CS5201-3GT3 [CHERRY]

1A, 3.3V Fixed Linear Regulator; 1A , 3.3V固定线性稳压器
CS5201-3GT3
型号: CS5201-3GT3
厂家: CHERRY SEMICONDUCTOR CORPORATION    CHERRY SEMICONDUCTOR CORPORATION
描述:

1A, 3.3V Fixed Linear Regulator
1A , 3.3V固定线性稳压器

稳压器
文件: 总6页 (文件大小:162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5201-3  
1A, 3.3V Fixed Linear Regulator  
Description  
Features  
Output Current to 1A  
The CS5201-3 linear regulator  
The maximum quiescent current  
is only 10mA at full load.  
Device protection includes over-  
current and thermal shutdown.  
provides a 1A@ 3.3V reference  
at 1A with an output voltage  
accuracy of ±1.5%.  
Output Accuracy to ±1.5%  
Over Temperature  
Dropout Voltage (typical)  
This regulator is intended for  
use as a post regulator and  
microprocessor supply. The fast  
loop response and low dropout  
voltage make this regulator  
ideal for applications where low  
voltage operation and good  
transient response are impor-  
tant.  
The CS5201-3 is pin compatible  
with the LT1086 family of linear  
regulators.  
1.0V @ 1A  
Fast Transient Response  
The regulator is available in  
TO-220, surface mount D2, and  
SOT-223 packages.  
Fault Protection  
Current Limit  
Thermal Shutdown  
The circuit is designed to oper-  
ate with dropout voltages less  
than 1.2V at 1A output current.  
Package Options  
Application Diagram  
3L TO-220  
3L D2PAK  
Tab (VOUT  
)
Tab (VOUT  
)
V
VIN  
OUT  
1
3.3V  
@ 1A  
CS5201-3  
GND  
1
3L SOT-223  
22mF  
10mF  
5V  
Tab (VOUT  
)
5V  
CS5201 -3  
1
2
Gnd  
VOUT (Tab)  
3
VIN  
1
Consult factory for other fixed output  
voltage versions.  
Cherry Semiconductor Corporation  
2000 South County Trail, East Greenwich, RI 02818  
Tel: (401)885-3600 Fax: (401)885-5786  
Email: info@cherry-semi.com  
Web Site: www.cherry-semi.com  
Rev. 2/18/98  
1
A
¨
Company  
Absolute Maximum Ratings  
Supply Voltage, VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7V  
Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40¡C to 70¡C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150¡C  
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-60¡C to 150¡C  
Lead Temperature Soldering  
Wave Solder (through hole styles only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 sec. max, 260¡C peak  
Reflow (SMD styles only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 sec. max above 183¡C, 230¡C peak  
ESD Damage Threshold (Human Body Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2kV  
Electrical Characteristics: CIN = 10µF, COUT = 22µF Tantalum, VOUT + VDROPOUT < VIN < 7V, 0¡C ² TA ² 70¡C, TJ ² +150¡C,  
unless otherwise specified, Ifull load = 1A.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Fixed Output Voltage  
Output Voltage  
(Notes 1 and 2)  
VINÐVOUT=1.5V;  
0²IOUT²1A  
3.250  
(-1.5%)  
3.300  
3.350  
(+1.5%)  
V
Line Regulation  
2V²VINÐVOUT²3.7V; IOUT=10mA  
VINÐVOUT=2V; 10mA²IOUT²1A  
0.02  
0.04  
0.20  
0.4  
%
%
Load Regulation  
(Notes 1 and 2)  
Dropout Voltage (Note 3)  
Current Limit  
IOUT=1A  
1.0  
1.2  
V
VINÐVOUT=3V  
IOUT=10mA  
1.0  
3.1  
A
Quiescent Current  
5.0  
10.0  
mA  
%/W  
dB  
Thermal Regulation (Note 4)  
Ripple Rejection (Note 4)  
30ms pulse; TA=25¡C  
0.002  
80  
0.020  
f=120Hz; IOUT=1A; VINÐVOUT=3V;  
VRIPPLE=1VPP  
Thermal Shutdown (Note 5)  
150  
180  
25  
210  
¡C  
¡C  
Thermal Shutdown Hysteresis  
(Note 5)  
Note 1: Load regulation and output voltage are measured at a constant junction temperature by low duty cycle pulse testing. Changes in output  
