TMC2193KJC [CADEKA]

10 Bit Encoder; 10位编码器
TMC2193KJC
型号: TMC2193KJC
厂家: CADEKA MICROCIRCUITS LLC.    CADEKA MICROCIRCUITS LLC.
描述:

10 Bit Encoder
10位编码器

商用集成电路 编码器
文件: 总72页 (文件大小:543K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
www.cadeka.com  
TMC2193  
10 Bit Encoder  
• Programmable color space matrix  
• 8:8:8 video reconstruction  
• Four 10 bit D/A’s with independent trim  
• Individual power down modes for each D/A  
• Multiple output formats  
Features  
• Multiple input formats  
– 24 bit RGB  
– 20 bit CCIR601  
– 10 bit CCIR656  
– 10 bit Digital Composite  
• Synchronization modes  
– Master  
– RGB  
– Y P  
P
R
B
– Betacam  
– S-video  
– Composite  
– Slave  
– Genlock  
– CCIR656  
– Digital composite output  
• Pin-driven and data-driven, window keying  
• Closed Caption waveform generation (13.5 MHz only)  
• Sin(X)/X compensation filter  
• 5 bit VBI line counter  
• 3 bit field counter  
• Subcarrier modes  
– Free-run  
– Subcarrier reset  
– Genlock  
– DRS-lock  
• Internal test pattern generation  
– 100% Color Bars  
• Ancillary Data Control (ANC)  
• Pixel rates from 10 MHz to 15 MHz  
• Programmable horizontal timing  
• Programmable vertical blanking interval (VBI)  
• Line-by-line pedestal enable  
• Programmable pedestal height from -20 IRE to 20 IRE  
• Programmable burst amplitude and phase  
• Controlled edge rates for  
– Sync  
– 75% Color Bars  
– Modulated Ramp  
Applications  
• Broadcast Television  
• Nonlinear Video Processing  
– Burst  
– Active video  
Block Diagram  
sync/mid  
REFDAC  
CBYP1  
DAC1  
Gr/Y  
gr/y  
Gr/Y  
PD[23:0]  
Comp  
PRE-  
PROCESSOR  
Bl/Pb  
Rd/Pr  
SYNC  
INSERT  
bl/cb  
rd/cr  
INTERP.  
INTERP.  
RREF1  
CBYP2  
DAC2  
OVERLAY  
MIXER  
Bl/Pb  
Y
OL[4:0]  
KEY  
COLOR  
SPACE  
MATRIX  
RREF2  
CBYP3  
DAC3  
U
V
CHROMA  
PROCESSOR  
Rd/Pr  
Ch  
INTERP.  
COMP2  
RREF3  
CBYP4  
Y
KEY  
MIX  
DAC4  
SYNC  
INSERT  
CC  
CVBS[9:0]  
INTERP.  
RREF4  
DAC  
REF.  
FVHGEN  
MPU  
65-6294-01  
REV. 1.0 3/26/03  
TMC2193  
PRODUCT SPECIFICATION  
Table of Contents  
Interpolation Filters . . . . . . . . . . . . . . . . . . . . . 27  
x/Sin(x) Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Output Data Formats. . . . . . . . . . . . . . . . . . . . 27  
Digital Composite Output . . . . . . . . . . . . . . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Applications. . . . . . . . . . . . . . . . . . . . . . . . .1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . .1  
10 Bit Encoder . . . . . . . . . . . . . . . . . . . . . . .1  
LIst of Figures . . . . . . . . . . . . . . . . . . . . . . .3  
LIst of Tables . . . . . . . . . . . . . . . . . . . . . . . .3  
Pin Assignments . . . . . . . . . . . . . . . . . . . . .4  
Pin Definitions . . . . . . . . . . . . . . . . . . . . . . .4  
Ancillary Data. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Operating Modes. . . . . . . . . . . . . . . . . . . . . 29  
Layering Engine. . . . . . . . . . . . . . . . . . . . . . . . 30  
Overlay Mixer . . . . . . . . . . . . . . . . . . . . . . . 30  
Hardware Keying . . . . . . . . . . . . . . . . . . . . . . . 31  
Data Keying . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Parallel Microprocessor Interface . . . . . . . . . 31  
Serial Control Port (R-Bus). . . . . . . . . . . . . . . 33  
Functional Description . . . . . . . . . . . . . . . .7  
Input Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Gamma Correction . . . . . . . . . . . . . . . . . . . . . . 9  
Color Space Matrix . . . . . . . . . . . . . . . . . . . . . . 9  
Synchronization Modes . . . . . . . . . . . . . . . . . 12  
Propagation Delay . . . . . . . . . . . . . . . . . . . . . . 12  
Blanking Control . . . . . . . . . . . . . . . . . . . . . . . 13  
Pixel Data Control . . . . . . . . . . . . . . . . . . . . . . 13  
Edge Shaping. . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Horizontal Programming. . . . . . . . . . . . . . . . . 14  
Vertical Timing . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Chrominance Processor . . . . . . . . . . . . . . . . . 23  
Data Transfer via Serial Interface . . . . . . . . 33  
Serial Interface Read/Write Examples . . . . 34  
Control Register Map . . . . . . . . . . . . . . . .35  
Control Register Definitions . . . . . . . . . .37  
Absolute Maximum Ratings. . . . . . . . . . .62  
Operating Conditions . . . . . . . . . . . . . . . .62  
Electrical Characteristics. . . . . . . . . . . . .64  
Switching Characteristics . . . . . . . . . . . .64  
System Performance Characteristics . . .65  
Subcarrier Programming. . . . . . . . . . . . . . . 23  
NTSC Subcarrier . . . . . . . . . . . . . . . . . 23  
PAL Subcarrier . . . . . . . . . . . . . . . . . . . 23  
PAL-M Subcarrier . . . . . . . . . . . . . . . . . 23  
Subcarrier Synchronization. . . . . . . . . . . . . 24  
SCH Phase Error Correction. . . . . . . . . . . . 24  
Burst Envelope . . . . . . . . . . . . . . . . . . . . . . 25  
Color-Difference Low-Pass Filters. . . . . . . . 25  
Applications Discussion . . . . . . . . . . . . .65  
Layout Considerations . . . . . . . . . . . . . . . . . . 66  
Output Low-Pass Filters . . . . . . . . . . . . . . . . . 69  
Mechanical Dimensions . . . . . . . . . . . . . .70  
100-Lead MQFP . . . . . . . . . . . . . . . . . . . . . . . . 70  
Ordering Information . . . . . . . . . . . . . . . .72  
Sync and Pedestal Insertion. . . . . . . . . . . . . . 25  
Pedestal Enable . . . . . . . . . . . . . . . . . . . . . 25  
Pedestal Height. . . . . . . . . . . . . . . . . . . . . . 26  
Sync and Blank Insertion . . . . . . . . . . . . . . 26  
Life Support Policy . . . . . . . . . . . . . . . . . .72  
Closed Caption Insertion . . . . . . . . . . . . . . . . 26  
Line Selection . . . . . . . . . . . . . . . . . . . . . . . 26  
Parity Generation . . . . . . . . . . . . . . . . . . . . 26  
Operating Sequence . . . . . . . . . . . . . . . . . . 26  
2
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
List of Figures  
List of Tables  
Figure 1. Input Formats . . . . . . . . . . . . . . . . . . . . . .7  
Figure 2. 24 bit Input Format . . . . . . . . . . . . . . . . . .7  
Figure 3. CCIR656 Input Format . . . . . . . . . . . . . . .8  
Figure 4. 10 bit Input Format . . . . . . . . . . . . . . . . . .8  
Figure 5. 20 bit 4:2:2 Input Format . . . . . . . . . . . . .8  
Figure 6. 20 bit 4:4:4 Input Format . . . . . . . . . . . . .8  
Figure 7. Gamma Curves . . . . . . . . . . . . . . . . . . . .9  
Figure 8. Propagation Delay through the  
Table 1.  
Table 2.  
CSM Coefficient Range . . . . . . . . . . . . 10  
Expected Output Values for the  
CSM with YCBCR Inputs . . . . . . . . . . . 11  
Expected Output Values for the  
CSM with RGB Inputs. . . . . . . . . . . . . . 11  
Coefficient sets YCBCR inputs. . . . . . . 11  
Coefficient sets YCBCR inputs. . . . . . . 11  
PDC Edge Control . . . . . . . . . . . . . . . . 13  
Horizontal Line Equations. . . . . . . . . . . 14  
Horizontal Timing Specifications. . . . . . 15  
Vertical Interval Timing  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Encoder . . . . . . . . . . . . . . . . . . . . . . . . .12  
Figure 9. Horizontal Timing . . . . . . . . . . . . . . . . . .15  
Figure 10. Horizontal Timing – Vertical Blanking . . .15  
Figure 11. Horizontal Timing – 1st Half-line. . . . . . .16  
Figure 12. Horizontal Timing – 2nd Half-line . . . . . .16  
Figure 13. NTSC Vertical Interval . . . . . . . . . . . . . .17  
Figure 14. PAL Vertical Interval . . . . . . . . . . . . . . . .19  
Figure 15. PAL-M Vertical Interval . . . . . . . . . . . . . .21  
Figure 16. Burst Envelope . . . . . . . . . . . . . . . . . . . .25  
Figure 17. Gaussian Filter Response . . . . . . . . . . .25  
Figure 18. Interpolation Filter. . . . . . . . . . . . . . . . . .27  
Figure 19. Interpolation Filter – Passband  
Specifications . . . . . . . . . . . . . . . . . . . . 16  
Table 10. Default Horizontal Timing  
Parameters . . . . . . . . . . . . . . . . . . . . . . 17  
Table 11. NTSC Field/Line Sequence and  
Identification . . . . . . . . . . . . . . . . . . . . . 18  
Table 12. PAL Field/Line Sequence and  
Identification . . . . . . . . . . . . . . . . . . . . . 20  
Table 13. PAL-M Field/Line Sequence and  
Identification . . . . . . . . . . . . . . . . . . . . . 22  
Detail . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Table 14. Standard Subcarrier Parameters . . . . . 24  
Table 15. Line by Line Pedestal Enable . . . . . . . . 25  
Table 16. Closed Caption Line Selection . . . . . . . 26  
Table 17. D/A Outputs . . . . . . . . . . . . . . . . . . . . . 27  
Table 18. Ancillary Data Format. . . . . . . . . . . . . . 28  
Table 19. Ancillary Data Control – Phase . . . . . . 29  
Table 20. Ancillary Data Control Frequency. . . . . 29  
Table 21. Field Identification and Subcarrier  
Figure 20. X/SIN(X) Filter . . . . . . . . . . . . . . . . . . . .27  
Figure 21. Layering Engine . . . . . . . . . . . . . . . . . . .30  
Figure 22. Overlay Outputs . . . . . . . . . . . . . . . . . . .31  
Figure 23. Data Keying . . . . . . . . . . . . . . . . . . . . . .31  
Figure 24. Microprocessor Parallel Port –  
Write Timing . . . . . . . . . . . . . . . . . . . . . .32  
Figure 25. Microprocessor Parallel Port –  
Read Timing . . . . . . . . . . . . . . . . . . . . . .32  
Reset Modes . . . . . . . . . . . . . . . . . . . . 29  
Figure 26. Serial Port Read/Write Timing . . . . . . . .33  
Figure 27. Serial Interface – Typical Byte  
Table 22. Layering and Keying Modes . . . . . . . . . 30  
Table 23. Overlay Address Map. . . . . . . . . . . . . . 31  
Table 24. Parallel Port Control . . . . . . . . . . . . . . . 32  
Table 25. Serial Port Addresses. . . . . . . . . . . . . . 33  
Table 26. Control Register Map . . . . . . . . . . . . . . 35  
Transfer. . . . . . . . . . . . . . . . . . . . . . . . . .34  
Figure 28. Serial Interface – Chip Address . . . . . . .34  
Figure 29. Typical Analog Reconstruction Filter . . .65  
Figure 30. Overall Response . . . . . . . . . . . . . . . . . .65  
Figure 31. Typical Layout. . . . . . . . . . . . . . . . . . . . .67  
Figure 32. ST-163E Layout . . . . . . . . . . . . . . . . . . .68  
Figure 33. Pass Band . . . . . . . . . . . . . . . . . . . . . . .69  
Figure 34. Stop Band. . . . . . . . . . . . . . . . . . . . . . . .69  
Figure 35. 2T Pulse . . . . . . . . . . . . . . . . . . . . . . . . .69  
Figure 36. Group Delay . . . . . . . . . . . . . . . . . . . . . .69  
REV. 1.0 3/26/03  
3
TMC2193  
PRODUCT SPECIFICATION  
Pin Assignments  
100  
81  
Pin  
1
Function  
VDDA  
DAC4  
CBYP4  
AGND  
DAC3  
CBYP3  
VDDA  
RREF3  
AGND  
DAC2  
CBYP2  
VDDA  
RREF2  
AGND  
DAC1  
CBYP1  
VDDA  
RREF1  
REFDAC  
KEY  
Pin  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
Function  
PD19  
PD18  
PD17  
PD16  
PD15  
PD14  
PD13  
PD12  
VDD  
Pin  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Function  
PD1  
Pin  
81  
82  
83  
84  
85  
86  
87  
88  
89  
Function  
FLD2  
1
80  
2
PD0  
FLD1  
3
DGND  
VDD  
FLD0  
4
CVBS9  
CVBS8  
CVBS7  
CVBS6  
CVBS5  
CVBS4  
CVBS3  
CVBS2  
CVBS1  
CVBS0  
RESET  
PXCK  
5
VSIN  
6
HSIN  
7
DCVEN  
SER  
8
9
CSVSCL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
DGND  
PD11  
PD10  
PD9  
R/WVSDA 90  
A1/SA1  
A0/SA0  
D7  
91  
92  
93  
94  
95  
96  
97  
98  
99  
30  
51  
PD8  
D6  
PD7  
D5  
31  
50  
PD6  
D4  
VDD  
PD5  
D3  
DGND  
VREF  
PD4  
D2  
65-6294-14  
PD3  
D1  
RREF4  
PD2  
D0  
100 AGND  
OL4  
DGND  
VDD  
PDC  
OL3  
OL2  
OL1  
HSOUT  
VSOUT  
LINE4  
LINE3  
LINE2  
LINE1  
LINE0  
OL0  
DGND  
PD23  
PD22  
PD21  
PD20  
Pin Definitions  
Pin Name  
Pin Number  
Value  
Description  
CLOCK, SYNC, & CONTROL INPUTS (6 pins)  
DCVEN  
57  
TTL  
Digital CVBS Output Enable. When DCVEN is LOW, the  
Comp2 output prior to the D/A is routed to D7-0, FLD2-1  
providing a digital composite output. When DCVEN is HIGH,  
D7-0 and FLD2-1 operate in their normal mode.  
HSIN  
KEY  
56  
20  
TTL  
TTL  
Horizontal Sync Input. When operating in slave, Genlock, or  
DRS-Lock the TMC2193 will start a new horizontal line with  
each falling edge of HSIN.  
Hard Key selection. When the control register bit HKEN is set  
HIGH and the hardware KEY pin is high, the video data  
considered to be the foreground. is routed to the COMP2  
output. This control signal is data aligned so that the pixel that is  
present on the PD port when KEY signal is latched is at the  
midpoint of the key transition. When HKEN is LOW, Key is  
ignored.  
4
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Pin Definitions (continued)  
Pin Name  
Pin Number  
Value  
Description  
PXCK  
95  
TTL  
Pixel Clock Input. PXCK is a clock signal that period is twice  
the sample rate of the pixel data. The operating range is 20 to  
30 MHz. The clock is internally divided by 2 to generate the  
internal pixel clock, PCK. PXCK drives the entire TMC2193  
except the asynchronous microprocessor interface.  
RESET  
VSIN  
94  
55  
TTL  
TTL  
Master Chip Reset. When LOW, All outputs are tri-stated and  
the internal state machines and control registers are reset. At  
rising edge of RESET, all outputs are active, the preset values  
will be loaded into the control registers and the internal states  
machines start to operate.  
Vertical Sync Input. When operating in slave, Genlock, or  
DRS-Lock the TMC2193 will start a new vertical field with each  
falling edge of VSIN that is coincident with HSIN.  
SYNC & CONTROL OUTPUTS (11 pins)  
FLD[2:0]  
HSOUT  
LINE[4:0]  
8183  
TTL  
TTL  
TTL  
Field Identifier. Field Identifier outputs the current field number.  
For all video standards the field identifier will cycle through the  
eight counts.  
74  
Horizontal Sync Output. The alignment of HSOUT to the pixel  
data port or DCVBS port is controlled by control register  
TSOUT.  
7680  
Vertical Blanking Interval Line Identifier. LINE identifies the  
current line number for the first 31 lines. If the line count is  
greater than 31 then LINE is 11111b. The first line with a vertical  
serration is considered to be line 0.  
PDC  
73  
TTL  
Pixel Data Control.  
When PDCDIR = LOW: At a rising edge, The next pixel starts a  
controlled ramp of the PD data. At a falling edge, the pixel prior  
is the last PD used in the ramp. The rising edge is determined  
by the PDCCNT control register, the falling edge of PDC is  
determined by the horizontal timing registers.  
When PDCDIR = HIGH: PDCIN is used to override the internal  
PDC. When HIGH, the internal PDC controls the blank and  
unblank window. When LOW, the video remains blanked  
regardless of the internal PDC. All edges have the same ramp  
control as the internal PDC.  
VSOUT  
75  
TTL  
Vertical Sync Output. The alignment of VSOUT to the pixel  
data port or DCVBS port is controlled by control register  
TSOUT.  
DATA INPUTS (39 pins)  
CVBS[9:0]  
OL[4:0]  
8493  
TTL  
TTL  
TTL  
Composite Data Input  
Overlay Control  
2125  
PD[23:0]  
2738, 4152  
Component Data Input  
ANALOG INTERFACE – Video Out (5 pins)  
Ref. DAC  
DAC1  
19  
15  
10  
5
0.675Vp-p Selectable sync only or midpoint reference D/A  
1.35Vp-p Composite or Green D/A  
DAC2  
1.35Vp-p Luma or Blue D/A  
DAC3  
1.35Vp-p Chroma or Red D/A  
DAC4  
2
1.35Vp-p Composite D/A with optional keying  
REV. 1.0 3/26/03  
5
TMC2193  
PRODUCT SPECIFICATION  
Pin Definitions (continued)  
Pin Name  
Pin Number  
Value  
Description  
ANALOG INTERFACE – Support (9 pins)  
C
BYP1  
C
BYP2  
C
BYP3  
C
BYP4  
R
REF1  
16  
11  
6
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
Reference Bypass Capacitor for DAC1 and Reference DAC.  
Connection point for 0.1 µF Capacitor.  
Reference Bypass Capacitor for DAC2. Connection point for  
0.1 µF Capacitor.  
Reference Bypass Capacitor for DAC3. Connection point for  
0.1 µF Capacitor.  
3
Reference Bypass Capacitor for DAC4. Connection point for  
0.1 µF Capacitor.  
18  
1210 Ohm Current Setting Resistor. Connection point for external current  
setting resistor for DAC1. The resistor is connected between  
R
and GND. Output video levels are inversely proportional  
REF1  
to the value of R  
.
REF1  
R
R
R
13  
8
1210 Ohm Current Setting Resistor. Connection point for external current  
REF2  
REF3  
REF4  
REF  
setting resistor for DAC2. The resistor is connected between  
R
and GND. Output video levels are inversely proportional  
REF2  
to the value of R  
.
REF2  
1210 Ohm Current Setting Resistor. Connection point for external current  
setting resistor for DAC3. The resistor is connected between  
R
and GND. Output video levels are inversely proportional  
REF3  
to the value of R  
.
REF3  
99  
98  
1210 Ohm Current Setting Resistor. Connection point for external current  
setting resistor for DAC4. The resistor is connected between  
R
and GND. Output video levels are inversely proportional  
REF4  
to the value of R  
.
REF4  
V
1.235 V  
TTL  
Voltage Reference Input. External voltage reference input,  
internal voltage reference output, nominally 1.235V.  
MPU INTERFACE (13 pins)  
A[1:0]/S [1:0]  
A
61, 62  
When SER (HIGH), OLUT/control/pointer address.  
