FX839P4 [CMLMICRO]

Analogue Control Interface; 模拟控制接口
FX839P4
型号: FX839P4
厂家: CML MICROCIRCUITS    CML MICROCIRCUITS
描述:

Analogue Control Interface
模拟控制接口

电信集成电路 电信电路 光电二极管
文件: 总22页 (文件大小:1141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CML Semiconductor Products  
Analogue Control Interface FX839  
September 1997  
D/839/4  
1.0  
Features  
Advance Information  
Three DACs  
Multiplexed 4 Input ADC  
8 or 10-Bit Resolution  
10-Bit Resolution  
Custom IRQ Generator with Variable Scalable ADC Clock Frequencies  
8-Bit Reference Settings  
Two Variable Attenuators  
Low Power (3.0V Operation)  
from Xtal/Clock  
Serial Interface to Host µC  
24-Pin SSOP Package  
1.1  
Brief Description  
This product comprises a selection of independent functional blocks vital to modern microcomputer controlled  
radio-frequency communications equipment. Examples of possible uses are as follows:  
The four-way multiplexed ADC with magnitude comparator may be used for monitoring RSSI, battery  
voltage, temperatures, reflected signals or error voltages.  
The three DACs may be used to adjust VCOs, reference oscillators, power output, bias current or IF gain.  
The two variable attenuators may be used to adjust deviation, modulation depth or baseband gain.  
The FX839 is controlled via the standard serial 'C-BUS'. This is complementary to, and compatible with, many  
standard microcomputers and other baseband processing blocks.  
Consumer Microcircuits Limited  
1997  
Analogue Control Interface  
FX839  
CONTENTS  
Section  
Page  
1.0 Features .......................................................................................................... 1  
1.1 Brief Description ............................................................................................ 1  
1.2 Block Diagram................................................................................................ 3  
1.3 Signal List....................................................................................................... 4  
1.4 External Components.................................................................................... 6  
1.5 General Description....................................................................................... 7  
1.5.1 Software Description..................................................................... 8  
1.6 Application Notes......................................................................................... 15  
1.6.1 General.......................................................................................... 15  
1.7 Performance Specification.......................................................................... 16  
1.7.1 Electrical Performance ................................................................ 16  
1.7.2 Packaging ..................................................................................... 21  
Note: As this product is still in development, it is likely that a number of changes and additions will be made to  
this specification. Items marked TBD or left blank will be included in later issues. Information in this  
data sheet should not be relied upon for final product design.  
Consumer Microcircuits Limited  
2
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.2  
Block Diagram  
Figure 1: Block Diagram  
Consumer Microcircuits Limited  
3
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.3  
Signal List  
Package  
P4/D2/D5  
Signal  
Description  
Pin No.  
Name  
XTALN  
Type  
O/P  
I/P  
1
2
The inverter output of the on-chip oscillator.  
XTAL/CLOCK  
The input to the on-chip oscillator, for external Xtal circuit  
or clock.  
3
4
5
SERIAL  
CLOCK  
I/P  
I/P  
The 'C-BUS' serial clock input. This clock, produced by  
the µController, is used for transfer timing of commands  
and data to and from the device.  
See 'C-BUS' Timing Diagram (Figure 4).  
COMMAND  
DATA  
The 'C-BUS' serial data input from the µController. Data is  
