CS52015-1GDPR3 [CHERRY]

1.5A Adjustable Linear Regulator; 1.5A可调线性稳压器
CS52015-1GDPR3
型号: CS52015-1GDPR3
厂家: CHERRY SEMICONDUCTOR CORPORATION    CHERRY SEMICONDUCTOR CORPORATION
描述:

1.5A Adjustable Linear Regulator
1.5A可调线性稳压器

线性稳压器IC 调节器 电源电路 输出元件
文件: 总7页 (文件大小:175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS52015-1  
1.5A Adjustable Linear Regulator  
Description  
Features  
The CS52015-1 linear regulator pro-  
The circuit is designed to operate  
with dropout voltages less than  
1.4V at 1.5A output current. Device  
protection includes overcurrent and  
thermal shutdown.  
Output Current to 1.5A  
vides 1.5A with an accuracy of ±1%.  
The device uses two external resis-  
tors to set the output voltage within  
a 1.25V to 5.5V range.  
Output Accuracy to ±1%  
Over Temperature  
Dropout Voltage (typical)  
The regulator is intended for use as  
a post regulator and microprocessor  
supply. The fast loop response and  
low dropout voltage make this reg-  
ulator ideal for applications where  
low voltage operation and good  
transient response are important.  
The CS52015-1 is pin compatible  
with the LT1086 family of linear  
regulators but has lower dropout  
voltage.  
1.05V @ 1.5A  
Fast Transient Response  
Fault Protection  
Current Limit  
The regulator is available in TO-  
220, surface mount D2, and SOT-223  
packages.  
Thermal Shutdown  
Application Diagram  
Package Options  
3L TO-220  
3L D2PAK  
Tab (VOUT  
)
Tab (VOUT  
)
VOUT  
CS52015-1  
5.0V  
VIN  
3.3V @ 1.5A  
124W  
1%  
1
Adj  
22mF  
5V  
10 mF  
5V  
0.1mF  
5V  
Tantalum  
SOT-223  
Tab (VOUT  
)
200W  
1%  
1
CS52015 -1  
1
2
3
Adj  
VOUT (Tab)  
VIN  
1
Consult factory for fixed output voltage  
versions.  
Cherry Semiconductor Corporation  
2000 South County Trail, East Greenwich, RI 02818  
Tel: (401)885-3600 Fax: (401)885-5786  
Email: info@cherry-semi.com  
Web Site: www.cherry-semi.com  
Rev. 2/17/98  
1
A
¨
Company  
Absolute Maximum Ratings  
Supply Voltage, VCC ....................................................................................................................................................................7V  
Operating Temperature Range................................................................................................................................-40¡C to 70¡C  
Junction Temperature ............................................................................................................................................................150¡C  
Storage Temperature Range ..................................................................................................................................-60¡C to 150¡C  
Lead Temperature Soldering  
Wave Solder (through hole styles only) .....................................................................................10 sec. max, 260¡C peak  
Reflow (SMD styles only) ......................................................................................60 sec. max above 183¡C, 230¡C peak  
ESD Damage Threshold............................................................................................................................................................2kV  
Electrical Characteristics: CIN = 10µF, COUT = 22µF Tantalum, VOUT + VDROPOUT < VIN < 7V, 0¡C ² TA ² 70¡C, TJ ² +150¡C,  
unless otherwise specified, Ifull load = 1.5A.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Adjustable Output Voltage (CS52015-1)  
Reference Voltage  
(Notes 1 and 2)  
V
INÐVOUT=1.5V; VAdj = 0V  
1.241  
(-1%)  
1.254  
1.266  
(+1%)  
V
10mA²IOUT²1.5A  
Line Regulation  
1.5V²VINÐVOUT²5.75V; IOUT=10mA  
VINÐVOUT=1.5V; 10mA²IOUT²1.5A  
0.02  
0.04  
0.20  
0.4  
%
%
Load Regulation  
(Notes 1 and 2)  
Dropout Voltage (Note 3)  
Current Limit  
IOUT=1.5A  
1.05  
3.1  
1.4  
V
VINÐVOUT=3V; TJ ³ 25¡C  
1.6  
A
Minimum Load Current (Note 4) VIN=7V ; VAdj=0  
0.6  
2.0  
mA  
µA  
%/W  
dB  
Adjust Pin Current  
VINÐVOUT=3V; IOUT=10mA  
50  
100  
Thermal Regulation (Note 5)  
