CPC7584BA-TR [IXYS]

Telecom Circuit, 1-Func, PDSO16, SOIC-16;
CPC7584BA-TR
型号: CPC7584BA-TR
厂家: IXYS CORPORATION    IXYS CORPORATION
描述:

Telecom Circuit, 1-Func, PDSO16, SOIC-16

电信 光电二极管 电信集成电路
文件: 总15页 (文件大小:401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CPC7584  
Line Card Access Switch  
sary functions to replace two 2-Form-C electro-  
mechanical relays on analog line cards found in Cen-  
tral Office, Access, and PBX equipment. The device  
contains solid state switches for tip and ring line break,  
ring injection/ring return and test access. The  
CPC7584 requires only a +5V supply and offers  
“break-before-make” or “make-before-break” switch  
operation using simple logic-level input control.  
Features  
Small 16-pin surface-mount SOIC package and very  
small micro-leadframe package (MLP) available  
Monolithic IC reliability  
Low matched RDS  
ON  
Eliminates the need for zero cross switching  
Flexible switch timing to transition from ringing mode  
to idle/talk mode.  
Clean, bounce free switching  
The CPC7584xC differs from the CPC7584xA/B with  
the addition of a logic state. See “Functional Descrip-  
tion” on page 10 for more information. The  
CPC7584xC also has a higher hold current for the pro-  
tection SCR.  
Tertiary protection consisting of integrated current  
limiting, thermal shutdown, and SLIC protection  
5 V operation with power consumption less than  
10 mW  
Intelligent battery monitor  
Latched logic level inputs, no drive circuitry  
Ordering Information  
Applications  
Part Number Description  
Central office (CO)  
CPC7584BA  
CPC7584BB  
SOIC 6-pole LCAS with protection SCR  
SOIC 6-pole LCAS without protection SCR  
Digital Loop Carrier (DLC)  
PBX Systems  
SOIC 6-pole LCAS with protection SCR and  
added logic state  
Digitally Added Main Line (DAML)  
Hybrid Fiber Coax (HFC)  
Fiber in the Loop (FITL)  
Pair Gain System  
CPC7584BC  
CPC7584MA  
CPC7584MB  
MLP 6-pole LCAS with protection SCR  
MLP 6-pole LCAS without protection SCR  
Channel Banks  
MLP 6-pole LCAS with protection SCR and  
added logic state  
CPC7584MC  
Description  
The CPC7584 is a monolithic solid state switch in a  
16-pin surface-mount package. It provides the neces-  
Add -TR to the part number when ordering  
tape and reel packaging  
CPC7584xx-TR  
Figure 1. CPC7584 Block Diagram  
VBAT  
TRING (4)  
TTEST-IN (5)  
Reference (16)  
SW3  
Ringing  
SW5  
Test-In  
Return  
TLINE  
TBAT(2)  
R1  
TIP  
(3)  
SW1  
Break  
Secondary  
Protection  
SCR  
and Trip  
Circuit  
SLIC  
R2  
Ring  
SW4  
Ringing  
Access  
SW6  
Test-In  
RBAT (15)  
SW2  
Break  
RLINE  
(14)  
CPC7584  
Ring Generator  
RTest-In (12)  
-
+
RRING (13)  
Battery  
DS-CPC7584-R0.A  
www.clare.com  
1
CPC7584  
1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.1 Absolute Maximum Ratings (at 25° C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2 Electrical Characteristics, TA = -40° C to +85° C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2.1 Power Supply Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2.2 Break Switches, SW1 and SW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2.3 Ring Return Switch, SW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2.4 Ringing Access Switch, SW4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.2.5 Test-In Switches, SW5 and SW6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.3 Additional Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.3.1 Make-Before-Break Operation (Ringing to Idle/Talk Transition). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.3.2 Break-Before-Make Operation (Ringing to Idle/Talk Transition). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.4 Alternate Break-Before-Make Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.5 Protection Circuitry Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.6 CPC7584xA/B Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.7 CPC7584xC Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2 Package Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 Pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3 Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 Switch Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3 Ring Access Switch Zero-Cross Current Turn Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.4 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.5 Battery Voltage Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.6 Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.6.1 Diode Bridge/SCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.6.2 Current Limiting function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.7 Temperature Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.8 External Protection Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.9 Data Latch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4 Manufacturing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1.2 MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.2 Printed-Circuit Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.2.2 MLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.3 Tape and Reel Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.3.1 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.4 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.4.1 Moisture Reflow Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.4.2 Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.5 Washing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
1