When SER (LOW), SA[1:0] of serial chip address SA[6:0].  
CS/SCL  
59  
TTL/R-BUS When SER (HIGH), microprocessor port clock.  
When SER (LOW), serial bus clock.  
D[7:0]  
6370  
TTL  
Bi-directional Data Bus.  
RW/SDA  
60  
TTL/R-BUS When SER (HIGH), read/write control.  
When SER (LOW), serial bus bi-directional data.  
SER  
58  
TTL  
Microprocessor Select. When LOW, the serial interface is  
enabled. When HIGH, the parallel interface is enabled.  
POWER & GROUND (17 pins)  
A
4, 9, 14, 100  
26, 40, 53, 71, 97  
39, 54, 72, 96  
1, 7, 12, 17  
0.0V  
0.0V  
Analog ground  
GND  
D
Digital ground  
GND  
DD  
V
V
+5.0V  
+5.0V  
Digital positive power supply  
Analog positive power supply  
DDA  
6
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Demuxing of multiplexed data streams depends on which  
synchronization mode the encoder is operating in. For slave  
and genlock modes the falling edge of HSIN must be LOW  
Functional Description  
Input Formats  
Control Registers for this section  
prior to the C data in order to demux the data correctly. For  
B
master mode synchronization the falling edge of HSOUT  
must be LOW prior to the Y data in order to demux the data  
correctly. Finally, in 656 mode the demuxing of the data  
stream is determined by the TRS codes, the first sample after  
the TRS is considered a C sample of the C Y C Y  
B B R I  
packet.  
Address  
0x05  
Bit(s)  
7
Name  
D1OFF  
INMODE  
TSOUT  
0x05  
6-4  
0
0x06  
The control register D1OFF controls the formatting of the  
incoming luminance data at the pixel data port. When  
D1OFF is HIGH a blanking level of 64 is subtracted from  
10  
the luminance and when D1OFF is LOW the incoming the  
pixel data is passed through. The inversion of the MSB’s on  
The TMC2193 supports both RGB and YC C component  
B R  
sources on the pixel data port. For RGB sources the  
TMC2193 will accept a 24 bit RGB source with a sample  
rate of 4:4:4. YC C input sources are supported in 10 bit  
B R  
4:2:2, 20 bit 4:2:2, 20 bit 4:4:4, and 24 bit 4:4:4. In the 4:2:2  
cases the color difference components are linearly interpo-  
lated to 4:4:4 internally.  
the C and C components is controlled by the INMODE  
B
R
control register.  
INMODE  
x00  
23  
7
16 15 14  
PD  
9
8
0
7
7
0
0
CB/BLUE  
YCBCR  
0
7
CR/RED  
Y/GREEN  
101  
9
0
0
0
110  
9
CBCR  
CBCR  
1
1
0
0
9
9
Y
Y
2
2
111  
9
65-6294-02  
Figure 1. Input Formats  
1. INMODE = 000 or 100, PD[7:0] = Y/G, PD[23:16] = C /B, PD[15:8] = C /R  
B
R
n = (SY+BR+BU+CBP+AV)*2  
0
128  
x = (SY+BR+BU+CBP)*2  
PXCK  
t
H
t
S
(Y/G)  
(Y/G)  
(Y/G)  
(Y/G)  
x+1  
(Y/G)  
x+2  
(Y/G)  
PD[7:0]  
n-1  
n
x
0
PD[23:16]  
(C /B)  
(C /B)  
(C /B)  
(C /B)  
(C /B)  
x+2  
n
(C /B)  
0
B
n-1  
x
x+1  
B
B
B
B
B
(C /R)  
PD[15:8]  
HSIN  
(C /R)  
R
(C /R)  
n
R
(C /R)  
(C /R)  
(C /R)  
x+2  
0
n-1  
R
x
x+1  
R
R
R
t
SP  
t
DO  
t
DO  
HSOUT  
(TSOUT = 1)  
65-6294-03  
Figure 2. 24 Bit Input Format  
2. INMODE = 101, PD[23:14] = YC C running at 27MHz.  
B R  
The PD port is clocked at twice the pixel rate, with the data  
data value, after the SAV preamble, is treated as a C data  
B
organized as C Y C Y, with the cosited Y's following the  
point in the multiplexed C , Y, C Y , D1 data stream.  
B R  
B
R
C 's. In its CCIR-656 time base mode, the demuxed C , Y,  
and C data is synchronized to the SAV preamble. The first  
R
B
B
Note: Figure 3, pixel numbering, reflects the SMPTE-125M  
pixel numbering.  
REV. 1.0 3/26/03  
7
TMC2193  
PRODUCT SPECIFICATION  
128  
(SY+BR+BU+CBP)*2  
0
PXCK  
t
S
t
H
C
Y
736  
C
B718  
Y
C
R718  
Y
719  
FF  
00  
00  
FV  
1
B736  
FF  
00  
00  
FV  
C
B0  
Y
C
R0  
Y
C
B2  
Y
2
718  
PD[23:14]  
0
1
0
t
t
DO  
DO  
EAV  
SAV  
t
HS  
HSOUT  
(TSOUT = 1)  
65-6294-04  
Figure 3. CCIR656 Input Format  
x = (SY+BR+BU+CBP)*2  
n = (SY+BR+BU+CBP+AV)*2  
0
128  
PXCK  
t
S
t
H
C
Bn  
Y
C
Rn  
Y
n+1  
C
B0  
Y
0
C
Bx  
Y
x
C
Rx  
Y
x+1  
C
Bx+2  
Y
x+2  
n
PD[23:14]  
HSIN  
t
t
HP  
SP  
t
t
DO  
DO  
HSOUT  
(TSOUT = 1)  
65-6294-05  
Figure 4. 10 bit Input Format  
3. INMODE = 111, PD[9:0] = Y, PD[23:14] = C /C  
B
R
n = (SY+BR+BU+CBP+AV)*2  
0
128  
x = (SY+BR+BU+CBP)*2  
PXCK  
t
H
t
S
Y
Y
n+1  
Y
x
Y
x+1  
Y
x+2  
n
Y
0
Y
1
PD[9:0]  
C
C
C
Bx  
C
C
PD[23:14]  
HSIN  
C
Rn  
C
Rx  
R0  
B0  
Bx+2  
Bn  
t
SP  
t
t
DO  
DO  
HSOUT  
(TSOUT = 1)  
t
HS  
65-6294-06  
Figure 5. 20 bit 4:2:2 Input Format  
4. INMODE = 110, PD[9:0] = Y at PCK, PD[23:14] = C -C at PXCK  
B
R
n = (SY+BR+BU+CBP+AV)*2  
0
128  
x = (SY+BR+BU+CBP)*2  
PXCK  
t
H
t
S
Y
0
Y
x
Y
n
Y
n+1  
PD[9:0]  
t
H
t
S
CB  
0
CB  
CR  
x
PD[23:14]  
HSIN  
CB  
CR  
CB  
CRn+1  
CR  
n
n+1  
0
x
n
t
SP  
t
t
DO  
DO  
HSOUT  
(TSOUT = 1)  
65-6294-07  
Figure 6. 20 bit 4:4:4 Input Format  
8
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Gamma Correction  
Color Space Matrix  
Control Registers for this section  
Control Registers for this section  
Address  
0x04  
Bit(s)  
Name  
Address  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3A  
0x3B  
0x3B  
0x3C  
0x3C  
0x3D  
0x3D  
0x3E  
0x3E  
0x3F  
0x3F  
Bit(s)  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-4  
3-0  
7-4  
2-0  
7-4  
2-0  
7-4  
3-0  
7-4  
3-0  
2
Name  
7
GAMENG  
GAMENC  
GAMSELG  
GAMSELC  
MCF1L  
MCF2L  
MCF3L  
MCF4L  
MCF5L  
MCF6L  
MCF7L  
MCF8L  
MCF9L  
MCF10L  
MCF1M  
MCF2M  
MCF3M  
MCF4M  
MCF5M  
MCF6M  
MCF7M  
MCF8M  
MCF9M  
MCF10M  
NMEH  
0x04  
6
5
4
0x04  
0x04  
Inherent in all CRT displays is a non-linearity between the  
voltage applied to the electron guns and the CRT phosphor  
brightness. Traditionally this non-linearity, gamma, is com-  
pensated at the camera. However, many sources today are  
mixed in the digital domain and do not contain any gamma  
correction.  
For this reason the TMC2193 contains optional gamma cor-  
rection process. The TMC2193 contains two independent  
gamma circuits, one for the Green data path and the other for  
the Blue and Red data path. Each gamma processor has two  
(2) gamma compensation curves, one for NTSC and one for  
PAL, that can be applied to the incoming video data.  
The formulas for the gamma curves are:  
PAL:  
NTSC: Y = 4.5 * X  
Y = 1.099 * X1/2.22 – 0.099  
Y = X1/2.8  
for 0 X 255  
for 0 X 6  
for 7 X 255  
1024  
896  
768  
640  
512  
384  
256  
128  
0
PAL Gamma Curve  
1-0  
CSMFMT  
The color space matrix (CSM) has four modes of operation,  
which are controlled by CSMFMT. The CSMFMT bits con-  
figures the color space matrix to produce the desired outputs  
from the input source. The inputs for the CSM can be either  
RGB or YC C . In all four modes YUV for the composite  
B R  
generation will always be one set of component outputs of  
the CSM. The other set of components outputs can be either  
NTSC Gamma Curve  
RGB or YP P .  
B R  
0
32  
64  
96  
128 160 192 224 256  
RGB Inputs (0 to 255)  
CSMFMT = 00 , YC C input source with YUV and  
B R  
YP P outputs.  
B R  
Figure 7. Gamma Curves  
Matrix configuration:  
Y
U
V
Y
= MCF1 * Y  
in  
composite  
= MCF4 * C  
= MCF6 * C  
B
R
= MCF8 * Y  
in  
component  
P
P
= MCF9 * C  
B
B
= MCF10 * C  
R
R
REV. 1.0 3/26/03  
9
TMC2193  
PRODUCT SPECIFICATION  
CSMFMT = 01 , YC C input source with YUV and  
B R  
RGB outputs.  
Y
= MCF8 * Y  
= MCF9 * U  
composite  
P
B
R
P
= MCF10 * V  
Matrix configuration:  
Y
U
V
G
= MCF1 * Y  
in  
composite  
CSMFMT = 11 , RGB input source withYUV and RGB  
outputs.  
= MCF4 * C  
= MCF6 * C  
B
R
Matrix configuration:  
= MCF8 * (MCF1 * Y + MCF2 * C  
in  
+ MCF3 * C )  
B
Y
= MCF1 * G + MCF2 * B +  
in in  
composite  
R
MCF3 * R  
in  
B
R
= MCF9 * (MCF1 * Y + MCF5 * C )  
in  
B
U
V
G
B
R
= MCF4 * B + MCF5 * Y  
in  
composite  
= MCF10 * (MCF1 * Y  
in  
+
= MCF6 * R + MCF7 * Y  
in  
composite  
MCF7 * C )  
R
= MCF8 * G  
in  
in  
CSMFMT = 10 , RGB input source with YUV and  
YP P outputs.  
B R  
= MCF9 * B  
= MCF10 * R  
in  
Matrix configuration:  
The color space matrix consists of 10 multipliers with inde-  
pendently adjustable coefficients, and a resolution of  
0.00049 (1/2048). The amount of gain varies among coeffi-  
cients, Table 1 summarizes the gain for each coefficient.  
Y
= MCF1 * G + MCF2 * B +  
in in  
composite  
MCF3 * R  
in  
U
V
= MCF4 * B + MCF5 * Y  
in  
composite  
= MCF6 * R + MCF7 * Y  
in  
composite  
Table 1. CSM Coefcient Range  
Coefcient  
MCF1  
Gain Range  
0 to 2  
Comment  
MCF2  
-1 to 1  
Must be loaded in 2s comp format.  
Must be loaded in 2s comp format.  
11 bit coefficient.  
MCF3  
-1 to 1  
MCF4  
0 to 1  
MCF5  
-2 to 2  
Negative values are enabled when CSMFMT is 1x, only the 12 LSBs  
are required to be loaded into the control registers. Must be loaded in 2s  
comp format.  
MCF6  
MCF7  
0 to 1  
11 bit coefficient.  
-2 to 2  
Negative values are enabled when CSMFMT is 1x, only the 12 LSBs  
are required to be loaded into the control registers. Must be loaded in 2s  
comp format.  
MCF8  
MCF9  
MCF10  
0 to 2  
0 to 2  
0 to 2  
To aid in the programming of the color space matrix Table 2  
and Table 3 provide a set of default input and output values  
for 100% color bars. The component values given will be  
after the preprocessing block and prior to the sync and ped-  
estal insertion. The blank, pedestal, and sync values are  
given as a reference. Table 4 and Table 5 give the default  
coefficients values for the CSM in all modes and standard  
video formats.  
10  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Table 2. Expected Output Values for the CSM withYC C Inputs  
B
R
Inputs  
5:2 Outputs  
7:3 Outputs  
Color  
White  
Yellow  
Cyan  
Y
C
C
Y
U
V
Y
U
V
Y
P
P
R
G
B
R
B
R
B
876  
0
0
536  
0
0
568  
0
0
568  
0
0
568 568 568  
776 -448 73  
614 151 448 376  
514 -297 -375 315 -156 -278 340 -165 -294 340 -189 -238 568  
475 -235 54  
503 -249 57  
514 -284 46  
568  
0
568  
0
79 -332 407  
84 -351 407  
96 -284 568 568  
Green  
Magenta  
Red  
0
0
362 297 375 222 156 278 240 165 294 240 189 238  
262 -151 448 160 -79 332 173 -84 351 173 -96 284  
0
0
0
0
568 568  
0
568  
0
568  
0
Blue  
100 448 -73  
61  
0
235 -54  
66  
0
249 -57  
66  
0
284 -46  
Black  
Blank  
Pedestal  
Sync  
0
0
0
0
0
0
0
0
0
0
64  
240  
44  
8
256  
0
256  
0
256 256 256  
12  
12  
12  
Table 3. Expected Output Values for the CSM with RGB Inputs  
Inputs  
B
5:2 Outputs  
7:3 Outputs  
Color  
White  
Yellow  
Cyan  
G
R
Y
U
V
Y
U
V
Y
P
B
P
G
B
R
R
1020 1020 1020 536  
1020  
1020 1020  
0
0
568  
0
0
568  
0
0
568 568 568  
0
1020 475 -235 54  
503 -249 57  
79 -332 407 84 -351 407  
315 -156 -278 340 -165 -294 340 -189 -238 568  
514 -284 46  
568  
0
568  
0
0
0
376  
96 -284 568 568  
Green  
Magenta  
Red  
1020  
0
0
0
0
0
0
0
1020 1020 222 156 278 240 165 294 240 189 238  
0
0
0
0
568 568  
0
1020  
0
1020 160 -79 332 173 -84 351 173 -96 284  
0
568  
0
568  
0
Blue  
0
0
61  
0
235 -54  
66  
0
249 -57  
66  
0
284 -46  
Black  
0
0
0
0
0
0
0
Table 4. Coefcient setsYC C inputs  
Table 5. Coefcient setsYC C inputs  
B R  
B
R
YP P outputs  
RGB Outputs  
NTSC NTSC  
-M PAL-I  
54C 4E5 530  
E34 E57 E3D  
YP P outputs  
RGB Outputs  
NTSC NTSC  
-M PAL-I -EIA -M PAL-I  
B R  
B R  
NTSC NTSC  
NTSC NTSC  
-EIA  
-M PAL-I -EIA  
-EIA  
2AC  
085  
15C  
240  
MCF1  
MCF2  
MCF3  
MCF4  
MCF5  
MCF6  
MCF7  
MCF8  
MCF9  
54C 4E5  
530  
000  
MCF1  
MCF2  
MCF3  
MCF4  
MCF5  
MCF6  
MCF7  
MCF8  
MCF9  
278  
07B  
142  
215  
29E 2AC  
278  
07B  
142  
215  
29E  
082  
155  
234  
000  
000  
48b  
000  
000  
000  
433  
000  
082  
155  
234  
085  
15C  
240  
000 C4E C96 C62  
473  
000  
48B  
433  
473  
92D 87B 8FC  
668 5EC 646  
C09 C09 C09 C09 C09 C09  
668 5EC 646  
000 000 000  
54C 54C 54C  
404  
8F2  
800  
3B7 3EF  
404  
8F2  
3B7 3EF  
742  
800  
800  
800  
6B5 71C  
8F2  
8A8  
8F2  
800  
920  
679  
8F2  
8F2  
474  
474  
474  
8A8  
8A8  
8A8  
800  
800  
800  
48D 48D  
48D 48D  
48D 48D  
514  
514  
514  
514  
514  
8F2 9AB  
6D8  
MCF10 514  
MCF10 654  
REV. 1.0 3/26/03  
11  
TMC2193  
PRODUCT SPECIFICATION  
CCIR656  
Synchronization Modes  
The TMC2193 derives all synchronization from the embed-  
ded TRS (timing reference signals) information. Blanking of  
selected lines is determined by the v bit of the TRS. However  
the control registers VBIENx can override and blank the  
active video portion of VBI lines regardless of the state of the  
v-bit.  
Control Registers for this section  
Address  
0x06  
Bit(s)  
5-3  
1
Name  
MODE  
TOUT  
TSOUT  
0x06  
0x06  
0
Genlock  
The TMC2193 is driven by the input synchronization pins  
HSIN and VSIN. When the falling edge of HSIN and VSIN  
occurs at the same rising edge of PXCK the TMC2193 will  
start a new field.VSIN can be either a traditional pulse or the  
MPEG style field toggle. In both cases the TMC2193 will  
flywheel through fields 2, 4, 6, and 8 synchronizing only to  
fields 1, 3, 5, and 7. The TMC2193 collects GRS data and  
resets its subcarrier phase and frequency to the data embed-  
ded in the GRS stream. The GRS detection occurs only on  
the CBVS port.  
The TMC2193 offers a variety of synchronization modes;  
these are master, slave, genlock, 656 mode, and DRS-Lock.  
In master mode, the TMC2193 generates its own timing and  
the synchronization is supplied externally by HSOUT and  
VSOUT signals. In slave and genlock modes the TMC2193  
derives its timing from the input pins HSIN, VSIN. In 656  
mode the timing is driven by the synchronization codes  
embedded into the data stream.  
Master  
The TMC2193 drives the output pins HSOUT and VSOUT  
to synchronize the incoming video. A new color frame starts  
at the rising edge of RESET. The encoder always starts at the  
1st vertical serration in field 8 and will freerun the field and  
line sequence. The control register bit SRESET can be used  
to synchronize the start of the field and line sequence in mas-  
ter mode by resetting the FVHGEN state machine. Output  
synchronization signal VSOUT can operate in a traditional  
sync mode or in a MPEG style field toggle mode.  
DRS  
The TMC2193 is driven by the input synchronization pins  
HSIN and VSIN. When the falling edge of HSIN and VSIN  
occurs at the same rising edge of PXCK the TMC2193 will  
start a new field.VSIN can be either a traditional pulse or the  
MPEG style field toggle. In both cases the TMC2193 will  
flywheel through fields 2, 4, 6, and 8 synchronizing only to  
fields 1, 3, 5, and 7. Subcarrier phase adjustment is deter-  
mined by the DRS data. The DRS detection can occur on  
either the CBVS port or the pixel data port.  
Slave  
The TMC2193 is driven by the input synchronization pins  
HSIN and VSIN. When the falling edge of HSIN and VSIN  
occurs at the same rising edge of PXCK the TMC2193 will  
start a new field.VSIN can be either a traditional pulse or the  
MPEG style field toggle. In both cases the TMC2193 will  
flywheel through fields 2, 4, 6, and 8 synchronizing only to  
fields 1, 3, 5, and 7.  
