CAB400M12XM3 [CREE]

1200 V, 400 A All-Silicon Carbide Switching-Loss Optimized, Half-Bridge Module;
CAB400M12XM3
型号: CAB400M12XM3
厂家: CREE, INC    CREE, INC
描述:

1200 V, 400 A All-Silicon Carbide Switching-Loss Optimized, Half-Bridge Module

文件: 总9页 (文件大小:801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VDS  
IDS  
1200 V  
400 A  
CAB400M12XM3  
1200 V, 400 A All-Silicon Carbide  
Switching-Loss Optimized, Half-Bridge Module  
Technical Features  
Package 80 x 53 x 19 mm  
High Power Density Footprint  
High Junction Temperature (175 °C) Operation  
Low Inductance (6.7 nH) Design  
Implements Third Generation SiC MOSFET  
Technology Optimized for Low Switching Loss  
Silicon Nitride Insulator and Copper Baseplate  
Applications  
Motor & Traction Drives  
Vehicle Fast Chargers  
Uninterruptable Power Supplies  
Smart-Grid / Grid-Tied Distributed Generation  
System Benefits  
Terminal layout allows for direct bus bar connection without bends or bushings enabling a simple,  
low inductance design.  
Isolated integrated temperature sensing enables high-level temperature protection.  
Dedicated drain Kelvin pin enables direct voltage sensing for gate driver overcurrent protection.  
Key Parameters (TC = 25˚C unless otherwise specified)  
Symbol Parameter  
Min.  
Typ.  
Max.  
1200  
+19  
Unit  
Test Conditions  
Note  
VDS max Drain-Source Voltage  
VGS max Gate-Source Voltage, Maximum Value  
Note 1  
-4  
-4  
AC frequency ≥ 1 Hz  
Static  
V
Gate-Source Voltage, Recommended  
Operating Value  
VGS op  
+15  
395  
298  
395  
220  
VGS = 15 V, TC = 25 ˚C, TVJ ≤ 175 ˚C Fig. 20  
IDS  
ISD  
DC Continuous Drain Current  
Note 2  
VGS = 15 V, TC = 90 ˚C, TVJ ≤ 175 ˚C  
VGS = 15 V, TC = 25 ˚C, TVJ ≤ 175 ˚C  
VGS = - 4 V, TC = 25 ˚C, TVJ ≤ 175 ˚C  
DC Source-Drain Current  
A
ISD BD DC Source-Drain Current (Body Diode)  
IDS pulsed Maximum Pulsed Drain-Source Current  
ISD pulsed Maximum Pulsed Source-Drain Current  
800  
800  
tP max limited by Tj max  
VGS = 15 V, TC = 25 ˚C  
Maximum Virtual Junction  
TVJ op Temperature under Switching  
Conditions  
-40  
175  
°C  
Note 1 If MOSFET body diode is not used, VGS max = -8/+19 V  
Note 2 Assumes RTH JC = 0.15 °C/W and RDS on = 6.4 mΩ. Calculate PD = (TVJ – TC) / RTH JC. Calculate ID max = √(PD / RDS on  
)
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
1
MOSFET Characteristics (Per Position) (TC = 25˚C unless otherwise specified)  
Symbol Parameter  
Min.  
1200  
1.8  
Typ. Max. Unit  
Test Conditions  
VGS = 0 V, ID = 400 μA  
Note  
VBR DSS Drain-Source Breakdown Voltage  
2.5  
2.0  
4
3.6  
VDS = VGS, ID = 92 mA  
V
VGS th  
Gate Threshold Voltage  
VDS = VGS, ID = 92 mA, TJ = 175 °C  
VGS = 0 V, VDS = 1200 V  
VGS = 15 V, VDS = 0 V  
IDSS  
IGSS  
Zero Gate Voltage Drain Current  
Gate-Source Leakage Current  
130  
1.0  
5.3  
μA  
0.04  
4.0  
6.4  
VGS = 15 V, ID = 400 A  
Drain-Source On-State Resistance (Devices  
Only)  
Fig. 2  
Fig. 3  
RDS on  
mΩ  
VGS = 15 V, ID = 400 A, TJ = 175 °C  
VDS = 20 V, IDS = 400 A  
278  
gfs  
Transconductance  
S
Fig. 4  
260  
VDS = 20 V, IDS = 400 A, TJ = 175 °C  
Turn-On Switching Energy, TJ = 25 °C  
TJ = 125 °C  
TJ = 175 °C  
4.1  
5.0  
5.6  
VDS = 600 V,  
ID = 400 A,  
mJ VGS = -4 V/15 V,  
RG(ext) = 0.0 Ω,  
Eon  
Fig. 11  
Fig. 13  
Turn-Off Switching Energy, TJ = 25 °C  
TJ = 125 °C  
TJ = 175 °C  
3.9  
4.2  
4.1  
Eoff  
L = 13.6 μH  
RG int  
Ciss  
Internal Gate Resistance  
Input Capacitance  
1.4  
24.5  
1.0  
Ω
VGS = 0 V, VDS = 800 V,  
nF  
pF  
Coss  
Crss  
QGS  
QGD  
QG  
Output Capacitance  
Reverse Transfer Capacitance  
Gate to Source Charge  