voltage due to temperature changes must be taken into account separately.  
Note 2: Specifications apply for an external Kelvin sense connection at a point on the output pin 1/4Ó from the bottom of the package.  
Note 3: Dropout voltage is a measurement of the minimum input/output differential at full load.  
Note 4: Guaranteed by design, not tested in production.  
Note 5: Thermal shutdown is 100% functionally tested in production.  
Package Pin Description  
PACKAGE PIN #  
PIN SYMBOL  
FUNCTION  
D2PAK  
TO-220  
SOT-223  
1
2
3
1
2
3
1
2
2
Gnd  
VOUT  
VIN  
Ground connection.  
Regulated output voltage (case).  
Input voltage.  
2
Block Diagram  
VOUT  
VIN  
Output  
Current  
Limit  
Thermal  
Shutdown  
-
+
Error  
Amplifier  
Bandgap  
Reference  
Gnd  
Typical Performance Characteristics  
1.00  
0.95  
0.10  
0.08  
T
= 0°C  
CASE  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
T
= 25°C  
CASE  
0.90  
0.85  
0.80  
0.75  
-0.06  
-0.08  
-0.10  
-0.12  
T
= 125°C  
CASE  
200  
400  
600  
(mA)  
800  
1000  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
I
OUT  
T
(°C)  
J
Dropout Voltage vs. Output Current  
Output Voltage vs. Temperature  
0.100  
0.075  
85  
75  
65  
55  
0.050  
T
= 25°C  
= 1A  
CASE  
T
= 125°C  
CASE  
45  
35  
I
OUT  
(V РV  
V
) = 3V  
OUT  
IN  
T
= 25°C  
CASE  
= 1.0V  
PP  
0.025  
0.000  
RIPPLE  
25  
15  
T
= 0°C  
CASE  
1
2
3
4
5
6
0
1
2
10  
10  
10  
10  
10  
10  
Output Current (A)  
Frequency (Hz)  
Load Regulation vs. Output Current  
Ripple Rejection vs. Frequency  
3
Typical Performance Characteristics: continued  
3.5  
3.3  
3.1  
2.9  
200  
100  
0
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
-100  
-200  
1000  
500  
0
0
1
2
3
4
5
6
7
8
9
10  
1.5  
Time mS  
1.0  
1.5  
2.0  
2.5  
- V  
3.0  
3.5  
4.0  
COUT =CIN =22mF Tantalum  
V
(V)  
IN  
OUT  
Transient Response  
Short Circuit Current vs. VIN - VOUT  
Applications Information  
The CS5201-3 linear regulator provides a fixed 3.3V out-  
put voltage at currents up to 1A. The regulator is protect-  
ed against overcurrent conditions and includes thermal  
shutdown.  
Protection Diodes  
When large external capacitors are used with a linear regu-  
lator it is sometimes necessary to add protection diodes. If  
the input voltage of the regulator gets shorted, the output  
capacitor will discharge into the output of the regulator.  
The discharge current depends on the value of the capaci-  
tor, the output voltage and the rate at which VIN drops. In  
the CS5201-3 linear regulator, the discharge path is  
The CS5201-3 has a composite PNP-NPN output transistor  
and requires an output capacitor for stability. A detailed  
procedure for selecting this capacitor is included in the  
Stability Considerations section.  
through a large junction and protection diodes are not  
usually needed. If the regulator is used with large values  
of output capacitance and the input voltage is instanta-  
neously shorted to ground, damage can occur. In this case,  
a diode connected as shown in Figure 1 is recommended.  
Stability Considerations  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start-up  
delay, load transient response and loop stability.  
The capacitor value and type are based on cost, availabili-  
ty, size and temperature constraints. A tantalum or alu-  
minum electrolytic capacitor is best, since a film or ceramic  
capacitor with almost zero ESR can cause instability. The  
aluminum electrolytic capacitor is the least expensive solu-  
tion. However, when the circuit operates at low tempera-  