Propagation Delay  
The propagation delay from the pixel data (PD) input to the  
D/A output is 64 PXCK’s. Figure 8 shows the propagation  
delay for both master and slave synchronization modes. For  
CCIR656 data streams, pixel 736 (pixel 0 in Figure 8) is the  
midpoint of sync and is 32 PXCK’s (24 PXCK’s in PAL)  
after the EAV TRS.  
n = (SY+BR+BU+CBP+AV)*2  
0
128  
63  
65  
PXCK  
C
Bn  
Y
C
Rn  
Y
n+1  
C
B0  
Y
0
n
PD[23:14]  
HSIN  
t
DO  
HSOUT  
(TSOUT = 1)  
DACx  
(ANALOG)  
t
DCVBS  
DO  
(D[7:0],FLD[2:1])  
COMP  
COMP  
1
0
65-6294-09  
Midpoint of the  
Falling Edge of Sync  
Figure 8. Propagation Delay through the Encoder  
12  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Blanking Control  
Pixel Data Control  
Control Registers for this section  
The pixel data control has two modes of operation, as an  
input or as an output. The mode of operation is determined  
by the PDCDIR control register. When PDC is an input the  
internally generated PDC is ANDed with the PDC pin. This  
allows the user to blank any active video regions. When PDC  
is an output, the internally generated PDC is the output for  
the PDC pin.  
Address  
0x04  
Bit(s)  
1-0  
2
Name  
PDRM  
0x06  
PDCDIR  
VBIENF1  
VBIENF2  
PDCCNT  
0x18  
4-0  
4-0  
7-0  
0x19  
The internal PDC control will toggle to a logic HIGH at the  
pixel specified by PDCNT and toggle to a logic LOW four  
pixels prior to the end of the active video region. The starting  
point and ending point of the active video region (VA) are  
determined by the control registers 10h to 1Fh. When PDC is  
used as an input, the sloped edge of the active video region  
will occur on the next four pixels following the toggle point.  
0x1F  
The content of VBIENFx[4:0] selects the first line to contain  
an active video region in each field, all subsequent lines for  
the remainder of the field are active. To blank an entire field,  
the user zeroes the VBIENFx[4:0] control register. In  
CCIR656 slave mode, the user can selectively blank any  
enabled line by setting its TRS V bit HIGH. For 525-line  
systems, NTSC line numbering is employed, with the first  
vertical serration starting on line 4. PAL line numbering is  
used with 625-line systems, with each field's line 1 being the  
start of the first vertical serration.  
Edge Shaping  
The TMC2193 has three modes of sloped edges on the active  
video region and are controlled by PDRM control register.  
Any line(s) enabled by the closed caption control are auto-  
matically unblanked for the closed caption waveform, irre-  
spective of the corresponding values of VBIENF.  
Table 6. PDC Edge Control  
PDRM[1:0]  
Slope type at PDC (HIGH)  
Slope type at PDC (LOW)  
00  
The following four pixels have the weighting of The following four pixels have the weighting of  
1/8, 1/2, 7/8 and 1 for NTSC and 1/8, 3/8, 5/8, 1, 7/8, 1/2, and 1/8 for NTSC and 7/8, 5/8, 3/8,  
and 7/8 for PAL.  
and 1/8 for PAL.  
01  
1x  
The fifth pixel is sampled and scaled 1/8, 1/2,  
7/8 and 1 over the next four pixels for NTSC  
and 1/8, 3/8, 5/8, and 7/8 over the next four  
pixels for PAL.  
The fifth pixel is sampled and scaled 1, 7/8,  
1/2 and 1/8 over the next four pixels for NTSC  
and 7/8, 5/8, 3/8, and 1/8 over the next four  
pixels for PAL.  
Slope is off, edge control is dictated by the PD Slope is off, edge control is dictated by the PD  
stream from active video start stream to active video end  
REV. 1.0 3/26/03  
13  
TMC2193  
PRODUCT SPECIFICATION  
Horizontal interval timing is fully programmable and is  
established by loading the timing registers with the duration  
of each horizontal element. The duration is expressed in  
PCK clock cycles. In this way, any pixel clock rate between  
10 MHz and 15 MHz can be accommodated, and any desired  
standard or non-standard horizontal video timing may be  
produced.  
Horizontal Programming  
Control registers for this section  
Address  
0x06  
0x19  
0x19  
0x19  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2D  
0x2D  
0x2D  
Bit(s)  
7-6  
7
Name  
FORMAT  
SHORT  
T512  
HALFEN  
SY  
6
Horizontal timing parameters can be calculated as follows:  
5
t = N x ( PCK period )  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-0  
7-6  
5-4  
3-2  
1-0  
= N x ( 2 x PXCK period )  
BR  
where N is the value loaded into the appropriate timing  
register, and PCK is the pixel clock period.  
BU  
CBP  
XBP  
VA  
When programming horizontal timing, subtract 5 PCK  
periods from the calculated values of CBP and add 5 PCK  
periods to the calculated value for VA. The control register  
HALFEN enables the 1st half line (UBV) on line 283 for  
NTSC, PAL-M and line 23 for all other PAL standards when  
it is LOW.  
VC  
VB  
EL  
EH  
SL  
SH  
FP  
XBP (MSBs)  
VA (MSBs)  
VB (MSBs)  
VC (MSBs)  
Table 7. Horizontal Line Equations  
Line Type  
EE  
Line ID  
00  
Line Length Equals  
EL + EH + EL + EH  
SE  
02  
SL + SH + EL + EH  
SS  
03  
SL + SH + SL + SH  
ES  
01  
EL + EH + SL + SH  
EB  
10  
EL + EH + EL + EH  
UBB, -BB  
UVV, -VV  
UVE, -VE  
UBV  
0D, 05  
0F, 07  
0C, 04  
0E  
SY + BR + BU + CBP + VA + FP  
SY + BR + BU + CBP + VA + FP  
SY + BR + BU + CBP + VC + FP + EL + EH  
SY + BR + BU + XBP + VB + FP  
14  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
SY  
BR  
BU  
CBP  
VA  
FP  
65-6294-10  
Figure 9. Horizontal Timing  
ming, any pixel rate between 10 and 15 Mpps can be accom-  
modated, and any desired standard or non-standard vertical  
video timing may be produced.  
Table 8. Horizontal Timing Specications  
NTSC-M  
PAL-I  
PAL-M  
Parameter  
(µs)  
(µs)  
(µs)  
Like horizontal timing parameters, vertical timing parame-  
ters are calculated as follows:  
FP  
SY  
BR  
BU  
CBP  
VA  
H
1.5  
4.7  
1.65  
4.7  
1.9  
4.95  
t = N x ( PCK period )  
0.6  
0.9  
0.9  
= N x ( 2 x PXCK period )  
2.5  
2.25  
2.55  
51.95  
64.0  
2.25  
where N is the value loaded into the appropriate timing reg-  
ister, and PCK is the pixel clock period.  
1.6  
1.8  
52.6556  
63.5556  
51.692  
63.492  
The vertical interval comprises several different line types  
based upon H, the Horizontal line time.  
H = (2 x SL) + (2 x SH) [Vertical sync pulses]  
= (2 x EL) + (2 x EH) [Equalization pulses]  
Vertical interval timing is also fully programmable, and is  
established by loading the timing registers with the dura-  
tion’s of each vertical timing element, the duration expressed  
in PCK clock cycles. In this way as with horizontal program-  
H
H/2  
EL  
EH  
SL  
SH  
65-6294-11  
Figure 10. Horizontal Timing Vertical Blanking  
The VB and VC control registers are added to produce the  
half-lines needed in the vertical interval at the beginning and  
end of some fields. These must properly mate with compo-  
nents of the normal lines.  
REV. 1.0 3/26/03  
15  
TMC2193  
PRODUCT SPECIFICATION  
H/2  
SY  
BR  
BU  
XBP  
VB  
FP  
65-6924-12  
Figure 11. Horizontal Timing 1st Half-line  
H/2  
EL  
SY  
BU  
CBP  
VC  
FP  
EH  
BR  
65-6294-13  
Figure 12. Horizontal Timing 2nd Half-line  
Table 9. Vertical Interval Timing Specications  
NTSC-M  
PAL-I  
PAL-M  
Parameter  
(µs)  
(µs)  
(µs)  
H
63.5556  
29.4778  
2.3  
64  
29.65  
2.35  
4.7  
63.492  
29.45  
2.3  
EH  
EL  
SH  
SL  
4.7  
4.65  
27.1  
27.3  
27.1  
16  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Table 10. Default Horizontal Timing Parameters  
Timing Register (hex)  
Field Horizontal  
Pixel  
Rate  
(Mpps) (MHz)  
PXCK  
Freq.  
SY  
20  
3A  
40  
43  
45  
40  
46  
3E  
44  
47  
BR BU CBP XBP VA  
VC  
26  
05  
1E  
30  
2B  
0E  
31  
FE  
12  
22  
VB  
27  
77  
98  
B5  
B7  
93  
BF  
8B  
99  
AC  
EL EH2 SL2 SH  
FP Note CBL  
Rate  
(Hz)  
Freq.  
(KHz)  
Standard  
21  
07  
08  
09  
0D  
0C  
0D  
0B  
0C  
0D  
22  
1F  
22  
24  
21  
1E  
22  
1C  
1E  
20  
23  
0F  
11  
12  
21  
22  
21  
13  
13  
15  
24  
23  
44  
54  
6D  
4D  
73  
26  
26  
4C  
25  
8B  
CB  
F7  
03  
BE  
11  
86  
Bf  
28  
1C  
1F  
21  
23  
20  
23  
1D  
1F  
21  
29  
6A  
8E  
A6  
B5  
90  
BD  
70  
8E  
A5  
2A  
4C  
6D  
84  
93  
70  
9A  
53  
6E  
84  
2B  
3A  
40  
43  
45  
40  
47  
3A  
3F  
42  
2C  
12  
14  
15  
19  
16  
19  
18  
1A  
1B  
2D  
65  
65  
65  
75  
65  
75  
61  
65  
65  
2F  
52  
59  
5F  
61  
59  
62  
52  
57  
5D  
NTSC sqr. pixel  
NTSC CCIR-601  
59.94 15.734266  
59.94 15.734266  
59.94 15.734266  
50.00 15.625000  
50.00 15.625000  
50.00 15.625000  
60.00 15.750000  
60.00 15,750000  
60.00 15,750000  
12.27  
13.50  
14.32  
14.75  
13.50  
15.00  
12.50  
13.50  
14.30  
24.54  
27.00  
28.64  
29.50  
27.00  
30.00  
25.01  
27.00  
28.60  
NTSC 4x F  
SC  
PAL sqr. pixel  
PAL CCIR-601  
PAL 15 Mpps  
PAL-M sqr.pixel  
PAL-M CCIR-601  
PAL-M 4x F  
E8  
SC  
Notes:  
1. XBP, VA, VC, and VB are 10 bit values. The 2 MSBs for these four variables are in Timing Register 2D.  
2. EH and SL are 9 bit values. A most significant "1" is forced by the TMC2193 since EH and SL must range from 256 to 511.  
EH and SL may be extended to 767. Only the eight LSBs are stored in Timing Registers 29 and 2A.  
3. Every calculated timing parameter has a minimum value of 5 except EH and SL which have minimum values of 256.  
Vertical Timing  
The vertical timing is controlled by the FORMAT control  
register, which dictates the field and line sequence.  
524  
525  
FIELDS 1 AND 3  
21  
22  
10  
•••  
19  
20  
1
2
3
4
5
6
7
8
9
UVV  
UVV  
EE  
EE  
EE  
SS  
SS  
SS  
EE  
EE  
EE  
UBB  
UBB  
UBB  
UVV  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
263  
FIELDS 2 AND 4  
283  
284  
285  
262  
273  
•••  
282  
264  
EE  
265  
EE  
266  
267  
268  
269  
SE  
270  
EE  
271  
EE  
272  
EB  
UVV  
UVE  
ES  
SS  
SS  
UBB  
UBB  
UBV  
UVV  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
65-6294-15  
Figure 13. NTSC Vertical Interval  
REV. 1.0 3/26/03  
17  
TMC2193  
PRODUCT SPECIFICATION  
Table 11. NTSC Field/Line Sequence and Identication  
Field 1  
Field 2  
Field 3  
Field 4  
FIELD ID = x00  
FIELD ID = x01  
FIELD ID = x10  
FIELD ID = x11  
Line  
ID  
LTYPE  
Line  
ID  
ES  
LTYPE  
Line  
ID  
LTYPE  
Line  
266  
267  
268  
269  
270  
271  
272  
273  
ID  
ES  
LTYPE  
01  
4
5
SS  
03  
03  
03  
00  
00  
00  
0D  
0D  
0D  
0D  
0F  
0F  
0F  
0F  
0C  
00  
00  
266  
267  
268  
269  
270  
271  
272  
273  
01  
03  
03  
02  
00  
00  
10  
0D  
0D  
0D  
0E  
0F  
0F  
0F  
0F  
00  
00  
00  
4
5
SS  
03  
03  
03  
00  
00  
00  
0D  
0D  
0D  
0D  
0F  
0F  
0F  
0F  
0C  
00  
00  
SS  
SS  
SS  
SS  
03  
6
SS  
SS  
6
SS  
SS  
03  
7
EE  
SE  
7
EE  
SE  
02  
8
EE  
EE  
8
EE  
EE  
00  
9
EE  
EE  
9
EE  
EE  
00  
10  
19  
20  
21  
22  
262  
263  
264  
265  
UBB  
UBB  
UBB  
UBB  
UVV  
UVV  
UVV  
UVV  
UVE  
EE  
EB  
10  
19  
20  
21  
22  
262  
263  
264  
265  
UBB  
UBB  
UBB  
UBB  
UVV  
UVV  
UVV  
UVV  
UVE  
EE  
EB  
10  
UBB  
UBB  
UBB  
UBV  
UVV  
UVV  
UVV  
UVV  
EE  
UBB  
UBB  
UBB  
UBV  
UVV  
UVV  
UVV  
UVV  
EE  
0D  
0D  
0D  
0E  
0F  
0F  
0F.  
0F  
00  
282  
283  
284  
282  
283  
284  
524  
525  
1
524  
525  
1
EE  
2
EE  
EE  
2
EE  
00  
3
EE  
3
EE  
00  
EE  
SE  
SS  
ES  
EB  
Equalization pulse  
Half-line vertical sync pulse, half-line equalization pulse  
Vertical sync pulse  
Half-line equalization pulse, half-line vertical sync pulse  
Equalization broad pulse  
UBB  
UVV  
UVE  
UBV  
Black burst  
Active video  
Half-line video, half-line equalization pulse  
half-line black, half-line video  
18  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
622  
623  
-VE  
FIELDS 1 AND 5  
23  
24  
25  
26  
•••  
•••  
624  
EE  
625  
EE  
1
2
3
4
5
6
7
22  
UVV  
SS  
SS  
SE  
EE  
EE  
-BB  
UBB  
UBB UBV  
UVV  
UVV  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
309  
310  
-VV  
FIELDS 2 AND 6  
336  
337  
•••  
•••  
311  
312  
EE  
313  
314  
SS  
315  
SS  
316  
EE  
317  
EE  
318  
EB  
319  
320  
334  
335  
UVV  
EE  
ES  
UBB  
UBB  
UBB UBB  
UVV  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
622  
-VV  
623  
-VE  
FIELDS 3 AND 7  
23  
24  
25  
26  
•••  
•••  
624  
EE  
625  
EE  
1
2
3
4
5
6
7
22  
SS  
SS  
SE  
EE  
EE  
UBB  
UBB  
UBB UBV  
UVV  
UVV  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
309  
310  
FIELDS 4 AND 8  
336  
337  
•••  
•••  
311  
EE  
312  
EE  
313  
ES  
314  
SS  
315  
SS  
316  
EE  
317  
EE  
318  
EB  
319  
-BB  
320  
334  
335  
UVV  
UVV  
UBB  
UBB UBB  
UVV  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
65-6294-16  
Figure 14. PAL Vertical Interval  
REV. 1.0 3/26/03  
19  
TMC2193  
PRODUCT SPECIFICATION  
Table 12. PAL Field/Line Sequence and Identication  
Field 1 & 5  
Field 2 & 6  
Field 3 & 7  
Field 4 & 8  
FIELD ID = 000, 100  
FIELD ID = 001, 111  
FIELD ID = 010, 110  
FIELD ID = 011, 111  
Line  
ID  
LTYPE  
Line  
ID  
LTYPE  
Line  
ID  
LTYPE  
Line  
313  
314  
315  
316  
317  
318  
319  
320  
ID  
ES  
LTYPE  
01  
1
2
SS  
03  
03  
02  
00  
00  
05  
0D  
0D  
0D  
0E  
0F  
0F  
0F  
0F  
0F  
07  
00  
00  
313  
314  
315  
316  
317  
318  
319  
320  
ES  
01  
03  
03  
00  
00  
10  
0D  
0D  
0D  
0D  
0D  
0F  
0F  
0F  
07  
04  
00  
00  
1
2
SS  
03  
03  
02  
00  
00  
0D  
0D  
0D  
0D  
0E  
0F  
0F  
0F  
0F  
0F  
0F  
00  
00  
SS  
SS  
SS  
SS  
03  
3
SE  
SS  
3
SE  
SS  
03  
4
EE  
EE  
4
EE  
EE  
00  
5
EE  
EE  
5
EE  
EE  
00  
6
-BB  
UBB  
UBB  
UBB  
UBV  
UVV  
UVV  
UVV  
UVV  
UVV  
-VV  
EE  
EB  
6
UBB  
UBB  
UBB  
UBB  
UBV  
UVV  
UVV  
UVV  
UVV  
UVV  
UVV  
EE  
EB  
10  
7
UBB  
UBB  
UBB  
UBB  
UBB  
UVV  
UVV  
UVV  
-VV  
-VE  
EE  
7
-BB  
UBB  
UBB  
UBB  
UVV  
UVV  
UVV  
UVV  
UVV  
-VE  
EE  
05  
22  
23  
24  
25  
26  
309  
310  
311  
312  
22  
23  
24  
25  
26  
309  
310  
311  
312  
0D  
0D  
0D  
0F.  
0F  
0F  
0F  
0F  
04  
334  
335  
336  
337  
334  
335  
336  
337  
622  
623  
624  
625  
622  
623  
624  
625  
00  
EE  
EE  
EE  
EE  
00  
EE  
SE  
SS  
ES  
EB  
Equalization pulse  
Half-line vertical sync pulse, half-line equalization pulse  
Vertical sync pulse  
Half-line equalization pulse, half-line vertical sync pulse  
Equalization broad pulse  
UBB  
-BB  
UVV  
-VV  
UVE  
-VE  
UBV  
Black burst  
Black burst with color burst suppressed  
Active video  
Active video with color burst suppressed  
Half-line video, half-line equalization pulse  
Half-line video, half-line equalization pulse, color burst suppressed.  
half-line black, half-line video  
20  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
521  
522  
FIELDS 1 AND 5  
18  
523  
EE  
524  
EE  
525  
EE  
1
2
3
4
5
6
7
8
9
•••  
•••  
17  
UVV  
UVV  
SS  
SS  
SS  
EE  
EE  
EE  
-BB  
-BB  
UBB  
UBB  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
280  
281  
260  
FIELDS 2 AND 6  
259  
261  
EE  
262  
EE  
263  
264  
265  
SS  
266  
SE  
267  
EE  
268  
EE  
269  
EB  
270  
-BB  
271  
•••  
•••  
279  
UVV  
-VE  
ES  
SS  
UBB  
UBB  
UBV  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
521  
522  
-VV  
FIELDS 3 AND 7  
18  
523  
EE  
524  
EE  
525  
EE  
1
2
3
4
5
6
7
8
9
•••  
•••  
17  
UVV  
SS  
SS  
SS  
EE  
EE  
EE  
-BB  
UBB UBB  
UBB  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
280  
281  
260  
-VE  
FIELDS 4 AND 8  
258  
259  
261  
EE  
262  
EE  
263  
264  
265  
SS  
266  
SE  
267  
EE  
268  
EE  
269  
EB  
270  
271  
•••  
•••  
279  
UVV -VV  
ES  
SS  
UBB  
UBB  
UBB  
UBV  
UVV  
HSOUT  
VSOUT  
(TOUT = 1)  
VSOUT  
(TOUT = 0)  
65-6294-17  
Figure 15. PAL-M Vertical Interval  
REV. 1.0 3/26/03  
21  
TMC2193  
PRODUCT SPECIFICATION  
Table 13. PAL-M Field/Line Sequence and Identication  
Field 1 & 5  
Field 2 & 6  
Field 3 & 7  
Field 4 & 8  
FIELD ID = 000, 100  
FIELD ID = 001, 111  
FIELD ID = 010, 110  
FIELD ID = 011, 111  
Line  
ID  
SS  
LTYPE  
Line  
ID  
ES  
LTYPE  
Line  
ID  
SS  
LTYPE  
Line  
263  
264  
265  
266  
267  
268  
269  
270  
271  
ID  
ES  
LTYPE  
01  
1
2
03  
03  
03  
00  
00  
00  
05  
05  
0D  
263  
264  
265  
266  
267  
268  
269  
270  
271  
01  
03  
03  
02  
00  
00  
10  
05  
1D  
1
2
03  
03  
03  
00  
00  
00  
05  
05  
0D  
SS  
SS  
SS  
SS  
03  
3
SS  
SS  
3
SS  
SS  
03  
4
EE  
SE  
4
EE  
SE  
02  
5
EE  
EE  
5
EE  
EE  
00  
6
EE  
EE  
6
EE  
EE  
00  
7
-BB  
-BB  
UBB  
EB  
7
-BB  
UBB  
UBB  
EB  
10  
8
-BB  
UBB  
8
UBB  
UBB  
05  
9
9
1D  
17  
18  
259  
260  
261  
262  
17  
18  
258  
259  
260  
261  
262  
UBB  
UVV  
0D  
0F  
279  
280  
281  
UBB  
UBV  
UVV  
0D  
0E.  