loaded into this device in 8-bit bytes, MSB (B7) first, and  
LSB (B0) last, synchronised to the SERIAL CLOCK.  
See 'C-BUS' Timing Diagram (Figure 4).  
REPLY DATA  
O/P  
The 'C-BUS' serial data output to the µController. The  
transmission of REPLY DATA bytes is synchronised to the  
SERIAL CLOCK under the control of the CSN input.  
This 3-state output is held at high impedance when not  
sending data to the µController. See 'C-BUS' Timing  
Diagram (Figure 4).  
6
7
CSN  
I/P  
The 'C-BUS' data loading control function: this input is  
provided by the µController. Data transfer sequences are  
initiated, completed or aborted by the CSN signal.  
See 'C-BUS' Timing Diagram (Figure 4).  
IRQN  
O/P  
This output indicates an interrupt condition to the  
µController by going to a logic '0'. This is a 'wire-ORable'  
output, enabling the connection of up to 8 peripherals to 1  
interrupt port on the µController. This pin has a low  
impedance pulldown to logic '0' when active and a high-  
impedance when inactive. An external pullup resistor is  
required.  
The conditions that cause interrupts are indicated in the  
IRQ FLAG register and are effective if not disabled.  
8
9
ADCIN1  
ADCIN2  
I/P  
I/P  
Analogue to digital converter input 1 (ADC1)  
Analogue to digital converter input 2 (ADC2)  
Consumer Microcircuits Limited  
4
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.3  
Signal List (continued)  
Package  
P4/D2/D5  
Signal  
Description  
Pin No.  
10  
Name  
ADCIN3  
ADCIN4  
Type  
I/P  
Analogue to digital converter input 3 (ADC3)  
Analogue to digital converter input 4 (ADC4)  
11  
I/P  
12  
V
SS  
POWER  
The negative supply rail (ground) for both analogue and  
digital supplies.  
13  
14  
V
BIAS  
O/P  
N/C  
An analogue bias line for the internal circuitry, held at ½  
AV . This pin must be decoupled by a capacitor mounted  
DD  
close to the device pins.  
No internal connection. Do not make any connection to  
this pin.  
15  
16  
17  
18  
DACOUT1  
DACOUT2  
DACOUT3  
O/P  
O/P  
O/P  
N/C  
Digital to analogue converter No. 1 output (DAC1)  
Digital to analogue converter No. 2 output (DAC2)  
Digital to analogue converter No. 3 output (DAC3)  
No internal connection. Do not make any connection to  
this pin.  
19  
AV  
POWER  
The positive analogue supply rail. Analogue levels and  
voltages are dependent upon this supply. This pin should  
DD  
be decoupled to V by a capacitor.  
SS  
20  
21  
22  
23  
24  
MOD1 IN  
MOD2 IN  
MOD1  
I/P  
I/P  
Input to MOD1 variable attenuator.  
Input to MOD2 variable attenuator.  
Output of MOD1 variable attenuator.  
Output of MOD2 variable attenuator.  
O/P  
MOD2  
O/P  
DV  
POWER  
The positive digital supply rail. Digital levels and voltages  
are dependent upon this supply. This pin should be  
DD  
decoupled to V by a capacitor.  
SS  
Notes: I/P  
O/P  
=
=
Input  
Output  
Consumer Microcircuits Limited  
5
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.4  
External Components  
C1 22pF  
C2 22pF  
C3 0.1µF  
C4 0.1µF  
C5 0.1µF  
±20%  
±20%  
±20%  
±20%  
±20%  
R1 1M  
R2 22k  
±5%  
±10%  
X1 Note 1  
Notes: 1. If an external clock is to be used, it should be connected to Pin 2 and the components C1, C2,  
R1 and X1 omitted. The ADC clock frequency is derived from the crystal or external clock by  
means of internal programmable dividers. Refer to Section 1.7 for details of crystal or external  
clock frequency range.  
Figure 2: Recommended External Components  
Consumer Microcircuits Limited  
6
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.5  
General Description  
The device comprises four groups of related functions: variable attenuators, digital to analogue converters, a  
multiplexed analogue to digital converter with multiplexer, clock generator and four 8-bit magnitude  
comparators with variable reference levels. These functions are all controlled by the 'C-BUS' serial interface  
and are described below:  
Variable Attenuators  
