CS52015-3/D [ETC]

1.5A, 3.3V Fixed Linear Regulator ; 1.5A , 3.3V固定线性稳压器\n
CS52015-3/D
型号: CS52015-3/D
厂家: ETC    ETC
描述:

1.5A, 3.3V Fixed Linear Regulator
1.5A , 3.3V固定线性稳压器\n

稳压器
文件: 总8页 (文件大小:71K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS52015-3  
1.5 A, 3.3 V Fixed Linear  
Regulator  
The CS52015–3 linear regulator provides 1.5 A @ 3.3 V reference  
at 1.0 A with an output voltage accuracy of ±1.5 %.  
The regulator is intended for use as a post regulator and  
microprocessor supply. The fast loop response and low dropout  
voltage make this regulator ideal for applications where low voltage  
operation and good transient response are important.  
http://onsemi.com  
The circuit is designed to operate with dropout voltages less than 1.4 V  
at 1.5 A output current. The maximum quiescent current is only 10 mA  
at full load. Device protection includes over–current and thermal  
shutdown.  
TO–220  
THREE LEAD  
T SUFFIX  
The CS52015–3 is pin compatible with the LT1086 family of linear  
regulators but has lower dropout voltage.  
CASE 221A  
2
The regulator is available in TO–220, surface mount D , and  
1
2
Tab = V  
SOT–223 packages.  
OUT  
3
Pin 1. GND  
2
2. V  
D PAK  
OUT  
Features  
Output Current to 1.5 A  
Output Accuracy to ±1.5% Over Temperature  
Dropout Voltage (typical) 1.05 V @ 1.5 A  
Fast Transient Response  
Fault Protection  
3. V  
3–PIN  
DP SUFFIX  
CASE 418E  
IN  
1
2
3
SOT–223  
ST SUFFIX  
CASE 318E  
1
2
3
Current Limit  
Thermal Shutdown  
ORDERING INFORMATION*†  
Device  
Package  
Shipping  
V
IN  
V
OUT  
3.3 V @ 1.5 A  
CS52015–3GT3  
50 Units/Rail  
50 Units/Rail  
TO–220‡  
CS52015–3  
2
CS52015–3GDP3  
CS52015–3GDPR3  
CS52015–3GST3  
CS52015–3GSTR3  
D PAK‡  
GND  
2
750 Tape & Reel  
80 Units/Rail  
10 µF  
5.0 V  
22 µF  
5.0 V  
D PAK‡  
SOT–223‡  
SOT–223‡  
2500 Tape & Reel  
*Additional ordering information can be found on page  
6 of this data sheet.  
Figure 1. Applications Diagram  
†Consult your local sales representative for other  
fixed output voltage versions.  
2
‡TO–220 are all 3–pin, straight leaded. D PAK and  
SOT–223 are all 3–pin.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 6 of this data sheet.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
March, 2001 – Rev. 4  
CS52015–3/D  
CS52015–3  
ABSOLUTE MAXIMUM RATINGS*  
Parameter  
Value  
7.0  
Unit  
V
Supply Voltage, V  
IN  
Operating Temperature Range  
Junction Temperature  
–40 to +70  
150  
°C  
°C  
°C  
Storage Temperature Range  
Lead Temperature Soldering:  
–60 to +150  
Wave Solder (through hole styles only) Note 1.  
Reflow (SMD styles only) Note 2.  
260 Peak  
230 Peak  
°C  
°C  
ESD Damage Threshold  
2.0  
kV  
1. 10 second maximum.  
2. 60 second maximum above 183°C  
*The maximum package power dissipation must be observed.  
ELECTRICAL CHARACTERISTICS (C = 10 µF, C  
= 22 µF Tantalum, V  
+ V  
< V < 7.0 V, 0°C T 70°C,  
IN  
OUT  
OUT  
DROPOUT  
IN  
A
T +150°C, unless otherwise specified, I  
= 1.5 A)  
J
full load  
Characteristic  
Fixed Output Voltage  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage (Notes 3. and 4.)  
V
IN  
– V  
= 1.5 V;  
3.250  
3.300  
3.350  
V
OUT  
0 I  
1.5 A  
(–1.5%)  
(+1.5%)  
OUT  
Line Regulation  
2.0 V V – V  
3.7 V; I = 10 mA  
OUT  
0.02  
0.04  
1.05  
3.1  
0.20  
0.4  
1.4  
%
%
IN  
OUT  
Load Regulation (Notes 3. and 4.)  
Dropout Voltage (Note 5.)  
Current Limit  
V
IN  
– V  
= 2.0 V; 10 mA I  
1.5 A  
OUT  
OUT  
I
= 1.5 A  
V
OUT  
V
IN  
– V  
= 3.0 V  
1.6  
A
OUT  
Quiescent Current  
I
= 10 mA  
5.0  
10  
mA  
%/W  
dB  
OUT  
Thermal Regulation (Note 6.)  
Ripple Rejection (Note 6.)  
30 ms Pulse, T = 25°C  
0.002  
80  
0.020  
A
f = 120 Hz; I  
= 1.5 A; V – V = 3.0 V;  
OUT  
OUT  
IN  
V
= 1.0 V  
PP  
RIPPLE  
Thermal Shutdown (Note 7.)  
150  
180  
25  
210  
°C  
°C  
Thermal Shutdown Hysteresis (Note 7.)  
3. Load regulation and output voltage are measured at a constant junction temperature by low duty cycle pulse testing. Changes in output  