0F  
UBB  
UVV  
UVV  
UVV  
-VV  
-VE  
EE  
0D  
0F  
0F  
0F  
07  
04  
00  
00  
279  
280  
281  
UBB  
UBV  
UVV  
0D  
0E.  
0F  
UVV  
-VE  
EE  
0F  
04  
00  
00  
521  
522  
523  
524  
525  
UVV  
-VV  
EE  
0F  
07  
00.  
00  
00  
521  
522  
523  
524  
525  
UVV  
UVV  
EE  
0F  
0F  
00  
EE  
EE  
EE  
EE  
00  
EE  
EE  
00  
EE  
SE  
SS  
ES  
EB  
Equalization pulse  
Half-line vertical sync pulse, half-line equalization pulse  
Vertical sync pulse  
Half-line equalization pulse, half-line vertical sync pulse  
Equalization broad pulse  
UBB  
-BB  
UVV  
-VV  
UVE  
-VE  
UBV  
Black burst  
Black burst with color burst suppressed  
Active video  
Active video with color burst suppressed  
Half-line video, half-line equalization pulse  
Half-line video, half-line equalization pulse, color burst suppressed.  
half-line black, half-line video  
22  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
NTSC Subcarrier  
Chrominance Processor  
For NTSC encoding, the subcarrier synthesizer frequency  
has a simple relationship to the pixel clock period, repeating  
over 2 lines: The decimal value for the subcarrier phase step  
is:  
Control registers for this section:  
Address Bit(s)  
Name  
0x06  
0x06  
0x07  
0x11  
0x18  
0x18  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
7-6  
5-3  
5
FORMAT  
MODE  
455 2  
32  
--------------------------  
pixels line  
FREQx =  
× 2  
DDSRST  
DRSSEL  
GLKCTL1  
GLKCTL0  
GAUSS_BYP  
FREQL  
7
Where the number of pixels/line is:  
6
PXCK Frequency  
pixels line = ------------------------------------------  
H Period  
5
3
This value must be converted to binary and split into four 8  
bit registers, FREQM, FREQ2, FREQ3, and FREQL.  
7-0  
7-0  
7-0  
7-0  
7-4  
3-0  
7-4  
3-0  
7-4  
3-0  
7-4  
FREQ3  
PAL Subcarrier  
The PAL relationship is more complex, repeating only once  
in 8 fields (the well-known 25 Hz offset):  
FREQ2  
FREQM  
SYSPHL  
SYSPHM  
BURPHL  
BURPHM  
BRSTFULL  
BRST1  
(1135 4) + (1 625)  
--------------------------------------------------  
pixels line  
32  
FREQx =  
× 2  
This value must be converted to binary and split as described  
previously for NTSC. The number of pixels/line is found as  
in NTSC.  
PAL-M Subcarrier  
BRST2  
909 4  
32  
--------------------------  
pixels line  
FREQ =  
× 2  
Subcarrier Programming  
The color subcarrier is produced by an internal 32 bit digital  
frequency synthesizer which is completely programmable in  
frequency and phase. Separate registers, FREQx, SYSPHx,  
BSTPHx, are provided for phase adjustment of the color  
burst and of the active video, permitting external delay com-  
pensation, color adjustment, etc. FREQx is the subcarrier  
phase step per pixel and SYSPHx is phase offset at field 1,  
line 1 (line 4 for NTSC), pixel 1.  
SYSPHx establishes the appropriate phase relationship  
between the internal synthesizer and the chroma modulator.  
The nominal value for SYSPHx is zero.  
Other values for SYSPHx must be converted to binary and  
split into two 8 bit registers, SYSPHM and SYSPHL.  
Burst Phase (BURPHx) sets up the correct relative NTSC  
modulation angle. The value for BURPH is:  
BURPHx = SYSPHx  
This value must be converted to binary and split into two 8  
bit registers, BURPHM and BURPHL.  
REV. 1.0 3/26/03  
23  
TMC2193  
PRODUCT SPECIFICATION  
Table 14. Standard Subcarrier Parameters  
Subcarrier Register (hex)  
BURPHM BURPHL SYSPHM SYSPHL FREQM FREQ2 FREQ3 FREQL  
Field Horizontal  
Pixel  
Rate  
(Mpps) (MHz)  
PXCK Subcarrier  
Rate  
(Hz)  
Freq.  
(kHz)  
Freq.  
Freq.  
(MHz)  
Standard  
47  
00  
00  
00  
00  
00  
00  
00  
00  
00  
46  
00  
00  
00  
00  
00  
00  
00  
00  
00  
45  
00  
00  
00  
00  
00  
00  
00  
00  
00  
44  
00  
00  
00  
00  
00  
00  
00  
00  
00  
43  
4A  
43  
40  
4C  
54  
4B  
49  
43  
40  
42  
AA  
E0  
00  
F3  
13  
AA  
45  
DF  
10  
41  
AA  
F8  
00  
18  
15  
C6  
00  
3F  
66  
40  
AB  
3E  
00  
19  
96  
A1  
51  
D7  
F5  
NTSC sqr. pixel  
NTSC CCIR-601  
59.94 15.734266  
59.94 15.734266  
59.94 15.734266  
50.00 15.625000  
50.00 15.625000  
50.00 15.625000  
60.00 15.750000  
60.00 15,750000  
60.00 15,750000  
12.27  
13.50  
14.32  
14.75  
13.50  
15.00  
12.50  
13.50  
14.30  
24.54 3.57954500  
27.00 3.57954500  
28.64 3.57954500  
29.50 4.43361875  
27.00 4.43361875  
30.00 4.43361875  
25.01 3.57561149  
27.00 3.57561149  
28.60 3.57561149  
NTSC 4x F  
SC  
PAL sqr. pixel  
PAL CCIR-601  
PAL 15 Mpps  
PAL-M sqr.pixel  
PAL-M CCIR-601  
PAL-M 4x F  
SC  
Subcarrier Synchronization  
the TMC22x5y. The TMC22x5y produces a decoder refer-  
ence signal (DRS) which contains field identification, PAL-  
ODD status, relative phase and relative frequency of the  
composite or S-video input. The DRS is sampled on either  
the CVBS bus or the PD port, depending on DRSSEL, 60  
PXCK’s after the falling edge of HSIN. The phase and fre-  
quency values are used to update the DDS on a line to line  
basis, thus synchronizing the subcarrier to an external com-  
posite reference.  
There are 5 modes of subcarrier synchronization in the  
TMC2193, freerun, subcarrier reset, Genlock, DRS-lock and  
Ancillary Data Control (ANC).  
Freerun  
At the rising edge of RESET the DDS starts to generate the  
subcarrier reference and will continue to freerun the subcar-  
rier. When setting the control register DDSRST is HIGH, the  
TMC2193 will reset the DDS to the SYSPH value on the  
next field 1, line 1 (line 4 for NTSC), pixel 1 occurrence and  
will reset this bit to be LOW. This allows the encoder to start  
with the correct SCH relationship. The phase of the subcar-  
rier reference will drift over time since a 32 bit accumulator  
has a error of 0.5 Hz when generating the subcarrier refer-  
ence for NTSC 13.5 MHz.  
Ancillary Data Control (ANC)  
Subcarrier synchronization in ANC mode is covered in the  
Ancillary Data Control section of this data sheet.  
SCH Phase Error Correction  
SCH refers to the timing relationship between the 50% point  
of the leading edge of horizontal sync and the positive or  
negative zero-crossing of the color burst subcarrier refer-  
ence. SCH error is usually expressed in degrees of subcarrier  
phase. In PAL, SCH is defined for line 1 of field 1, but since  
there is no color burst on line 1, SCH is usually measured at  
line 7 of field 1. The need to specify SCH relative to a partic-  
ular line in PAL is due to the 25 Hz offset of PAL subcarrier  
frequency. Since NTSC has no such 25 Hz offset, SCH  
applies to all lines.  
Subcarrier Reset  
At the rising edge of RESET the DDS starts to generate the  
subcarrier reference and will reset the DDS to the SYSPH  
value every field 1, line 1 (line 4 for NTSC), pixel 1 occur-  
rence. This enables the encoder to maintain the proper SCH  
relationship.  
Genlock  
The SCH relationship is important in the TMC2193 when  
two video sources are being combined or if the composite  
video output is externally combined with another video  
source. In these cases, improper SCH phasing will result in a  
noticeable horizontal jump of one image with respect to  
another and/or a change in hue proportional to the SCH error  
between the two sources.  
The Genlock mode allows the TMC2193 to lock to a com-  
posite reference when used in conjunction with the  
TMC22071A Genlocking Video Digitizer. The TMC22071A  
produces a genlock reference signal (GRS) which contains  
field identification, PALODD status, relative phase and rela-  
tive frequency of the composite reference. The GRS is sam-  
pled on the CVBS bus 60 PXCK’s after the falling edge of  
HSIN. The phase and frequency values are used to update  
the DDS on a line to line basis, thus synchronizing the sub-  
carrier to an external composite reference.  
SCH phasing can be adjusted by modifying BURPH and  
SYSPH values by equal amounts. SCH is advanced/delayed  
by one degree by increasing/decreasing the value of BURPH  
and SYSPH by approximately B6 . An SCH error of 15o is  
h
DRS-Lock  
corrected with SYSPH and BURPH offsets of AAA .  
h
The DRS-Lock mode allows the TMC2193 to lock its com-  
posite output to the decoded composite or S-video input of  
24  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Burst Envelope  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
The TMC2193 includes the ability to adjust the burst ampli-  
tude and the shape of the burst. The Control Registers  
BRSTFULL, BRST1 and BRST2 hold the magnitude of the  
burst vector. BRSTFULL is the maximum amplitude of the  
burst vector. BRST1 and BRST2 determine the intermediate  
values of the burst vector for the burst envelope shaping. A 5  
pixel burst envelope shaping occurs at the rising and falling  
edges of burst. At the rising edge of burst the next 5 pixels  
have the following weighting; BRSTFULL – BRST1,  
BRSTFULL – BRST2, BRSTFULL/2, BRST2, and BRST1.  
At the falling edge of burst the next 5 pixels have the follow-  
ing weighting; BRST1, BRST2, BRSTFULL/2, BRSTFULL  
– BRST2, and BRSTFULL – BRST1. With this flexibility  
the user determine the shape, amplitude and width of the  
burst signal.  
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (Pixel rate)  
Figure 17. Gaussian Filter Response  
BRSTFULL  
BRST1  
BRST2  
Sync and Pedestal Insertion  
Control Registers for this section  
BRSTFULL/2  
Address  
0x06  
0x10  
0x11  
0x14  
0x15  
0x16  
0x17  
0x1A  
0x3F  
0x4B  
0x4B  
Bit(s)  
7-6  
1-0  
5
Name  
BRSTFULL - BRST2  
BRSTFULL - BRST1  
BLANK  
MODE  
OUTMODE  
COMP2DB  
VBIPEDEM  
VBIPEDEL  
VBIPEDOM  
VBIPENOL  
PEDHGT1  
C2DB_OFF  
NMBD  
7-0  
7-0  
7-0  
7-0  
6-0  
3
BU  
65-6294-18  
Figure 16. Burst Envelope  
Color-Difference Low-Pass Filters  
The chrominance portion of a composite video signal must  
be sufficiently bandlimited to avoid cross-color and cross-  
luminance distortion, and to preclude exceeding the allow-  
able bandwidth of a video channel.  
7-0  
7-4  
PEDHGT2  
Pedestal Enable  
The color-difference low-pass filters on the TMC2193  
establish chrominance bandwidths which meet the specifica-  
tions outlined in CCIR Report 624-3, Table II, Item 2.6, for  
system I over a range of pixel rates from 12.27 Mpps to  
14.75 Mpps. Equal bandwidth is established for both color-  
difference channels.  
The TMC2193 has the ability to independently select lines  
for pedestal insertion during the vertical blanking interval  
(VBI). For 525-line systems and using the NTSC line num-  
bering convention, in which the first vertical serration is on  
line 4 for field 1 and line 266 for field 2, the vertical interval  
lines map to the control registers VBIPEDxy as shown in  
Table 15.  
Table 15. Line by Line Pedestal Enable  
Bit  
7
6
5
4
3
2
1
0
VBIPEDEL  
VBIPEDEM  
VBIPEDOL  
VBIPEDOM  
17  
16  
15  
14  
13  
12  
11  
10  
18  
25*  
279  
287*  
24  
23  
22  
21  
20  
19  
278  
286  
277  
285  
276  
284  
275  
283  
274  
282  
273  
281  
280  
REV. 1.0 3/26/03  
25  
TMC2193  
PRODUCT SPECIFICATION  
Enabling the pedestal on line 25 enables it for the remainder  
of field 1, to line 262. Likewise, enabling the pedestal on line  
288 enables it for the remainder of field 2.  
The TMC2193 includes a flexible closed-caption processor.  
It may be programmed to insert a closed caption signal on  
any line within a range of 16 lines on ODD and/or EVEN  
fields. Closed Caption insertion overrides all other configura-  
tions of the encoder: if it is specified on an active video line,  
it takes precedence over the video data and removes NTSC  
setup if setup has been programmed for the active video  
lines. Closed Caption is only available when the TMC2193  
is in a 13.5 MHz pixel rate.  
Pedestal Height  
There are two control registers that set the pedestal height,  
PEDHGT1, and PEDHGT2. PEDHGT1 determines the  
height of the pedestal for the luminance channel on the com-  
posite path and PDEHGT2 determines the height of the ped-  
estal for the luminance channel on the component path. This  
allows for independent pedestal control of the composite and  
component paths. In both cases the range of the pedestal  
height is from -22.1 to 21.74 IRE in .345 IRE increments.  
Closed caption is turned on by setting CCON HIGH. When-  
ever the encoder begins producing a line specified by  
CCFLD and CCLINE, it will insert a closed caption line in  
its place. If CCRTS is HIGH, the data contained in CCDx  
will be sent. IF CCRTS is LOW, Null bytes (hex 00 with  
ODD parity) will be sent.  
Sync and Blank Insertion  
The control register NBMD selects the sync and blank levels  
for the component path, so that the correct ratio of sync to  
blank and blank to 100% white for both a 5:2 and 7:3 stan-  
dards are meet. If NBMD is LOW the component blank level  
is a D/A code of 256 (314 mV), this is added to the lumi-  
nance data for YPbPr or all three components for RGB out-  
puts. The component sync level is a D/A code of 12 (14 mV)  
which is added to the luminance data for YPbPr or to the  
Green component for RGB outputs. If NBMD is HIGH the  
component blank level is a D/A code of 240 (295 mV), this  
is added to the luminance data for YPbPr or all three compo-  
nents for RGB outputs. The component sync level is a D/A  
code of 8 (9 mV) which is added to the luminance data for  
YPbPr or to the Green component for RGB outputs. The  
selection of which components have sync and blank codes  
added to them is controlled by the OUTMODE control regis-  
ter. Which can select from YPbPr, RGB with sync on green  
or RGB with external sync.  
Line Selection  
The line to contain CC data is selected by a combination of  
the CCFLD bit and the CCLINE bits. CCLINE is added to  
the offset shown in Table 16 to specify the line.  
Table 16. Closed Caption Line Selection  
Standard  
Offset  
12  
Field  
ODD  
Lines  
525  
12-27  
274  
16  
EVEN  
ODD  
274-289  
16-31  
625  
328  
EVEN  
328-343  
Parity Generation  
Standard Closed-Caption signals employ ODD parity, which  
may be automatically generated by setting CCPAR HIGH.  
Alternatively, parity may be generated externally as part of  
the bytes to be transmitted, and, with CCPAR LOW, the  
entire 16 bits loaded into the CCDx registers will be sent  
unchanged.  
For the composite path the blank and sync D/A codes are  
determined by the FORMAT control register. For NTSC and  
PAL-M formats the blank D/A code is 240 (295 mV) and the  
sync D/A code is 8 (9 mV). For all other PAL formats the  
blank D/A code is 256 (314 mV) and the sync D/A code is  
12 (14 mV).  
Operating Sequence  
A typical operational sequence for closed-caption insertion  
on line xx is:  
In all cases the sync edges are sloped to insure the proper rise  
and fall times in all video standards.  
Read Register 1E and check that bit 7 is LOW, indicat-  
ing that the CCDx registers are ready to accept data.  
Closed Caption Insertion  
Control Registers for this section  
If ready, write two bytes of CC data into registers 1C  
and 1D.  
Address  
0x1C  
0x1D  
0x1E  
0x1E  
0x1E  
0x1E  
0x1E  
Bit(s)  
7-6  
1-0  
7
Name  
CCD1  
Write into register 1E the proper combination of  
CCFLD and CCLINE. CCPAR may be written as  
desired. Set CCRTS HIGH.  
CCD2  
CCON  
CCRTS  
CCPAR  
CCFLD  
CCLINE  
6
The CC data is transmitted during the specified line.  
5
As soon as CCDx s transferred into the CC processor (and  
CCRTS goes LOW), new data may be loaded into registers  
1C and 1D. This allows the user to transmit CC data on sev-  
eral consecutive lines by loading data for line n+1 while data  
is being sent on line n.  
4
30  
26  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Interpolation Filters  
x/Sin(x) Filter  
Each video output on the TMC2193 is digitally filtered with  
sharp-cutoff low-pass interpolation filters. These filters  
ensure that the frequency band above base-band video and  
Control Registers for this section  
Address  
Bit(s)  
Name  
below the pixel frequency (f /4 to 3f /4, where f is the  
PXCK frequency) are sufficiently suppressed.  
S
S
S
0x11  
4
SINEN  
The TMC2193 contains a selectable X/sin(X) filter prior to  
each DAC. The X/sin(X) filter boosts the high frequency  
data to negate the sin(X)/X roll-off associated with D/A con-  
verters.  
Since these are fixed-coefficient digital filters, their filter  
characteristics depend upon clock rate.  
10  
0
1.5  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
X/Sin(x) Filter  
1
0.5  
0
Compensated  
D/A Output  
-0.5  
-1  
Sin(x)/x D/A Roll-Off  
-1.5  
-2  
0
0.2  
0.4  
Frequency (Pixel rate)  
Figure 18. Interpolation Filter  
0.6  
0.8  
1
0
0.1  
0.2  
0.3  
0.4  
0.5  
Normalized Frequency (PXCK)  
Figure 20. X/SIN(X) Filter  
0.5  
0
-0.5  
-1  
Output Data Formats  
Control Registers for this section  
-1.5  
-2  
Address  
0x10  
0x10  
0x10  
0x10  
0x10  
0x11  
0x11  
0x3F  
0x3F  
Bit(s)  
Name  
7
DAC4DIS  
DAC3DIS  
DAC2DIS  
DAC1DIS  
OUTMODE  
OFMT  
-2.5  
-3  
6
5
-3.5  
-4  
4
0
0.1  
0.2  
0.3  
0.4  
0.5  
1-0  
6
Frequency (Pixel rate)  
Figure 19. Interpolation Filter Passband Detail  
3
REFSEL  
SEL_CLK  
SEL_PIX  
7
4
The selection of the output format is determined by the  
OUTMODE control register.  