Gate to Drain Charge  
Total Gate Charge  
Fig. 9  
VAC = 25 mV, f = 100 kHz  
50  
256  
308  
908  
VDS = 800 V, VGS = -4 V/15 V  
nC ID = 400 A  
Per IEC60747-8-4 pg. 21  
RTH JC FET Thermal Resistance, Junction to Case  
0.15 0.16 °C/W  
Fig. 17  
Body Diode Characteristics (Per Position) (TC = 25˚C unless otherwise specified)  
Symbol Parameter  
Min.  
Typ.  
6.0  
Max. Unit  
Test Conditions  
Note  
VGS = -4 V, ISD = 400 A  
VSD  
Body Diode Forward Voltage  
V
Fig. 7  
5.3  
VGS = -4 V, ISD = 400 A, T = 175 °C  
J
tRR  
QRR  
IRR  
Reverse Recovery Time  
44  
6.5  
218  
ns  
μC  
A
VGS = -4 V, ISD = 400 A, VR = 600 V  
Reverse Recovery Charge  
Peak Reverse Recovery Current  
di/dt = 13 A/ns, T = 175 °C  
J
Reverse Recovery Energy, TJ = 25 °C  
TJ = 125 °C  
TJ = 175 °C  
0.3  
1.0  
1.9  
VDS = 600 V, ID = 400 A,  
mJ VGS = -4 V/15 V, RG(ext) = 0.0 Ω,  
ERR  
Fig. 14  
L= 13.6 μH  
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
2
Temperature Sensor (NTC) Characteristics  
Symbol Parameter  
Min.  
Typ.  
Max.  
Unit  
kΩ  
Test Conditions  
R25  
∆R/R Tolerance of R25  
P25 Maximum Power Dissipation  
Rated Resistance  
4.7  
TNTC = 25 °C  
1
%
50  
mW  
Steinhart-Hart Modified Coefficients for R/T Computation:  
A
B
C
D
TNTC < 25 °C  
TNTC ≥ 25 °C  
3.3540E-03  
3.3540E-03  
3.0013E-04  
3.0013E-04  
5.0852E-06  
5.0852E-06  
2.1877E-07  
2.1877E-07  
Module Physical Characteristics  
Symbol Parameter  
Min.  
Typ.  
0.72  
0.63  
6.7  
Max.  
Unit  
Test Conditions  
R3-1  
R1-2  
Lstray  
TC  
Package Resistance, M1  
Package Resistance, M2  
Stray Inductance  
Case Temperature  
Weight  
TC = 125 °C, Note 3 & 41  
mΩ  
TC = 125 °C, Note 3 & 4  
nH  
°C  
g
Between Terminals 2 and 3  
-40  
125  
W
175  
3.0  
4.0  
2.0  
2.0  
4.0  
5.0  
Baseplate, M4 bolts  
Power Terminals, M5 bolts  
AC, 50 Hz, 1 min  
MS  
Mounting Torque  
N-m  
kV  
Visol  
CTI  
Case Isolation Voltage  
4.0  
Comparative Tracking Index  
600  
12.5  
11.5  
5.7  
From 2 to 3, Note24  
From 1 to Baseplate, Note 4  
From 2 to 5, Note 4  
Clearance Distance  
Creepage Distance  
13.7  
14.7  
14.0  
14.7  
14.3  
From 5 to Baseplate, Note 4  
From 2 to 3, Note 4  
mm  
From 1 to Baseplate, Note 4  
From 2 to 5, Note 4  
From 5 to Baseplate, Note 4  
Note13 Total Effective Resistance (Per Switch Position) = MOSFET RDS on + Switch Position Package Resistance.  
Note24 Numbers reference the connections from the Schematic and Package Dimensions sections of this document.  
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
3
Typical Performance  
800  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
Conditions:  
tp < 300 μs  
VGS = 15 V  
Conditions:  
tp < 300 μs  
VGS = 15 V  
175 °C  
700  
600  
150 °C  
125 °C  
25 °C  
500  
-40 °C  
100 °C  
400  
100 °C  
300  
125 °C  
150 °C  
175 °C  
200  
100  
0
-40 °C  
25 °C  
400  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0
100  
200  
300  
500  
600  
700  
800  
Drain-Source Voltage, VDS (V)  
Drain-Source Current, IDS (A)  
Figure 1. Output Characteristics for Various Junction  
Temperatures  
Figure 2. Normalized On-State Resistance vs. Drain Current for Various  
Junction Temperatures  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
700  
Conditions:  
tp < 300 μs  
VDS = 20 V  
Conditions:  
tp < 300 μs  
VGS = 15 V  
ID = 400 A  
600  
500  
175 °C  
150 °C  
125 °C  
400  
300  
100 °C  
200  
25 °C  
0 °C  
100  
0
-25 °C  
-40 °C  
-50  
0
50  
100  
150  
200  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
Virtual Junction Temperature, TVJ (°C)  
Gate-Source Voltage, VGS (V)  