voltage due to temperature changes must be taken into account seperately.  
4. Specifications apply for an external Kelvin sense connection at a point on the output pin 1/4” from the bottom of the package.  
5. Dropout voltage is a measurement of the minimum input/output differential at full load.  
6. Guaranteed by design, not 100% tested in production.  
7. Thermal shutdown is 100% functionally tested in production.  
PACKAGE PIN DESCRIPTION  
Package Pin Number  
2
TO–220  
D PAK  
SOT–223  
Pin Symbol  
Function  
1
2
3
1
2
3
1
2
3
GND  
Ground connection.  
V
OUT  
Regulated output voltage (case).  
Input voltage.  
V
IN  
http://onsemi.com  
2
CS52015–3  
V
OUT  
V
IN  
Output  
Current  
Limit  
Thermal  
Shutdown  
+
Error  
Amplifier  
Bandgap  
GND  
Figure 2. Block Diagram  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.10  
0.08  
0.06  
0.04  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
T
= 0°C  
CASE  
0.02  
0.00  
T
= 25°C  
CASE  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
T
= 125°C  
CASE  
0
300  
600  
900  
(mA)  
1200  
1500  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
I
T (°C)  
J
OUT  
Figure 3. Dropout Voltage vs. Output  
Current  
Figure 4. Output Voltage vs. Temperature  
85  
75  
65  
55  
45  
35  
25  
15  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
T
= 25°C  
= 1.5 A  
CASE  
I
OUT  
(V – V  
V
) = 3.0 V  
OUT  
IN  
= 1.0 V  
PP  
RIPPLE  
1.7  
1.5  
1
2
3
4
5
6
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
– V (V)  
10  
10  
10  
10  
10  
10  
V
IN  
Frequency (Hz)  
OUT  
Figure 5. Ripple Rejection vs. Frequency  
Figure 6. Short Circuit Current vs.  
VIN – VOUT  
http://onsemi.com  
3
CS52015–3  
0.100  
300  
200  
100  
0
0.075  
0.050  
0.025  
0.000  
C
= C = 22 µF Tantalum  
IN  
OUT  
–100  
–200  
1500  
750  
0
T
= 25°C  
CASE  
T
= 125°C  
CASE  
T
= 0°C  
CASE  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
Output Current (A)  
Time (µS)  
Figure 7. Transient Response  
Figure 8. Load Regulation vs. Output  
Current  
APPLICATIONS INFORMATION  
The CS52015–3 linear regulator provides a 3.3 V output  
voltage at currents up to 1.5 A. The regulator is protected  
against overcurrent conditions and includes thermal  
shutdown.  
The CS52015–3 has a composite PNP–NPN output  
transistor and requires an output capacitor for stability. A  
detailed procedure for selecting this capacitor is included in  
the Stability Considerations section.  
For microprocessor applications it is customary to use an  
output capacitor network consisting of several tantalum and  
ceramic capacitors in parallel. This reduces the overall ESR  
and reduces the instantaneous output voltage drop under  
transient load conditions. The output capacitor network  
should be as close to the load as possible for the best results.  
Protection Diodes  
When large external capacitors are used with a linear  
regulator it is sometimes necessary to add protection diodes.  
If the input voltage of the regulator gets shorted, the output  
capacitor will discharge into the output of the regulator. The  
discharge current depends on the value of the capacitor, the  
Stability Considerations  
The output compensation capacitor helps determine three  
main characteristics of a linear regulator: start–up delay,  
load transient response, and loop stability.  
The capacitor value and type is based on cost, availability,  
size and temperature constraints. A tantalum or aluminum  
electrolytic capacitor is best, since a film or ceramic  
capacitor with almost zero ESR can cause instability. The  
aluminum electrolytic capacitor is the least expensive  
solution. However, when the circuit operates at low  
temperatures, both the value and ESR of the capacitor will  
vary considerably. The capacitor manufacturer’s data sheet  
provides this information.  
A 22 µF tantalum capacitor will work for most  
applications, but with high current regulators such as the  