Ripple Rejection (Note 5)  
30ms pulse; TA=25¡C  
0.002  
80  
0.020  
f=120Hz; IOUT=1.5A; VINÐVOUT=3V;  
VRIPPLE=1VPP  
Thermal Shutdown (Note 6)  
150  
180  
25  
210  
¡C  
¡C  
Thermal Shutdown Hysteresis  
(Note 6)  
Note 1: Load regulation and output voltage are measured at a constant junction temperature by low duty cycle pulse testing. Changes in out-  
put voltage due to temperature changes must be taken into account separately.  
Note 2: Specifications apply for an external Kelvin sense connection at a point on the output pin 1/4Ó from the bottom of the package.  
Note 3: Dropout voltage is a measurement of the minimum input/output differential at full load.  
Note 4: The minimum load current is the minimum current required to maintain regulation. Normally the current in the resistor divider used  
to set the output voltage is selected to meet the minimum requirement.  
Note 5: Guaranteed by design, not 100% tested in production.  
Note 6: Thermal shutdown is 100% functionally tested in production.  
Package Pin Description  
PACKAGE PIN #  
PIN SYMBOL  
FUNCTION  
D2PAK  
TO-220  
SOT-223  
1
2
3
1
2
3
1
2
3
Adj  
Adjust pin (low side of the internal reference.  
Regulated output voltage (case).  
Input voltage  
VOUT  
VIN  
2
Block Diagram  
VOUT  
VIN  
Output  
Current  
Limit  
Thermal  
Shutdown  
-
+
Error  
Amplifier  
Bandgap  
Adj  
Typical Performance Characteristics  
1.05  
1.00  
0.10  
0.08  
0.06  
0.04  
T
CASE  
0ûC  
0.95  
0.90  
0.85  
0.80  
0.75  
0.02  
0.00  
T
25ûC  
CASE  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
T
CASE  
125ûC  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
0
300  
600  
900  
1200  
1500  
TJ (°C)  
I
(mA)  
OUT  
Dropout Voltage vs. Output Current  
Reference Voltage vs. Temperature  
0.65  
0.60  
0.100  
0.075  
T
= 0°C  
CASE  
0.55  
T
= 125°C  
CASE  
0.050  
T
= 125°C  
CASE  
T
CASE  
= 25°C  
0.50  
0.45  
T
= 25°C  
CASE  
0.025  
0.000  
C
=C  
=22mF Tantalum  
IN  
OUT  
T
= 0°C  
CASE  
0.40  
1
2
3
4
5
6
7
0
1
2
V
– V  
(V)  
IN  
OUT  
Output Current (A)  
Minimum Load Current vs VIN-VOUT  
Load Regulation vs. Output Current  
3
Typical Performance Characteristics  
70.0  
65.0  
60.0  
55.0  
50.0  
45.0  
40.0  
85  
75  
65  
I
= 10mA  
O
55  
T
= 25°C  
= 1.5A  
CASE  
45  
35  
25  
15  
I
OUT  
(V РV  
IN  
V
C
) = 3V  
OUT  
= 1.0V  
PP  
RIPPLE  
= 0.1mF  
Adj  
5
1
2
3
4
6
0
20 30 40 50 60  
Temperature (°C)  
90 100  
110 120 130  
10  
70 80  
10  
10  
10  
10  
10  
10  
Frequency (Hz)  
Adjust Pin Current vs. Temperature  
Ripple Rejection vs. Frequency  
3.5  
3.3  
3.1  
2.9  
200  
100  
0
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
V
=3.3V  
OUT  
=0.1mF  
-100  
-200  
OUT  
C
C
=C =22mF Tantalum  
IN  
Adj  
1500  
750  
0
0
1
2
3
4
5
6
7
8
9
10  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
- V (V)  
Time mS  
V
IN  
OUT  
Transient Response  
Short Circuit Current vs VIN-VOUT  
Applications Information  
The CS52015-1 linear regulator provides adjustable volt-  
ages at currents up to 1.5A. The regulator is protected  
against overcurrent conditions and includes thermal  
shutdown.  
50µA) also flows through R2 and adds a small error that  
should be taken into account if precise adjustment of VOUT  
is necessary.  
The output voltage is set according to the formula:  
The CS52015-1 has a composite PNP-NPN output transistor  
and requires an output capacitor for stability. A detailed  
procedure for selecting this capacitor is included in the  
Stability Considerations section.  
R1 + R2  
VOUT = VREF  
´
+ IAdj ´ R2  
(
)
R1  
The term IAdj ´ R2 represents the error added by the adjust  
pin current.  
Adjustable Operation  
R1 is chosen so that the minimum load current is at least  
2mA. R1 and R2 should be the same type, e.g. metal film  
for best tracking over temperature. While not required, a  
bypass capacitor from the adjust pin to ground will  
improve ripple rejection and transient response. A 0.1µF  