www.clare.com  
R0.A  
CPC7584  
1. Specifications  
Absolute maximum ratings are stress ratings. Stresses in  
excess of these ratings can cause permanent damage to  
the device. Functional operation of the device at these or  
any other conditions beyond those indicated in the opera-  
tional sections of this data sheet is not implied. Exposure of  
the device to the absolute maximum ratings for an  
extended period may degrade the device and affect its reli-  
ability.  
1.1 Absolute Maximum Ratings (at 25° C)  
Parameter  
Minimum Maximum  
Unit  
Operating temperature  
Storage temperature  
-40  
-40  
5
+110  
+150  
95  
°C  
°C  
%
Operating relative humidity  
Pin soldering temperature  
(10 seconds max)  
-
+260  
°C  
1.2.1 Power Supply Specifications  
+5 V power supply  
Battery Supply  
-
-
-
7
-85  
7
V
V
V
Supply  
Minimum Typical Maximum Unit  
V
+4.5  
-19  
+5.0  
-
+5.5  
-72  
V
DD  
Logic input voltage  
1
Logic input to switch output  
isolation  
V
V
BAT  
-
330  
V
1
V
is used only as a reference for internal protection circuitry. If V  
rises above  
BAT  
BAT  
-10 V, the device will enter the all-off state and will remain in the all-off state until the  
battery drops below -15 V.  
Switch isolation (SW1,  
SW2, SW3, SW5, SW6)  
-
-
330  
480  
V
V
Switch Isolation (SW4)  
ESD Rating (Human Body Model)  
1.2 Electrical Characteristics, T = -40° C to +85° C  
A
1000 V  
Unless otherwise specified, minimum and maximum  
values are production testing requirements. Typical  
values are characteristic of the device and are the  
result of engineering evaluations. Typical values are  
provided for information purposes only and are not  
part of the testing requirements.  
1.2.2 Break Switches, SW1 and SW2  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
V
(differential) = -320 V to GND  
(differential) = -60 V to +260 V  
SW  
I
+25° C  
+85° C  
-40° C  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
SW  
SW  
V
V
(differential) = -330 V to GND  
(differential) = -60 V to +270 V  
SW  
I
SW  
SW  
V
V
(differential) = -310 V to GND  
(differential) = -60 V to +250 V  
SW  
I
SW  
SW  
RDS  
ON  
T
= 10 mA, 40 mA, T = -2 V  
BAT  
+25° C  
+85° C  
-40° C  
V  
V  
V  
-
-
-
14.5  
20.5  
10.5  
-
28  
-
LINE  
LINE  
LINE  
T
T
= 10 mA, 40 mA, T = -2 V  
BAT  
= 10 mA, 40 mA, T = -2 V  
BAT  
Per on-resistance test condition of  
SW1, SW2R SW1-R SW2  
RDS match  
ON  
Magnitude  
-
0.15  
0.8  
ON  
ON  
DC current limit  
+25° C  
V
V
V
(on) = 10 V  
(on) = 10 V  
(on) = 10 V  
I
-
80  
-
300  
160  
400  
-
-
mA  
mA  
mA  
SW  
SW  
SW  
SW  
I
+85° C  
SW  
I
-40° C  
425  
SW  
Rev. 0.A  
www.clare.com  
2
CPC7584  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Break switches in on state, ringing  
access switches off, apply 1 kV at  
10/1000 ms pulse, with appropriate  
secondary protection in place.  
Dynamic current limit  
(t = <0.5 µs)  
I
-
2.5  
-
A
SW  
Logic input to switch output isolation  
V
(T , R ) = 320 V, logic  
SW LINE LINE  
I
+25° C  
-
-
-
-
0.1  
0.3  
0.1  
200  
1
1
1
-
µA  
µA  
SW  
inputs = gnd  
(T , R ) = 330 V, logic  
V
SW LINE LINE  
I
+85° C  
SW  
inputs = gnd  
(T , R ) = 310 V, logic  
V
SW LINE LINE  
I
-40° C  
µA  
SW  
inputs = gnd  
Applied voltage = 100 V p-p square  
wave at 100 Hz  
dv/dt sensitivity  
-
V/µs  
1.2.3 Ring Return Switch, SW3  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
V
(differential) = -320 V to GND  
(differential) = -60 V to +260 V  
SW  
I
+25° C  
+85° C  
-40° C  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
SW  
SW  
V
V
(differential) = -330 V to GND  
(differential) = -60 V to +270 V  
SW  
I
SW  
SW  
V
V
(differential) = -310 V to GND  
(differential) = -60 V to +250 V  
SW  
I
SW  
SW  
RDS  
ON  
I
(on) = 0 mA, 10 mA  
(on) = 0 mA, 10 mA  
(on) = 0 mA, 10 mA  
+25° C  
V  
V  
V  
-
-
-
60  
85  
45  
-
100  
-
SW  
I
I
+85° C  
SW  
SW  
-40° C  
DC current limit  
+25° C  
V
V
V
(on) = 10 V  
I
-
-
-
135  
85  
-
-
-
mA  
mA  
mA  
SW  
SW  
(on) = 10 V  
(on) = 10 V  
I
+85° C  
SW  
SW  
SW  
I
-40° C  
210  
SW  
Break switches in on state, ringing  
access switches off, apply 1 kV at  
10/1000 ms pulse, with appropriate  
secondary protection in place.  
Dynamic current limit  
(t = <0.5 µs)  
I
-
2.5  
-
A
SW  
Logic input to switch output isolation  
(T  
V
, T ) = 320 V, logic  
SW RING LINE  
I
+25° C  
+85° C  
-40° C  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
SW  
inputs = gnd  
(T , T ) = 330 V, logic  
V
SW RING LINE  
I
SW  
inputs = gnd  
(T , T ) = 310 V, logic  
V
SW RING LINE  
I
SW  
inputs = gnd  
3
www.clare.com  
Rev. 0.A  
CPC7584  
1.2.4 Ringing Access Switch, SW4  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
V
(differential) = -255 V to +210 V  
(differential) = +255 V to -210 V  
SW  
I
+25° C  
+85° C  
-
-
-
0.05  
0.1  
1
1
1
µA  
µA  
µA  
SW  
SW  
V
V
(differential) = -270 V to +210 V  
(differential) = +270 V to -210 V  
SW  
I
SW  
SW  
V
V
(differential) = -245 V to +210 V  
(differential) = +245 V to -210 V  
SW  
I
-40° C  
0.05  
SW  
SW  
I
(on) = 1 mA  
On Voltage  
-
-
-
1.5  
0.1  
3
V
SW  
Ring generator current  
during ring  
V
= 5 V, INaccess = 0  
I
0.25  
mA  
CC  
R
Surge current  
-
-
I
-
-
-
-
-
-
2
-
A
µA  
Release current  
300  
8.5  
RDS  
(on) = 70 mA, 80 mA  
SW  
V  
12  
ON  
Logic input to switch output isolation  
(R  
V
, R ) = 320 V, logic  
SW RING LINE  
I
+25° C  
+85° C  
-40° C  
-
-
-
0.05  
0.1  
1
1