CS52015–3 the transient response and stability improve  
with higher values of capacitance. The majority of  
applications for this regulator involve large changes in load  
current so the output capacitor must supply the  
instantaneous load current. The ESR of the output capacitor  
causes an immediate drop in output voltage given by:  
output voltage and the rate at which V drops. In the  
IN  
CS52015–3 linear regulator, the discharge path is through a  
large junction and protection diodes are not usually needed.  
If the regulator is used with large values of output  
capacitance and the input voltage is instantaneously shorted  
to ground, damage can occur. In this case, a diode connected  
as shown in Figure 9 is recommended.  
IN4002 (Optional)  
V
IN  
V
OUT  
V
IN  
V
OUT  
CS52015–3  
C
C
2
1
GND  
DV + DI   ESR  
Figure 9. Protection Diode Scheme for Large  
Output Capacitors  
http://onsemi.com  
4
CS52015–3  
Output Voltage Sensing  
maximum junction temperature and the thermal resistance  
depend on the manufacturer and the package type.  
The maximum power dissipation for a regulator is:  
Since the CS52015–3 is a three terminal regulator, it is not  
possible to provide true remote load sensing. Load  
regulation is limited by the resistance of the conductors  
connecting the regulator to the load. For best results the  
regulator should be connected as shown in Figure 10.  
{
}
I
P
+ V  
* V  
) V  
I
D(max)  
IN(max)  
OUT(min) OUT(max)  
IN(max) Q  
(2)  
where:  
Conductor Parasitic  
Resistance  
V
V
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current, for the  
IN(max)  
OUT(min)  
OUT(max)  
R
C
V
IN  
V
IN  
V
OUT  
I
CS52015–3  
application  
I is the maximum quiescent current at I  
R
LOAD  
.
OUT(max)  
Q
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment has a thermal resistance. Like series  
electrical resistances, these resistances are summed to  
Figure 10. Conductor Parasitic Resistance Effects  
Can Be Minimized With the Above Grounding  
Scheme For Fixed Output Regulators  
determine R , the total thermal resistance between the  
ΘJA  
junction and the surrounding air.  
1. Thermal Resistance of the junction to case, R  
Calculating Power Dissipation and Heat Sink  
Requirements  
ΘJC  
(°C/W)  
The CS52015–3 linear regulator includes thermal  
shutdown and current limit circuitry to protect the device.  
High power regulators such as these usually operate at high  
junction temperatures so it is important to calculate the  
power dissipation and junction temperatures accurately to  
ensure that an adequate heat sink is used.  
2. Thermal Resistance of the case to Heat Sink, R  
ΘCS  
(°C/W)  
3. Thermal Resistance of the Heat Sink to the ambient  
air, R (°C/W)  
ΘSA  
These are connected by the equation:  
The case is connected to V  
on the CS52015–3,  
R
+ R  
) R  
) R  
QSA  
(3)  
OUT  
QJA  
QJC  
QCS  
electrical isolation may be required for some applications.  
Thermal compound should always be used with high current  
regulators such as these.  
The thermal characteristics of an IC depend on the  
following four factors:  
The value for R  
is calculated using equation (3) and  
ΘJA  
the result can be substituted in equation (1).  
The value for R is 3.5°C/W for a given package type  
ΘJC  
based on an average die size. For a high current regulator  
such as the CS52015–3 the majority of the heat is generated  
in the power transistor section. The value for R  
1. Maximum Ambient Temperature T (°C)  
A
depends  
ΘSA  
2. Power dissipation P (Watts)  
D
on the heat sink type, while R  
depends on factors such  
ΘCS  
3. Maximum junction temperature T (°C)  
J
as package type, heat sink interface (is an insulator and  
thermal grease used?), and the contact area between the heat  
sink and the package. Once these calculations are complete,  
4. Thermal resistance junction to ambient R  
(°C/W)  
ΘJA  
These four are related by the equation  
the maximum permissible value of R  
can be calculated  
ΘJA  
