CPC7583ZATR [CLARE]

Line Card Access Switch; 线卡接入交换机
CPC7583ZATR
型号: CPC7583ZATR
厂家: CLARE    CLARE
描述:

Line Card Access Switch
线卡接入交换机

电信集成电路 光电二极管
文件: 总21页 (文件大小:619K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Not for New Designs  
CPC7583  
Line Card Access Switch  
Features  
Description  
Small 20-pin or 28-pin SOIC or 28-pin DFN  
DFN version provides 65% PCB area reduction over  
The CPC7583 is a monolithic 10-pole line card access  
switch in a 20- or 28-pin SOIC or a 28-pin DFN  
package. It provides the necessary functions to  
replace three 2-Form-C electromechanical relays on  
analog line cards and combined voice and data line  
cards found in central office, access, and PBX  
equipment. The device contains solid state switches  
for tip and ring line break, ringing injection/ringing  
return, and test access. The CPC7583 requires only a  
+5 V supply and offers break-before-make or  
make-before-break switch operation.  
th  
4 generation EMRs  
Monolithic IC reliability  
Low, matched, R  
Eliminates the need for zero-cross switching  
Flexible switch timing for transition from ringing  
mode to talk mode.  
ON  
Clean, bounce-free switching  
SLIC tertiary protection via integrated current  
limiting, voltage clamping and thermal shutdown  
5 V operation with power consumption < 10.5 mW  
Intelligent battery monitor  
Ordering Information  
Logic-level inputs, no external drive circuitry required  
SOIC versions pin-compatible with Legerity  
7583/8583 family  
CPC7583 part numbers are specified as shown here:  
B - 28-pin SOIC delivered 29/Tube, 1000/Reel  
M - 28-pin DFN delivered 33/Tube, 1000/Reel  
Z - 20-pin SOIC delivered 40/Tube, 1000/Reel  
Applications  
Central office (CO)  
CPC7583 x x xx  
Digital Loop Carrier (DLC)  
PBX Systems  
Digitally Added Main Line (DAML)  
Hybrid Fiber Coax (HFC)  
Fiber in the Loop (FITL)  
Pair Gain System  
TR - Add for Tape & Reel Version  
A - With Protection SCR  
B - Without Protection SCR  
C - With Extra Logic State and With Protection SCR  
D - With Extra Logic State and Without Protection SCR  
Channel Banks  
(TCHANTEST  
)
TTESTIN  
+5 Vdc  
12 VDD  
(TDROPTEST  
)
TTESTOUT  
TRING  
10  
8
5
SXW7  
CPC7583  
XSW5  
SW3  
Tip  
X
XSW9  
6 TBAT  
TLINE  
7
X
SW1  
Secondary  
Protection  
SLIC  
Ring  
SW2  
X
SW4  
R
23  
17  
16  
15  
RLINE  
22  
BAT  
INTESTIN  
L
A
T
C
H
SW10  
SW6  
X
X
X
SCR  
and  
Trip  
Switch  
Control  
Logic  
INRINGING  
INTESTOUT  
VREF  
X
Circuit  
18  
LATCH  
SW8  
19  
20  
300Ω (min.)  
24  
1
28  
VBAT  
NOTE: Pin assignments are for the 28 pin package.  
14 13  
DGND  
R
R
TESTOUT (RDROPTEST)  
FGND  
TSD  
RINGING  
VBAT  
TESTIN (RCHANTEST  
)
RoHS  
2002/95/EC  
Pb  
e3  
DS-CPC7583-R06  
www.clare.com  
1
CPC7583  
1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1 Package Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2 Pinout Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.4 ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.5 General Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.6 Switch Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.6.1 Break Switches, SW1 and SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.6.2 Ringing Return Switch, SW3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.6.3 Ringing Switch, SW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.6.4 TEST  
Switches, SW5 and SW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.6.5 Ringing Test Return Switch, SW7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
OUT  
1.6.6 Ringing Test Switch, SW8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1.6.7 TEST Switches, SW9 and SW10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
In  
1.7 Additional Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
1.8 Protection Circuitry Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.9 Truth Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.9.1 Truth Table for CPC7583xA and CPC7583xB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1.9.2 Truth Table for CPC7583xC and CPC7583xD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.2 Switch Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.2.1 Make-Before-Break Operation (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.2.2 Break-Before-Make Operation (Ringing to Talk Transition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.3 Alternate Break-Before-Make Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.4 Data Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.5 T Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
SD  
2.6 Ringing Switch Zero-Cross Current Turn Off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.7 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.8 Battery Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.9 Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.9.1 Diode Bridge/SCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.9.2 Current Limiting function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.10 Temperature Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.11 External Protection Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3 Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1 Mechanical Dimensions and PCB Land Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1.1 CPC7583Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1.2 CPC7583B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1.3 CPC7583M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.2 Tape and Reel Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.2.1 CPC7583Z (20-Pin SOIC) - Tape and Reel Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.2.2 CPC7583B (28-Pin SOIC) - Tape and Reel Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.2.3 CPC7583M (28-Pin DFN) - Tape and Reel Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.3 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.3.1 Moisture Reflow Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.3.2 Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.4 Washing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2