tantalum capacitor is recommended for Òfirst cutÓ design.  
Type and value may be varied to obtain optimum perfor-  
mance vs price.  
The 52015-1 has an output voltage range of 1.25V to 5.5V.  
An external resistor divider sets the output voltage as  
shown in Figure 1. The regulator maintains a fixed 1.25V  
(typical) reference between the output pin and the adjust  
pin.  
A resistor divider network R1 and R2 causes a fixed cur-  
rent to flow to ground. This current creates a voltage  
across R2 that adds to the 1.25V across R1 and sets the  
overall output voltage. The adjust pin current (typically  
4
Applications Information: continued  
EXTERNAL SUPPLY  
VIN  
VOUT  
VOUT  
VIN  
C1  
CS52015-1  
VREF  
R
C2  
1
V
IN  
Adj  
V
OUT  
IAdj  
V
Adj  
R
2
CAdj  
V
OUT  
Figure 1. Resistor divider scheme.  
Figure 2: Short Circuit Protection Circuit for High Voltage Application.  
Stability Considerations  
The CS52015-1 linear regulator has an absolute maximum  
specification of 7V for the voltage difference between VIN  
and VOUT. However, the IC may be used to regulate volt-  
ages in excess of 7V. The main considerations in such a  
design are power-up and short circuit capability.  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start-up  
delay, load transient response and loop stability.  
In most applications, ramp-up of the power supply to VIN  
is fairly slow, typically on the order of several tens of mil-  
liseconds, while the regulator responds in less than one  
microsecond. In this case, the linear regulator begins  
charging the load as soon as the VIN to VOUT differential is  
large enough that the pass transistor conducts current. The  
load at this point is essentially at ground, and the supply  
voltage is on the order of several hundred millivolts, with  
the result that the pass transistor is in dropout. As the sup-  
ply to VIN increases, the pass transistor will remain in  
dropout, and current is passed to the load until VOUT  
reaches the point at which the IC is in regulation. Further  
increase in the supply voltage brings the pass transistor  
out of dropout. The result is that the output voltage fol-  
lows the power supply ramp-up, staying in dropout until  
the regulation point is reached. In this manner, any output  
voltage may be regulated. There is no theoretical limit to  
the regulated voltage as long as the VIN to VOUT differen-  
tial of 7V is not exceeded.  
The capacitor value and type is based on cost, availability,  
size and temperature constraints. A tantalum or aluminum  
electrolytic capacitor is best, since a film or ceramic capaci-  
tor with almost zero ESR can cause instability. The alu-  
minum electrolytic capacitor is the least expensive solu-  
tion. However, when the circuit operates at low tempera-  
tures, both the value and ESR of the capacitor will vary  
considerably. The capacitor manufacturersÕ data sheet pro-  
vides this information.  
A 22µF tantalum capacitor will work for most applications,  
but with high current regulators such as the CS52015-1 the  
transient response and stability improve with higher val-  
ues of capacitance. The majority of applications for this  
regulator involve large changes in load current so the out-  
put capacitor must supply the instantaneous load current.  
The ESR of the output capacitor causes an immediate drop  
in output voltage given by:  
ÆV = ÆI ´ ESR  
However, the possibility of destroying the IC in a short  
circuit condition is very real for this type of design. Short  
circuit conditions will result in the immediate operation of  
the pass transistor outside of its safe operating area. Over-  
voltage stresses will then cause destruction of the pass  
transistor before overcurrent or thermal shutdown circuit-  
ry can become active. Additional circuitry may be required  
to clamp the VIN to VOUT differential to less than 7V if fail-  
safe operation is required. One possible clamp circuit is  