Figure 3. Normalized On-State Resistance vs.  
Junction Temperature  
Figure 4. Transfer Characteristic for Various Junction  
Temperatures  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
Conditions:  
tp < 300 μs  
VGS = 15 V  
Conditions:  
tp < 300 μs  
VGS = 0.0 V  
175 °C  
150 °C  
125 °C  
100 °C  
25 °C  
-40 °C  
25 °C  
0 °C  
-25 °C  
-40 °C  
100 °C  
125 °C  
150 °C  
175 °C  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
Source-Drain Voltage, VSD (V)  
Source-Drain Voltage, VSD (V)  
Figure 5. 3rd Quadrant Characteristic vs. Junction Temperatures at  
VGS = 15 V  
Figure 6. 3rd Quadrant Characteristic vs. Junction Temperatures at  
VGS = 0 V (Body Diode)  
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
4
Typical Performance  
800  
100.00  
10.00  
1.00  
Conditions:  
TJ = 25 °C  
VAC = 25 mV  
Conditions:  
tp < 300 μs  
VGS = - 4.0 V  
700  
600  
500  
400  
300  
200  
100  
0
Ciss  
f = 100 kHz  
175 °C  
150 °C  
125 °C  
Coss  
100 °C  
25 °C  
Crss  
0.10  
0 °C  
-25 °C  
-40 °C  
0.01  
0
50  
100  
150  
200  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
Drain-Source Voltage, VDS (V)  
Source-Drain Voltage, VSD (V)  
Figure 7. 3rd Quadrant Characteristic vs. Junction Temperatures at  
VGS = - 4 V (Body Diode)  
Figure 8. Typical Capacitances vs. Drain to Source Voltage  
(0 - 200V)  
100.00  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Conditions:  
TJ = 25 °C  
VAC = 25 mV  
f = 100 kHz  
Conditions:  
VGS = VDS  
IDS = 92 mA  
Ciss  
10.00  
1.00  
0.10  
0.01  
Coss  
Crss  
0
200  
400  
600  
800  
1,000  
1,200  
-50  
0
50  
100  
150  
200  
Drain-Source Voltage, VDS (V)  
Junction Temperature, TJ (°C)  
Figure 9. Typical Capacitances vs. Drain to Source Voltage  
(0 - 1200V)  
Figure 10. Threshold Voltage vs. Junction Temperature  
30  
25  
20  
15  
10  
5
20  
18  
16  
14  
12  
10  
8
Conditions:  
TVJ = 25 °C  
VDS = 600 V  
RG(ext) = 0.0 Ω  
VGS = -4/+15 V  
L = 13.6 µH  
EOn+ EOff  
Conditions:  
TVJ = 25 °C  
VDS = 800 V  
RG(ext) = 0.0 Ω  
VGS = -4/+15 V  
L = 13.6 µH  
EOn + EOff  
EOff  
EOn  
6
EOn  
EOff  
4
2
ERR  
ERR  
0
0
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
Drain-Source Current, IDS (A)  
Drain-Source Current, IDS (A)  
Figure 11. Switching Energy vs. Drain Current  
(VDS = 600 V)  
Figure 12. Switching Energy vs. Drain Current  
(VDS = 800 V)  
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
5
Typical Performance  
15.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Conditions:  
IDS = 400 A, VDD =600 V  
RG(ext) = 0.0 , VGS = -4/+15 V  
L = 13.6 µH  
Conditions:  
IDS = 400 A,  
RG(ext) = 0.0 ,  
VGS = -4/+15 V  
L = 13.6 µH  
12.5  
10.0  
7.5  
EOn+EOff  
ERR (VDD = 800 V)  
ERR (VDD = 600 V)  
EOn  
EOff  
5.0  
2.5  
0.0  
0
25  
50  
75  
100  
125  
150  
175  
200  
0
25  
50  
75  
100  
125  
150  
175  
200  
Junction Temperature, TVJ (°C)  
Junction Temperature, TVJ (°C)  
Figure 13. MOSFET Switching Energy vs. Junction Temperature  
Figure 14. Reverse Recovery Energy vs. Junction Temperature  
50  
0.5  
Conditions:  
Conditions:  
45  
40  
35  
30  
25  
20  
15  
10  
5
IDS = 400 A, VDD =600 V  
IDS = 400 A, TVJ = 25°C,  
VGS = -4/+15 V  
L = 13.6 µH  
EOn + EOff  
TJV = 25 °C, VGS = -4/+15 V  
0.4  
0.3  
0.2  
0.1  
0.0  
L = 13.6 µH  
EOn  
EOff  
ERR (VDD = 600 V)  
ERR  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
External Gate Resistor, RG(ext) ()  
External Gate Resistor, RG(ext) ()  
Figure 15. MOSFET Switching Energy vs. External Gate Resistance  
Figure 16. Reserve Recovery Energy vs. External Gate Resistance  
1.0E+00  