www.clare.com  
R06  
CPC7583  
1. Specifications  
1.1 Package Pinout  
1.2 Pinout Description  
20 28  
Name  
CPC7583B &  
CPC7583M  
Description  
Pin Pin  
F
1
1
2
3
4
5
Fault ground.  
GND  
VBAT  
28  
FGND  
1
NC  
NC  
NC  
No connection.  
No connection.  
No connection.  
2
3
4
5
27 NC  
26 NC  
NC  
NC  
T
2
3
4
5
Tip lead of the TESTin bus.  
Tip lead of the SLIC.  
Tip lead of the line side.  
Ringing generator return.  
Not connected.  
TESTin  
NC  
25  
24  
23  
22  
NC  
T
6
7
BAT  
TTESTin  
RTESTin  
T
LINE  
TBAT  
RBAT  
6
7
8
T
8
RINGING  
RLINE  
TLINE  
9
NC  
TRINGING  
21 NC  
T
TESTout  
6
7
8
9
10  
11  
12  
13  
Tip lead of the TESTout bus.  
No connection.  
NC  
R
NC  
9
20  
RINGING  
V
+5 V supply.  
DD  
TTESTout  
RTESTout  
10  
11  
12  
19  
18  
17  
T
Temperature shutdown pin.  
Digital ground.  
SD  
NC  
LATCH  
INTESTin  
D
10 14  
11 15  
12 16  
13 17  
GND  
VDD  
IN  
IN  
Logic control input.  
Logic control input.  
Logic control input.  
TESTout  
INRINGING  
16  
15  
13  
14  
TSD  
RINGING  
DGND  
INTESTout  
IN  
TESTin  
14 18 LATCH Data latch enable control input.  
R
15 19  
16 20  
21  
Ring lead of the TESTout bus.  
Ringing generator source.  
No connection.  
TESTout  
R
RINGING  
NC  
R
17 22  
18 23  
Ring lead of the line side.  
Ring lead of the SLIC.  
LINE  
CPC7583Z  
R
BAT  
FGND  
TTESTIN  
TBAT  
VBAT  
1
20  
R
19 24  
25  
Ring lead of the TESTin bus.  
No connection.  
TESTin  
RTESTIN  
RBAT  
2
3
4
5
6
7
8
19  
NC  
18  
17  
26  
NC  
No connection.  
TLINE  
RLINE  
27  
NC  
No connection.  
V
20 28  
Battery supply.  
TRINGING  
TTESTOUT  
RRINGING  
BAT  
16  
15 RTESTOUT  
14  
13  
12  
NC  
VDD  
LATCH  
INTESTIN  
TSD  
INRINGING  
9
DGND  
11 INTESTOUT  
10  
R06  
www.clare.com  
3
CPC7583  
1.3 Absolute Maximum Ratings  
1.4 ESD Rating  
Parameter  
Minimum Maximum  
Unit  
Operating temperature  
Storage temperature  
-40  
-40  
5
+110  
+150  
95  
°C  
°C  
%
V
ESD Rating (Human Body Model)  
1000 V  
Operating relative humidity  
+5 V power supply (V  
Battery Supply  
)
-0.3  
-
7
DD  
1.5 General Conditions  
-85  
V
Unless otherwise specified, minimum and maximum  
values are production testing requirements.  
D
to F  
GND  
GND  
-5  
-0.3  
-
+5  
V
V
V
separation  
V
+0.3  
Logic input voltage  
DD  
Typical values are characteristic of the device at 25°C  
and are the result of engineering evaluations. They are  
provided for informational purposes only and are not  
part of the manufacturing testing requirements.  
Logic input to switch output  
isolation  
320  
Switch open contact  
isolation (SW1, SW2, SW3,  
SW5, SW6, SW7, SW9,  
SW10)  
-
320  
V
Specifications cover the operating temperature range  
T = -40°C to +85°C. Also, unless otherwise specified  
A
all testing is performed with V = +5V , logic low  
DD  
dc  
Switch open contact  
isolation (SW4)  
-
-
465  
235  
V
V
input voltage is 0V and logic high input voltage is  
dc  
+5V .  
dc  
Switch open contact  
isolation (SW8)  
Absolute maximum electrical ratings are at 25°C  
Absolute maximum ratings are stress ratings. Stresses in  
excess of these ratings can cause permanent damage to  
the device. Functional operation of the device at conditions  
beyond those indicated in the operational sections of this  
data sheet is not implied.  
4
www.clare.com  
R06  
CPC7583  
1.6 Switch Specifications  
1.6.1 Break Switches, SW1 and SW2  
Parameter  
Test Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
(differential) = -320 V to gnd  
(differential) = +260 V to -60 V  
SW  
+25° C  
0.1  
0.3  
0.1  
V
SW  
V
(differential) = -330 V to gnd  
(differential) = +270 V to -60 V  
SW  
I
+85° C  
-
1
μA  
SW  
V
SW  
V
(differential) = -310 V to gnd  
(differential) = +250 V to -60 V  
SW  
-40° C  
V
SW  
R
ON  
+25° C  
14.5  
20.5  
10.5  
-
28  
-
I
(on) = 10 mA, 40 mA,  
and T = -2 V  
SW  
R
+85° C  
-40° C  
ON  
R
BAT  
BAT  
-
Ω
Per on-resistance test condition of SW1  
& SW2  
R
match  
ΔR  
0.15  
0.8  
ON  
ON  
DC current limit  
+25° C  
-
80  
-
225  
150  
400  
-
V
(on) = 10 V  
+85° C  
mA  
A
SW  
-40° C  
425  
I
SW  
Break switches on, ringing switches off,  
apply 1 kV 10x1000 μs pulse, with  
appropriate protection in place.  
Dynamic current limit  
(t 0.5 μs)  
-
2.5  
-
Logic input to switch output isolation  
V
(T , R ) = 320 V, logic  
SW LINE LINE  
+25° C  
+85° C  
-
-
0.1  
0.3  
inputs = gnd  
(T , R ) = 330 V, logic  
V
SW LINE LINE  
I
1
-
μA  
SW  
inputs = gnd  
(T , R ) = 310 V, logic  
V
SW LINE LINE  
-40° C  
-
-
0.1  
inputs = gnd  
dv/dt sensitivity  
-
-
200  
V/μs  
R06  