Table 17. D/A Outputs  
Description  
Ref. DAC  
ref.  
DAC1  
Green  
Y
DAC2  
DAC3  
DAC4  
RGB  
Blue  
Red  
Comp2/overlay  
Comp2/overlay  
Comp2/overlay  
Y P P  
ref.  
P
B
P
R
B
R
S-VIDEO  
ref.  
Comp1  
Y
Chroma  
REV. 1.0 3/26/03  
27  
TMC2193  
PRODUCT SPECIFICATION  
Analog outputs of the TMC2193 are driven by four 10 bit  
D/A converters and separate 9 bit reference D/A converter,  
operating at twice the pixel rate. The outputs drive standard  
video levels into 37.5 or 75 Ohm loads. An internal voltage  
reference is used to provide reference current for the D/A  
converters. For more accurate levels, an external fixed or  
variable voltage reference source is accommodated. The  
video signal levels from the TMC2193 may be adjusted by  
varying the common Vref or the four independent Rrefs.  
Each video D/A converter has an independent reference  
resistor that can adjust the output gain, with the exception of  
the reference D/A whose reference resistor is shared with  
DAC1. D/A Matching is achieved by trimming the each  
external reference resistor of each D/A.  
Ancillary Data  
Control Registers for this section  
Address  
0x07  
Bit(s)  
Name  
2
ANCFREN  
ANCPHEN  
ANCTREN  
ANCID  
0x07  
1
0x07  
0
0x08  
7-0  
The TMC2193 is designed to accept 15 words of ancillary  
data after the active video pixels at the end of each horizontal  
line. Ancillary data may occur once per line, once per field,  
once per eight fields, on random lines, or not al all. The  
TMC2193 does not assume ancillary data is present on a reg-  
ular basis.  
Digital Composite Output  
In addition, the TMC2193 supplies a 10 bit digital composite  
signal on pins D[7:0] and FLD[2:1]. The digital composite  
output can be either an interpolated signal on a non-interpo-  
lated signal, this controlled by the control register  
SEL_CLK.  
Table 18. Ancillary Data Format  
Word ID  
ANC2  
ANC1  
ANC0  
TT  
Description  
B
B
B
B
B
B
B
B
0
7
6
5
4
3
2
1
Ancillary Data Header (Timing  
Reference Signal)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Data Type  
TT6  
0
TT5  
D11  
D5  
x
TT4  
D10  
D4  
x
TT3  
D9  
D3  
SVF  
x
TT2  
D8  
D2  
F2  
x
TT1  
D7  
D1  
F1  
x
TT0  
D6  
D0  
F0  
x
P
P
P
P
P
P
P
P
P
P
P
P
MM  
Word  
LL  
Count  
0
FIELD  
Field ID/Synchronous Video Flag  
reserved  
x
x
x
x
PH1  
PH0  
FR4  
FR3  
FR2  
FR1  
FR0  
Subcarrier Phase  
PHV PH  
12  
PH  
11  
PH  
10  
PH  
PH  
PH  
PH  
PH  
PH  
9
8
7
PH  
PH  
PH  
x
PH  
6
5
4
3
2
1
0
Subcarrier Frequency  
FRV  
x
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
31  
24  
17  
10  
30  
23  
16  
29  
22  
15  
28  
21  
14  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
27  
20  
13  
26  
19  
12  
25  
18  
11  
FR  
FR  
FR  
9
2
8
1
7
0
FR  
FR  
FR  
FR  
3
FR  
FR  
FR  
6
5
4
Note:  
1. P = odd parity bit, x = reserved bit will be ignored  
The first three words of ancillary data comprise the TRS sig-  
nal (ANC2-0) which indicates the end of active video. Also  
ancillary data will be processed. If there is no match, the  
TMC2193 ignores ancillary data.  
known as the Ancillary data header, the TRS signal is a 00 ,  
h
The word count data (D  
11-0  
packet indicate the number of words in ancillary data.  
in MM, LL) in the ancillary data  
FF , FF sequence. Except for the TRS words, ancillary data  
h
h
bit 0 (B , LSB) is odd parity for B  
.
0
7-1  
Ancillary phase data is used to program the MSBs of the  
PHASE register. ANCPHEN and PHV determine how ancil-  
lary phase data is used. When ancillary data is not present,  
the TMC2193 assumes PHV = LOW.  
The data type word (TT) is used to specify the ancillary data  
type. The TMC2193 compares this 7 bit value with the con-  
tents of the ANCID control register. If there is a match, the  
28  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Table 19. Ancillary Data Control Phase  
ancillary frequency data is used. When ancillary data is not  
present, the TMC2193 assumes FRV = LOW.  
ANCPHEN PHV Description  
Table 20. Ancillary Data Control Frequency  
0
1
1
x
0
1
Ignore ancillary phase data,  
set PHASE = 0  
ANCFREN  
FRV Description  
Ignore ancillary phase data,  
no change to PHASE  
0
x
0
1
Ignore ancillary frequency  
data  
Load ancillary phase data into  
PHASE registers  
1
1
Ignore ancillary frequency  
data  
Load ancillary frequency data  
into FREQ3-0 registers  
Ancillary frequency data is used to program the 32 bits of the  
FREQ3-0 registers. ANCFREN and FRV determine how  
Table 21. Field Identication and Subcarrier Reset Modes  
ANCTREN  
SVF  
F
2
F
1
F
0
F (EAV)  
Field ID / Subcarrier Reset Mode  
Basic Mode  
0
0
x
x
x
x
x
0
1
Odd eld, reset subcarrier every 8 elds  
x
x
x
Even field  
Genlocking Mode  
1
1
1
1
x
x
x
x
x
x
0
1
Odd eld, subcarrier free run  
Even eld  
Field Sequence Mode  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Field 1, reset subcarrier at field 1  
Field 2  
Field 3  
Field 4  
Field 5  
Field 6  
Field 7  
Field 8  
Note:  
1. The F bit is part of the EAV timing reference code and tracks the F0 bit.  
Operating Modes  
The field number bits (F ) from the ancillary data packet  
2-0  
In genlocking mode (ANCTREN and SVF = HIGH), the  
subcarrier synthesizer is allowed to free run, with phase and  
FIELD word, are used to program the encoder’s field counter  
depending upon the state of the synchronous video flag  
(SVF) and the ANCTREN bit in the control register.  
frequency being set from the ancillary data packet PH  
12-0  
and FR  
data. The field counter increments just like it  
does in basic mode.  
31-0  
In the basic operating mode (ANCTREN = LOW), all timing  
is found in the F bit of EAV. F and SVF are ignored and  
2-0  
Field sequence mode (ANCTREN = HIGH and SVF =  
LOW), is the same as basic mode except that the field  
the encoder subcarrier synthesizer is reset to the PHASE  
value every eight fields (when the field counter transitions  
from 111 (field 8) to 000 (field 1).  
counter is set by the F bits in the FIELD word of ancillary  
2-0  
data. If ancillary data is not present on a line, the field  
counter will continue to count as it does in basic mode.  
When ancillary data is present, the contents of the field  
counter are loaded with field data (F ). In this way, the  
2-0  
TMC2193 may be synchronized with an external source by  
sending field data only once.  
In the basic mode, ANCFREN and ANCPHEN are typically  
set LOW, ignoring ancillary frequency and phase data. If  
ANCFREN and ANCPHEN are HIGH, the TMC2193 uses  
the incoming ancillary frequency and phase data on a line-  
by-line basis.  
REV. 1.0 3/26/03  
29  
TMC2193  
PRODUCT SPECIFICATION  
Layering Engine  
Control Registers for this section  
Address  
0x0A  
Bit(s)  
7-0  
Name  
DKEYMAX  
DKEYMIN  
EKEYMAX  
EKEYMIN  
FKEYMAX  
FKEYMIN  
0x0B  
7-0  
Address  
0x04  
0x05  
0x07  
0x09  
0x09  
0x09  
0x09  
0x09  
0x09  
0x09  
Bit(s)  
Name  
0x0C  
0x0D  
0x0E  
7-0  
2
SKEN  
7-0  
3-2  
6
OMIX  
7-0  
SKFLIP  
HKEN  
0x0F  
7-0  
7
6
BUKEN  
SKEXT  
DKDIS  
EKDIS  
FKDIS  
LAYMODE  
The TMC2193 features a robust layering engine with three  
possible input layers controlled by two keying controls. The  
layer assignments are shown in Table 22, along with the key-  
ing control. The keying controls, KEY pin or OL4-0 are  
aligned with the incoming pixel data stream and are then  
delayed throughout the chip to be continuously aligned with  
the input video streams. A generic overview of the keying  
and layering features is shown in Figure 21.  
5
4
3
2
1-0  
Table 22. Layering and Keying Modes  
LAYMODE  
BACKGROUND  
Image Source  
PD  
MIDGROUND  
FOREGROUND  
Image Source  
OVERLAY  
CVBS  
Keying Control  
OL4-0  
Image Source  
Keying Control  
KEY or Data Key  
OL4-0  
0
1
2
3
CVBS  
OVERLAY  
PD  
PD  
KEY or Data Key  
OL4-0  
CVBS  
OVERLAY  
PD  
KEY or Data Key  
OL4-0  
CVBS  
KEY or Data Key  
OVERLAY  
OL4-0  
dT  
PD  
YC  
PD  
DATA KEY  
LOGIC  
dT  
LOGIC  
OVERLAY  
MIXER  
KEY  
dT  
OLUT  
dT  
dT  
COMP2  
1/2AMP  
KEYING  
MIXER  
CVBS  
dT  
dT  
65-6294-23  
Figure 21. Layering Engine  
Overlay Mixer  
ors, see Table 22. Overlay Address Map. When OL4-0 equal  
to 16, the overlay mixer produces a pixel data output with  
half the luminance magnitude and chrominance magnitude.  
Any OL4-0 value greater than 16 will result in a overlay mix  
with a full amplitude overlay and the pixel data with half  
amplitude pixel data (PD) or half amplitude CVBS data as its  
values. This allows for transparent overlays or produce  
shadow boxes around overlaid text.  
The OL[4:0] bus provides the ability to overlay 30 different  
24 bit values onto the pixel data path. The 24 bit overlay col-  
ors must be the same format as the incoming Pixel data. For  
Y,Cb,Cr input formats the range of Y values spans the entire  
range of the format, 1 to 254, this enables super whites and  
super blacks in the overlay palette.  
When OL[4:0] is equal to 00h the pixel data port to be the  
output of the overlay mixer. If OL[4:0] is in the range of 1 to  
31 then the output source is one of 30 possible overlay col-  
The midpoint of the rising and falling edges on the mixed  
output is determined by the transition of the OL[4:0] pins in  
30  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
relation to the PD port. Control register OMIX chooses  
among the following set of coefficients; either 0 1/8 1/2 7/8  
1, 0 1/2 1 , or 0 1 to switch between the PD port and the over-  
lay color. The timing diagram in Figure 22 identifies the  
three possible output formats that the mixer can produce.  
A
B
C
D
E
F
G
H
I
PDx  
OL[4:0]  
A
>0  
0
A
A
A
7/8B, 1/8OL 1/2C, 1/2OL 1/8D, 7/8OL  
OL  
OL  
OL  
1/8F, 7/8OL 1/2G, 1/2OL 7/8H, 1/8OL  
I
I
MixOUT (OMIX = 3)  
MixOUT (OMIX = 2)  
MixOUT (OMIX = 1)  
B
B
1/2C, 1/2OL  
OL  
OL  
OL  
OL  
1/2G, 1/2OL  
H
H
OL  
OL  
I
65-6294-24  
Figure 22. Overlay Outputs  
Table 23. Overlay Address Map  
OL4-0  
0
Result  
Pixel data is passed through overlay mixer.  
Overlay is mixed with PD or CVBS at the transitions.  
Half amplitude PD or half amplitude CVBS is the output of COMP2.  
Overlay is mixed with half amplitude PD or half amplitude CVBS at the transitions.  
1-15  
16  
17-31  
DKEYDIS, EKEYDIS, and FKEYDIS. On each channel the  
eight (8) MSBs of the pixel data are compared against a  
maximum key value and a minimum key value. If the pixel  
data is greater than xKEYMIN and less than or equal to  
xKEYMAX, then a key match is signaled for that channel.  
Hardware Keying  
The KEY input switches the input to the Comp2 data path  
between the composite video generated from the PD port and  
the CVBS data bus on a pixel-by-pixel basis. This is a “soft”  
switch is executed over 3 PCK periods to minimize out-of-  
band transients. Keying is accomplished in the digital com-  
posite video domain. The coefficients for the mix are 0, 1/8,  
1/2, 7/8, and 1 . The COMP2 output is the final output for all  
overlay functions. The other three D/As will continue to  
present PD port data when CVBS is active.  
xKEYMAX  
A
A<=B  
B
KEY  
MATCH  
xKEYMIN  
Hardware keying is enabled by the key Control Register  
HKEN. Normally, keying is only effective during the active  
video portion of the encoded video line (as determined by  
Control Register VA). That is, the horizontal blanking inter-  
val is generated by the encoder even if the KEY signal is  
held HIGH through horizontal blanking. However, it is pos-  
sible to allow digital horizontal blanking to be passed  
through from the CVBS bus to the COMP2 output by setting  
key Control Register BUKEN HIGH. In this mode, KEY is  
always active, and may be exercised at will.  
A
B
A<=B  
xCHANNEL  
65-6294-25  
Figure 23. Data Keying  
By allowing a window of possible key values on each chan-  
nel the TMC2193 opens a key cube in the color space.  
Parallel Microprocessor Interface  
The parallel microprocessor interface is active when SER is  
HIGH and employs a 12-line interface; an 8 bit data bus and  
2 bit address location, 1 bit read/write select, and a chip  
select controlling the timing. Two addresses are required for  
device programming, one to the pointer and one to the data  
location. When writing, the address is presented along with a  
LOW on the R/W pin during the falling edge of CS. Eight  
bits of data are presented on D7-0 during the subsequent ris-  
ing edge of CS.  
The KEY input is registered into the encoder just as Pixel  
data is clocked into the PD port. It is internally pipelined, so  
the midpoint of the KEY transition occurs at the output of  
the pixel that was input at the same time at the KEY signal.  
Data Keying  
Data Keying occurs just prior to the gamma block. Data key-  
ing for each channel Green/Y, Blue/C , and Red/C , is sepa-  
b
r
rately enabled or disabled by the control registers  
REV. 1.0 3/26/03  
31  
TMC2193  
PRODUCT SPECIFICATION  
In read mode, the address is accompanied by a HIGH on the  
R/W pin during a falling edge of CS. The data output pins go  
Red byte is transferred the base address will increment by  
one (1).  
to a low-impedance state t  
present on D7-0 t  
DOM  
after CS falls. Valid data are  
after the falling edge of CS. Because  
DOZ  
Table 24. Parallel Port Control  
this port operates asynchronously with the pixel timing,  
there is an uncertainty in this data valid output delay of one  
A
R/W Action  
1-0  
00  
00  
01  
01  
10  
10  
11  
11  
0
1
0
1
0
1
0
1
Load D into Control Register  
7-0  
pointer (block 0)  
PXCK period. This uncertainty does not apply to t  
.
DOZ  
Writing data to specific control registers of the TMC2193  
requires that the 8 bit address of the control register of inter-  
est be written prior to the data. This control register address  
is the base address for subsequent write operations. The base  
address auto increments by one for each byte of data written  
after the data byte intended for the base address. If more  
bytes are transferred than there are available addresses, the  
address will not increment and remain at its maximum value  
of 4Ch.  
Read Control Register pointer on  
D
7-0  
Load D into addressed OLUT  
Location pointer (block 0)  
7-0  
Read addressed OLUT Location  
pointer on D  
.
7-0  
Write D to addressed Control  
Register  
7-0  
Read addressed Control Register  
Writing data to specific OLUT location of the TMC2193  
requires that the 8 bit address of the OLUT location of inter-  
est be written prior to the data sequence. This OLUT loca-  
tion address is the base address for subsequent write  
operations. The base address auto increments by one for  
each sequence of three (3) bytes of data written after the data  
byte intended for the base address. The sequence of data  
on D  
7-0  
Write D to addressed OLUT  
Location  
7-0  
Read addressed OLUT Location on  
D
7-0  
transfer is Y or Green, C or Blue, C or Red, after the C or  
b
r
r
t
t
PWHCS  
PWLCS  
CS  
R/W  
ADR  
t
t
HA  
SA  
t
t
SD  
HD  
D
7-0  
65-6294-26  
Figure 24. Microprocessor Parallel Port Write Timing  
t
t
PWHCS  
PWLCS  
CS  
R/W  
ADR  
t
t
HA  
SA  
t
t
HOM  
DOM  
D
7-0  
65-6294-27  
t
DOZ  
Figure 25. Microprocessor Parallel Port Read Timing  
32  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
bit indicates the direction of data transfer, read from or write  
to the slave device. If the transmitted slave address matches  
the address of the device (set by the state of the SA1-0 input  
pins in Table 24), the TMC2193 acknowledges by bringing  
SDA LOW on the 9th SCL pulse. If the addresses do not  
match, the TMC2193 will not acknowledge.  
Serial Control Port (R-Bus)  
In addition to the 12-wire parallel port, a 2-wire serial con-  
trol interface is provided, active when SER is LOW. Either  
port alone can control the entire chip. Up to four TMC2193  
devices may be connected to the 2-wire serial interface with  
each device having a unique address.  
Table 25. Serial Port Addresses  
The 2-wire interface comprises a clock (SCL) and a bi-direc-  
tional data (SDA) pin. The encoder acts as a slave for receiv-  
ing and transmitting data over the serial interface. When the  
serial interface is not active, the logic levels on SCL and  
SDA need to be pulled HIGH by external pull-up resistors.  
A1  
A0  
A6  
1
A5  
0
A4  
1
A3  
0
A2  
1
(SA1) (SA0)  
0
0
1
1
0
1
0
1
1
0
1
0
1
Data received or transmitted on the SDA line must be stable  
for the duration of the positive-going SCL pulse. Data on  
SDA must change only when SCL is LOW. If SDA changes  
state while SCL is HIGH, the serial interface interprets that  
action as a start or stop sequence.  
1
0
1
0
1
1
0
1
0
1
Data Transfer via Serial Interface  
For each byte of data read or written, the MSB is the first bit  
of the sequence.  
There are six components to serial bus operation:  
• Start signal  
If the TMC2193 does not acknowledge the master device  
during a write sequence, the SDA remains HIGH so the mas-  
ter can generate a stop signal. If the master device does not  
acknowledge the TMC2193 during a read sequence, the  
encoder interprets this as “end of data”.  
• Slave address byte  
• Block Pointer  
• Offset Pointer  
• Data byte to read or write  
• Stop signal  
Writing data to specific control registers of the TMC2193  
requires that the 8 bit address of the control register of inter-  
est be written after the slave address has been established.  
This control register address is the base address for subse-  
quent write operations. The base address auto increments by  
one for each byte of data written after the data byte intended  
for the base address.  
When the serial interface is inactive (SCL and SDA are  
HIGH) communications are initiated by sending a start sig-  
nal. The start signal is a HIGH-to-LOW transition on SDA  
while SCL is HIGH. This signal alerts all slaved devices that  
a data transfer sequence is coming.  
The first eight bits of data transferred after a start signal com-  
prise a seven bit slave address and a single R/W bit. The R/W  
SDA / R/W  
t
BUFF  
t
t
t
t
STOSU  
DHO  
DSU  
STASU  
t
STAH  
t
DAL  
SCL / CS  
t
BAH  
65-6294-28  
Figure 26. Serial Port Read/Write Timing  
Data are read from the control registers of the TMC2193 in a  
similar manner. Reading requires two data transfer opera-  
tions:  
Reading (the R/W bit of the slave address byte HIGH)  
begins at the previously established base address. The  
address of the read register auto increments after each byte is  
transferred.  
