t
t
LZWE  
NOTE 40  
NOTE 40  
t
t
HD  
SD  
Write Cycle No. 2: CE Controlled Timing[33, 34, 35, 41]  
t
WC  
ADDRESS  
t
AW  
[37, 38]  
CE  
t
t
t
HA  
SA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes:  
33. R/W must be HIGH during all address transitions.  
34. A write occurs during the overlap (t or t ) of a LOW CE or SEM and a LOW UB or LB.  
SCE  
PWE  
35.  
t
is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
HA  
36. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data  
SD  
PWE  
HZWE  
to be placed on the bus for the required t . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be  
SD  
as short as the specified t  
.
PWE  
37. To access RAM, CE = V , SEM = V  
.
IH  
IL  
38. To access upper byte, CE = V , UB = V , SEM = V .  
IL  
IL  
IH  
To access lower byte, CE = V , LB = V , SEM = V .  
IL  
IL  
IH  
39. Transition is measured ±500 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.  
40. During this period, the I/O pins are in the output state, and input signals must not be applied.  
41. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
Document #: 38-06052 Rev. *H  
Page 12 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Waveforms (continued)  
Semaphore Read After Write Timing, Either Side[42]  
t
t
OHA  
SAA  
A –A  
0
VALID ADRESS  
VALID ADRESS  
2
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
t
PWE  
SA  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Timing Diagram of Semaphore Contention[43, 44, 45]  
A
0L  
–A  
2L  
MATCH  
R/W  
L
SEM  
–A  
L
t
SPS  
A
MATCH  
0R  
2R  
R/W  
R
SEM  
R
Notes:  
42. CE = HIGH for the duration of the above timing (both write and read cycle).  
43. I/O = I/O = LOW (request semaphore); CE = CE = HIGH.  
0R  
0L  
R
L
44. Semaphores are reset (available to both ports) at cycle start.  
45. If t is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.  
SPS  
Document #: 38-06052 Rev. *H  
Page 13 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Waveforms (continued)  
Timing Diagram of Read with BUSY (M/S=HIGH)[46]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATA IN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note:  
46. CE = CE = LOW.  
L
R
Document #: 38-06052 Rev. *H  
Page 14 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Waveforms (continued)  
Busy Timing Diagram No.1 (CE Arbitration)[47]  
CELValid First:  
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CER ValidFirst:  
ADDRESS  
ADDRESS MATCH  
L,R  
CE  
R
t
PS  
CE  
L
L
t
t
BHC  
BLC  
BUSY  
Busy Timing Diagram No.2 (Address Arbitration)[47]  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
R
t
t
BHA  
BLA  
BUSY  
R
Right AddressValid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
Note:  
47. If t is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.  
PS  
Document #: 38-06052 Rev. *H  
Page 15 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INTR :  
t
WC  
ADDRESS  
WRITE 1FFF (OR 1/3FFF)  
L
[48]  
t
HA  
CE  
L
R/W  
INT  
L
R
[49]  
t
INS  
Right Side Clears INTR:  
t
RC  
READ 7FFF  
(OR 1/3FFF)  
ADDRESS  
R
CE  
R
[49]  
t
INR  
R/W  
R
OE  
R
INT  
R
:
Right Side Sets INTL  
t
WC  
ADDRESS  
WRITE 1FFE (OR 1/3FFE)  
R
[48]  
HA  
t
CE  
R
R
R/W  
INT  
L
[49]  
INS  
t
Left Side Clears INTL:  
t
RC  
READ 7FFE  
OR 1/3FFE)  
ADDRESS  
R
CE  
L
[49]  
t
INR  
R/W  
L
OE  
INT  
L
L
Notes:  
48.  
49.  
t
depends on which enable pin (CE or R/W ) is deasserted first.  
HA L L  
t
or t  
depends on which enable pin (CE or R/W ) is asserted last.  
L L  
INS  
INR  
Document #: 38-06052 Rev. *H  
Page 16 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Ordering Information  
4K x16 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
(ns)  
Ordering Code  
CY7C024AV-15AI  
Package Type  
100-Pin Thin Quad Flat Pack  
Range  
15  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Industrial  
CY7C024AV-15AXI  
CY7C024AV-20AC  
CY7C024AV-20AXC  
CY7C024AV-20AI  
CY7C024AV-20AXI  
CY7C024AV-25AC  
CY7C024AV-25AXC  
CY7C024AV-25AI  
CY7C024AV-25AXI  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
20  
25  
Commercial  
Industrial  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Commercial  
Industrial  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Lead-free Thin Quad Flat Pack  
8K x16 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C025AV-20AC  
CY7C025AV-20AXC  
CY7C025AV-20AXI  
CY7C025AV-25AC  
CY7C025AV-25AXC  
CY7C025AV-25AI  