and the proper heat sink selected. For further discussion on  
heat sink selection, see application note “Thermal  
Management for Linear Regulators,” document number  
SR006AN/D, available through the Literature Distribution  
Center or via our website at http://onsemi.com.  
T + T ) P   R  
QJA  
(1)  
J
A
D
The maximum ambient temperature and the power  
dissipation are determined by the design while the  
http://onsemi.com  
5
CS52015–3  
ADDITIONAL ORDERING INFORMATION  
Orderable Part  
Number  
Type  
Description  
CS52015–3GT3  
1.5 A, 3.3 V Output  
1.5 A, 3.3 V Output  
1.5 A, 3.3 V Output  
1.5 A, 3.3 V Output  
1.5 A, 3.3 V Output  
TO–220 THREE LEAD, STRAIGHT  
2
CS52015–3GDP3  
CS52015–3GDPR3  
CS52015–3GST3  
CS52015–3GSTR3  
D PAK 3–PIN  
2
D PAK 3–PIN (Tape & Reel)  
SOT–223  
SOT–223 (Tape & Reel)  
MARKING DIAGRAMS  
2
TO–220  
THREE LEAD  
T SUFFIX  
D PAK  
3–PIN  
DP SUFFIX  
CASE 418E  
SOT–223  
ST SUFFIX  
CASE 318E  
CASE 221A  
AYW  
52015  
CS  
52015–3  
AWLYWW  
CS52015–3  
AWLYWW  
1
1
1
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
http://onsemi.com  
6
CS52015–3  
PACKAGE DIMENSIONS  
TO–220  
THREE LEAD  
T SUFFIX  
CASE 221A–09  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
C
S
B
F
T
4
1
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.46  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
3.73  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
K
Q
Z
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.018  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.147  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
2
3
U
H
G
H
J
K
L
L
R
J
N
Q
R
S
T
V
G
D
U
V
Z
N
0.080  
2.04  
D2PAK  
3–PIN  
DP SUFFIX  
CASE 418E–01  
ISSUE O  
SEATING  
PLANE  
–T–  
NOTES:  
B
1. DIMENSIONS AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
C
M
E
4
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
8.28  
10.05  
4.31  
0.66  
1.14  
2.29  
MAX  
8.53  
10.31  
4.57  
0.91  
1.40  
2.79  
A
B
C
D
E
F
0.326  
0.396  
0.170  
0.026  
0.045  
0.090  
0.336  
0.406  
0.180  
0.036  
0.055  
0.110  
A
K
1
2
3
G
H
J
0.100 BSC  
2.54 BSC  
0.098  
0.108  
0.025  
0.214  
0.055  
0.066  
0.004  
2.49  
0.46  
5.18  
1.14  
1.40  
0.00  
2.74  
0.64  
5.44  
1.40  
1.68  
0.10  
0.018  
0.204  
0.045  
0.055  
0.000  
F
K
L
M
N
H
G
D
3 PL  
J
L
M
M
0.13 (0.005)  
T
B
N
http://onsemi.com  
7
CS52015–3  
SOT–223  
ST SUFFIX  
CASE 318E–04  
ISSUE K  
A
F
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
4
2
INCHES  
DIM MIN MAX  
MILLIMETERS  
S
B
MIN  
6.30  
3.30  
1.50  
0.60  
2.90  
2.20  
0.020  
0.24  
1.50  
0.85  
0
MAX  
6.70  
3.70  
1.75  
0.89  
3.20  
2.40  
0.100  
0.35  
2.00  
1.05  
10  
1
3
A
B
C
D
F
0.249  
0.130  
0.060  
0.024  
0.115  
0.087  
0.263  
0.145  
0.068  
0.035  
0.126  
0.094  
D
G
H
J
L
0.0008 0.0040  
G
0.009  
0.060  
0.033  
0
0.014  
0.078  
0.041  
10  
J
K
L
C
M
S
_
_
_
_
0.08 (0003)  
0.264  
0.287  
6.70  
7.30  
M
H
K
PACKAGE THERMAL DATA  
2
TO–220  
D PAK  
THREE LEAD  
3–PIN  
Parameter  
SOT–223  
15  
Unit  
R
R
Typical  
Typical  
3.5  
50  
3.5  
°C/W  
°C/W  
Θ
Θ
JC  
JA  
10–50*  
156  
* Depending on thermal properties of substrate. R  
= R  
+ R  
Θ
JC CA  
Θ
Θ
JA  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without  
further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
CS52015–3/D  

相关型号:

CS52015-3GDP3

1.5A, 3.3V Fixed Linear Regulator
CHERRY

CS52015-3GDP3

1.5 A, 3.3 V Fixed Linear Regulator
ONSEMI

CS52015-3GDPR3

1.5A, 3.3V Fixed Linear Regulator
CHERRY

CS52015-3GDPR3

1.5 A, 3.3 V Fixed Linear Regulator
ONSEMI

CS52015-3GST3

1.5A, 3.3V Fixed Linear Regulator
CHERRY

CS52015-3GST3

1.5 A, 3.3 V Fixed Linear Regulator
ONSEMI

CS52015-3GSTR3

1.5A, 3.3V Fixed Linear Regulator
CHERRY

CS52015-3GSTR3

1.5 A, 3.3 V Fixed Linear Regulator
ONSEMI

CS52015-3GT3

1.5A, 3.3V Fixed Linear Regulator
CHERRY

CS52015-3GT3

1.5 A, 3.3 V Fixed Linear Regulator
ONSEMI

CS5203-1

3A Adjustable Linear Regulator
CHERRY

CS5203-1

3.0 A Adjustable Linear Regulator
ONSEMI