www.clare.com  
5
CPC7583  
1.6.2 Ringing Return Switch, SW3  
Parameter  
Test Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
(differential) = -320 V to gnd  
(differential) = +260 V to -60 V  
SW  
+25° C  
0.1  
0.3  
0.1  
V
SW  
V
(differential) = -330 V to gnd  
(differential) = +270 V to -60 V  
SW  
I
+85° C  
-
1
μA  
SW  
V
SW  
V
(differential) = -310 V to gnd  
(differential) = +250 V to -60 V  
SW  
-40° C  
V
SW  
R
ON  
+25° C  
60  
85  
45  
-
110  
-
I
(on) = 0 mA, 10 mA  
R
+85° C  
-
Ω
SW  
ON  
-40° C  
DC current limit  
+25° C  
-
120  
85  
V
(on) = 10 V  
+85° C  
70  
mA  
A
SW  
-40° C  
210  
I
-
SW  
Break switches off, ringing switches on,  
apply 1 kV 10x1000 μs pulse, with  
appropriate protection in place.  
-
Dynamic current limit  
(t 0.5 μs)  
2.5  
Logic input to switch output isolation  
V
(T  
SW RING LINE  
, T ) = 320 V, logic  
+25° C  
+85° C  
0.1  
0.3  
inputs = gnd  
(T , T ) = 330 V, logic  
V
SW RING LINE  
I
-
-
1
-
μA  
SW  
inputs = gnd  
(T , T ) = 310 V, logic  
V
SW RING LINE  
-40° C  
0.1  
inputs = gnd  
dv/dt sensitivity  
-
-
200  
V/μs  
6
www.clare.com  
R06  
CPC7583  
1.6.3 Ringing Switch, SW4  
Parameter  
Test Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
V
(differential) = -255 V to +210 V  
(differential) = +255 V to -210 V  
SW  
+25° C  
+85° C  
-40° C  
0.05  
0.1  
1
1
SW  
V
V
(differential) = -270 V to +210 V  
(differential) = +270 V to -210 V  
SW  
I
μA  
SW  
SW  
V
V
(differential) = -245 V to +210 V  
(differential) = +245 V to -210 V  
SW  
0.05  
1.5  
1
3
SW  
I
(on) = 1 mA  
On Voltage  
-
V
SW  
-
Ringing generator  
current to ground during Inputs set for ringing mode  
ringing  
I
0.1  
0.25  
mA  
RINGING  
I
On steady-state current* Inputs set for ringing mode  
-
-
150  
2
mA  
A
SW  
Surge current*  
Release current  
-
-
I
-
450  
10  
-
μA  
Ω
RINGING  
R
I
(on) = 70 mA, 80 mA  
R
15  
ON  
SW  
ON  
Logic input to switch output isolation  
V
(R  
SW RING LINE  
, R ) = 320 V, logic  
+25° C  
+85° C  
0.1  
0.3  
inputs = gnd  
(R , R ) = 330 V, logic  
V
SW RING LINE  
I
1
-
μA  
SW  
inputs = gnd  
(R , R ) = 310 V, logic  
-
V
SW RING LINE  
-40° C  
0.1  
inputs = gnd  
dv/dt sensitivity  
-
-
200  
V/μs  
*Secondary protection and ringing source current limiting must prevent exceeding this parameter.  
R06  
www.clare.com  
7
CPC7583  
1.6.4 TEST  
Switches, SW5 and SW6  
OUT  
Parameter  
Test Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
(differential) = -320 V to gnd  
(differential) = +260 V to -60 V  
SW  
+25° C  
0.1  
0.3  
0.1  
V
SW  
V
(differential) = -330 V to gnd  
(differential) = +260 V to -60 V  
SW  
I
+85° C  
-
1
μA  
SW  
V
SW  
V
(differential) = -310 V to gnd  
(differential) = +250 V to -60 V  
SW  
-40° C  
V
SW  
R
ON  
+25° C  
35  
50  
26  
-
70  
-
I
(on) = 10 mA, 40 mA  
R
+85° C  
-
Ω
SW  
ON  
-40° C  
DC current limit  
+25° C  
-
80  
-
140  
100  
210  
-
-
V
(on) = 10 V  
+85° C  
mA  
A
SW  
-40° C  
250  
I
SW  
Break switches in on state, ringing  
switches off, apply 1 kV at  
Dynamic current limit  
(t 0.5 μs)  
-
2.5  
-
10x1000 μs pulse, with appropriate  
secondary protection in place.  
Logic input to switch output isolation  
V
(T  
, T , R  
, R  
SW TESTout LINE TESTout LINE  
)
)
)
I
+25° C  
+85° C  
-
-
-
0.1  
0.3  
1
1
μA  
μA  
SW  
= 320 V, logic inputs = gnd  
(T , T , R  
V , R  
SW TESTout LINE TESTout LINE  
I
SW  
= 330 V, logic inputs = gnd  
(T , T , R  
V , R  
SW TESTout LINE TESTout LINE  
I
-40° C  
0.1  
1
-
μA  
SW  
= 310 V, logic inputs = gnd  
-
dv/dt sensitivity  
-
200  
V/μs  
8
www.clare.com  
R06  
CPC7583  
1.6.5 Ringing Test Return Switch, SW7  
Parameter  
Test Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
(differential) = -320 V to gnd  
(differential) = +260 to -60 V  
SW  
+25° C  
0.1  
0.3  
0.1  
V
SW  
V
(differential) = -330 V to gnd  
(differential) = +270 V to -60 V  
SW  
I
+85° C  
-
1
μA  
SW  
V
SW  
V
(differential) = -310 V to gnd  
(differential) = +250 V to -60 V  
SW  
-40° C  
V
SW  
R
ON  
+25° C  
60  
85  
45  
-
100  
-
I
(on) = 10 mA, 40 mA  
R
+85° C  
-
Ω
SW  
ON  
-40° C  
DC current limit  
+25° C  
120  
80  
V
(on) = 10 V  
I
+85° C  
70  
-
mA  
SW  
SW  
-40° C  
210  
Logic input to switch output isolation  
V
(T  
, T  
SW RING TESTin  
) = 320 V, logic  
) = 330 V, logic  
) = 310 V, logic  
+25° C  
+85° C  
0.1  
0.3  
inputs = gnd  
(T , T  
V
SW RING TESTin  
I
-
1
-
μA  
SW  
inputs = gnd  
(T , T  
V
SW RING TESTin  
-40° C  
0.1  
inputs = gnd  
dv/dt sensitivity  
-
-
200  
V/μs  
R06  
www.clare.com  
9
CPC7583  
1.6.6 Ringing Test Switch, SW8  
Parameter  
Test Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
+25° C  
0.05  
0.1  
V
(differential) = -60 V to +175 V  
= 1 mA  
I
+85° C  
1
μA  
SW  
SW  
-40° C  
0.05  
0.75  
-
I
I
On Voltage  
-
1.5  
V
Ω
SW(ON)  
R
= 70 mA, 80 mA  
-
R
35  
-
-
ON  
SW(ON)  
ON  
Release Current  
-
450  
μA  
Logic input to switch output isolation  
V
(R  
, R  
SW RING TESTin  
) = 320 V, logic  
) = 330 V, logic  
) = 310 V, logic  
+25° C  
+85° C  
0.1  
0.3  
inputs = gnd  
(R , R  
V
SW RING TESTin  
I
-
1
μA  
SW  
inputs = gnd  
(R , R  
V
SW RING TESTin  
-40° C  
0.1  
inputs = gnd  
dv/dt sensitivity  
-
-
200  
-
V/μs  
1.6.7 TEST Switches, SW9 and SW10  
In  
Parameter  