The two variable attenuators have a range of 0 to -12dB and 0 to -6dB respectively and may be controlled  
independently.  
Digital to Analogue Converters  
Three DACs are provided with default resolutions of 8 bits, which are defined at the initial chip reset. In this  
mode the 'C-BUS' data is transferred in a single byte. An option is provided to define any one or more of the  
DAC resolutions to be 10 bits, then the DAC requires the transfer of two 'C-BUS' data bytes.  
The upper and lower DAC reference voltages are defined internally as AV and V respectively. The output  
DD  
SS  
voltage is expressed as:  
n
V
OUT  
= AV x (DATA / 2 ) [Volts]  
DD  
Where, n is the DAC resolution (8 or 10 bits) and DATA is the decimal value of the input code. For example: n  
= 8 and binary code = 11111111 therefore DATA = 255  
V
OUT  
= AV x (255 / 256) [Volts]  
DD  
Any one of the three DAC input latches may be loaded by sending an address/command byte followed by one  
or two data bytes to the 'C-BUS' interface. The data is then latched and the static voltage is updated at the  
appropriate output.  
When a DAC is disabled its output is defined as open-circuit.  
Analogue to Digital Converter and ADC Clock Generator  
A single successive approximation ADC is provided with four multiplexed inputs. In order to minimise the  
sampling time of each input channel, a Sample and Hold circuit has not been included at the input of the ADC.  
For the sampling to be accurate the input signal should not change significantly during the conversion time.  
Since the typical application is for the monitoring of slowly changing control voltages this should not present  
any problems. The maximum signal 'linear rate of change', 'S', can be quantified by the following expression  
(for a maximum 1 bit error):  
10  
S = AV x f  
/ (2 x 1000 x (10 + 2)) [mV/µs]  
adc_clk  
DD  
Where f  
is the internal ADC clock frequency.  
adc_clk  
The programmable clock generator is intended to be flexible, making use of an external system clock signal or  
a dedicated crystal. This clock signal is scaled to provide the internal ADC clock frequency (f ). The user  
adc_clk  
has full control of the frequency scaling factor and this should be chosen such that the input clock frequency, at  
the XTAL/CLOCK pin, divided by this factor is no more than 1MHz.  
Consumer Microcircuits Limited  
7
1997  
D/839/4  
Analogue Control Interface  
FX839  
The microcontroller is required to wait during the conversion time, T  
(Figure 3), before issuing a 'READ  
conv_max  
ADC DATAx' command. If this is not done, then the converted data returned on 'C-BUS' will be the result of the  
previous conversion on the selected channel. It is possible for the data conversion rate to exceed the reply rate  
on 'C-BUS'. In such a case, the data returned will be the result of the most recent conversion completed.  
Figure 3: Example of a "conversion and read"  
* T  
is directly related to the ADC clock frequency, which in turn is set by the external clock frequency  
conv_max  
and the clock divider.  
T
= ((10 + 2) x 'NUMBER OF ENABLED MUX INPUTS' / f  
adc_clk  
) [Seconds]  
conv_max  
Note that after reading the ADC1 data, it is necessary to re-enable the conversion of data by setting Bit 5 of the  
ADC Control Register to ‘1’.  
Magnitude Comparators and Interrupt Request  
High and low digital comparator reference levels are provided for the four digital magnitude comparators via the  
'C-BUS' interface. The digital input to the comparators is provided by the most significant 8 bits of each ADC  
data.  
When the sampled data falls outside the high or low digital comparator reference levels the status register is  
updated and the IRQN pin is pulled low. When a reference level is set to '0', its IRQ is disabled.  
1.5.1 Software Description  
Address/Commands  
Instructions and Data are transferred via the 'C-BUS' in accordance with the timing information given in  
Figure 4.  