10 μs  
1000.00  
100.00  
10.00  
1.00  
1.0E-01  
1.0E-02  
1.0E-03  
1.0E-04  
1.0E-05  
1.0E-06  
0.5  
Limited by  
RDS(on)  
100 μs  
0.3  
0.1  
1 ms  
0.05  
0.02  
100 ms  
0.01  
Conditions:  
Tc = 25 °C  
D = 0  
Single Pulse  
0.10  
Parameter: tp  
0.01  
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00  
0.1  
1
10  
100  
1000  
Time, tp (s)  
Drain-Source Voltage, VDS (V)  
Figure 17. MOSFET Juction to Case Transient Thermal Impedance,  
Zth JC (°C/W)  
Figure 18. Forward-Bias Safe Operating Area (FBSOA)  
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
6
Typical Performance  
900  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Conditions:  
T VJ 175 °C  
800  
Chip  
700  
Module (RG(ext) = 0 Ω)  
Module (RG(ext) = 1 Ω)  
600  
500  
400  
300  
200  
100  
0
Conditions:  
TVJ = 175 °C  
LStray-system = 3.5 nH  
LStray-module = 6.7 nH  
0
-50  
0
50  
100  
150  
200  
0
200  
400  
600  
800  
1000  
1200  
Case Temperature, TC (°C)  
Drain-Source Voltage, VDS (V)  
Figure 20. Continuous Drain Current Derating vs.  
Case Temperature  
Figure 19. Reverse-Bias Safe Operating Area (RBSOA)  
1200  
1000  
800  
600  
400  
200  
0
600  
500  
400  
300  
200  
100  
0
Conditions:  
Conditions:  
T VJ 175 °C  
VDS = 800 V  
TC = 90 °C  
TJ = 175 °C  
RG(ext) = 0.0 Ω  
MF = 1  
-50  
0
50  
100  
150  
200  
0
20  
40  
60  
80  
100  
Case Temperature, TC (°C)  
Switching Frequency, FS (kHz)  
Figure 21. Maximum Power Dissipation Derating vs.  
Case Temperature  
Figure 22. Typical Ouput Current Capability vs. Switching Frequency  
(Inverter Application)  
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
7
Schematic and Pin Out  
3
3
2
1
8,9  
4
5
8
9
4
5
1
10  
11  
10  
11  
6
7
6
7
NTC  
2
Package Dimension (mm)  
53.00 ±0.20  
44.75 ±0.20  
15.75 ±0.30  
12.50 ±0.30  
4.50 ±0.20  
29.50 ±0.20  
44.00 ±0.30  
2.54  
0.64  
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
8
Package Dimension (mm)  
E
E
Power Terminal Screw  
Maximum Penetration Depth  
Maximum  
Penetration  
Depth [mm]  
F
DETAIL  
F
SCALE 4 : 1  
SECTION E-E  
Supporting Links & Tools  
CGD12HBXMP: XM3 Evaluation Gate Driver  
CGD12HB00D: Differential Transceiver Board for CGD12HBXMP  
CRD200DA12E-XM3: 200 kW Inverter Kit for Conduction-Optimized XM3 (CPWR-AN30)  
KIT-CRD-CIL12N-XM3: Dynamic Performance Evaluation Board for the XM3 Module (CPWR-AN31)  
CPWR-AN28: Module Mounting Application Note  
CPWR-AN29: Thermal Interface Material Application Note  
Notes  
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human  
body nor in applications in which failure of the product could lead to death, personal injury or property damage, including  
but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar  
emergency medical equipment, aircraꢀ navigation or communication or control systems, or air traffic control systems.  
The SiC MOSFET module switches at speeds beyond what is customarily associated with IGBT-based modules. Therefore, special  
precautions are required to realize optimal performance. The interconnection between the gate driver and module housing  
needs to be as short as possible. This will afford optimal switching time and avoid the potential for device oscillation. Also, great  
care is required to insure minimum inductance between the module and DC link capacitors to avoid excessive VDS overshoot.  
Rev. -, 2019-10-31  
CAB400M12XM3  
4600 Silicon Dr., Durham, NC 27703  
Copyright ©2019 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree®, the Cree logo, Wolfspeed®, and the Wolfspeed logo  
are registered trademarks of Cree, Inc.  
9