Test Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
(differential) = -320 V to gnd  
(differential) = -60 V to +260 V  
SW  
+25° C  
0.1  
0.3  
0.1  
V
SW  
V
(differential) = -330 V to gnd  
(differential) = -60 V to +270 V  
SW  
I
+85° C  
-
1
μA  
SW  
V
SW  
V
(differential) = -310 V to gnd  
(differential) = -60 V to +250 V  
SW  
-40° C  
V
SW  
R
ON  
+25° C  
35  
50  
26  
-
70  
-
I
(on) = 10 mA, 40 mA  
R
+85° C  
-
Ω
SW  
ON  
-40° C  
DC current limit  
+25° C  
-
80  
-
160  
110  
210  
-
-
V
(on) = 10 V  
I
+85° C  
mA  
SW  
SW  
-40° C  
250  
Logic input to switch output isolation  
V
(T  
, R  
) = 320 V, logic  
) = 330 V, logic  
) = 310 V, logic  
SW TESTin TESTin  
+25° C  
+85° C  
0.1  
0.3  
inputs = gnd  
(T  
V
, R  
SW TESTin TESTin  
I
-
1
-
μA  
SW  
inputs = gnd  
(T  
V
, R  
SW TESTin TESTin  
-40° C  
0.1  
inputs = gnd  
dv/dt sensitivity  
-
-
200  
V/μs  
10  
www.clare.com  
R06  
CPC7583  
1.7 Additional Electrical Characteristics  
Parameter  
Digital Inputs  
Test Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
V
Input low voltage  
Input high voltage  
-
-
-
-
-
1.5  
-
IL  
V
V
3.5  
IH  
Input leakage current  
(high)  
V
V
= 5.5 V, V = -75 V, V = 5 V  
BAT IH  
I
-
-
0.1  
0.1  
1
1
DD  
IH  
μA  
Input leakage current  
(low)  
= 5.5 V, V = -75 V, V = 0 V  
BAT IL  
I
DD  
IL  
Voltage Requirements  
V
V
-
-
4.5  
-19  
5.0  
-
5.5  
-72  
V
V
DD  
DD  
1
V
V
BAT  
BAT  
1
V
is used only for internal protection circuitry. If V  
goes more positive than -10 V, the device will enter the all-off state and will remain in the all-off state until  
BAT  
BAT  
the battery goes more negative than -15 V  
Power Requirements  
V
= 5 V, V = -48 V, measure I  
BAT  
Power consumption in  
talk and all-off states  
DD  
DD  
P
P
-
-
3.5  
5.0  
0.7  
7.5  
10.5  
1.5  
and I  
BAT  
mW  
V
= 5 V, V = -48 V, measure I  
BAT  
Power consumption in  
any other state  
DD  
DD  
and I  
BAT  
V
current in talk and  
DD  
I
I
DD  
DD  
all-off states  
current in any other  
V
= 5 V, V = -48 V  
BAT  
mA  
DD  
V
DD  
-
-
1.0  
4
1.9  
10  
state  
V
current in any state V = 5V, V = -48 V  
DD BAT  
I
BAT  
μA  
BAT  
Temperature Shutdown Requirements (temperature shutdown flag is active low)  
Shutdown activation  
temperature  
T
110  
10  
125  
-
150  
25  
°C  
°C  
Not production tested - limits are  
guaranteed by design and Quality  
Control sampling audits.  
SD_on  
Shutdown circuit  
hysteresis  
T
SD_off  
R06  
www.clare.com  
11  
CPC7583  
1.8 Protection Circuitry Electrical Specifications  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Parameters Related to the Diodes in the Diode Bridge  
Voltage drop at  
Apply dc current limit of break  
continuous current  
switches  
Forward  
Voltage  
-
-
2.8  
5
3.5  
-
(50/60 Hz)  
V
Voltage drop at surge Apply dynamic current limit of break  
switches  
Forward  
Voltage  
current  
Parameters Related to the Protection SCR (CPC7583xA and CPC7583xC)  
Surge current  
-
-
-
-
*
-
-
-
-
A
I
I
+25° C  
+85° C  
+25° C  
+85° C  
200  
120  
265  
170  
TRIG  
TRIG  
Trigger current  
mA  
I
I
HOLD  
HOLD  
Hold current  
100  
V
or  
TBAT  
§
V
-4  
V
-2  
Gate trigger voltage  
Reverse leakage current  
On-state voltage  
-
V
I
= I  
GATE TRIGGER  
BAT  
BAT  
V
RBAT  
V
= -48 V  
I
-
1.0  
μA  
V
BAT  
VBAT  
-
0.5 A, t = 0.5 μs  
2.0 A, t = 0.5 μs  
V
or  
-3  
-5  
-
-
TBAT  
V
V
RBAT  
*Passes GR1089 and ITU-T K.20 with appropriate secondary protection in place.  
§
BAT  
V
must be capable of sourcing I  
for the internal SCR to activate.  
TRIGGER  
1.9 Truth Tables  
1.9.1 Truth Table for CPC7583xA and CPC7583xB  
Ringing  
Test  
Switches  
TEST  
TEST  
Break  
Switches  
Ringing  
Switches  
IN  
OUT  
IN  
IN  
IN  
T
SD  
State  
Latch  
RINGING  
TESTIN  
TESTOUT  
Switches  
Switches  
Talk  
0
0
0
0
0
1
0
1
0
Off  
Off  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
TESTout  
TESTin  
Simultaneous  
TESTin and  
TESTout  
0
1
1
1
0
1
1
0
0
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
On  
Off  
On  
Off  
Off  
0
1 or  
Ringing  
1
Floating  
Ringing  
Generator  
Test  
Latched  
X
1
1
X
X
0
1
X
X
1
1
X
1
0
0
X
Unchanged Unchanged Unchanged Unchanged Unchanged  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
All Off  
2
0
1
2
If T is tied high, thermal shutdown is disabled. If T is left floating, the thermal shutdown mechanism functions normally.  
SD SD  
Forcing T to ground overrides the logic input pins and forces an all off state.  
SD  
12  
www.clare.com  
R06  
CPC7583  
1.9.2 Truth Table for CPC7583xC and CPC7583xD  
Ringing  
Test  
Switches  
TEST  
TEST  
Break  
Switches  
Ringing  
Switches  
IN  
OUT  
IN  
IN  
IN  
T
SD  
State  
Latch  
RINGING  
TESTIN  
TESTOUT  
Switches  
Switches  
Talk  
0
0
0
0
0
1
0
1
0
Off  
Off  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
TESTout  
TESTin  
Simultaneous  
TESTin and  
TESTout  
0
1
1
1
0
1
1
0
0
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
On  
Off  
On  
Off  
Off  
Ringing  
0
Ringing  
Generator  
Test  
1 or  
1
Floating  
Simultaneous  
TESTout and  
Ringing  
1
1
1
Off  
Off  
On  
Off  
On  
Generator  
Test  
Latched  
X
1
X
0
X
1
1
0
X
Unchanged Unchanged Unchanged Unchanged Unchanged  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
All Off  
2
X
X
X
0
1
2