Instruction and data transactions to and from the FX839 consist of an Address/Command byte followed  
by either:  
(i)  
(ii)  
a control or DAC data write (1 or 2 bytes) or,  
a status or ADC data read (1 or 2 bytes)  
Consumer Microcircuits Limited  
8
1997  
D/839/4  
Analogue Control Interface  
FX839  
Write Only Register (8-Bit and 16-Bit)  
HEX  
ADDRESS/  
COMMAND  
REGISTER  
NAME  
BIT 7  
(D7)  
BIT 6  
(D6)  
BIT 5  
(D5)  
BIT 4  
(D4)  
BIT 3  
(D3)  
BIT 2  
(D2)  
BIT 1  
(D1)  
BIT 0  
(D0)  
$01  
$D0  
$D2  
RESET  
CLOCK/IRQ  
CONTROL  
N/A  
0
N/A  
0
N/A  
N/A  
0
N/A  
0
N/A  
N/A  
DIVIDER  
BIT 1  
N/A  
0
BIT 2  
MOD1  
BIT 2  
BIT 0  
BIT 0  
BIT 0  
0
VARIABLE  
ATTENUATOR (1)  
VARIABLE  
MOD1  
ENABLE  
MOD2  
0
0
BIT 4  
BIT 4  
0
BIT 3  
BIT 3  
BIT 1  
BIT 1  
MOD2  
BIT 2  
ATTENUATOR (2)  
0
0
ENABLE  
DAC  
CONTROL  
NBIT  
DAC1  
NBIT  
DAC2  
NBIT  
DAC3  
DAC1  
ENABLE  
DAC2  
ENABLE  
DAC3  
ENABLE  
$D3  
$D4  
DAC1 DATA  
(1)  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
BIT 1  
BIT 9  
BIT 1  
BIT 9  
BIT 1  
BIT 9  
BIT 0  
BIT 8  
BIT 0  
BIT 8  
BIT 0  
BIT 8  
0
*See Note 1  
(2)  
DAC2 DATA  
(1)  
$D5  
$D6  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
*See Note 1  
(2)  
DAC3 DATA  
(1)  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
*See Note 1  
(2)  
ADC  
CONTROL  
ADCIN1  
ACTIVE  
ADCIN2  
ACTIVE  
ADCIN3  
ACTIVE  
ADCIN4  
ACTIVE  
$D7  
$D8  
0
1
READN  
MAG COMP ONE  
LEVELS (1)  
MAGNITUDE COMPARATOR UPPER LEVEL  
BIT 5 BIT 4 BIT 3 BIT 2  
MAGNITUDE COMPARATOR LOWER LEVEL  
BIT 5 BIT 4 BIT 3 BIT 2  
MAGNITUDE COMPARATOR UPPER LEVEL  
BIT 5 BIT 4 BIT 3 BIT 2  
MAGNITUDE COMPARATOR LOWER LEVEL  
BIT 5 BIT 4 BIT 3 BIT 2  
MAGNITUDE COMPARATOR UPPER LEVEL  
BIT 5 BIT 4 BIT 3 BIT 2  
MAGNITUDE COMPARATOR LOWER LEVEL  
BIT 5 BIT 4 BIT 3 BIT 2  
MAGNITUDE COMPARATOR UPPER LEVEL  
BIT 5 BIT 4 BIT 3 BIT 2  
MAGNITUDE COMPARATOR LOWER LEVEL  
BIT 5 BIT 4 BIT 3 BIT 2  
BIT 7  
BIT 7  
BIT 7  
BIT 7  
BIT 7  
BIT 7  
BIT 7  
BIT 7  
BIT 6  
BIT 6  
BIT 6  
BIT 6  
BIT 6  
BIT 6  
BIT 6  
BIT 6  
BIT 1  
BIT 1  
BIT 1  
BIT 1  
BIT 1  
BIT 1  
BIT 1  
BIT 1  
BIT 0  
BIT 0  
BIT 0  
BIT 0  
BIT 0  
BIT 0  
BIT 0  
BIT 0  
MAG COMP ONE  
LEVELS (2)  
MAG COMP TWO  
LEVELS (1)  
$D9  
$DA  
$DB  
MAG COMP TWO  
LEVELS (2)  
MAG COMP THREE  
LEVELS (1)  
MAG COMP THREE  
LEVELS (2)  
MAG COMP FOUR  
LEVELS (1)  
MAG COMP FOUR  
LEVELS (2)  
Note 1: A second byte is expected by the 'C-BUS' interface only when the 'NBIT DACn' bit of the 'DAC  
Control Register' is set high. Otherwise the data transfer is a single byte (Bit 7 to Bit 0).  
Consumer Microcircuits Limited  
9
1997  
D/839/4  
Analogue Control Interface  
FX839  
Read Only Registers (8-Bit and 16-Bit)  
HEX  
ADDRESS/  
COMMAND  
REGISTER  
NAME  
BIT 7  
(D7)  
BIT 6  
(D6)  
BIT 5  
(D5)  
BIT 4  
(D4)  
BIT 3  
(D3)  
BIT 2  
(D2)  
BIT 1  
(D1)  
BIT 0  
(D0)  
IRQ  
$D1  
$DC  
FLAGS  
ADC DATA1  
(1)  
HIRQF4  
BIT 7  
0
LIRQF4  
BIT 6  
0
HIRQF3  
BIT 5  
0
LIRQF3  
BIT 4  
0
HIRQF2  
BIT 3  
0
LIRQF2  
BIT 2  
0
HIRQF1  
BIT 1  
BIT 9  
BIT 1  
BIT 9  
BIT 1  
BIT 9  
BIT 1  
BIT 9  
LIRQF1  
BIT 0  
BIT 8  
BIT 0  
BIT 8  
BIT 0  
BIT 8  
BIT 0  
BIT 8  
(2)  
ADC DATA2  
(1)  
$DD  
$DE  
$DF  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
(2)  
ADC DATA3  
(1)  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
(2)  
ADC DATA4  
(1)  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
(2)  
Write Only Register Description  
RESET Register (Hex Address $01)  
The reset command has no data attached to it. It sets the device registers into the specific states listed below:  
REGISTER NAME  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(D7)  
0
0
(D6)  
0
0
(D5)  
0
0
(D4)  
0
0
(D3)  
0
0
(D2)  
0
0
(D1)  
0
0
(D0)  
0
0
CLOCK/IRQ CONTROL  
DAC CONTROL  
1
DAC1 DATA  
0
0
0
0
0
0
0
0
1
DAC2 DATA  
0
0
0
0
0
0
0
0
1
DAC3 DATA  
0
0
0
0
0
0
0
0
ADC CONTROL  
0
0
0
0
0
0
0