The base address must be written with the R/W bit of the  
slave address byte LOW to set up a sequential read opera-  
tion.  
To terminate a write sequence to the TMC2193, a stop signal  
must be sent. A stop signal comprises a LOW-to-HIGH tran-  
sition of SDA while SCL is HIGH. To terminate a read  
REV. 1.0 3/26/03  
33  
TMC2193  
PRODUCT SPECIFICATION  
sequence simply do not acknowledge (NOACK) the last byte  
received and the TMC2193 will terminate the sequence.  
generating a stop signal to terminate the current communica-  
tion. This is used to change the mode of communication  
(read, write) between the slave and master without releasing  
the serial interface lines.  
A repeated start signal occurs when the master device driv-  
ing the serial interface generates a start signal without first  
SDA  
SCL  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ACK  
65-6294-29  
Figure 27. Serial Interface Typical Byte Transfer  
SDA  
SCL  
A
6
A
5
A
4
A
3
A
2
SA  
SA  
0
R/W  
ACK  
1
65-6294-30  
Figure 28. Serial Interface Chip Address  
Serial Interface Read/Write Examples  
Write to four consecutive OLUT locations  
• Start signal  
• Slave Address byte (R/W bit = LOW)  
• Block Pointer (01)  
Write to one control register  
• Start signal  
• Slave Address byte (R/W bit = LOW)  
• Block Pointer (00)  
• Offset Pointer  
• Offset Pointer (base address)  
• Data byte to base address (Y or Green)  
• Data byte to base address (Cb or Blue)  
• Data byte to base address (Cr or Red)  
• Data byte to base address +1 (Y or Green)  
• Data byte to base address +1 (Cb or Blue)  
• Data byte to base address +1 (Cr or Red)  
• Data byte to base address +2 (Y or Green)  
• Data byte to base address +2 (Cb or Blue)  
• Data byte to base address +2 (Cr or Red)  
• Data byte to base address +3 (Y or Green)  
• Data byte to base address +3 (Cb or Blue)  
• Data byte to base address +3 (Cr or Red)  
• Stop signal  
• Data byte to base address  
• Stop signal  
Write to four consecutive control registers  
• Start signal  
• Slave Address byte (R/W bit = LOW)  
• Block Pointer (00)  
• Offset Pointer  
• Data byte to base address  
• Data byte to (base address + 1)  
• Data byte to (base address + 2)  
• Data byte to (base address + 3)  
• Stop signal  
Read from one control register  
• Start signal  
• Slave Address byte (R/W bit = LOW)  
• Block Pointer (00)  
• Offset Pointer  
• Stop signal  
• Start signal  
• Slave Address byte (R/W bit = HIGH)  
• Data byte from base address  
• NOACK  
Write to one OLUT location  
• Start signal  
• Slave Address byte (R/W bit = LOW)  
• Block Pointer (01)  
• Offset Pointer (base address)  
• Data byte to base address (Y or Green)  
• Data byte to base address (Cb or Blue)  
• Data byte to base address (Cr or Red)  
• Stop signal  
34  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Read from four consecutive control registers  
• Start signal  
• Slave Address byte (R/W bit = LOW)  
• Block Pointer (00)  
• Offset Pointer  
• Stop signal  
• Slave Address byte (R/W bit = HIGH)  
• Data byte from base address  
• Data byte from (base address + 1)  
• Data byte from (base address + 2)  
• Data byte from (base address + 3)  
• NOACK  
• Start signal  
Control Register Map  
Table 26. Control Register Map  
Reg Bit Mnemonic  
Function  
Reg Bit Mnemonic  
Ancillary Data ID Register  
08 7-0 ANCID Ancillary Data Identification  
Keying/Overlay Engine  
Hardware KEY Enable  
Burst KEY Enable  
Function  
TMC2193 Identification Registers (Read only)  
00 7-0 PARTID2  
Reads back 97h  
Reads back 21h  
Reads back 93h  
Silicon revision #  
01 7-0 PARTID1  
02 7-0 PARTID0  
03 7-0 REVID  
09  
09  
09  
09  
09  
09  
7
6
5
4
3
2
HKEN  
BUKEN  
SKEXT  
DKDIS  
EKDIS  
FKDIS  
Gamma Filters Register  
Data KEY Operation Select  
Green/Y Data KEY Disable  
04  
04  
04  
04  
7
6
5
4
GAMENG  
Gamma Filter Enable – Green  
Gamma Filter Enable – Blue Red  
Gamma Filter Selection – Green  
GAMENC  
GAMSELG  
GAMSELC  
Blue/C Data KEY Disable  
B
Red/C Data KEY Disable  
R
Gamma Filter Selection – Blue  
Red  
09 1-0 LAYMODE  
Layer Assignment Select  
Key Value Registers  
04  
04  
3
2
SRESET  
SKEN  
Software RESET  
0A 7-0 DKEYMAX  
0B 7-0 DKEYMIN  
0C 7-0 EKEYMAX  
0D 7-0 EKEYMIN  
0E 7-0 FKEYMAX  
0F 7-0 FKEYMIN  
Green/Y Maximum Data Key  
Value  
Data KEY Enable  
04 1-0 PDRM  
Pixel Data Ramping Mode  
Green/Y Minimum Data Key  
Value  
Input Format Register  
Blue/C Maximum Data Key  
B
Value  
05  
7
D1OFF  
YCBCR Input Formatting  
Input Mode Select  
05 6-4 INMODE  
05 3-2 OMIX  
Blue/C Minimum Data Key  
B
Value  
Overlay Mixer Select  
Video Input Select  
05 1-0 SOURCE  
Red/C Maximum Data Key  
R
Value  
General Control Register  
06 7-6 FORMAT  
06 5-3 MODE  
Video Format  
Red/C Minimum Data Key  
R
Value  
Video Mode  
DAC Control Registers  
06  
06  
06  
2
1
0
PDCDIR  
TOUT  
PDC Directional Control  
External Sync Output Control  
External Sync Delay Control  
10  
10  
10  
10  
10  
10  
7
6
5
4
3
2
DAC4DIS  
DAC3DIS  
DAC2DIS  
DAC1DIS  
Reserved  
OLUTDIS  
D/A #4 Disable  
D/A #3 Disable  
D/A #2 Disable  
D/A #1 Disable  
Set to 0.  
TSOUT  
Horizontal Ancillary Data Control Register  
07  
07  
07  
7
6
5
LDFID  
Field Lock Select  
Soft Key Inversion  
DDS Reset  
SKFLIP  
DDSRST  
Overlay LUT Disable  
Output Modes  
10 1-0 OUTMODE  
07 4-3 Reserved  
07  
07  
07  
2
1
0
ANCFREN  
ANCPHEN  
ANCTREN  
Ancillary Frequency Enable  
Ancillary Phase Enable  
Ancillary Timing Enable  
REV. 1.0 3/26/03  
35  
TMC2193  
PRODUCT SPECIFICATION  
Table 26. Control Register Map (continued)  
Reg Bit Mnemonic  
Function  
Reg Bit Mnemonic  
Function  
24 7-0 XBP  
Extended Color Back Porch  
Duration  
11  
11  
11  
11  
11  
11  
11  
11  
7
6
5
4
3
2
1
0
DRSSEL  
OFMT  
DRS Selection  
Component Data Formatting  
Composite 2 Overflow Control  
X/Sin(x) Filter Enable  
Reference DAC Output Selection  
Luma Disable  
25 7-0 VA  
26 7-0 VC  
Active Video Region Duration  
COMP2DB  
SINEN  
Active Video Region 2nd Half  
Line Duration  
REFSEL  
LUMDIS  
CHRMDIS  
BURSTDIS  
27 7-0 VB  
Active Video Region 1st Half  
Line Duration  
Chroma Disable  
28 7-0 EL  
29 7-0 EH  
Equalization Pulse Low Duration  
Burst Disable  
Equalization Pulse High  
Duration  
VBI Ped Enable Registers  
2A 7-0 SL  
2B 7-0 SH  
Vertical Sync Pulse Low  
Duration  
14 7-0 VBIPEDEM  
15 7-0 VBIPEDEL  
16 7-0 VBIPEDOM  
17 7-1 VBIPEDOL  
VBI Pedestal Enable, Even Fields  
VBI Pedestal Enable, Even Fields  
VBI Pedestal Enable, Odd Fields  
VBI Pedestal Enable, Odd Fields  
Vertical Sync Pulse High  
Duration  
2C 7-0 FP  
Front Proch Duration  
17  
0
HVA  
Horizontal and Vertical Sync  
Alignment  
2D 7-6 XBP  
Extended Color Back Porch  
Duration  
Vertical Blanking Interval Enable Registers  
2D 5-4 VA  
2D 3-2 VB  
Active Video Duration  
18  
18  
18  
7
Reserved  
GLKCTL1  
GLKCTL0  
Active Video Region 1st Half  
Line Duration  
6
5
Genlock Control Register 1  
Genlock Control Register 0  
VBI Active Video Enable, Field 1  
Test Register  
2D 1-0 VC  
Active Video Region 2nd Half  
Line Duration  
18 4-0 VBIENF1  
2E 7-5 FIELD  
2E 4-0 LTYPE  
Fiele Identification (read only)  
19  
19  
19  
7
6
5
SHORT  
T512  
Line Type Identification (read  
only)  
EH/SL Offset Control Bit  
Half Line Enable  
HALFEN  
2F 7-0 CBL  
Color Bar Duration  
19 4-0 VBIENF2  
VBI Active Video Enable, Field 2  
Color Space Matrix Registers  
Pedestal Height Register  
Reserved  
1A 6-0 PEDHGT1  
30 7-0 MCF1L  
31 7-0 MCF2L  
32 7-0 MCF3L  
33 7-0 MCF4L  
34 7-0 MCF5L  
35 7-0 MCF6L  
36 7-0 MCF7L  
37 7-0 MCF8L  
38 7-0 MCF9L  
39 7-0 MCF10L  
3A 7-4 MCF1M  
3A 3-0 MCF2M  
3B 7-4 MCF3M  
Matrix Coefficient #1  
Matrix Coefficient #2  
Matrix Coefficient #3  
Matrix Coefficient #4  
Matrix Coefficient #5  
Matrix Coefficient #6  
Matrix Coefficient #7  
Matrix Coefficient #8  
Matrix Coefficient #9  
Matrix Coefficient #10  
Matrix Coefficient #1  
Matrix Coefficient #2  
Matrix Coefficient #3  
Set to 0.  
1A  
7
Composite Pedestal Height  
Closed Caption Registers  
1C 7-0 CCD1  
1D 7-0 CCD2  
First Byte of CC Data  
Secons Byte of CC Data  
Enable CC Data Packet  
Request to Send Data  
Auto Parity Generation  
CC Field Select  
1E  
1E  
1E  
1E  
7
6
5
4
CCON  
CCRTS  
CCPAR  
CCFLD  
1E 3-0 CCLINE  
CC Line Select  
Timing Registers  
1F 7-0 PDCNT  
20 7-0 SY  
21 7-0 BR  
22 7-0 BU  
23 7-0 CBP  
Pixel Data Control Start  
Horizontal Sync Tip Duration  
Breezeway Duration  
3B  
3
Reserved  
3B 2-0 MCF4M  
Matrix Coefficient #4  
Burst Duration  
Color Back Porch Duration  
36  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Table 26. Control Register Map (continued)  
Reg Bit Mnemonic  
42 7-0 FREQ2  
Function  
Reg Bit Mnemonic  
Function  
Subcarrier Frequency  
Subcarrier Frequency  
System Phase  
System Phase  
Burst Phase  
3C 7-4 MCF5M  
Matrix Coefficient #5  
Set to 0.  
43 7-0 FREQM  
44 7-0 SYSPHL  
45 7-0 SYSPHM  
46 7-0 BURPHL  
47 7-0 BURPHM  
48 7-0 BRSTFULL  
3C  
3
Reserved  
3C 2-0 MCF6M  
3D 7-4 MCF7M  
3D 3-0 MCF8M  
3E 7-4 MCF9M  
3E 3-0 MCF10M  
Matrix Coefficient #6  
Matrix Coefficient #7  
Matrix Coefficient #8  
Matrix Coefficient #9  
Matrix Coefficient #10  
DCVBS Clock Select  
RGB Limit Control  
Burst Phase  
Burst Height – Maximum  
Amplitude  
3F  
3F  
3F  
3F  
3F  
3F  
7
6
5
4
3
2
SEL_CLK  
49 7-0 BRST1  
4A 7-0 BRST2  
Burst Height – 1st Intermediate  
Value  
RGB_CLIP  
GAUSS_BVP Gaussian Bypass Select  
Burst Height – 2nd Intermediate  
Value  
SEL_PIX  
C2DB_OFF  
NMEH  
DCVBS Output Selection  
COMP2DB Offset Selection  
Pedestal Height Register  
NTSC-M Component  
Enhancement  
4B  
7
NBMD  
Component Blank and Sync  
Level Selection  
3F 1-0 CSMFMT  
Color Space Matrix  
Configuration  
4B 6-0 PEDHGT2  
Note:  
1. For each register listed above, all bits not specified are  
reserved and should be set to logic LOW to ensure proper  
operation.  
Component Pedestal Height  
Subcarrier Registers  
40 7-0 FREQL  
41 7-0 FREQ3  
Subcarrier Frequency  
Subcarrier Frequency  
Control Register Denitions  
Part Identication Register (0x00)  
7
6
5
4
3
2
1
0
PARTID2  
Reg  
Bit  
Name  
Description  
00  
7-0  
PARTID2  
(Read Only) 0x97  
Part Identication Register (0x01)  
7
6
5
4
3
2
1
0
PARTID1  
Reg  
Bit  
Name  
Description  
01  
7-0  
PARTID1  
(Read Only) 0x21  
REV. 1.0 3/26/03  
37  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Part Identication Register (0x02)  
7
6
5
4
3
2
1
0
PARTID0  
Reg  
Bit  
Name  
Description  
02  
7-0  
PARTID0  
(Read Only) 0x93  
Revision Identication Register (0x03)  
7
6
5
4
3
2
1
0
REVID0  
Reg  
Bit  
Name  
Description  
03  
7-0  
REVID0  
Reads back the revision number of the part.  
Gamma Filters Register (0x04)  
7
6
5
4
3
2
1
0
GAMENG  
GAMENC  
GAMSELG  
GAMSELC  
SRESET  
SKEN  
PDRM  
Reg  
Bit  
Name  
Description  
Gamma Filter Enable Green.  
04  
7
GAMENG  
When is GAMENG is LOW, gamma filter on the Green path is bypassed.  
When is GAMENG is HIGH, gamma filter on the Green path is enabled.  
04  
6
GAMENC  
Gamma Filter Enable Blue Red.  
When GAMENC is LOW, gamma filter on the Blue and Red path is  
bypassed. When GAMENC is HIGH, gamma filter on the Blue and Red path  
is enabled.  
04  
04  
04  
04  
04  
5
GAMSELG  
GAMSELC  
SRESET  
SKEN  
Gamma Filter Selection Green.  
When GAMSELG is LOW, Green = (Green)1/2.8  
When GAMSELG is HIGH, Green = (Green) 1/2.2  
4
Gamma Filter Selection Blue Red.  
When GAMSELC is LOW, Blue = (Blue)1/2.8, Red = (Red)1/2.8  
When GAMSELC is HIGH, Blue = (Blue) 1/2.2,Red = (Red)1/2.2  
3
Software RESET.  
When LOW, resets internal state machines and disables outputs.  
When HIGH, state machines are active and outputs are enabled.  
2
Data KEY Enable.  
When SKEN is LOW, Data keying is disabled.  
When SKEN is HIGH, Data keying is enabled.  
1-0  
PDRM  
Pixel Data Ramping Mode. Pixel Data weighting for the rising edge of  
active video.  
NTSC:  
PAL:  
0
0
0
1/8  
1/8  
3/8  
1/2  
5/8  
7/8  
7/8  
1
1
1
1
00  
01  
1X  
Pixels are weighted on the edge.  
Sample and hold the 5th pixel for the slope weighting  
Hard switch  
0
0
0
1
1
1
38  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Input Format Register (0x05)  
7
6
5
4
3
2
1
0
D10FF  
INMODE  
OMIX  
SOURCE  
Reg  
Bit  
Name  
Description  
YCBCR Input Formatting.  
05  
7
D1OFF  
When D1OFF is HIGH, 64 is subtracted from Y data path of the PD port.  
When D1OFF is LOW, pixel data is passed through.  
05  
6-4  
3-2  
INMODE  
OMIX  
Input Mode Select.  
000 24 bit GBR  
PD[7:0] = G PD[23:16] = B PD[15:8] = R  
PD[7:0] = Y PD[23:16] = C PD[15:8] = C  
R
100 24 bit YC C (4:4:4)  
B
R
B
101 10 bit D1 (YC C )  
PD[23:14] = YC C at 27MHz  
B
R
B R  
110 20 bit YC C (4:4:4)  
PD[9:0] = Y PD[23:14] = C C (at 27MHz)  
B
R
B
R
R
111 20 bit YC C (4:2:2)  
PD[9:0] = Y PD[23:14] = C C  
B
B
R
05  
05  
Overlay Mixer Select.  
00  
01  
10  
No mix PD data is always passed  
Hard mix mixer performs a hard switch between PD and Overlay  
Set1 mix the pixel data has the following weighting on the  
transition; 0, 1/2, 1  
11  
Set2 mix the pixel data has the following weighting on the  
transition; 0, 1/8, 1/2, 7/8, 1  
1-0  
SOURCE  
Video Input Select. Chooses from internal test patterns or pixel data port.  
00  
01  
10  
11  
PD PORT  
Modulated Ramp  
INTERNAL COLOR BAR (75%)  
INTERNAL COLOR BAR (100%)  
REV. 1.0 3/26/03  
39  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
General Control Register (0x06)  
7
6
5
4
3
2
1
0
FORMAT  
MODE  
PDCDIR  
TOUT  
TSOUT  
Reg  
Bit  
Name  
Description  
Video Format.  
06  
7-6  
FORMAT  
00  
01  
10  
11  
NTSC  
PAL B,G,H,I,N  
PAL M  
Reserved  
06  
5-3  
MODE  
Video Mode.  
000 MASTER with free-running subcarrier  
001 SLAVE with free-running subcarrier  
010 CCIR656 with free-running subcarrier  
011 GENLOCK with subcarrier phase and frequency locked to the GRS  
information.  
100 MASTER with subcarrier phase reset every 8 fields  
101 SLAVE with subcarrier phase reset every 8 fields  
110 CCIR656 with subcarrier phase reset every 8 fields.  
111 DRS-Lock with subcarrier phase and frequency locked to the DRS  
information.  
06  
2
PDCDIR  
PDC Directional Control.  
When PDC is LOW, the PDC pin is an output.  
When PDCDIR is HIGH, the PDC pin is an input that can override the  
internally generated PDC and blank the active video of a line.  
06  
06  
1
0
TOUT  
External Sync Output Control.  
When TOUT = LOW, a MPEG style field toggle is the output on pin VSOUT.  
When TOUT = HIGH, a traditional vertical sync is the output on pin VSOUT.  
TSOUT  
External Sync Delay Control.  
When the TSOUT is LOW, HSOUT, VSOUT are delayed to match  
propagation delay through the chip. When TSOUT is HIGH, HSOUT,  
VSOUT are aligned with the incoming data on the PD port.  
40  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Horizontal Ancillary Data Control Register (0x07)  
7
6
5
4
3
2
1
0
LDFID  
SKFLIP  
DDSRST  
Reserved  
ANCFREN  
ANCPHEN  
ANCTREN  
Reg  
Bit  
Name  
Description  
07  
07  
07  
7
LDFID  
Field Lock Select. When LDFID is HIGH, the FLD[2:0] pins are used as  
inputs to lock the field the that the TMC2193 is encoding. 5 PXCKs after  
the falling edge of HSIN the FLD[2:0] pins are sampled. When LDFID is  
LOW, the FLD[2:0] pins output the current field that is being encoded.  
6
5
SKFLIP  
Soft Key Inversion.  