If T is tied high, thermal shutdown is disabled. If T is left floating, the thermal shutdown mechanism functions normally.  
SD SD  
Forcing T to ground overrides the logic input pins and forces an all off state.  
SD  
R06  
www.clare.com  
13  
CPC7583  
2. Functional Description  
2.1 Introduction  
The CPC7583 has the following states:  
minimize the stress on the solid-state contacts, use of  
a foldback or crowbar type secondary protector is  
recommended. With proper selection of the secondary  
protector, a line card using the CPC7583 will meet all  
relevant ITU, LSSGR, TIA/EIA and IEC protection  
requirements.  
Talk. Loop break switches SW1, and SW2 closed, all  
other switches open.  
Ringing. Ringing switches SW3, SW4 closed, all  
other switches open.  
TESTout. Testout switches SW5, SW6 closed, all  
other switches open.  
Ringing generator test. SW7, SW8 closed, all  
other switches open.  
TESTin. Testin switches SW9 and SW10 closed.  
Simultaneous TESTin and TESTout. SW9, SW10,  
SW5, and SW6 closed, all other switches open.  
Simultaneous test out and ringing generator  
test. SW5, SW6, SW7, and SW8 closed, all other  
switches open (only on the xC and xD versions).  
All Off. All switches open.  
The CPC7583 operates from a +5 V supply only. This  
gives the device extremely low idle and active power  
consumption and allows use with virtually any range of  
battery voltage. The battery voltage is also used by the  
CPC7583 as a reference for the integrated protection  
circuit. In the event of a loss of battery voltage, the  
CPC7583 enters the all-off state.  
2.2 Switch Logic  
The CPC7583 provides, when switching from the  
ringing state to the talk state, the ability to control the  
release timing of the ringing switches SW3 and SW4  
relative to the state of the loop break switches SW1  
and SW2 using simple logic-level input. This is  
referred to as a make-before-break or  
break-before-make operation. When the line break  
switch contacts (SW1 and SW2) are closed (or made)  
before the ringing access switch contacts (SW3 and  
SW4) are opened (broken), this is referred to as  
make-before-break operation. Break-before-make  
operation occurs when the ringing access contacts  
(SW3 and SW4) are opened (broken) before the line  
break switch contacts (SW1 and SW2) are closed  
(made). With the CPC7583, the make-before-break  
and break-before-make operations can easily be  
selected by applying the proper sequence of logic  
See “Truth Tables” on page 12 for more information.  
The CPC7583 offers break-before-make and  
make-before-break switching from the ringing state to  
the talk state with simple logic level input control.  
Solid-state switch construction means no impulse  
noise is generated when switching during ringing  
cadence or ring trip, eliminating the need for external  
zero-cross switching circuitry. State-control is via  
logic-level input so no additional driver circuitry is  
required. The linear line break switches SW1 and  
SW2 have exceptionally low R and excellent  
ON  
matching characteristics. The ringing switch SW4 has  
a minimum open contact breakdown voltage of 465 V.  
This is sufficiently high, with proper protection, to  
prevent breakdown in the presence of a transient fault  
condition (i.e., passing the transient on to the ringing  
generator).  
inputs to IN  
, IN  
, and IN  
.
TESTout  
RINGING  
TESTin  
The logic sequences for either mode of operation are  
given in “Make-Before-Break Operation (Ringing to Talk  
Transition)” on page 15 and “Break-Before-Make Operation  
(Ringing to Talk Transition)” on page 15. Logic states and  
explanations are given in “Truth Tables” on page 12.  
Integrated into the CPC7583 is an over voltage  
clamping circuit, active current limiting, and a thermal  
shutdown mechanism to provide protection to the  
SLIC device during a fault condition. Positive and  
negative surges are reduced by the current limiting  
circuitry and hazardous potentials are diverted to  
ground via diodes and the integrated SCR.  
Break-before-make operation can also be achieved  
using the T pin as an input. In “Break-Before-Make  
SD  
Operation (Ringing to Talk Transition)” on page 15, lines 2  
and 3, it is possible to induce the switches to the all-off  
Power-cross potentials are also reduced by the current  
limiting and thermal shutdown circuits.  
state by grounding T instead of applying input to the  
SD  
logic pins. This has the effect of overriding the logic  
inputs and forcing the device to the all-off state. For  
To protect the CPC7583 from an overvoltage fault  
condition, the use of a secondary protector is required.  
The secondary protector must limit the voltage seen at  
the T  
and R  
terminals to a level below the  
LINE  
LINE  
maximum breakdown voltage of the switches. To  
14  
www.clare.com  
R06  
CPC7583  
20 Hz ringing hold this input state for 25 ms. During  
this hold period, toggle the inputs from the ringing  
state to the talk state. After the 25 ms, release T to  
SD  
return switch control to the input pins IN  
,
TESTout  
IN  
, IN  
and the latch control pin.  
RINGING  
TESTin  
2.2.1 Make-Before-Break Operation (Ringing to Talk Transition)  
Break  
Ring  
Switches Return Access  
Ring All Other  
IN  
IN  
IN  
T
SD  
State  
Latch  
Timing  
Test  
1 and 2 Switch 3 Switch 4 Switches  
RINGING  
TESTIN  