0
VARIABLE ATTENUATOR  
(1)  
(2)  
(1)  
(2)  
(1)  
(2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MAG COMP ONE LEVELS  
MAG COMP TWO LEVELS  
MAG COMP THREE LEVELS (1)  
(2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MAG COMP FOUR LEVELS  
(1)  
(2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Note 1: Default resolution is defined as 8-Bits.  
Consumer Microcircuits Limited  
10  
1997  
D/839/4  
Analogue Control Interface  
FX839  
CLOCK/IRQ CONTROL Register (Hex Address $D0)  
This register controls the ADC clock divide ratio:  
Bits 7 to 3  
Reserved for future use. These bits should be set to '0'.  
DIVIDER  
(Bit 2 to Bit 0)  
The input clock divide ratio, which sets the ADC clock frequency is defined in the  
following table:  
Bit 2  
Bit 1  
Bit 0  
Function  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Powersave  
÷1  
÷2  
÷4  
÷8  
÷16  
÷32  
÷64  
Consumer Microcircuits Limited  
11  
1997  
D/839/4  
Analogue Control Interface  
FX839  
VARIABLE ATTENUATOR Register (Hex address $D2)  
This is a 16-bit register. Byte (1) is sent first. Bits 0 - 5 of the first byte in this register are used to enable and  
set the attenuation of the Modulator 1 amplifier and bits 0 - 5 of the second byte in this register are used to  
enable and set the attenuation of the Modulator 2 amplifier, according to the tables below:  
BYTE 1  
0
BYTE 2  
0
5
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
Mod. 1 Attenuation  
5
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
Mod. 2 Attenuation  
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Disabled (VBIAS  
>40dB  
12.0dB  
11.6dB  
11.2dB  
10.8dB  
10.4dB  
10.0dB  
9.6dB  
9.2dB  
8.8dB  
8.4dB  
8.0dB  
7.6dB  
7.2dB  
6.8dB  
6.4dB  
6.0dB  
5.6dB  
5.2dB  
4.8dB  
4.4dB  
4.0dB  
3.6dB  
3.2dB  
2.8dB  
2.4dB  
2.0dB  
1.6dB  
1.2dB  
0.8dB  
0.4dB  
0dB  
)
X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Disabled (VBIAS  
>40dB  
6.0dB  
5.8dB  
5.6dB  
5.4dB  
5.2dB  
5.0dB  
4.8dB  
4.6dB  
4.4dB  
4.2dB  
4.0dB  
3.8dB  
3.6dB  
3.4dB  
3.2dB  
3.0dB  
2.8dB  
2.6dB  
2.4dB  
2.2dB  
2.0dB  
1.8dB  
1.6dB  
1.4dB  
1.2dB  
1.0dB  
0.8dB  
0.6dB  
0.4dB  
0.2dB  
0dB  
)
X = don't care  
MOD1 ENABLE  
(Bit 5, first byte)  
When this bit is '1' the MOD1 attenuator is enabled.  
When this bit is '0' the MOD1 attenuator is disabled (i.e. powersaved).  
MOD2 ENABLE  
When this bit is '1' the MOD2 attenuator is enabled.  
(Bit 5, second byte) When this bit is '0' the MOD2 attenuator is disabled (i.e. powersaved).  
(Bits 7 and 6, first  
and second bytes)  
Reserved for future use. These should be set to '0'.  
Consumer Microcircuits Limited  
12  
1997  
D/839/4  
Analogue Control Interface  
FX839  
DAC CONTROL Register (Hex address $D3)  
This register controls the resolution and the number of enabled DAC outputs:  
NBIT DAC1, NBIT DAC2, NBIT DAC3  
(Bit 7 to Bit 5)  
Bit 4  
These bits define the input resolutions for each of the four DACs. When 'NBIT  
DACn' is '0' the resolution of DACn is 8-Bits. When 'NBIT DACn is '1' the  
resolution of DACn is 10-Bits.  
Reserved for future use. This bit should be set to '0'.  
DAC1 ENABLE, DAC2 ENABLE, DAC3 ENABLE  
(Bit 3 to Bit 1)  
Bit 0  
These bits allow any one or more of the three DACs to be powered up. When '0'  
the DACn is powered down and the output is high impedance. When '1' the DAC  
is powered on and the output voltage is defined by the DAC Data Registers.  
Reserved for future use. This bit should be set to '0'.  
DAC1 DATA Register (Hex Address $D4)  
DAC2 DATA Register (Hex Address $D5)  
DAC3 DATA Register (Hex Address $D6)  
The data in these three registers sets the analogue voltage at the output of DAC1, DAC2 and DAC3. This data  
will consist of one or two bytes depending on the defined input resolution which is set by bits 7, 6 and 5 of the  
DAC Control Register. When operating with 10-bit resolution Bit 7 to Bit 2 of the DACn DATA Register second  