1
µA  
µA  
µA  
SW  
inputs = gnd  
(R , R ) = 330 V, logic  
V
SW RING LINE  
I
SW  
inputs = gnd  
(R , R ) = 310 V, logic  
V
SW RING LINE  
I
0.05  
SW  
inputs = gnd  
1.2.5 Test-In Switches, SW5 and SW6  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Off-state leakage current  
V
V
(differential) = -320 V to GND  
(differential) = -60 V to +260 V  
SW  
I
+25° C  
+85° C  
-40° C  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
SW  
SW  
V
V
(differential) = -330 V to GND  
(differential) = -60 V to +270 V  
SW  
I
SW  
SW  
V
V
(differential) = -310 V to GND  
(differential) = -60 V to +250 V  
SW  
I
SW  
SW  
RDS  
ON  
T
= 10 mA, 40 mA, T = -2 V  
BAT  
+25° C  
V  
V  
V  
-
-
-
38  
46  
28  
-
70  
-
LINE  
LINE  
LINE  
T
T
= 10 mA, 40 mA, T = -2 V  
BAT  
+85° C  
= 10 mA, 40 mA, T = -2 V  
BAT  
-40° C  
DC current limit  
+25° C  
V
V
V
(on) = 10 V  
(on) = 10 V  
(on) = 10 V  
I
-
80  
-
175  
110  
210  
-
-
mA  
mA  
mA  
SW  
SW  
SW  
SW  
I
+85° C  
SW  
I
-40° C  
250  
SW  
Break switches in on state, ringing  
access switches off, apply 1 kV at  
10/1000 ms pulse, with appropriate  
secondary protection in place.  
Dynamic current limit  
(t = <0.5 µs)  
I
-
2.5  
-
A
SW  
Rev. 0.A  
www.clare.com  
4
CPC7584  
Parameter  
Logic input to switch output isolation  
(T  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
V
, T ) = 320 V, logic  
SW ACCESS LINE  
I
+25° C  
+85° C  
-40° C  
-
-
-
0.1  
0.3  
0.1  
1
1
1
µA  
µA  
µA  
SW  
inputs = gnd  
(T  
V
, T ) = 330 V, logic  
SW ACCESS LINE  
I
SW  
inputs = gnd  
(T  
V
, T ) = 310 V, logic  
SW ACCESS LINE  
I
SW  
inputs = gnd  
1.3 Additional Electrical Characteristics  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Digital input characteristics  
-
-
Input low voltage  
Input high voltage  
-
-
-
-
-
1.5  
-
V
3.5  
Input leakage current  
(high)  
V
= 5.5 V, V = -75 V, V = 5 V  
BAT log  
I
-
-
0.1  
0.1  
1
1
DD  
DD  
log  
µA  
Input leakage current  
(low)  
V
= 5.5 V, V = -75 V, V = 0 V  
BAT log  
I
log  
Power requirements  
Power dissipation in  
idle/talk and all-off  
states  
V
V
= 5 V, V = -48 V  
BAT  
I
, I  
DD BAT  
-
5.5  
6.5  
10  
10  
DD  
mW  
Power dissipation in  
ringing and access  
states  
(on) = 10 V  
I
SW  
DD  
V
current in idle/talk  
DD  
I
-
-
-
-
1.1  
1.3  
0.1  
0.1  
2.0  
2.0  
10  
DD  
and all off states  
current in ringing  
V
= 5 V  
mA  
DD  
V
DD  
I
DD  
and access states  
current in idle/talk  
V
BAT  
I
BAT  
and all off states  
current in ringing  
V
= -48 V  
µA  
BAT  
V
BAT  
I
10  
BAT  
and access states  
Temperature Shutdown Requirements (temperature shutdown flag is active low)  
Shutdown activation  
temperature  
-
-
110  
10  
125  
-
150  
25  
°C  
°C  
Shutdown circuit hyster-  
esis  
-
-
5
www.clare.com  
Rev. 0.A  
CPC7584  
1.3.1 Make-Before-Break Operation (Ringing to Idle/Talk Transition)  
Line  
Break  
Ring  
Switches Return  
Ring  
Access  
1 and 2 Switch 3 Switch 4  
Access  
Switches  
5 and 6  
Test-In  
Input  
TSD  
State  
Timing  
0 V  
5 V  
Floating  
Ringing  
-
Open  
Closed  
Closed  
Closed  
Open  
Open  
Closed  
Closed  
Open  
Open  
Open  
Open  
SW4 waiting for next zero-current crossing  
to turn off. Maximum time is one-half of ring-  
ing. In this transition state, current that is  
limited to the dc break switch current limit  
value will be sourced from the ring node of  
the SLIC.  
Make-  
before-  
break  
0 V  
0 V  
0 V  
0 V  
Floating  
Floating Idle/Talk  
Zero-cross current has occurred  
1.3.2 Break-Before-Make Operation (Ringing to Idle/Talk Transition)  
Line  
Break  
Ring  
Switches Return  
Ring  
Access  
1 and 2 Switch 3 Switch 4  
Access  
Switches  
5 and 6  
Test-In  
Input  
TSD  
State  
Timing  
0 V  
5 V  
5 V  
5 V  
Floating  
Floating  
Floating  
Ringing  
All-off  
-
Open  
Open  
Closed  
Open  
Closed  
Closed  
Open  
Open  
Hold this state for at least 25 ms. SW4 wait-  
ing for zero current to turn off.  
5 V  
0 V  
5 V  
0 V  
SW4 has opened.  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Floating Idle/Talk  
Release Break Switches  
Closed  
1.4 Alternate Break-Before-Make Operation  
Break-before-make operation can also be achieved  
using TSD as an input. In lines 2 and 3 of “Break-  
Before-Make Operation (Ringing to Idle/Talk Transi-  
tion)” on page 6, instead of using the logic input pins to  
force the all-off state, force TSD to ground. This over-  
rides the logic inputs and also forces the all off state.  
Hold this state for 25 ms. During this 25 ms all-off  
state, toggle the inputs from the ringing state (Ring =  
5 V, Test-In = 0 V) to the idle/talk state  
(Ring = 0 V, Test-In=0 V). After 25 ms, release TSD to  
return switch control to the input pins which will set the  
idle talk state.  
When using the CPC7584 in this mode, forcing TSD  
to ground overrides the input pins and force an all off  
state. Setting TSD to +5 V allows switch control via the  
logic input pins. However, setting TSD to +5 V also  
disables the thermal shutdown mechanism. This is not  
recommended. Therefore, to allow switch control via  
the logic input pins, allow TSD to float.  
When using TSD as an input, the two recommended  
states are 0 (overrides logic input pins and forces all  
off state) and float (allows switch control via logic input  
pins and the thermal shutdown mechanism is active).  
This may require use of an open-collector buffer.  
Rev. 0.A  
www.clare.com  
6
 