illustrated in figure 2; however, the design of clamp cir-  
cuitry must be done on an application by application basis.  
Care must be taken to ensure the clamp actually protects  
the design. Components used in the clamp design must be  
able to withstand the short circuit condition indefinitely  
while protecting the IC.  
For microprocessor applications it is customary to use an  
output capacitor network consisting of several tantalum  
and ceramic capacitors in parallel. This reduces the overall  
ESR and reduces the instantaneous output voltage drop  
under load transient conditions. The output capacitor net-  
work should be as close as possible to the load for the best  
results.  
Protection Diodes  
When large external capacitors are used with a linear regu-  
lator it is sometimes necessary to add protection diodes. If  
the input voltage of the regulator gets shorted, the output  
capacitor will discharge into the output of the regulator.  
The discharge current depends on the value of the capaci-  
tor, the output voltage and the rate at which VIN drops. In  
the CS52015-1 linear regulator, the discharge path is  
through a large junction and protection diodes are not usu-  
ally needed. If the regulator is used with large values of  
output capacitance and the input voltage is instantaneous-  
ly shorted to ground, damage can occur. In this case, a  
diode connected as shown in Figure 2 is recommended.  
5
Applications Information: continued  
Thermal compound should always be used with high cur-  
rent regulators such as these.  
IN4002  
(optional)  
VOUT  
The thermal characteristics of an IC depend on the follow-  
ing four factors:  
VIN  
VOUT  
VIN  
1. Maximum Ambient Temperature TA (¡C)  
2. Power dissipation PD (Watts)  
C1  
CS52015-1  
R
C2  
1
3. Maximum junction temperature TJ (¡C)  
4. Thermal resistance junction to ambient RQJA (C/W)  
Adj  
These four are related by the equation  
R
2
CAdj  
TJ = TA + PD ´ RQJA  
(1)  
The maximum ambient temperature and the power dissi-  
pation are determined by the design while the maximum  
junction temperature and the thermal resistance depend on  
the manufacturer and the package type.  
Figure 3. Protection diode scheme for Large Output Capacitors.  
Output Voltage Sensing  
The maximum power dissipation for a regulator is:  
Since the CS52015-1 is a three terminal regulator, it is not  
possible to provide true remote load sensing. Load regula-  
tion is limited by the resistance of the conductors connect-  
ing the regulator to the load.  
P
D(max)={VIN(max)ÐVOUT(min)}IOUT(max)+VIN(max) Q  
I
(2)  
where  
VIN(max) is the maximum input voltage,  
VOUT(min) is the minimum output voltage,  
For the adjustable regulator, the best load regulation occurs  
when R1 is connected directly to the output pin of the regu-  
lator as shown in Figure 3. If R1 is connected to the load,  
RC is multiplied by the divider ratio and the effective resis-  
tance between the regulator and the load becomes  
IOUT(max) is the maximum output current, for the application  
IQ is the maximum quiescent current at IOUT(max).  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
R1 + R2  
RC ´  
(
)
Each material in the heat flow path between the IC and the  
outside environment has a thermal resistance. Like series  
electrical resistances, these resistances are summed to  
determine RQJA, the total thermal resistance between the  
junction and the surrounding air.  
R1  
RC = conductor parasitic resistance  
conductor parasitic  
resistance  
R
C
VIN  
VOUT  
VIN  
1. Thermal Resistance of the junction to case, RQJC (¡C/W)  
2. Thermal Resistance of the case to Heat Sink, RQCS (¡C/W)  
3. Thermal Resistance of the Heat Sink to the ambient air,  
CS52015-1  
R
LOAD  
R
1
Adj  
R
QSA (¡C/W)  
R
2
These are connected by the equation:  
QJA = RQJC + RQCS + RQSA  
R
(3)  
The value for RQJA is calculated using equation (3) and the  
result can be substituted in equation (1).  