tures, both the value and ESR of the capacitor will vary  
considerably. The capacitor manufacturersÕ data sheet pro-  
vides this information.  
IN4002  
(optional)  
VOUT  
VIN  
VOUT  
VIN  
C1  
CS5201-3  
C2  
GND  
A 22µF tantalum capacitor will work for most applications,  
but with high current regulators such as the CS5201-3 the  
transient response and stability improve with higher val-  
ues of capacitance. The majority of applications for this  
regulator involve large changes in load current so the out-  
put capacitor must supply the instantaneous load current.  
The ESR of the output capacitor causes an immediate drop  
in output voltage given by:  
Figure 1. Protection diode scheme for large output capacitors.  
Output Voltage Sensing  
ÆV = ÆI ´ ESR  
For microprocessor applications it is customary to use an  
output capacitor network consisting of several tantalum  
and ceramic capacitors in parallel. This reduces the overall  
ESR and reduces the instantaneous output voltage drop  
under load transient conditions. The output capacitor net-  
work should be as close as possible to the load for the best  
results.  
Since the CS5201-3 is a three terminal regulator, it is not  
possible to provide true remote load sensing. Load regula-  
tion is limited by the resistance of the conductors connect-  
ing the regulator to the load. For best results, the regulator  
should be connected as shown in figure 2.  
4
Applications Information: continued  
The maximum power dissipation for a regulator is:  
PD(max)={VIN(max)ÐVOUT(min)}IOUT(max)+VIN(max) Q  
where  
conductor  
parasitic resistance  
R
I
(2)  
C
VIN  
VOUT  
VIN  
CS5201-3  
RLOAD  
V
V
IN(max) is the maximum input voltage,  
OUT(min) is the minimum output voltage,  
IOUT(max) is the maximum output current, for the application  
IQ is the maximum quiescent current at IOUT(max).  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment has a thermal resistance. Like series  
electrical resistances, these resistances are summed to  
determine RQJA, the total thermal resistance between the  
junction and the surrounding air.  
Figure 2. Conductor parasitic resistance effects can be minimized with  
the above grounding scheme for fixed output regulators.  
Calculating Power Dissipation and Heat Sink Requirements  
1. Thermal Resistance of the junction to case, RQJC (¡C/W)  
2. Thermal Resistance of the case to Heat Sink, RQCS (¡C/W)  
3. Thermal Resistance of the Heat Sink to the ambient air,  
The CS5201-3 linear regulator includes thermal shutdown  
and current limit circuitry to protect the device. High  
power regulators such as these usually operate at high  
junction temperatures so it is important to calculate the  
power dissipation and junction temperatures accurately to  
ensure that an adequate heat sink is used.  
R
QSA (¡C/W)  
The case is connected to VOUT on the CS5201-3, and electri-  
cal isolation may be required for some applications.  
Thermal compound should always be used with high cur-  
rent regulators such as these.  
These are connected by the equation:  
QJA = RQJC + RQCS + RQSA  
R
(3)  
The value for RQJA is calculated using equation (3) and the  
result can be substituted in equation (1).  
The thermal characteristics of an IC depend on the follow-  
ing four factors:  
The value for RQJC is 3.5ûC/W. For a high current regula-  
tor such as the CS5201-3 the majority of the heat is generat-  
ed in the power transistor section. The value for RQSA  
depends on the heat sink type, while RQCS depends on fac-  