Package Type  
100-Pin Thin Quad Flat Pack  
20  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Commercial  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Industrial  
25  
Commercial  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Industrial  
CY7C025AV-25AXI  
100-Pin Lead-free Thin Quad Flat Pack  
16K x16 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
Package  
Operating  
Range  
Ordering Code  
CY7C026AV-20AC  
CY7C026AV-20AXC  
CY7C026AV-20AXI  
CY7C026AV-25AC  
CY7C026AV-25AXC  
CY7C026AV-25AI  
Name  
A100  
A100  
A100  
A100  
A100  
A100  
A100  
Package Type  
100-Pin Thin Quad Flat Pack  
20  
25  
Commercial  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Industrial  
Commercial  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Industrial  
CY7C026AV-25AXI  
100-Pin Lead-free Thin Quad Flat Pack  
4K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
20  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C0241AV-20AC  
CY7C0241AV-25AC  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
A100  
A100  
Commercial  
Commercial  
25  
8K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
20  
Package  
Name  
Operating  
Range  
Ordering Code  
CY7C0251AV-20AC  
CY7C0251AV-25AC  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
A100  
A100  
Commercial  
Commercial  
25  
Document #: 38-06052 Rev. *H  
Page 17 of 19  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
16K x18 3.3V Asynchronous Dual-Port SRAM  
Speed  
(ns)  
Package  
Operating  
Ordering Code  
CY7C036AV-20AC  
CY7C036AV-25AC  
CY7C036AV-25AXC  
CY7C036AV-25AI  
Name  
A100  
A100  
A100  
A100  
Package Type  
100-Pin Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
100-Pin Lead-free Thin Quad Flat Pack  
100-Pin Thin Quad Flat Pack  
Range  
Commercial  
Commercial  
20  
25  
Industrial  
Package Diagram  
100-Pin Thin Plastic Quad Flat Pack (TQFP) A100  
100-Pin Lead (Pb)-free Thin Plastic Quad Flat Pack (TQFP) A100  
51-85048-*B  
All product and company names mentioned in this document are the trademarks of their respective holders.  
Document #: 38-06052 Rev. *H  
Page 18 of 19  
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be  
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its  
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
CY7C024AV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Document History Page  
Document Title: CY7C024AV/CY7C025AV/CY7C026AV/CY7C0241AV/CY7C0251AV/CY7C036AV 3.3V 4K/8K/16K x 16/18  
Dual Port Static RAM  
Document Number: 38-06052  
Orig. of  
REV.  
**  
ECN NO. Issue Date Change  
Description of Change  
Change from Spec number: 38-00838 to 38-06052  
Power-up requirements added to Maximum Ratings Information  
Added CY7C025AV-25AI to Ordering Information  
Removed cross information from features section  
Added CY7C024AV-25AI to Ordering Information  
Corrected x18 for 026AV to x16  
110204  
122302  
128958  
237622  
241968  
276451  
279452  
11/11/01  
12/27/02  
9/03/03  
SZV  
RBI  
*A  
*B  
JFU  
*C  
*D  
*E  
See ECN  
See ECN  
See ECN  
See ECN  
YDT  
WWZ  
SPN  
RUY  
*F  
Added lead (Pb)-free packaging information  
Corrected pin A113L to A13L on CY7C026AV pin list  
Added minimum VIL of 0.3V and note 16  
*G  
*H  
373580  
380476  
See ECN  
See ECN  
RUY  
PCX  
Corrected CY7C024AC-25AXC to CY7C024AV-25AXC in Ordering Infor-  
mation  
Added to Part Ordering information:  
CY7C024AV-15AI, CY7C024AV-15AXI, CY7C024AV-20AI,  
CY7C024AV-20AXI, CY7C025AV-20AXI, CY7C026AV-20AXI  
Document #: 38-06052 Rev. *H  
Page 19 of 19  

相关型号:

CY7C026A_05

16K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C026A_12

16K x 16 Dual-Port Static RAM
CYPRESS

CY7C026V

3.3V 4K/8K/16K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C026V-15AC

Dual-Port SRAM, 16KX18, 15ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C026V-20AC

Dual-Port SRAM, 16KX18, 20ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C026V-25AC

Dual-Port SRAM, 16KX18, 25ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C026V-25AI

Dual-Port SRAM, 16KX18, 25ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C027

32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027-12AC

32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027-15AC

32K/64K x 16/18 Dual-Port Static RAM
CYPRESS

CY7C027-15AI

Dual-Port SRAM, 32KX16, 15ns, CMOS, PQFP100, PLASTIC, TQFP-100
CYPRESS

CY7C027-15AXI

暂无描述
CYPRESS