TESTOUT  
Ringing  
1
0
0
Floating  
-
Off  
On  
On  
Off  
On  
On  
Off  
SW4 waiting for next  
zero-current crossing to turn  
off. Maximum time is one-half  
of ringing. In this transition  
Make-  
before-  
break  
0
0
0
Floating state, current that is limited to  
the dc break switch current  
limit value will be sourced  
from the ring node of the  
SLIC.  
Off  
0
Zero-cross current has  
Talk  
0
0
0
Floating  
occurred  
On  
Off  
Off  
Off  
2.2.2 Break-Before-Make Operation (Ringing to Talk Transition)  
Break  
Ring  
Ring All Other  
Test  
1 and 2 Switch 3 Switch 4 Switches  
IN  
IN  
IN  
T
SD  
State  
Latch  
Timing  
Switches Return Access  
RINGING  
TESTIN  
TESTOUT  
Ringing  
All off  
1
1
0
0
0
1
Floating  
-
Off  
On  
On  
Off  
Hold this state for one-half of  
Floating ringing cycle. SW4 waiting for  
zero current to turn off.  
Off  
Off  
On  
Off  
0
Zero current has occurred.  
Floating  
All off  
Talk  
1
0
0
0
1
0
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off  
SW4 has opened  
Floating  
Close break switches  
2.3 Alternate Break-Before-Make Operation  
Note that break-before-make operation can also be  
2.4 Data Latch  
The CPC7583 has an integrated data latch. The latch  
achieved using T as an input. In lines 2 and 3 of the  
operation is controlled by logic-level input at the  
SD  
LATCH pin. The data input of the latch are the input  
pins, while the output of the data latch is an internal  
node used for state control. When the LATCH control  
pin is at logic 0, the data latch is transparent and data  
control signals flow directly through to state control. A  
change in input will be reflected by a change in switch  
state. When the LATCH control pin is at logic 1, the  
data latch is active and a change in input control will  
not affect switch state. The switches will remain in the  
position they were in when the LATCH changed from  
table “Break-Before-Make Operation (Ringing to Talk  
Transition)” on page 15, instead of using the logic input  
pins to force the all-off state, force T to ground. This  
SD  
overrides the logic inputs and also forces the all off  
state. Hold this state for one-half of the ringing cycle.  
During this T forced all-off state, change the inputs  
SD  
from the power ringing state (IN  
= 1, IN  
= 0,  
RING  
TESTIN  
IN  
IN  
= 0) to the talk state (IN  
= 0,  
TESTOUT  
RING  
= 0, IN  
= 0). After the hold period,  
TESTIN  
TESTOUT  
release T to return switch control to the input pins  
SD  
which will set the talk state.  
R06  
www.clare.com  
15  
CPC7583  
logic 0 to logic 1 and will not respond to changes in  
2.8 Battery Voltage Monitor  
input as long as the latch is at logic 1. The T input is  
The CPC7583 also uses the V  
voltage to monitor  
SD  
BAT  
not tied to the data latch. Therefore, T is not  
battery voltage. If battery voltage is lost, the CPC7583  
immediately enters the all-off state. It remains in this  
state until the battery voltage is restored. The device  
also enters the all-off state if the system battery  
voltage goes more positive than –10 V, and remains in  
the all-off state until the battery voltage goes more  
negative than –15 V. This battery monitor feature  
draws a small current from the battery (less than 1 μA  
typical) and will add slightly to the device’s overall  
power dissipation.  
SD  
affected by the LATCH input and the T input will  
SD  
override state control.  
2.5 T Behavior  
SD  
Setting T to +5V allows switch control using the  
SD  
logic inputs. This setting, however, also disables the  
thermal shutdown circuit and is therefore not  
recommended. When using logic control via the input  
pins, T should be allowed to float. As a result, the  
SD  
two recommended states when using T as a control  
SD  
2.9 Protection  
are 0, which forces the device to an all-off state, or  
float, which allows logic inputs to remain active. This  
requires the use of an open-collector type buffer.  
2.9.1 Diode Bridge/SCR  
The CPC7583 uses a combination of current limited  
break switches, a diode bridge/SCR clamping circuit,  
and a thermal shutdown mechanism to protect the  
SLIC device or other associated circuitry from damage  
during line transient events such as lightning. During a  
positive transient condition, the fault current is  
2.6 Ringing Switch Zero-Cross Current Turn Off  
After the application of a logic input to turn SW4 off,  
the ringing switch is designed to delay the change in  
state until the next zero-crossing. Once on, the switch  
requires a zero-current cross to turn off, and therefore  
should not be used to switch a pure DC signal. The  
switch will remain in the on state no matter the logic  
input until the next zero crossing. These switching  
characteristics will reduce and possibly eliminate  
overall system impulse noise normally associated with  
ringing switches. See Clare application note AN-144,  
Impulse Noise Benefits of Line Card Access Switches for  
more information. The attributes of ringing switch SW4  
may make it possible to eliminate the need for a  
zero-cross switching scheme. A minimum impedance  
of 300 Ω in series with the ringing generator is  
recommended.  
conducted through the diode bridge to ground via  
F
. Voltage is clamped to a diode drop above  
GND  
ground. During a negative transient of 2V to 4V more  