 
CPC7584  
1.5 Protection Circuitry Electrical Specifications  
Parameter  
Conditions  
Symbol  
Minimum  
Typical  
Maximum Unit  
Parameters Related to the Diodes in the Diode Bridge  
Voltage drop at continu- Apply dc current limit of break  
ous current (50/60 Hz) switches  
Forward  
Voltage  
-
-
2.1  
5
3
V
-
Voltage drop at surge Apply dynamic current limit of break Forward  
current  
Parameters Related to the Protection SCR  
Surge current  
Trigger current (+25° C) -  
Hold current (+25° C)  
Trigger current (+85° C) -  
switches  
Voltage  
-
-
-
-
-
60  
100  
35  
70  
-
*
-
-
-
-
A
I
mA  
mA  
mA  
mA  
V
TRIG  
I
-
-
HOLD  
I
-
TRIG  
I
Hold current (+85° C)  
Gate trigger voltage  
-
60  
HOLD  
V
-4  
V
-2  
Trigger current  
-
-
BAT  
BAT  
Reverse leakage cur-  
rent  
V
-
-
1.0  
µA  
BAT  
V
0.5 A, t = 0.5 ms  
2.0 A, t = 0.5 ms  
-
-
-3  
-5  
-
-
V
V
ON  
On-state voltage  
-
*Passes GR1089 and ITU-T K.20 with appropriate secondary protection in place.  
1.6 CPC7584xA/B Truth Table  
Tip  
Break  
Switch  
Ring  
Break  
Switch  
Ringing  
Return  
Switch  
Ring  
Switch  
Tip Test-In Ring Test-  
In Switch  
1
State  
Ring  
Test-In  
TSD  
Switch  
Idle/Talk  
0 V  
5 V  
0 V  
0 V  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
Off  
Off  
Off  
Power Ring-  
ing  
Off  
5 V/Floating  
0 V  
Test-In  
All Off  
0 V  
5 V  
5 V  
5 V  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
All off  
Don’t care Don’t care  
1
If TSD = 5V, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism is enabled.  
1.7 CPC7584xC Truth Table  
Tip  
Break  
Switch  
Ring  
Break  
Switch  
Ringing  
Return  
Switch  
Ring  
Switch  
Tip Test-In Ring Test-  
In Switch  
1
State  
Ring  
Test-In  
TSD  
Switch  
Idle/Talk  
0 V  
5 V  
0 V  
0 V  
On  
Off  
On  
Off  
Off  
On  
Off  
On  
Off  
Off  
Off  
Off  
Power Ring-  
ing  
5 V/Floating  
0 V  
Test Monitor  
All Off  
0 V  
5 V  
5 V  
5 V  
On  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
On  
Off  
Off  
All off  
Don’t care Don’t care  
1
If TSD = 5V, thermal shutdown is disabled. If TSD is left floating, the thermal shutdown mechanism is enabled.  
7
www.clare.com  
Rev. 0.A  
 