tors such as package type, heat sink interface (is an insula-  
tor and thermal grease used?), and the contact area  
1. Maximum Ambient Temperature TA (¡C)  
2. Power dissipation PD (Watts)  
3. Maximum junction temperature TJ (¡C)  
4. Thermal resistance junction to ambient RQJA (C/W)  
between the heat sink and the package. Once these calcula-  
tions are complete, the maximum permissible value of  
These four are related by the equation  
R
QJA can be calculated and the proper heat sink selected.  
TJ = TA + PD ´ RQJA  
(1)  
For further discussion on heat sink selection, see applica-  
tion note ÒThermal Management for Linear Regulators.Ó  
The maximum ambient temperature and the power dissi-  
pation are determined by the design while the maximum  
junction temperature and the thermal resistance depend  
on the manufacturer and the package type.  
5
Package Specification  
PACKAGE DIMENSIONS IN mm(INCHES)  
PACKAGE THERMAL DATA  
3L  
3L  
3L  
Thermal Data  
TO-220 D2PAK SOT-223  
RQJC  
RQJA  
typ  
typ  
3.5  
50  
3.5  
10 - 50*  
15  
156  
ûC/W  
ûC/W  
3 Lead TO-220 (T) Straight  
*Depending on thermal properties of substrate. RQJA = RQJC + RQCA  
3 Lead D2PAK (DP)  
1.40 (.055)  
1.14 (.045)  
4.83 (.190)  
10.54 (.415)  
4.06 (.160)  
9.78 (.385)  
10.31 (.406)  
10.05 (.396)  
1.40 (.055)  
1.14 (.045)  
3.96 (.156)  
2.87 (.113)  
3.71 (.146)  
2.62 (.103)  
1.68 (.066)  
1.40 (.055)  
6.55 (.258)  
5.94 (.234)  
14.99 (.590)  
14.22 (.560)  
8.53 (.336)  
8.28 (.326)  
15.75 (.620)  
14.73 (.580)  
2.74(.108)  
2.49(.098)  
1.52 (.060)  
1.14 (.045)  
6.17 (.243) REF  
1.40 (.055)  
1.14 (.045)  
14.22 (.560)  
13.72 (.540)  
1.40 (.055)  
1.14 (.045)  
2.79 (.110)  
2.29 (.090)  
0.91 (.036)  
0.66 (.026)  
2.54 (.100) REF  
.254 (.010) REF  
1.02 (.040)  
0.63 (.025)  
0.56 (.022)  
0.38 (.014)  
2.79 (.110)  
2.29 (.090)  
0.10 (.004)  
0.00 (.000)  
4.57 (.180)  
4.31 (.170)  
5.33 (.210)  
4.83 (.190)  
2.92 (.115)  
2.29 (.090)  
3 Lead SOT-223 (ST)  
6.70 (.264)  
6.30 (.248)  
3.15 (.124)  
2.95 (.116)  
7.30 (.287)  
6.70 (.264)  
3.70 (.146)  
3.30 (.130)  
1.05 (.041)  
0.85 (.033)  
2.30 (.090)  
0.35 (.014)  
0.25 (.010)  
1.70 (.067)  
1.50 (.060)  
1.30 (.051)  
1.10 (.043)  
0.85 (.033)  
0.65 (.026)  
0.10 (.004)  
0.02 (.001)  
10° MAX  
4.60 (.181)  
Ordering Information  
Type Description  
Part Number  
CS5201-3GT3  
CS5201-3GDP3  
1A, 3.3V output 3 L TO-220 Straight  
1A, 3.3V output 3 L D2PAK  
CS5201-3GDPR3 1A, 3.3V output 3 L D2PAK (tape & reel)  
Cherry Semiconductor Corporation reserves the right to  
make changes to the specifications without notice. Please  
contact Cherry Semiconductor Corporation for the latest  
available information.  
CS5201-3GST3 1A, 3.3V output 3 L SOT-223  
CS5201-3GSTR3 1A, 3.3V output 3 L SOT-223 (tape & reel)  
Rev. 2/18/98  
© 1999 Cherry Semiconductor Corporation  
6

相关型号:

CS52015-1

1.5A Adjustable Linear Regulator
CHERRY

CS52015-1

1.5 A Adjustable Linear Regulator
ONSEMI

CS52015-1/D

1.5A Adjustable Linear Regulator
ETC

CS52015-1GDP3

1.5A Adjustable Linear Regulator
CHERRY

CS52015-1GDP3

1.5 A Adjustable Linear Regulator
ONSEMI

CS52015-1GDPR3

1.5A Adjustable Linear Regulator
CHERRY

CS52015-1GDPR3

1.5 A Adjustable Linear Regulator
ONSEMI

CS52015-1GST3

1.5A Adjustable Linear Regulator
CHERRY

CS52015-1GST3

1.5 A Adjustable Linear Regulator
ONSEMI

CS52015-1GSTR3

1.5A Adjustable Linear Regulator
CHERRY

CS52015-1GSTR3

1.5 A Adjustable Linear Regulator
ONSEMI

CS52015-1GT3

1.5A Adjustable Linear Regulator
CHERRY