data byte must be set to "0".  
ADC CONTROL Register (Hex Address $D7)  
This register controls the resolution, active inputs and conversion modes of the ADC as described below:  
Bit 7  
Bit 6  
Reserved for future use. This bit should be set to '0'.  
Reserved for future use. This bit should be set to ‘1’.  
(On reset, this bit is set to ‘0’).  
READN  
(Bit 5)  
When this bit is set to '1' all active input channels are continuously sampled and  
the latest converted data stored for each channel. When this bit is set to ‘0’ all  
conversions are stopped so that they may be read.  
ADC1 ACTIVE, ADC2 ACTIVE, ADC3 ACTIVE, ADC4 ACTIVE  
(Bit 4 to Bit 1)  
These bits allow any one or more of the four ADC input channels to be enabled.  
When '0' the ADCINn input voltage is not converted. When '1' the ADCINn input  
is defined as active and the input voltage is converted.  
Note: ADC1 must always be enabled for any other channel to work.  
Reserved for future use. This bit should be set to ‘0’.  
(Bit 0)  
Consumer Microcircuits Limited  
13  
1997  
D/839/4  
Analogue Control Interface  
FX839  
MAG COMP ONE LEVELS  
MAG COMP TWO LEVELS  
(Hex Address $D8)  
(Hex Address $D9)  
MAG COMP THREE LEVELS (Hex Address $DA)  
MAG COMP FOUR LEVELS (Hex Address $DB)  
Each address controls the relevant numbered ADC magnitude comparator.  
The first byte, transmitted with the most significant bit first, sets the magnitude comparator upper reference  
level and the second byte sets the magnitude comparator lower reference level.  
When a reference level's value is set to '0' its IRQ is disabled.  
If a reference level’s value is set to ‘FF’, the level will correspond to:  
V
REF  
= AV x (255 / 256) [Volts]  
DD  
Read Only Register Description  
IRQ FLAGS Register (Hex Address $D1)  
HIRQF1,HIRQF2,HIRQF3,HIRQF4  
(Bit 1) (Bit 3) (Bit 5) (Bit 7)  
These bits are set if the relevant digital magnitude comparator input exceeds its  
upper reference level. These bits are reset to '0' immediately after reading the  
IRQ FLAGS register. When any of these bits are set, an interrupt will be  
generated if the relevant reference level is not zero.  
LIRQF1, LIRQF2, LIRQF3, LIRQF4  
(Bit 0) (Bit 2) (Bit 4) (Bit 6)  
These bits are set if the relevant digital magnitude comparator input falls below  
its lower reference level. These bits are reset to '0' immediately after reading the  
IRQ FLAGS register. When any of these bits are set, an interrupt will be  
generated if the relevant reference level is not zero.  
ADC DATA1 Register (Hex Address $DC)  
ADC DATA2 Register (Hex Address $DD)  
ADC DATA3 Register (Hex Address $DE)  
ADC DATA4 Register (Hex Address $DF)  
This data will consist of two bytes each. Bit 7 to Bit 2 of the second data byte will be set to '0'.  
Consumer Microcircuits Limited  
14  
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.6  
Application Notes  
1.6.1 General  
1.6.1.1 ‘C-BUS’ Clock  
Although this is specified as a 500kHz clock for compatibility with other ‘C-BUS’ devices, the FX839 ‘C-  
BUS’ will operate over a much wider range. Users should ensure that the ‘C-BUS’ clock is at least 4  
times slower than the crystal or external clock on Pin 2 of the FX839.  
Consumer Microcircuits Limited  
15  
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.7  
Performance Specification  
1.7.1 Electrical Performance  
Absolute Maximum Ratings  
Exceeding these maximum ratings can result in damage to the device.  
Min.  
Max.  
7.0  
Units  
V
V
mA  
mA  
mV  
Supply (V - V ) (either AV or DV )  
DD  
-0.3  
-0.3  
-30  
-20  
-100  
DD  
SS  
DD  
Voltage on any pin to V  
V
DD  
+ 0.3  
SS  
Current into or out of AV , DV and V pins  
+30  
+20  
+100  
DD  
DD  
SS  
Current into or out of any other pin  
AV - DV  
DD  
DD  
P4/D2 Package  
Total Allowable Power Dissipation at Tamb = 25°C  
... Derating  
Storage Temperature  
Operating Temperature  
Min.  
Max.  
800  
13  
+125  
+85  
Units  
mW  
mW/°C  
°C  
-55  
-40  