 
CPC7584  
2.1 Pinout  
2. Package Pinout  
Pin  
1
Name  
Description  
Tip lead test input  
Fault ground  
1 TTEST-IN  
2 FGND  
3 TBAT  
R
16  
15  
14  
TEST-IN  
T
TEST-IN  
V
BAT  
R
BAT  
F
2
GND  
T
3
Connect to tip lead on SLIC side  
Connect to tip lead on the line side  
Connect to ring generator return  
+5 V supply  
BAT  
T
T
4 TLINE  
5 TRING  
6 VDD  
RLINE 13  
RRING 12  
LATCH 11  
INRING 10  
4
LINE  
5
RING  
V
6
DD  
Temperature shutdown pin. Can be used  
as a logic-level input or output. See “Make-  
Before-Break Operation (Ringing to Idle/  
Talk Transition)” on page 6, “Break-  
Before-Make Operation (Ringing to Idle/  
Talk Transition)” on page 6, and  
7 TSD  
8 DGND  
INTEST-IN  
9
7
TSD  
“CPC7584xA/B Truth Table” on page 7 for  
details. As an output, TSD will read +5 V  
when the device is in the operational mode  
and 0 V in the thermal shutdown mode. To  
disable thermal shutdown, tie this pin to +5  
V (not recommended)  
D
8
9
Digital ground  
GND  
IN  
Logic-level switch control input  
Logic-level switch control input  
TEST-IN  
IN  
10  
RING  
Data latch control, active high, transparent  
low  
11  
LATCH  
R
12  
13  
14  
15  
16  
Test access  
ACCESS  
R
Connect to ring generator  
Connect to ring lead on the line side  
Connect to ring lead on the SLIC side  
Test-in access on ring  
RING  
R
LINE  
R
BAT  
V
TEST-IN  
Rev. 0.A  
www.clare.com  
8
CPC7584  
3. Functional Description  
3.1 Introduction  
The CPC7584xA/B has four states:  
mum breakdown voltage of the switches. To minimize  
the stress on the solid-state contacts, use of a fold-  
back or crowbar type secondary protector is recom-  
mended. With proper selection of the secondary  
protector, a line card using the CPC7582BC will meet  
all relevant ITU, LSSGR, FCC and UL protection  
requirements.  
Idle/Talk. Line break switches SW1 and SW2  
closed, ringing switches SW3 and SW4 open, and  
test-in switches SW5 and SW6 open.  
Ringing. Line break switches SW1 and SW2 open,  
ringing switches SW3 and SW4 closed, and test-in  
switches SW5 and SW6 open.  
Test-In. Line break switches SW1 and SW2 open,  
ringing switches SW3 and SW4 open, and test-in  
switches SW5 and SW6 closed.  
All off. Line break switches SW1 and SW2 open,  
ringing switches SW3 and SW4 open, and loop test  
switches SW5 and SW6 open.  
The CPC7584 operates from a +5 V supply only. This  
gives the device extremely low idle and active power  
dissipation and allows use with virtually any range of  
battery voltage. A battery voltage is also used by the  
CPC7584 as a reference for the integrated protection  
circuit. In the event of a loss of battery voltage, the  
CPC7584 enters the all-off state.  
In the CPC7584xC, the test-in state is replaced with  
the test monitor state, defined as: line break switches  
SW1 and SW2 closed, Ringing switches SW3 and  
SW4 open, and test-in switches SW5 and SW6  
closed.  
3.2 Switch Timing  
The CPC7584 provides, when switching from the ring-  
ing state to the idle/talk state, the ability to control the  
release timing of the ringing access switches SW3  
and SW4 relative to the state of the line break  
switches SW1 and SW2 using simple logic-level input.  
This is referred to a make-before-break or break-  
before-make operation. When the line break switch  
contacts (SW1 and SW2) are closed (or made) before  
the ringing access switch contacts (SW3 and SW4)  
are opened (or broken), this is referred to make-  
before-break operation. Break-before-make operation  
occurs when the ringing access contacts (SW3 and  
SW4) are opened (broken) before the line break  
switch contacts (SW1 and SW2) are closed (made).  
With the CPC7584, the make-before-break and break-  
before-make operations can easily be selected by  
The CPC7584 offers break-before-make and make-  
before-break switching with simple logic-level input  
control. Solid-state switch construction means no  
impulse noise is generated when switching during ring  
cadence or ring trip, eliminating the need for external  
zero-cross switching circuitry. State-control is via  
logic-level input so no additional driver circuitry is  
required. The line break switches SW1 and SW2 are  
linear switches that have exceptionally low RDS  
ON  
and excellent matching characteristics. The ringing  
access switch SW4 has a breakdown voltage rating of  
greater than 480 V. This is sufficiently high, with  
proper protection, to prevent breakdown in the pres-  
ence of a transient fault condition (i.e., passing the  
transient on to the ring generator).  
applying logic-level inputs to pins 9 and 10 (IN  
RING  
and IN  
) of the device.  
TEST-IN  
The logic sequences for either mode of operation are  
given in “Make-Before-Break Operation (Ringing to  