相关型号:

CAB450M12XM3

1200V, 450A All-Silicon Carbide Conduction Optimized, Half-Bridge Module
CREE

CAB4A

CAB4A - DDR4 Register 32-Bit 1:2 Command/Address/Control Buffer and 1:4 Differential Clock Buffer
TI

CAB4AZNRR

CAB4A - DDR4 Register 32-Bit 1:2 Command/Address/Control Buffer and 1:4 Differential Clock Buffer
TI

CAB600-4

IdentiFlex 650 base analog/addressable system
GAMEWELL-FCI

CAB600-8

IdentiFlex 650 base analog/addressable system
GAMEWELL-FCI

CAB600-BD8

IdentiFlex 650 base analog/addressable system
GAMEWELL-FCI

CAB610

Analog Addressable Control Panel
GAMEWELL-FCI

CAB610-XL

Analog Addressable Control Panel
GAMEWELL-FCI

CAB616

Taoglas Cable Assembly IPEX MHFI to SMA
TAOGLAS

CAB618C

Taoglas Cable Assembly IPEX MHFI to SMA(F)Bulkhead Straight Connector with 200mm 1.13 cable
ETC

CAB622

Taoglas Cable Assembly IPEX MHFI to RP-SMA(F)Bulkhead Straight Connector with 200mm 1.13 cable
ETC

CAB628

Taoglas Cable Assembly IPEX MHFI to RP-SMA(F)Bulkhead Straight Connector with 95mm 1.13 cable
ETC