Figure 4. Grounding scheme for the adjustable output regulator to mini-  
mize parasitic resistance effects.  
The value for RQJC is 3.5ûC/W. For a high current regula-  
tor such as the CS52015-1 the majority of the heat is gener-  
ated in the power transistor section. The value for RQSA  
depends on the heat sink type, while RQCS depends on fac-  
tors such as package type, heat sink interface (is an insula-  
tor and thermal grease used?), and the contact area  
between the heat sink and the package. Once these calcula-  
tions are complete, the maximum permissible value of RQJA  
can be calculated and the proper heat sink selected. For fur-  
ther discussion on heat sink selection, see application note  
ÒThermal Management for Linear Regulators.Ó  
Calculating Power Dissipation and Heat Sink Requirements  
The CS52015-1 linear regulator includes thermal shutdown  
and current limit circuitry to protect the device. High  
power regulators such as these usually operate at high  
junction temperatures so it is important to calculate the  
power dissipation and junction temperatures accurately to  
ensure that an adequate heat sink is used.  
The case is connected to VOUT on the CS52015-1, and elec-  
trical isolation may be required for some applications.  
6
Package Specification  
PACKAGE DIMENSIONS IN mm (INCHES)  
PACKAGE THERMAL DATA  
3L  
Thermal Data TO-220  
3L  
3L  
3 Lead TO-220 (T) Straight  
D2PAK SOT-223  
RQJC  
RQJA  
typ  
typ  
3.5  
50  
3.5  
10 - 50*  
15  
156  
ûC/W  
ûC/W  
*Depending on thermal properties of substrate. RQJA = RQJC + RQCA  
1.40 (.055)  
1.14 (.045)  
4.83 (.190)  
10.54 (.415)  
4.06 (.160)  
9.78 (.385)  
3.96 (.156)  
2.87 (.113)  
3.71 (.146)  
2.62 (.103)  
6.55 (.258)  
5.94 (.234)  
3 Lead SOT-223 (ST)  
14.99 (.590)  
14.22 (.560)  
6.70 (.264)  
6.30 (.248)  
3.15 (.124)  
7.30 (.287)  
6.70 (.264)  
2.95 (.116)  
1.52 (.060)  
1.14 (.045)  
6.17 (.243) REF  
14.22 (.560)  
13.72 (.540)  
1.40 (.055)  
1.14 (.045)  
3.70 (.146)  
3.30 (.130)  
1.02 (.040)  
0.63 (.025)  
1.05 (.041)  
0.85 (.033)  
0.56 (.022)  
0.38 (.014)  
2.79 (.110)  
2.29 (.090)  
2.30 (.090)  
5.33 (.210)  
4.83 (.190)  
0.35 (.014)  
0.25 (.010)  
2.92 (.115)  
2.29 (.090)  
1.70 (.067)  
1.50 (.060)  
1.30 (.051)  
1.10 (.043)  
0.85 (.033)  
0.65 (.026)  
0.10 (.004)  
0.02 (.001)  
10° MAX  
3 Lead D2PAK (DP)  
4.60 (.181)  
10.31 (.406)  
10.05 (.396)  
1.40 (.055)  
1.14 (.045)  
1.68 (.066)  
1.40 (.055)  
8.53 (.336)  
8.28 (.326)  
15.75 (.620)  
14.73 (.580)  
2.74(.108)  
2.49(.098)  
1.40 (.055)  
1.14 (.045)  
2.79 (.110)  
2.29 (.090)  
0.91 (.036)  
0.66 (.026)  
2.54 (.100) REF  
.254 (.010) REF  
0.10 (.004)  
0.00 (.000)  
4.57 (.180)  
4.31 (.170)  
Ordering Information  
Type Description  
Part Number  
CS52015-1GT3  
1.5A, adj. output 3 L TO-220 Straight  
CS52015-1GDP3 1.5A, adj. output 3 L D2PAK  
CS52015-1GDPR3 1.5A, adj. output 3 L D2PAK  
(tape & reel)  
Ch erry Sem icon du ctor Corporation reserves th e  
righ t to m ake ch an ges to th e specification s with ou t  
n otice. Please con tact Ch erry Sem icon du ctor  
Corporation for th e latest available in form ation .  
CS52015-1GST3  
CS52015-1GSTR3 1.5A, adj. output SOT-223 (tape & reel)  
1.5A, adj. output SOT-223  
Rev. 2/17/98  
© 1999 Cherry Semiconductor Corporation  
7

相关型号:

CS52015-1GST3

1.5A Adjustable Linear Regulator
CHERRY

CS52015-1GST3

1.5 A Adjustable Linear Regulator
ONSEMI

CS52015-1GSTR3

1.5A Adjustable Linear Regulator
CHERRY

CS52015-1GSTR3

1.5 A Adjustable Linear Regulator
ONSEMI

CS52015-1GT3

1.5A Adjustable Linear Regulator
CHERRY

CS52015-1GT3

1.5 A Adjustable Linear Regulator
ONSEMI

CS52015-3

1.5A, 3.3V Fixed Linear Regulator
CHERRY

CS52015-3

1.5 A, 3.3 V Fixed Linear Regulator
ONSEMI

CS52015-3/D

1.5A, 3.3V Fixed Linear Regulator
ETC

CS52015-3GDP3

1.5A, 3.3V Fixed Linear Regulator
CHERRY

CS52015-3GDP3

1.5 A, 3.3 V Fixed Linear Regulator
ONSEMI

CS52015-3GDPR3

1.5A, 3.3V Fixed Linear Regulator
CHERRY