Idle/Talk Transition)” on page 6 and “Break-Before-  
Make Operation (Ringing to Idle/Talk Transition)” on  
page 6. Logic states and explanations are given in  
“CPC7584xA/B Truth Table” on page 7.  
Integrated into the CPC7584 is a diode bridge/SCR  
clamping circuit, current limiting, and a thermal shut-  
down mechanism to provide protection to the SLIC  
device during a fault condition. Positive and negative  
surges are reduced by the current limiting circuitry and  
steered to ground via diodes and the integrated SCR.  
Power-cross transients are also reduced by the cur-  
rent limiting and thermal shutdown circuits. Note that  
only the CPC7584xA and CPC7584xC parts include  
the integrated protection SCR.  
Break-before-make operation can also be achieved  
using pin 7 (TSD) as an input. In “Break-Before-Make  
Operation (Ringing to Idle/Talk Transition)” on page 6  
lines 2 and 3, it is possible to induce the switches to  
the all-off state by grounding pin 7 (TSD) instead of  
apply logic input to the pins. This has the effect of  
overriding the logic inputs and forcing the device to the  
all-off state. Hold this input state for 25 ms. During this  
hold period, toggle the inputs from the ringing state  
To protect the CPC7584 from an overvoltage fault  
condition, use of a secondary protector is required.  
The secondary protector must limit the voltage seen at  
the tip and ring terminals to a level below the maxi-  
9
www.clare.com  
Rev. 0.A  
CPC7584  
(10) to the idle/talk state (00). After the 25 ms, release  
pin 7 (TSD) to return the switch control to the input  
pins 9 and 10 and reset the device to the idle/talk  
state.  
restored. The device also enters the all-off state if the  
battery voltage rises above –10 V and remains in the  
all-off state until the battery voltage drops below  
–15 V. This battery monitor feature draws a small cur-  
rent from the battery (less than 1 mA typical) and will  
add slightly to the device’s overall power dissipation.  
Setting TSD to +5 V allows switch control using the  
logic pins 9 and 10. This setting, however, also dis-  
ables the thermal shutdown circuit and is therefore not  
recommended. When using logic controls via the input  
pins 9 and 10, pin 7 (TSD) should be allowed to float.  
As a result, the two recommended states when using  
pin 7 (TSD) as a control are 0, which forces the device  
to the all-off state, or float, which allows logic inputs to  
pins 9 and 10 to remain active. This may require the  
use of an open-collector buffer.  
3.6 Protection  
3.6.1 Diode Bridge/SCR  
The CPC7584 uses a combination of current limited  
break switches, a diode bridge/SCR clamping circuit,  
and a thermal shutdown mechanism to protect the  
SLIC device or other associated circuitry from damage  
during line transient events such as lightning. During a  
positive transient condition, the fault current is con-  
ducted through the diode bridge to ground. Voltage is  
clamped to the diode drop above ground. During a  
negative transient of 2 to 4 V more negative than the  
battery, the SCR conducts and faults are shunted to  
ground via the SCR and diode bridge.  
3.3 Ring Access Switch Zero-Cross Current Turn Off  
After the application of a logic input to turn SW4 off,  
the ring access switch is designed to delay the change  
in state until the next zero-crossing. Once on, the  
switch requires a zero-current cross to turn off, and  
therefore should not be used to switch a pure DC sig-  
nal. The switch will remain in the on state no matter  
what logic input until the next zero crossing. For  
In order for the SCR to crowbar or foldback, the on  
voltage (see “Protection Circuitry Electrical Specifica-  
tions” on page 7) of the SCR must be less negative  
than the battery reference voltage. If the battery volt-  
age is less negative the SCR on voltage, the SCR will  
not crowbar, however it will conduct fault currents to  
ground.  
proper operation, pin 12 (R  
) should be connected  
RING  
using proper impedance to a ring generator or other  
AC source. These switching characteristics will reduce  
and possibly eliminate overall system impulse noise  
normally associated with ringing access switches. The  
attributes of ringing access switch SW4 may make it  
possible to eliminate the need for a zero-cross switch-  
ing scheme. A minimum impedance of 300 in series  
with the ring generator is recommended.  
For power induction or power-cross fault conditions,  
the positive cycle of the transient is clamped to the  
diode drop above ground and the fault current directed  
to ground. The negative cycle of the transient will  
cause the SCR to conduct when the voltage exceeds  
the battery reference voltage by two to four volts,  
steering the current to ground.  