°C  
D5 Package  
Total Allowable Power Dissipation at Tamb = 25°C  
... Derating  
Storage Temperature  
Operating Temperature  
Min.  
Max.  
550  
9
+125  
+85  
Units  
mW  
mW/°C  
°C  
-55  
-40  
°C  
Operating Limits  
Correct operation of the device outside these limits is not implied.  
Notes  
Min.  
Max.  
5.5  
+85  
6.0  
Units  
V
°C  
Supply (V - V ) (either AV or DV )  
DD  
3.0  
-40  
0.5  
DD  
SS  
DD  
Operating Temperature  
Xtal Frequency  
MHz  
Consumer Microcircuits Limited  
16  
1997  
D/839/4  
Analogue Control Interface  
FX839  
Operating Characteristics  
For the following conditions unless otherwise specified:  
AV = DV = V = 3.3V to 5.0V, Tamb = - 40°C to +85°C.  
DD  
DD  
DD  
Notes  
Min.  
Typ.  
Max.  
Units  
DC Parameters  
Supply Voltage (DV  
)
)
3.0  
3.0  
-100  
-
-
-
-
5.0  
5.0  
-
250  
4.5  
150  
2.5  
5.5  
5.5  
100  
400  
7.0  
V
V
DD  
Supply Voltage (AV  
DD  
Supply Difference (AV - DV  
)
DD  
= 5V  
= 5V  
= 3.3V  
= 3.3V  
mV  
µA  
mA  
µA  
mA  
DD  
I
I
I
I
(powersaved)  
(not powersaved)  
(powersaved)  
V
V
V
V
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
250  
4.0  
(not powersaved)  
'C-BUS' Interface  
Input Logic '1'  
Input Logic '0'  
Input Leakage Current (Logic '1' and '0')  
Input Capacitance  
70%  
-1.0  
DV  
DV  
µA  
pF  
DD  
DD  
30%  
1.0  
7.5  
Output Logic '1' (I = 120µA)  
90%  
DV  
DV  
OH  
DD  
DD  
Output Logic '0' (I = 360µA)  
10%  
OL  
DACs and Output Buffers (Guaranteed monotonic)  
(a) Un-loaded Performance  
Resolution  
8 or 10  
Bits  
Internal DAC Settling Time (to 0.5 lsb)  
Integral non-linearity (8-Bit mode)  
Integral non-linearity (10-Bit mode)  
Differential non-linearity (8-Bit mode)  
Differential non-linearity (10-Bit mode)  
Buffer Slew Rate (with 20pF load)  
Buffer Output Resistance (open loop)  
Zero Error  
10.0  
3.0  
5.0  
1.0  
1.0  
TBD  
200  
20  
µs  
6
6
5
5
LSBs  
LSBs  
LSBs  
LSBs  
V/µs  
-20  
0
mV  
RMS Output Noise Voltage  
10  
µV  
(Low Pass Filter of 30kHz bandwidth)  
(b) Loaded Performance  
1
Output voltage with resistive load to ground  
(Digital code = 3FF  
)
4.79  
V
V
HEX  
Output voltage with resistive load to ground  
(Digital code = 200 , 10 Bit) or  
3
3
2.495  
HEX  
(Digital code = 80  
, 8 Bit)  
HEX  
Output voltage with resistive load to V  
DD  
(Digital code = 000  
)
200  
mV  
HEX  
Minimum Resistive Load  
1.0  
kΩ  
Consumer Microcircuits Limited  
17  
1997  
D/839/4  
Analogue Control Interface  
FX839  
Notes  
Min.  
Typ.  
Max.  
Units  
ADCs and Multiplexed Inputs  
(Guaranteed monotonic)  
Resolution  
10  
Bits  
Input signal 'linear rate of change'  
0.27  
mV/µs  
V
DD  
= 3.3V, f  
= (For 1 Bit error)  
adc_clk  
Conversion Time f  
= 1MHz  
adc_clk  
12  
µs  
LSBs  
LSBs  
mV  
Integral non-linearity  
Differential non-linearity  
Zero error  
2.0  
1.0  
20  
-20  
ADC Clock Frequency (f  
Input Capacitance  
)
1.0  
TBD  
TBD  
MHz  
pF  
adc_clk  
Variable Attenuators  
Nominal Adjustment Range (MOD1)  
(MOD2)  
Attenuation Accuracy  
0
0
-1.0  
0.2  
0.1  
12.0  
6.0  
1.0  
0.6  
0.3  
dB  
dB  
dB  
dB  
dB  
Step Size  
(MOD1)  
(MOD2)  
0.4  
0.2  
600  
100  
15.0  
Output Impedance  
Bandwidth (-3dB)  
Input Impedance (at 100Hz)  
2
2
kHz  
kΩ  
Magnitude Comparators and Interrupt  
Request  
Resolution  
8
Bits  
Output Logic '0' at IRQN (I = 360µA and  
10%  
10  
DV  
DD  
OL  
R2 = 22k± 10% to DV  
)
DD  
'Off' State Leakage Current at IRQN  
(Vout = DV  
µA  
)
DD  
Xtal/Clock Input  
Frequency Range  
'High' pulse width  
'Low' pulse width  
4
0.5  
40  
40  
6.0  
MHz  
ns  
ns  
Input Impedance (at 100Hz)  
Gain (I/P = 1mVrms at 100Hz)  
10  
20  
MΩ  
dB  
Notes: 1. The extremes of the DAC output range, when resistively loaded, are affected by the output  
impedance of the DAC buffer. Under these conditions the output impedance can approach  
200. However, when the output is operating well within the supply, the closed loop output  