When SKFLP is LOW, the key generated by the data keying is a normal  
state. When SKFLP is HIGH, the key generated by the data keying is a  
inverted state.  
DDSRST  
DDS Reset. By inserting a logic HIGH into this register the DDS  
accumulator is reset to SYSPH value at the start of the next field 1 and  
DDSRST is reset LOW. This enables the DDS to be reset when the  
encoder is operating with a free running subcarrier.  
07  
07  
4-3  
2
Reserved  
ANCFREN  
Ancillary Frequency Enable.  
When HIGH, the encoder gets subcarrier frequency data (FREQ3-0) from  
incoming ancillary data (in accordance with FRV bit). When LOW,  
FREQ3-0 registers contain the subcarrier frequency data.  
07  
07  
1
0
ANCPHEN  
ANCTREN  
Ancillary Phase Enable.  
When HIGH, the encoder gets subcarrier phase offset data (SCHPHL and  
SCHPHM) from incoming ancillary data (in accordance with PHV bit).  
When LOW, a default value of 0000h is used for subcarrier phase.  
Ancillary Timing Enable.  
When HIGH, the encoder decodes incoming ancillary data to determine  
video timing (FIELD and SVF). When LOW, the ancillary timing reference  
data is ignored.  
Ancillary Data ID Register (0x08)  
7
6
5
4
3
2
1
0
ANCID  
Reg  
Bit  
Name  
Description  
08  
7-0  
ANCID  
Ancillary Data Identification.  
Bits 7-0 determine the ancillary data identification. Bit 0 is an odd parity bit.  
The value in this register must match that of the incoming ancillary data.  
REV. 1.0 3/26/03  
41  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Keying/Overlay Engine Register (0x09)  
7
6
5
4
3
2
1
0
HKEN  
BUKEN  
SKEXT  
DKDIS  
EKDIS  
FKDIS  
LAYMODE  
Reg  
Bit  
Name  
Description  
09  
09  
09  
09  
09  
09  
09  
7
HKEN  
Hardware KEY Enable.  
When LOW, the KEY pin is ignored.  
When HIGH, the KEY pin is enabled.  
6
BUKEN  
SKEXT  
DKDIS  
Burst KEY Enable.  
When LOW, the output video burst is generated internally.  
When HIGH, the output video burst is taken from the CVBS port.  
5
Data KEY Operation Select.  
When LOW, data keying is allowed only during active video window.  
When HIGH, data keying is allowed during frame.  
4
Green/Y Data KEY Disable.  
When LOW, Green/Y input data is enabled for data keying.  
When HIGH, Green/Y input data is ignored for data keying.  
3
EKDIS  
Blue/C Data KEY Disable.  
B
When LOW, Blue/C input data is enabled for data keying.  
B
When HIGH, Blue/C input data is ignored for data keying.  
B
2
FKDIS  
Red/C Data KEY Disable.  
R
When LOW, Red/C input data is enabled for data keying.  
R
When HIGH, Red/C input data is ignored for data keying.  
R
1-0  
LAYMODE  
Layer Assignment Select.  
BACKGND  
Mode Source  
MIDGND  
Source  
FOREGND  
Source  
Key  
Key  
0
1
2
3
PD  
OVERLAY  
CVBS  
0L4-0  
KEY  
CVBS  
KEY  
PD  
OVERLAY  
PD  
OL4-0  
KEY  
CVBS  
CVBS  
OVERLAY  
PD  
OL4-0  
KEY  
OVERLAY  
OL4-0  
42  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Key Value Register (0x0A)  
7
6
5
4
3
2
1
0
DKEYMAX  
Reg  
Bit  
Name  
Description  
0A  
7-0  
DKEYMAX  
Green/Y Maximum Data Key Value.  
DKEYMAX is compared against the 8 MSBs of Green/Y channel. If  
DKEYMAX is greater or equal to Green/Y and DKEYMIN less than Green/Y  
then a match is signaled.  
Key Value Register (0x0B)  
7
6
5
4
3
2
1
0
DKEYMIN  
Reg  
Bit  
Name  
Description  
0B  
7-0  
DKEYMIN  
Green/Y Minimum Data Key Value.  
DKEYMIN is compared against the 8 MSBs of Green/Y channel. If  
DKEYMAX is greater or equal to Green/Y and DKEYMIN less than Green/Y  
then a match is signaled.  
Key Value Register (0x0C)  
7
6
5
4
3
2
1
0
EKEYMAX  
Reg  
Bit  
Name  
Description  
0C  
7-0  
EKEYMAX  
Blue/C Maximum Data Key Value.  
B
EKEYMAX is compared against the 8 MSBs of Blue/C channel. If  
B
EKEYMAX is greater or equal to Blue/C and EKEYMIN less than Blue/C  
B
B
then a match is signaled.  
Key Value Register (0x0D)  
7
6
5
4
3
2
1
0
EKEYMIN  
Reg  
Bit  
Name  
Description  
0D  
7-0  
DKEYMIN  
Blue/C Minimum Data Key Value.  
B
EKEYMIN is compared against the 8 MSBs of Blue/C channel. If  
B
EKEYMAX is greater or equal to Blue/C and EKEYMIN less than Blue/C  
B
B
then a match is signaled  
REV. 1.0 3/26/03  
43  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Key Value Register (0x0E)  
7
6
5
4
3
2
1
0
FKEYMAX  
Reg  
Bit  
Name  
Description  
0E  
7-0  
FKEYMAX  
Red/C Maximum Data Key Value.  
R
FKEYMAX is compared against the 8 MSBs of Red/C channel. If  
R
FKEYMAX is greater or equal to Red/C and FKEYMIN less than Red/C  
R
R
then a match is signaled.  
Key Value Register (0x0F)  
7
6
5
4
3
2
1
0
FKEYMIN  
Reg  
Bit  
Name  
Description  
0F  
7-0  
FKEYMIN  
Red/C Minimum Data Key Value.  
R
FKEYMIN is compared against the 8 MSBs of Red/C channel. If  
R
FKEYMAX is greater or equal to Red/C and FKEYMIN less than Red/C  
R
R
then a match is signaled.  
44  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
DAC Control Register (0x10)  
7
6
5
4
3
2
1
0
DAC4DIS  
DAC3DIS  
DAC2DIS  
DAC1DIS  
Reserved  
OLUTDIS  
OUTMODE  
Reg  
Bit  
Name  
Description  
D/A #4 Disable.  
When DAC4DIS is LOW, the COMPOSITE D/A is enabled.  
10  
10  
10  
10  
7
6
5
4
DAC4DIS  
When DAC4DIS is HIGH, the COMPOSITE D/A is disabled.  
DAC3DIS  
DAC2DIS  
DAC1DIS  
D/A #3 Disable.  
When DAC3DIS is LOW, the CHROMA /P /R D/A is enabled.  
When DAC3DIS is HIGH, the CHROMA /P /R D/A is disabled.  
R
R
D/A #2 Disable.  
When DAC2DIS is LOW, the LUMA/P /B D/A is enabled.  
When DAC2DIS is HIGH, the LUMA/P /B D/A is disabled.  
B
B
D/A #1 Disable.  
When DAC1DIS is LOW, the COMP/Y/G and reference D/A is enabled.  
When DAC1DIS is HIGH, the COMP/Y/G and reference D/A is disabled.  
10  
10  
3
2
Reserved  
OLUTDIS  
Set to 0.  
Overlay LUT Disable.  
When OLUTDIS is LOW, the olut is enabled.  
When OLUTDIS is HIGH, the olut is disabled.  
10  
1-0  
OUTMODE  
Output Modes.  
Bit[1:0]  
00  
01  
10 (ext. sync)  
11 (sync on G)  
DAC1  
Y
Comp1  
Green  
Green  
DAC2  
DAC3  
DAC4  
P
P
Comp2  
Comp2  
Comp2  
Comp2  
B
R
Y
Blue  
Blue  
C
Red  
Red  
REV. 1.0 3/26/03  
45  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
DAC Control Register (0x11)  
7
6
5
4
3
2
1
0
DRSSEL  
OFMT  
COMP2DB  
SINEN  
REFSEL  
LUMDIS  
CHRMDIS  
BURSTDIS  
Reg  
Bit  
Name  
Description  
DRS Selection.  
11  
11  
11  
7
6
5
DRSSEL  
When DRSSEL is HIGH, PD[7:0] is routed to the DRS detection block.  
When DRSSEL is LOW, CVBS[9:2] is routed to the DRS detection block.  
OFMT  
Component Data Formatting.  
When OFMT is LOW, the MSBs of blue and red component data paths are  
inverted to center the data around a D\A code of 512.  
COMP2DB.  
Composite 2 Overflow Control.  
When COMP2DB is HIGH, the digital range of the composite sumer is 0 to  
2047 with half the digital resolution. When COMP2DB is LOW, the digital  
output of the composite summer is 0 to 1023, all values exceeding 1023 or  
below 0 are clipped.  
11  
11  
11  
11  
11  
4
3
2
1
0
SINEN  
X/Sine(X) Filter Enable.  
When SINEN is LOW, the X/Sin(X) filter is bypassed.  
When SINEN is HIGH, the X/Sin(X) filter is used to compensate for the  
DAC roll-off at high frequencies.  
REFSEL  
LUMDIS  
CHRMDIS  
BURSTDIS  
Reference DAC Output Selection.  
When REFSEL is LOW, a composite sync is the output of the REFDAC.  
When REFSEL is HIGH, a reference level equal to the DAC1s midpoint is  
the output of the REFDAC.  
Luma Disable.  
When LUMDIS is LOW, the luminance data on the composite data path is  
enabled. When LUMDIS is HIGH, the luminance data on the composite  
data path is disabled.  
Chroma Disable.  
When CHRMDIS is LOW, the chrominance data on the composite data  
path is enabled. When CHRMDIS is HIGH, the chrominance data on the  
composite data path is disabled.  
Burst Disable.  
When BURSTDIS is LOW, the burst is enabled.  
When BURSTDIS is HIGH, the burst is disabled.  
46  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
VBI Ped Enable Register (0x14)  
7
6
5
4
3
2
1
0
VBIPEDEM  
Reg  
Bit  
Name  
Description  
14  
7-0  
VBIPEDEM  
VBI Pedestal Enable, Even Fields.  
VBIPEDEM is the bits 15-8 of VBIPEDE[15:0]. VBIPEDE controls the  
addition of pedestal on a line by line basis from line 10 in NTSC  
(VBIPEDE[0] = HIGH) to line 24 (VBIPEDE[14] = HIGH) in the EVEN field  
of NTSC. VBIPEDE[15] controls the pedestal from line 25 to line 263  
inclusive.  
VBI Ped Enable Register (0x15)  
7
6
5
4
3
2
1
0
VBIPEDEL  
Reg  
Bit  
Name  
Description  
15  
7-0  
VBIPEDEL  
VBI Pedestal Enable, Even Fields.  
VBIPEDEL is the bits 7-0 of VBIPEDE[15:0]. VBIPEDE controls the  
addition of pedestal on a line by line basis from line 10 in NTSC  
(VBIPEDE[0] = HIGH) to line 24 (VBIPEDE[14] = HIGH) in the EVEN field  
of NTSC. VBIPEDE[15] controls the pedestal from line 25 to line 263  
inclusive.  
VBI Ped Enable Register (0x16)  
7
6
5
4
3
2
1
0
VBIPEDOM  
Reg  
Bit  
Name  
Description  
16  
7-0  
VBIPEDOM  
VBI Pedestal Enable, Odd Fields.  
VBIPEDOM is the bits 14-7 of VBIPEDO[14:0]. VBIPEDO controls the  
addition of pedestal on a line by line basis from line 273 (VBIPEDE[0] =  
HIGH) to line 286 (VBIPEDE[13] = HIGH) in the ODD field of NTSC.  
VBIPEDO[14] controls the pedestal from line 287 to line 525 inclusive.  
REV. 1.0 3/26/03  
47  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
VBI Ped Enable Register (0x17)  
7
6
5
4
3
2
1
0
VBIPEDOL  
HVA  
Reg  
Bit  
Name  
Description  
VBI Pedestal Enable, Odd Fields.  
17  
7-1  
VBIPEDOM  
VBIPEDOL is the bits 6-0 of VBIPEDO[14:0]. VBIPEDO controls the  
addition of pedestal on a line by line basis from line 273 (VBIPEDE[0] =  
HIGH) to line 286 (VBIPEDE[13] = HIGH) in the ODD field of NTSC.  
VBIPEDO[14] controls the pedestal from line 287 to line 525 inclusive.  
17  
0
HVA  
Horizontal and Vertical Sync Alignment.  
When HVA is LOW, the falling edge of HSIN and VSIN must occur just prior  
to the rising edge of PXCK to start an field 1. When HVA is HIGH, VSIN is  
allowed to vary from HSIN by 32 pixels.  
Vertical Blanking Interval Enable Register (0x18)  
7
6
5
4
3
2
1
0
Reserved  
GLKCTL1  
GLKCTL0  
VBIENF1  
Reg  
Bit  
Name  
Description  
18  
18  
7
6
Reserved  
GLKCTL1  
Genlock Control Register 1.  
When GLKCTL1 is LOW, the PALODD bit of the GRS stream is ignored.  
When GLKCTL1 is HIGH, the PALODD bit of the GRS stream controls the  
PALODD flip of the subcarrier.  
18  
18  
5
GLKCTL0  
VBIENF  
Genlock Control Register 0.  
When GLKCTL0 is LOW, the Color Frame bit of the GRS stream is ignored.  
When GLKCTL0 is HIGH, the Color Frame bit of the GRS stream controls  
the field sequence in the FVHGEN.  
4-0  
VBI Active Video Enable, Field 1.  
The value of VBIENF1 determines which line blanking stops and active line  
for EVEN fields in NTSC starting from line 4 to line 35 or an ODD fields for  
PAL starting from line 1 to line 32.  
48  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Vertical Blanking Interval Enable Register (0x19)  
7
6
5
4
3
2
1
0
SHORT  
T512  
HALFEN  
VBIENF2  
Reg  
Bit  
7
Name  
SHORT  
T512  
Description  
19  
19  
Test Register. Program LOW.  
6
EH/SL Offset Control Bit.  
When LOW, the true value of EH and SL is offset by 256.  
When HIGH, the true value of EH and SL is offset by 512.  
19  
19  
5
HALFEN  
VBIENF2  
Half Line Enable.  
When LOW, half-line blanking occurs on line 283 (NTSC) or line 23 (PAL).  
When HIGH, line 283 (NTSC) or line 23 (PAL) is treated as a full line of  
active video.  
4-0  
VBI Active Video Enable, Field 2.  
The value of VBIENF2 determines which line blanking stops and active line  
for ODD fields in NTSC starting from line 4 to line 35 or an EVEN fields for  
PAL starting from line 1 to line 32.  
Pedestal Height Register (0x1A)  
7
6
5
4
3
2
1
0
Reserved  
PEDHGT1  
Reg  
Bit  
Name  
Description  
1A  
1A  
7
Reserved  
PEDHGT1  
6-0  
Composite Pedestal Height.  
PEDHGT1 is a 2s comp value producing a pedestal height from -22.1 IRE  
to 21.7 IRE with .345 IRE steps on the composite data path. The default 7.5  
IRE pedestal for NTSC-M results from a hex code of 0010110b.  
Closed Caption Register (0x1C)  
7
6
5
4
3
2
1
0
CCD1  
Reg  
Bit  
Name  
Description  
1C  
7-0  
CCD1  
First Byte of CC Data.  
Bit 0 is the LSB. The MSB will be overwritten by an ODD Parity Bit if  
CCPAR is HIGH.  
REV. 1.0 3/26/03  
49  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Closed Caption Register (0x1D)  
7
6
5
4
3
2
1
0
CCD2  
Reg  
Bit  
Name  
Description  
1D  
7-0  
CCD2  
Second Byte of CC Data.  
Bit 0 is the LSB. The MSB will be overwritten by an ODD Parity Bit if  
CCPAR is HIGH  
Closed Caption Register (0x1E)  
7
6
5
4
3
2
1
0
CCON  
CCRTS  
CCPAR  
CCFLD  
CCLINE  
Reg  
Bit  
Name  
Description  
Enable CC Data Packet.  
1E  
7
CCON  
Command the CC data generator to send either CC data or a NULL byte  
whenever the specified line is transmitted.  
1E  
6
5
CCRTS  
CCPAR  
Request To Send Data.  
This bit is set HIGH by the user when bytes 0x1C and 0x1D have been  
loaded with the next two bytes to be sent. When the encoders line count  
reaches preceding the line specified in bits 4-0 of this register the data will  
be transferred from registers 0x1C and 0x1D, and RTS will be RESET  
LOW. A new pair of bytes may then be loaded into registers 0x1C and  
0x1D. If CCON = 1 and CCRTS = 0 when the CC line is to be sent, NULL  
bytes will be sent.  
1E  
Auto Parity Generation.  
When set HIGH, the encoder replaces the MSB of bytes 0x1C and 0x1D  
with a calculated ODD parity. When set LOW, the CC processor transmits  
the 16 bits exactly as loaded into registers 0x1C and 0x1D.  
1E  
1E  
4
CCFLD  
CC Field Select.  
When LOW, CC data is transmitted on the selected line of ODD fields.  
When HIGH, it is sent on EVEN fields.  
3-0  
CCLINE  
CC Line Select.  
Defines (with an offset) the line on which CC data are transmitted.  
Timing Register (0x1F)  
7
6
5
4
3
2
1
0
PDCNT  
Reg  
Bit  
Name  
Description  
1F  
7-0  
PDCNT  
Pixel Data Control Start.  
PDCNT determines the number of pixels (PCKs) from the midpoint of the  
falling edge of horizontal sync to the rising edge of PDC on active video  
lines.  
50  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Timing Register (0x20)  
7
6
5
4
3
2
1
0
SY  
Reg  
Bit  
Name  
Description  
20  
7-0  
SY  
Horizontal Sync Tip Duration.  
This 8 bit register holds a value extending from 0 to 255 PCK cycles.  
Timing Register (0x21)  
7
6
5
4
3
2
1
0
BR  
Reg  
Bit  
Name  
Description  
21  
7-0  
BR  
Breezeway Duration.  
This 8 bit register holds a value extending from 0 to 255 PCK cycles.  
Timing Register (0x22)  
7
6
5
5
5
4
3
2
1
0
BU  
Reg  
Bit  
Name  
Description  
22  
7-0  
BU  
Burst Duration.  
This 8 bit register holds a value extending from 0 to 255 PCK cycles.  
Timing Register (0x23)  
7
6
4
3
2
1
0
CBP  
Reg  
Bit  
Name  
Description  
23  
7-0  
CBP  
Color Back Porch Duration.  
This 8 bit register holds a value extending from 0 to 255 PCK cycles.  
Timing Register (0x24)  
7
6
4
3
2
1
0
XBP  
Reg  
Bit  
Name  
Description  
24  
7-0  
CBP  
Extended Color Back Porch Duration.  
This 8 bit register holds the LSBs of a 10 bit value extending from 0 to 1023  
PCK cycles.  
REV. 1.0 3/26/03  
51  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Timing Register (0x25)  
7
6
5
4
3
2
1
0
VA  
Reg  
Bit  
Name  
Description  
25  
7-0  
VA  
Active Video Region Duration.  
This 8 bit register holds the LSBs of a 10 bit value extending from 0 to 1023  
PCK cycles.  
Timing Register (0x26)  
7
6
5
4
3
2
1
0
VC  
Reg  
Bit  
Name  
Description  
26  
7-0  
VC  
Active Video Region 2nd Half Line Duration.  
This 8 bit register holds the LSBs of a 10 bit value extending from 0 to 1023  
PCK cycles.  
Timing Register (0x27)  
7
6
5
4
3
2
1
0
VB  
Reg  
Bit  
Name  
Description  
27  
7-0  
VB  
Active Video Region 1st Half Line Duration.  
This 8 bit register holds the LSBs of a 10 bit value extending from 0 to 1023  
PCK cycles.  
Timing Register (0x28)  
7
6
5
4
3
2
1
0
VB  
Reg  
Bit  
Name  
Description  
28  
7-0  
EL  
Equalization Pulse Low Duration.  