3.4 Power Supplies  
Both a +5 V supply and battery voltage are connected  
to the CPC7584. CPC7584 switch state control is  
powered exclusively by the +5 V supply. As a result,  
the CPC7584 exhibits extremely low power dissipation  
during both active and idle states.  
3.6.2 Current Limiting function  
If a lightning strike transient occurs when the device in  
the talk/idle state, the current is passed along the line  
to the integrated protection circuitry and limited by the  
dynamic current limit response of break switches SW1  
and SW2. When a 1000V 10/1000 pulse (LSSGR  
lightning) is applied to the line though a properly  
clamped external protector, the current seen at pins 2  
The battery voltage is not used for switch control but  
rather as a reference for the integrated secondary pro-  
tection circuitry. The integrated SCR is designed to  
trigger when pin 3 (T ) or pin 14 (R ) drops 2 to  
BAT  
BAT  
4 V below the battery. This trigger prevents a fault  
(T ) and pin 15 (R ) will be a pulse with a typical  
BAT  
BAT  
induced overvoltage event at the T  
or R  
nodes.  
magnitude of 2.5 A and a duration of less than 0.5 ms.  
BAT  
BAT  
If a power-cross fault occurs with the device in the talk/  
idle state, the current is passed though break switches  
SW1 and SW2 on to the integrated protection circuit  
and is limited by the dynamic DC current limit  
response of the two break switches. The DC current  
limit, specified over temperature, is between 80 mA  
3.5 Battery Voltage Monitor  
The CPC7584 also uses the voltage reference to  
monitor battery voltage. If battery voltage is lost, the  
CPC7582BC immediately enters the all-off state. It  
remains in this state until the battery voltage is  
Rev. 0.A  
www.clare.com  
10  
CPC7584  
and 425 mA, and the circuitry has a negative tempera-  
ture coefficient. As a result, if the device is subjected  
to extended heating due to power cross fault, the mea-  
to the specifications of external secondary protectors,  
fused resistors and PTCs.  
sured current at pin 2 (T ) and pin 15 (R ) will  
BAT  
BAT  
3.9 Data Latch  
The CPC7584 has an integrated data latch. The latch  
operation is controlled by logic-level input pin 11  
decrease as the device temperature increases. If the  
device temperature rises sufficiently, the temperature  
shutdown mechanism will activate and the device will  
default to the all-off state.  
(LATCH). The data input of the latch is pin 10 (IN  
)
RING  
and pin 9 (IN  
) of the device while the output of  
TEST-IN  
the data latch is an internal node used for state con-  
trol. When LATCH control pin is at logic 0, the data  
latch is transparent and data control signals flow  
3.7 Temperature Shutdown  
The thermal shutdown mechanism will activate when  
the device temperature reaches a minimum of 110° C,  
placing the device in the all-off state regardless of  
logic input. During thermal shutdown mode, pin 7  
directly through to state control. A change in input will  
be reflected in a change is switch state. When LATCH  
control pin is at logic 1, the data latch is active and a  
change in input control will not affect switch state. The  
switches will remain in the position they were in when  
the LATCH changed from logic 0 to logic 1 and will not  
respond to changes in input as long as the latch is at  
logic 1. The TSD input is not tied to the data latch.  
Therefore, TSD is not affected by the LATCH input  
and the TSD input will override state control via pin 10  
(TSD) will read 0 V. Normal output of TSD is +V  
.
DD  
If presented with a short duration transient such as a  
lightning event, the thermal shutdown feature will typi-  
cally not activate. But in an extended power-cross  
transient, the device temperature will rise and the ther-  
mal shutdown will activate forcing the switches to the  
all-off state. At this point the current measured at pin 3  
(IN  
) and pin 9 (IN  
) and the LATCH.  
RING  
TEST-IN  
(T ) and pin 14 (R ) will drop to zero. Once the  
BAT  
BAT  
device enters thermal shutdown it will remain in the  
all-off state until the temperature of the device drops  
below the activation level of the thermal shutdown cir-  
cuit. This will return the device to the state prior to  
thermal shutdown. If the transient has not passed, cur-  
rent will flow at the value allowed by the dynamic DC  
current limiting of the switches and heating will begin  
again, reactivating the thermal shutdown mechanism.  
This cycle of entering and exiting the thermal shut-  
down mode will continue as long as the fault condition  
persists. If the magnitude of the fault condition is great  
enough, the external secondary protector could acti-  
vate and shunt all current to ground.  
The thermal shutdown mechanism of the CPC7584  