impedance will be significantly lower thereby improving the loaded performance.  
2. Small signal impedance, at AV = 5V and Tamb = 25°C.  
DD  
Consumer Microcircuits Limited  
18  
1997  
D/839/4  
Analogue Control Interface  
FX839  
Notes: 3.  
R
= 5kAV = 5.0V.  
LOAD DD  
4. At V  
= 5.0V only. The ‘C-BUS’ clock must be at least 4 times slower than this xtal/clock  
DD  
frequency.  
5. Differential non-linearity is defined as the difference in width between adjacent code midpoints  
and the width of an ideal LSB, divided by the width of an ideal LSB.  
6. Integral non-linearity is defined as the width difference between an actual code midpoint and  
the line of best fit through all code midpoints, divided by the width of an ideal LSB.  
Consumer Microcircuits Limited  
19  
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.7.1 Electrical Performance (continued)  
Timing Diagrams  
Figure 4: 'C-BUS' Timing  
For the following conditions unless otherwise specified:  
DV = 3.3V to 5.0V, Tamb = -40°C to +85°C.  
DD  
Parameter  
Notes  
Min.  
2.0  
4.0  
-
Typ.  
Max.  
Units  
t
t
t
t
t
t
"CS-Enable to Clock-High"  
Last "Clock-High to CS-High"  
"CS-High to Reply Output 3-state"  
"CS-High" Time between transactions  
"Inter-Byte" Time  
-
µs  
µs  
µs  
µs  
µs  
µs  
CSE  
CSH  
HIZ  
-
2.0  
-
2.0  
4.0  
2.0  
CSOFF  
NXT  
CK  
-
"Clock-Cycle" time  
-
Notes: 1. Depending on the command, 1 or 2 bytes of COMMAND DATA are transmitted to the peripheral  
MSB (Bit 7) first, LSB (Bit 0) last. REPLY DATA is read from the peripheral MSB (Bit 7) first, LSB  
(Bit 0) last.  
2. Data is clocked into and out of the peripheral on the rising SERIAL CLOCK edge.  
3. Loaded commands are acted upon at the end of each command.  
4. To allow for differing µController serial interface formats 'C-BUS' compatible ICs are able to work  
with either polarity SERIAL CLOCK pulses.  
Consumer Microcircuits Limited  
20  
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.7.2 Packaging  
Figure 5: D2 Mechanical Outline: Order as part no. FX839D2  
Figure 6: D5 Mechanical Outline: Order as part no. FX839D5  
Consumer Microcircuits Limited  
21  
1997  
D/839/4  
Analogue Control Interface  
FX839  
1.7.2 Packaging  
Figure 7: P4 Mechanical Outline: Order as part no. FX839P4  
Handling precautions: This product includes input protection, however, precautions should be taken to  
prevent device damage from electro-static discharge. CML does not assume any responsibility for the  
use of any circuitry described. No IPR or circuit patent licences are implied. CML reserves the right at  
any time without notice to change the said circuitry and this product specification. CML has a policy of  
testing every product shipped using calibrated test equipment to ensure compliance with this product  
specification. Specific testing of all circuit parameters is not necessarily performed.  
CONSUMER MICROCIRCUITS LIMITED  
1 WHEATON ROAD  
WITHAM - ESSEX  
CM8 3TD - ENGLAND  
Telephone:  
Telefax:  
e-mail:  
+44 1376 513833  
+44 1376 518247  
sales@cmlmicro.co.uk  
http://www.cmlmicro.co.uk  

相关型号:

FX851

DC-DC Converter Applications
SANYO

FX852

DC-DC Converter Applications
SANYO

FX853

DC-DC Converter Applications
SANYO

FX854

DC-DC Converter Applications
SANYO

FX855

DC-DC Converter Applications
SANYO

FX8C-060/060P11-SV1J

0.6mm Pitch Stacking Height 3mm to 16mm Connector
HRS

FX8C-060/060P11-SV1J(71)

Board Stacking Connector, 60 Contact(s), 2 Row(s), Male, Straight, Surface Mount Terminal, ROHS COMPLIANT
HRS

FX8C-060/060P11-SV2J

0.6mm Pitch Stacking Height 3mm to 16mm Connector
HRS

FX8C-060/060P11-SV2J(71)

Board Stacking Connector, 60 Contact(s), 2 Row(s), Male, Straight, Surface Mount Terminal, ROHS COMPLIANT
HRS

FX8C-060/060P11-SV4J

0.6mm Pitch Stacking Height 3mm to 16mm Connector
HRS

FX8C-060/060P11-SV4J(71)

Board Stacking Connector, 60 Contact(s), 2 Row(s), Male, Straight, Surface Mount Terminal, ROHS COMPLIANT
HRS