negative than the voltage source at V , the SCR  
conducts and faults are shunted to F  
or the diode bridge.  
BAT  
via the SCR  
GND  
In order for the SCR to crowbar or foldback, the on  
voltage (see “Protection Circuitry Electrical  
Specifications” on page 12) of the SCR must be less  
negative than the V  
voltage. If the V  
voltage is  
BAT  
BAT  
less negative than the SCR on voltage, or if the V  
supply is unable to source the trigger current, the SCR  
will not crowbar.  
BAT  
For power induction or power-cross fault conditions,  
the positive cycle of the transient is clamped to a diode  
drop above ground and the fault current directed to  
ground. The negative cycle of the transient will cause  
the SCR to conduct when the voltage exceeds the  
2.7 Power Supplies  
Both a +5 V supply and battery voltage are connected  
to the CPC7583. Switch state control is powered  
exclusively by the +5 V supply. As a result, the  
CPC7583 exhibits extremely low power consumption  
during both active and idle states.  
V
reference voltage by two to four volts, steering  
BAT  
the fault current to ground.  
The battery voltage is not used for switch control but  
rather as a supply for the integrated secondary  
protection circuitry. The integrated SCR is designed to  
trigger when the voltage at T  
or R  
drops 2 to  
BAT  
BAT  
4 V below the applied voltage on the V  
pin. This  
BAT  
trigger prevents a fault induced overvoltage event at  
the T or R nodes.  
BAT  
BAT  
16  
www.clare.com  
R06  
CPC7583  
2.9.2 Current Limiting function  
2.11 External Protection Elements  
The CPC7583 requires only over-voltage secondary  
protection on the loop side of the device. The  
integrated protection feature described above negates  
the need for additional protection on the SLIC side.  
The secondary protector must limit voltage transients  
to levels that do not exceed the breakdown voltage or  
input-output isolation barrier of the CPC7583. A  
foldback or crowbar type protector is recommended to  
minimize stresses on the CPC7583.  
If a lightning strike transient occurs when the device is  
in the talk state, the current is passed along the line to  
the integrated protection circuitry and restricted by the  
dynamic current limit response of the active switches.  
During the talk state when a 1000V 10x1000 μS pulse  
(GR-1089-CORE lightning) is applied to the line  
though a properly clamped external protector, the  
current into T  
or R  
will be a pulse with a typical  
LINE  
LINE  
magnitude of 2.5 A and a duration of less than 0.5 μs.  
Consult Clare’s application note, AN-100, “Designing  
Surge and Power Fault Protection Circuits for Solid  
State Subscriber Line Interfaces” for equations related  
to the specifications of external secondary protectors,  
fused resistors and PTCs.  
If a power-cross fault occurs with the device in the talk  
state, the current is passed though break switches  
SW1 and SW2 on to the integrated protection circuit  
and is limited by the dynamic DC current limit  
response of the two break switches. The DC current  
limit, specified over temperature, is between 80 mA  
and 425 mA, and the circuitry has a negative  
temperature coefficient. As a result, if the device is  
subjected to extended heating due to power cross  
fault, the measured current at T  
or R  
will  
LINE  
LINE  
decrease as the device temperature increases. If the  
device temperature rises sufficiently, the temperature  
shutdown mechanism will activate and the device will  
enter the all-off state.  
2.10 Temperature Shutdown  
The thermal shutdown mechanism will activate when  
the device temperature reaches a minimum of 110° C,  
placing the device in the all-off state regardless of  
logic input. During thermal shutdown mode, the  
voltage out of the T pin will read 0 V. Normal output  
SD  
of T is V  
.
SD  
DD  
If presented with a short duration transient such as a  
lightning event, the thermal shutdown feature will  
typically not activate. But in an extended power-cross  
transient, the device temperature will rise and the  
thermal shutdown will activate forcing the switches to  
the all-off state. At this point the current measured into  
T
or R  
will drop to zero. Once the device  
LINE  
LINE  
enters thermal shutdown it will remain in the all-off  
state until the temperature of the device drops below  
the deactivation level of the thermal shutdown circuit.  
This will permit the device to return to normal  
operation. If the transient has not passed, current will  
flow up to the value allowed by the dynamic DC  
current limiting of the switches and heating will begin  
again, reactivating the thermal shutdown mechanism.  
This cycle of entering and exiting the thermal  
shutdown mode will continue as long as the fault  
condition persists. If the magnitude of the fault  
condition is great enough, the external secondary  
protector could activate and shunt all current to  
ground.  
R06  
www.clare.com  
17  
CPC7583  
3. Manufacturing Information  
3.1 Mechanical Dimensions and PCB Land Patterns  
3.1.1 CPC7583Z  
20-Lead SOIC Package  
Recommended PCB Land Pattern  
0.23 / 0.32  
(0.009 / 0.013)  
12.60 / 13.00  
(0.496 / 0.512)  
0.40 / 1.27  
(0.016 / 0.050)  
2.05  
(0.081)  
10.00 / 10.65  
(0.394 / 0.419)  
7.40 / 7.60  
(0.291 / 0.299)  