can be disable by applying +V to pin 7 (TSD).  
DD  
3.8 External Protection Elements  
The CPC7584 requires only one overvoltage second-  
ary protector on the loop side of the device. The inte-  
grated protection feature described above negates the  
need for protection on the line side. The secondary  
protector limits voltage transients to levels that do not  
exceed the breakdown voltage or input-output isola-  
tion barrier of the CPC7584. A foldback or crowbar  
type protector is recommended to minimize stresses  
on the device.  
Consult Clare’s application note, AN-100, “Designing  
Surge and Power Fault Protection Circuits for Solid  
State Subscriber Line Interfaces” for equations related  
11  
www.clare.com  
Rev. 0.A  
CPC7584  
4. Manufacturing Information  
4.1 Mechanical Dimensions  
4.1.1 SOIC  
16 Pin SOIC (JEDEC Package)  
10.11 MIN / 10.31 MAX  
(.398 MIN / .406 MAX)  
1.27  
(.050)  
0.23 MIN / 0.32 MAX  
(.0091 MIN / .0125 MAX)  
2.44 MIN / 2.64 MAX  
(.096 MIN / .104 MAX)  
10.11 MIN / 10.51 MAX  
(.398 MIN / .414 MAX)  
7.40 MIN / 7.60 MAX  
(.291 MIN / .299 MAX)  
0.51 MIN / 1.01 MAX  
(.020 MIN / .040 MAX)  
0.36 MIN / 0.46 MAX  
(.014 MIN / .018 MAX)  
4.1.2 MLP  
7
6
INDEX AREA  
TOP VIEW  
0.2  
0.80  
(±0.10)  
SEATING  
PLANE  
SIDE VIEW  
0.02  
(+0.05, -0)  
0.33  
(+0.07, -0.05)  
1
2
EXPOSED PAD  
0.55  
4.0  
(±0.05)  
0.55  
(±0.1)  
16  
6.0  
(±0.05)  
Terminal Tip  
0.80  
BOTTOM VIEW  
Dimensions in mm  
Rev. 0.A  
www.clare.com  
12  
CPC7584  
4.2 Printed-Circuit Board Layout  
4.2.2 MLP  
5.75  
0.75 on center  
4.2.1 SOIC  
0.65  
PC Board Pattern  
(Top View)  
0.38  
1.270  
(.050)  
5.35 on center  
6.1  
Detail A  
9.728 ± .051  
(.383 ± .002)  
1.193  
(.047)  
6.13  
Detail A  
0.65  
.787  
(.031)  
All dimensions in mm  
Not drawn to scale  
0.66  
0.47  
0.38  
4.3 Tape and Reel Packaging  
4.3.1 SOIC  
A0  
6.50  
3.00  
R = .50  
2.00  
2.30  
K1  
K0  
B0  
6.80  
2.70  
1.30  
16.00  
7.50  
12.00  
4.00  
2.00  
1.50  
NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS AND CARRY TOLERANCES OF EIA  
STANDARD 481-2. 2. THE TAPE COMPLIES WITH ALL "NOTES" FOR CONSTANT DIMENSIONS  
LISTED ON PAGE 5 OF EIA-481-2.  
A0 =  
B0 =  
K0 =  
K1 =  
6.5 mm  
10.3 mm  
2.3 mm  
2.7 mm  
4.4 Soldering  
4.4.1 Moisture Reflow Sensitivity  
Clare has characterized the moisture reflow sensitivity  
of LCAS products using IPC/JEDEC standard J-STD-  
020A. Moisture uptake from atmospheric humidity  
occurs by diffusion. During the solder reflow process,  
in which the component is attached to the PCB, the  
whole body of the component is exposed to high pro-  
cess temperatures. The combination of moisture  
uptake and high reflow soldering temperatures may  
13  
www.clare.com  
Rev. 0.A  
lead to moisture induced delamination and cracking of  
the component. To prevent this, this component must  
be handled in accordance with IPC/JEDEC standard  
J-STD-020A per the labeled moisture sensitivity level  
(MSL), level 1 for the SOIC package, and level 2 for  
the MLP package.  
4.4.2 Reflow Profile  
The maximum ramp rates, dwell times, and tempera-  
tures of the assembly reflow profile should not exceed  
those specified in IPC/JEDEC standard J-STD-020A,  
which were used to determine the moisture sensitivity  
level of this component.  
4.5 Washing  
Clare does not recommend ultrasonic cleaning of  
LCAS parts.  
For additional information please visit www.clare.com  
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make  
changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses or indemnity are expressed or implied. Except as set  
forth in Clare’s Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty relating to its  
products, including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.  
The products described in this document are not designed, intended, authorized, or warranted for use as components in systems intended for surgical implant into  
the body, or in other applications intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a  
person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.  
Specifications: DS-CPC7584-R0.A  
© Copyright 2002, Clare, Inc.  
All rights reserved. Printed in USA.  
5/6/2002  

相关型号:

CPC7584BB

Telecom Circuit, 1-Func, PDSO16, SOIC-16
IXYS

CPC7584BB-TR

Telecom Circuit, 1-Func, PDSO16, SOIC-16
IXYS

CPC7584xA

Line Card Access Switch
CLARE

CPC7584xB

Line Card Access Switch
CLARE

CPC7584xC

Line Card Access Switch
CLARE

CPC7591

Line Card Access Switch
CLARE

CPC7591BA

Line Card Access Switch
IXYS

CPC7591BATR

Line Card Access Switch
CLARE

CPC7591BATR

Line Card Access Switch
IXYS

CPC7591BB

Line Card Access Switch
IXYS

CPC7591BBTR

Line Card Access Switch
CLARE

CPC7591BBTR

Line Card Access Switch
IXYS