9.30  
(0.366)  
Pin 1  
0.25 / 0.75 x 45º  
(0.010 / 0.029 x 45º)  
1.27  
(0.05)  
0.60  
(0.024)  
0.508 / 0.762  
(0.020 / 0.030)  
0º - 8º  
2.35 / 2.65  
(0.093 / 0.104)  
Dimensions  
1.27 TYP  
(0.050 TYP)  
0.10 / 0.30  
(0.004 / 0.012)  
mm MIN / mm MAX  
0.33 / 0.51  
(0.013/ 0.020)  
(inches MIN / inches MAX)  
3.1.2 CPC7583B  
28-Lead SOIC Package  
Recommended PCB Land Pattern  
0.2311 / 0.3175  
(0.0091 / 0.0125)  
17.983 / 18.085  
(0.708 / 0.712)  
0.508 / 1.016  
(0.020 / 0.040)  
10.109 / 10.516  
(0.398 / 0.414)  
7.391 / 7.595  
(0.291 / 0.299)  
1.80  
(0.071)  
9.50  
(0.374)  
Pin 1  
0.254 / 0.737 x 45º  
(0.010 / 0.029 x 45º)  
1.27  
(0.05)  
0.60  
(0.024)  
2.235 / 2.438  
(0.088 / 0.096)  
2.438 / 2.642  
(0.096 / 0.104)  
Dimensions  
0.366 / 0.467  
(0.014/ 0.018)  
0.660 0.102  
(0.026 0.004)  
1.27 TYP  
(0.050 TYP)  
mm MIN / mm MAX  
(inches MIN / inches MAX)  
18  
www.clare.com  
R06  
CPC7583  
3.1.3 CPC7583M  
28-Lead DFN Package  
Recommended PCB Land Pattern  
0.33 +0.07,-0.05  
(0.013 +0.003, -0.002)  
11.0  
(0.433)  
0.75  
(0.030)  
Pin 1  
7.0  
(0.276)  
6.70  
5.0 0.05  
1.05  
(0.197 0.002)  
(0.264)  
(0.045)  
Pin 1  
Bottom side  
metallic pad  
0.55 0.10  
0.75  
0.35  
7.5 0.05  
(0.03)  
(0.022 0.004)  
(0.016)  
(0.296 0.002)  
0.90 0.10  
0.20  
(0.008)  
(0.036 0.004)  
Seating Plane  
Dimensions  
mm  
(inches)  
0.02 +0.03, -0.02  
(0.001 +0.0012, -0.001)  
NOTE: Because the metallic pad on the bottom of the  
DFN package is connected to the substrate of the die,  
Clare recommends that no printed circuit board traces  
cross this area to avoid potential shorting issues.  
R06  
www.clare.com  
19  
CPC7583  
3.2 Tape and Reel Specifications  
3.2.1 CPC7583Z (20-Pin SOIC) - Tape and Reel Dimensions  
P=12.00  
(0.47)  
330.2 DIA.  
(13.00 DIA)  
Top Cover  
Tape Thickness  
0.102 MAX  
(0.004 MAX)  
W=24.00+0.3  
(0.94+0.01)  
B0=13.40 +0.15  
(0.53+0.01)  
K0=3.20 +0.15  
(0.13+0.01)  
Embossed Carrier  
A0=10.75 +0.15  
(0.42+0.01)  
Dimensions  
K1=2.60 +0.15  
(0.10+0.01)  
mm  
(inches)  
Embossment  
3.2.2 CPC7583B (28-Pin SOIC) - Tape and Reel Dimensions  
330.2 DIA.  
K1=2.60  
(13.00 DIA)  
(0.10)  
A0=10.75  
(0.42)  
Top Cover  
Tape Thickness  
0.102 MAX  
K0=3.20  
(0.13)  
(0.004 MAX)  
W=24.00 0.3  
(0.94 0.01)  
B0=18.50  
(0.73)  
Embossed Carrier  
Dimensions  
mm  
(inches)  
Embossment  
P=12.00  
(0.47)  
3.2.3 CPC7583M (28-Pin DFN) - Tape and Reel Dimensions  
330.2 DIA.  
(13.00 DIA)  
Top Cover  
Tape Thickness  
0.102 MAX  
(0.004 MAX)  
W=24.00+0.3  
(0.94+0.01)  
B0=11.35  
(0.45)  
Embossed Carrier  
K0=1.35  
(0.05)  
Dimensions  
mm  
(inches)  
Embossment  
A0=7.35  
(0.29)  
P=12.00  
(0.47)  
20  
www.clare.com  
R06  
CPC7583  
3.3 Soldering  
3.3.1 Moisture Reflow Sensitivity  
3.3.2 Reflow Profile  
Clare has characterized the moisture reflow sensitivity  
for this product using IPC/JEDEC standard  
For proper assembly, this component must be  
processed in accordance with the current revision of  
IPC/JEDEC standard J-STD-020. Failure to follow the  
recommended guidelines may cause permanent  
damage to the device resulting in impaired  
J-STD-020. Moisture uptake from atmospheric  
humidity occurs by diffusion. During the solder reflow  
process, in which the component is attached to the  
PCB, the whole body of the component is exposed to  
high process temperatures. The combination of  
moisture uptake and high reflow soldering  
performance and/or a reduced lifetime expectancy.  
temperatures may lead to moisture induced  
3.4 Washing  
delamination and cracking of the component. To  
prevent this, this component must be handled in  
accordance with IPC/JEDEC standard J-STD-033 per  
the labeled moisture sensitivity level (MSL), level 1 for  
the SOIC package, and level 3 for the DFN package.  
Clare does not recommend ultrasonic cleaning of this  
part.  
RoHS  
2002/95/EC  
Pb  
e3  
For additional information please visit www.clare.com  
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make  
changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses or indemnity are expressed or implied. Except as set  
forth in Clare’s Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty relating to its  
products, including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.  
The products described in this document are not designed, intended, authorized, or warranted for use as components in systems intended for surgical implant into  
the body, or in other applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a  
person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.  
Specifications: DS-CPC7583 - R06  
© Copyright 2009, Clare, Inc.  
All rights reserved. Printed in USA.  
10/15/2009  
R06  
www.clare.com  
21  

相关型号:

CPC7583ZBTR

Line Card Access Switch
CLARE

CPC7583ZCTR

Line Card Access Switch
CLARE

CPC7583ZDTR

Line Card Access Switch
CLARE

CPC7583_1

Line Card Access Switch
CLARE

CPC7583_12

Line Card Access Switch
IXYS

CPC7584

Line Card Access Switch
CLARE

CPC7584BA

Telecom Circuit, 1-Func, PDSO16, SOIC-16
IXYS

CPC7584BA-TR

Telecom Circuit, 1-Func, PDSO16, SOIC-16
IXYS

CPC7584BB

Telecom Circuit, 1-Func, PDSO16, SOIC-16
IXYS

CPC7584BB-TR

Telecom Circuit, 1-Func, PDSO16, SOIC-16
IXYS

CPC7584xA

Line Card Access Switch
CLARE

CPC7584xB

Line Card Access Switch
CLARE