This 8 bit register holds a value extending from 0 to 255 PCK cycles.  
52  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Timing Register (0x29)  
7
6
5
4
3
2
1
0
EH  
Reg  
Bit  
Name  
Description  
29  
7-0  
EH  
Equalization Pulse High Duration.  
This 8 bit register holds 8 LSBs of EH, The addition of 256 or 512 is  
controlled by T512. The range is either 256 to 511 PCK cycles or 512 to  
767 PCK cycles.  
Timing Register (0x2A)  
7
6
5
4
3
2
1
0
SL  
Reg  
Bit  
Name  
Description  
2A  
7-0  
SL  
Vertical Sync Pulse Low Duration.  
This 8 bit register holds 8 LSBs of SL, The addition of 256 or 512 is  
controlled by T512. The range is either 256 to 511 PCK cycles or 512 to  
767 PCK cycles.  
Timing Register (0x2B)  
7
6
5
4
3
2
1
0
SH  
Reg  
Bit  
Name  
Description  
2B  
7-0  
SH  
Vertical Sync Pulse High Duration.  
This 8 bit register holds a value extending from 0 to 255 PCK cycles.  
Timing Register (0x2C)  
7
6
5
4
3
2
1
0
FP  
Reg  
Bit  
Name  
Description  
2C  
7-0  
FP  
Front Porch Duration.  
This 8 bit register holds a value extending from 0 to 255 PCK cycles.  
REV. 1.0 3/26/03  
53  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Timing Register (0x2D)  
7
6
5
4
3
2
1
0
XBP  
Bit  
VA  
VB  
VC  
Reg  
Name  
Description  
Extended Color Back Porch Duration.  
2 MSBs of the 10 bit XBP, extending from 0 to 1023 PCK cycles.  
2D  
7-6  
5-4  
3-2  
1-0  
XBP  
2D  
2D  
2D  
VA  
VB  
VC  
Active Video Duration.  
2 MSBs of the 10 bit VA, extending from 0 to 1023 PCK cycles.  
Active Video Region 1st Half Line Duration.  
2 MSBs of a 10 bit VB, extending from 0 to 1023 PCK cycles.  
Active Video Region 2nd Half Line Duration.  
2 MSBs of a 10 bit VC, extending from 0 to 1023 PCK cycles.  
Timing Register (0x2E)  
7
6
5
4
3
2
1
0
FIELD  
LTYPE  
Reg  
Bit  
Name  
Description  
2E  
7-5  
FIELD  
Field Identification. (READ ONLY)  
These three bits are updated 12 PXCK periods after each vertical sync.  
They allow the user to determine field type on a continuous basis  
2E  
4-0  
LTYPE  
LineType Identification (READ ONLY)  
These three bits are updated 5 PXCK periods after each horizontal sync.  
They allow the user to determine line type on a continuous basis.  
Timing Register (0x2F)  
7
6
5
4
3
2
1
0
CBL  
Reg  
Bit  
Name  
Description  
2F  
7-0  
CBL  
Color Bar Duration.  
This 8 bit register holds a value extending from 0 to 255 PCK cycles.  
Color Space Matrix Register (0x30)  
7
6
5
4
3
2
1
0
MCF1L  
Reg  
Bit  
Name  
Description  
30  
7-0  
MCF1L  
Matrix Coefficient #1.  
Bits 7-0 of MCF1.  
54  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Color Space Matrix Register (0x31)  
7
6
5
4
3
2
1
0
MCF2L  
Reg  
Bit  
Name  
Description  
31  
7-0  
MCF2L  
Matrix Coefficient #2.  
Bits 7-0 of MCF2.  
Color Space Matrix Register (0x32)  
7
6
5
4
3
2
1
0
0
0
MCF3L  
Reg  
Bit  
Name  
Description  
32  
7-0  
MCF3L  
Matrix Coefficient #3.  
Bits 7-0 of MCF3.  
Color Space Matrix Register (0x33)  
7
6
5
4
3
3
3
2
2
2
1
1
1
MCF4L  
Reg  
Bit  
Name  
Description  
33  
7-0  
MCF4L  
Matrix Coefficient #4.  
Bits 7-0 of MCF4.  
Color Space Matrix Register (0x34)  
7
6
5
4
MCF5L  
Reg  
Bit  
Name  
Description  
34  
7-0  
MCF4L  
Matrix Coefficient #5.  
Bits 7-0 of MCF5.  
Color Space Matrix Register (0x35)  
7
6
5
4
0
MCF6L  
Reg  
Bit  
Name  
Description  
35  
7-0  
MCF6L  
Matrix Coefficient #6.  
Bits 7-0 of MCF6.  
REV. 1.0 3/26/03  
55  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Color Space Matrix Register (0x36)  
7
6
5
4
3
3
3
3
3
2
2
2
2
2
1
1
1
1
1
0
0
0
0
0
MCF7L  
Reg  
Bit  
Name  
Description  
36  
7-0  
MCF7L  
Matrix Coefficient #7.  
Bits 7-0 of MCF7.  
Color Space Matrix Register (0x37)  
7
6
5
4
MCF8L  
Reg  
Bit  
Name  
Description  
37  
7-0  
MCF8L  
Matrix Coefficient #8.  
Bits 7-0 of MCF8.  
Color Space Matrix Register (0x38)  
7
6
5
4
MCF9L  
Reg  
Bit  
Name  
Description  
38  
7-0  
MCF9L  
Matrix Coefficient #9.  
Bits 7-0 of MCF9.  
Color Space Matrix Register (0x39)  
7
6
5
4
MCF10L  
Reg  
Bit  
Name  
Description  
39  
7-0  
MCF10L  
Matrix Coefficient #10.  
Bits 7-0 of MCF10.  
Color Space Matrix Register (0x3A)  
7
6
5
4
MCF1M  
MCF2M  
Reg  
Bit  
Name  
Description  
3A  
7-4  
MCF1M  
Matrix Coefficient #1.  
Bits 11-8 of MCF1.  
3A  
3-0  
MCF2M  
Matrix Coefficient #2.  
Bits 11-8 of MCF2.  
56  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Color Space Matrix Register (0x3B)  
7
6
5
4
3
2
1
0
MCF3M  
Reserved  
MCF4M  
Reg  
Bit  
Name  
Description  
3B  
7-4  
MCF3M  
Matrix Coefficient #3.  
Bits 11-8 of MCF3.  
3B  
3B  
3
Reserved  
MCF4M  
Set to 0.  
2-0  
Matrix Coefficient #4.  
Bits 10-8 of MCF4.  
Color Space Matrix Register (0x3C)  
7
6
5
4
3
2
1
0
MCF5M  
Reserved  
MCF6M  
Reg  
Bit  
Name  
Description  
3C  
7-4  
MCF5M  
Matrix Coefficient #5.  
Bits 11-8 of MCF5.  
3C  
3C  
3
Reserved  
MCF6M  
Set to 0.  
2-0  
Matrix Coefficient #6.  
Bits 10-8 of MCF6.  
Color Space Matrix Register (0x3D)  
7
6
5
4
3
2
1
0
MCF7M  
MCF8M  
Reg  
Bit  
Name  
Description  
3D  
7-4  
MCF7M  
Matrix Coefficient #7.  
Bits 11-8 of MCF7.  
3D  
3-0  
MCF8M  
Matrix Coefficient #8.  
Bits 11-8 of MCF8.  
Color Space Matrix Register (0x3E)  
7
6
5
4
3
2
1
0
MCF9M  
MCF10M  
Reg  
Bit  
Name  
Description  
3E  
7-4  
MCF9M  
Matrix Coefficient #9.  
Bits 11-8 of MCF9.  
3E  
3-0  
MCF10M  
Matrix Coefficient #10.  
Bits 11-8 of MCF10.  
REV. 1.0 3/26/03  
57  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Color Space Matrix Register (0x3F)  
7
6
5
4
3
2
1
0
SEL_CLK  
RGB_CLIP  
GAUSS_BYP  
SEL_PIX  
C2DB_OFF  
NMEH  
CSMFMT  
Reg  
Bit  
Name  
Description  
DCVBS Output Selection.  
3F  
7
SEL_PIX  
When SEL_PIX is HIGH, the interpolated pixel data is selected as the  
output for the DCVBS port. When SEL_PIX is LOW, the non-interpolated  
pixel data is selected as the output for the DCVBS port.  
3F  
6
RGB_CLIP  
RGB Limit Control.  
When RGB_CLIP is LOW, the RGB outputs are not limited.  
When RGB_CLIP is HIGH, the RGB outputs are limited to a range of 256 to  
1023 at the DAC outputs.  
3F  
3F  
3F  
5
4
3
GAUSS_BYP  
SEL_CLK  
Gaussian Bypass Select.  
When GAUSS_BYP is LOW, the gaussian filter is enabled.  
When GAUSS_BYP is HIGH, the gaussian filter is bypassed.  
DCVBS Clock Select.  
When SEL_CLK is LOW, the DCVBS output is clocked at the PXCK.  
When SEL_CLK is HIGH, the DCVBS output is clocked at the PCK.  
C2DB_OFF  
COMP2DB Offset Selection.  
When C2DB_OFF is HIGH an offset of 256 is added to the COMP2 output  
allowing the chrominance data that extends below the sync level to be  
passed through the outputs.  
3F  
3F  
2
NMEH  
NTSC-M Component Enhancement.  
When NMEH is LOW, the CSM performs the normal rounding operation on  
multipliers 8, 9 , and 10. When NMEH is HIGH, the CSM extends the  
number of rounding bits on multipliers 8, 9, and 10. This is recommended if  
the input source is YC C and the component output is RGB.  
B
R
1-0  
CSMFMT  
Color Space Matrix Configuration.  
CSMFMT  
Input  
YC C  
Component Output  
00  
01  
10  
11  
YP P  
B
R
R
B R  
RGB  
YP P  
YC C  
B
RGB  
RGB  
B R  
RGB  
Subcarrier Register (0x40)  
7
6
5
4
3
2
1
0
FREQL  
Reg  
Bit  
Name  
Description  
Subcarrier Frequency.  
Bits 7-0 of the subcarrier frequency FREQL[31:0].  
40  
7-0  
FREQL  
58  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Subcarrier Register (0x41)  
7
6
5
4
3
2
1
0
FREQ3  
Reg  
Bit  
Name  
Description  
41  
7-0  
FREQ3  
Subcarrier Frequency.  
Bits 15-8 of the subcarrier frequency FREQL[31:0].  
Subcarrier Register (0x42)  
7
6
5
4
3
2
1
0
0
0
FREQ2  
Reg  
Bit  
Name  
Description  
42  
7-0  
FREQ2  
Subcarrier Frequency.  
Bits 23-16 of the subcarrier frequency FREQL[31:0].  
Subcarrier Register (0x43)  
7
6
5
5
5
4
3
2
1
1
1
FREQM  
Reg  
Bit  
Name  
Description  
43  
7-0  
FREQM  
Subcarrier Frequency.  
Bits 31-24 of the subcarrier frequency FREQL[31:0].  
Subcarrier Register (0x44)  
7
6
4
3
2
SYSPHL  
Reg  
Bit  
Name  
Description  
44  
7-0  
SYSPHL  
System Phase.  
Bits 7-0 of the video phase offset SYSPH[15:0].  
Subcarrier Register (0x45)  
7
6
4
3
2
0
SYSPHM  
Reg  
Bit  
Name  
Description  
45  
7-0  
SYSPHM  
System Phase.  
Bits 15-8 of the video phase offset SYSPH[15:0].  
REV. 1.0 3/26/03  
59  
TMC2193  
PRODUCT SPECIFICATION  
Control Register Denitions (continued)  
Subcarrier Register (0x46)  
7
6
5
4
3
2
1
0
BURPHL  
Reg  
Bit  
Name  
Description  
46  
7-0  
BURPHL  
Burst Phase.  
Bits 7-0 of the burst phase offset BURPH[15:0].  
Subcarrier Register (0x47)  
7
6
5
4
3
2
1
0
BURPHM  
Reg  
Bit  
Name  
Description  
47  
7-0  
BURPHM  
Burst Phase.  
Bits 15-8 of the burst phase offset BURPH[15:0].  
Burst Height Register (0x48)  
7
6
5
4
3
2
1
0
BRSTFULL  
Reg  
Bit  
Name  
Description  
48  
7-0  
BRSTFULL  
Burst Height Maximum Amplitude.  
The 8 bit value assigned to U burst component in NTSC and to the U and V  
components in PAL for the maximum burst amplitude. The burst envelopes  
midpoint is derived from BRSTFULL. The value programmed into  
BRSTFULL needs to be .707 of the magnitude of the burst vector.  
Burst Height Register (0x49)  
7
6
5
4
3
2
1
0
BRST1  
Reg  
Bit  
Name  
Description  
49  
7-0  
BRST1  
Burst Height 1st Intermediate Value.  
The 8 bit value assigned to U burst component in NTSC and to the U and V  
components in PAL for the first intermediate value of the burst envelope.  
The value programmed into BRST1 needs to be .707 of the magnitude of  
the burst vector.  
60  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Control Register Denitions (continued)  
Subcarrier Register (0x4A)  
7
6
5
4
3
2
1
0
BRST2  
Reg  
Bit  
Name  
Description  
4A  
7-0  
BRST2  
Burst Height 2nd Intermediate Value.  
The 8 bit value assigned to U burst component in NTSC and to the U and V  
components in PAL for the second intermediate value of the burst  
envelope. The value programmed into BRST2 needs to be .707 of the  
magnitude of the burst vector.  
Pedestal Height Register (0x4B)  
7
6
5
4
3
2
1
0
NBMD  
PEDHGT2  
Reg  
Bit  
Name  
Description  
4B  
7
NBMD  
Component Blank and Sync Level Selection.  
When NBMD is LOW, the blank level for Y or RGB is 256 and the sync level  
is 12. When NMBD is HIGH, the blank level for Y or RGB is a D/A code of  
240 and the sync level is a D\A code of 8.  
4B  
6-0  
PEDGHT2  
Component Pedestal Height.  
PEDHGT2 is a 2s comp value producing a pedestal height from -22.1 IRE  
to 21.7 IRE with .345 IRE steps of the luminance data of the YP P  
B R  
component output.  
REV. 1.0 3/26/03  
61  
TMC2193  
PRODUCT SPECIFICATION  
Absolute Maximum Ratings (beyond which the device may be damaged)  
Parameter  
Min.  
Max.  
Unit  
Power Supply Voltage  
-0.5  
7.0  
V
Digital Inputs  
Applied Voltage2  
Forced Current3,4  
-0.5  
V
V
+ 0.5  
V
DD  
-20.0  
20.0  
mA  
Digital Outputs  
Applied Voltage2  
-0.5  
+ 0.5  
V
DD  
Forced Current3,4  
-20.0  
20.0  
1
mA  
Short Circuit Duration (Single Output in HIGH state to GND)  
Analog Output Short Circuit Duration (Single output to GND)  
Temperature  
second  
Innite  
Operating, Ambient  
-20  
-65  
+110  
+150  
+300  
+220  
+150  
°C  
°C  
°C  
°C  
°C  
Operating, Junction, Plastic package  
Lead, Soldering (10 seconds)  
Vapor Phase Soldering (1 minute)  
Storage  
Notes:  
1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating  
conditions. Functional operation under any of these conditions is NOT implied.  
2. Applied voltage must be current limited to specified range, and measured with respect to GND.  
3. Forcing voltage must be limited to specified range.  
4. Current is specified as conventional current, flowing into the device.  
Operating Conditions  
Parameter  
Min.  
4.75  
2.0  
Nom.  
Max.  
Units  
V
V
V
Power Supply Voltage  
5.0  
5.25  
DD  
IH  
Input Voltage, Logic HIGH  
TTL Compatible Inputs  
CMOS Compatible Inputs  
TTL Compatible Inputs  
CMOS Compatible Inputs  
V
DD  
V
DD  
V
0.7V  
DD  
V
V
IL  
Input Voltage, Logic LOW  
GND  
GND  
0.8  
V
0.3V  
V
DD  
I
I
Output Current, Logic HIGH  
Output Current, Logic LOW  
External Reference Voltage  
-2.0  
mA  
mA  
V
OH  
4.0  
OL  
V
1.235  
1.020  
REF  
REF  
I
D/A Converter Reference Current (I  
REF  
= V  
REF  
/ R  
,
mA  
REF  
flowing out of the R  
pin)  
REF  
R
R
Reference Resistor, V  
REF  
= Nom.  
1210  
37.5  
REF  
OUT  
A
Total Output Load Resistance  
Ambient Temperature, Still Air  
T
0
70  
°C  
Pixel Interface  
f
f
t
t
Pixel Rate  
10  
20  
15  
30  
Mpps  
MHz  
ns  
PXL  
Master Clock Rate, 2x pixel rate  
PXCK Pulse Width, HIGH  
PXCK Pulse Width, LOW  
PXCK  
PWHPX  
PWLPX  
15  
17.5  
ns  
62  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Operating Conditions (continued)  
Parameter  
Min.  
16  
0
Nom.  
Max.  
Units  
ns  
t
t
Setup Time  
Hold Time  
SP  
HP  
ns  
Parallel Microprocessor Interface  
t
t
t
t
t
t
t
t
CS Pulse Width, LOW  
CS Pulse Width, HIGH  
Address Setup Time  
Address Hold Time  
4
6
PXCK  
PXCK  
ns  
PWLCS  
PWHCS  
SA  
17  
0
ns  
HA  
Data Setup Time (write)  
Data Hold Time (write)  
RESET Setup Time  
RESET Hold Time  
16  
0
ns  
SD  
ns  
HD  
12  
2
ns  
SR  
ns  
HR  
Serial Interface  
t
t
t
t
t
t
t
t
SCL Pulse Width, LOW  
1.3  
0.6  
0.6  
0.6  
0.6  
1.3  
300  
300  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
D/AL  
SCL Pulse Width, HIGH  
D/AH  
STAH  
STASU  
STOSU  
BUFF  
DSU  
SDA Start Hold Time  
SCL to SDA Setup Time (Stop)  
SCL to SDA Setup Time (Start)  
SDA Stop Hold Time Setup  
SDA to SCL Data Setup Time  
SDA to SCL Data Hold Time  
DHO  
REV. 1.0 3/26/03  
63  
TMC2193  
PRODUCT SPECIFICATION  
Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
335  
15  
Max.  
375  
25  
Units  
mA  
I
Power Supply Current  
V
DD  
DD  
= Max., f  
= 27MHz  
= 27MHz  
DD  
PXCK  
PXCK  
I
Power Supply Current  
(D/A disabled)  
V
= Max., f  
mA  
DDQ  
V
Voltage Reference Output  
1.235  
50  
V
µA  
µA  
µA  
V
RO  
I
I
I
Input Bias Current, V  
REF  
V
V
V
= Nom.  
BR  
REF  
Input Current, Logic HIGH  
Input Current, Logic LOW  
Output Voltage, Logic HIGH  
Output Voltage, Logic LOW  
Hi-Z Leakage current, HIGH  
Hi-Z Leakage current, LOW  
Digital Input Capacitance  
Digital Output Capacitance  
= Max., V = V  
IN DD  
10  
IH  
IL  
DD  
DD  
= Max., V = GND  
IN  
-10  
V
V
I
I
= Max.  
2.4  
OH  
OL  
OH  
OL  
= Max.  
0.4  
10  
V
I
I
V
DD  
V
DD  
= Max., V = V  
IN DD  
µA  
µA  
pF  
pF  
V
OZH  
OZL  
= Max., V = GND  
IN  
-10  
10  
C
C
T = 25°C, f = 1MHz  
A
4
I
T = 25°C, f = 1MHz  
A
10  
O
V
Video Output Compliance  
Voltage  
-0.3  
2.0  
25  
OC  
R
C
Video Output Resistance  
Video Output Capacitance  
15  
15  
kΩ  
OUT  
I
= 0 mA, f = 1 MHz  
pF  
OUT  
OUT  
Notes:  
1. Typical I  
with V = +5.0 Volts and T = 25°C.  
DD A  
DD  
2. Timing reference points are at the 50% level.  
Switching Characteristics  
Parameter  
Conditions  
Min.  
Typ. Max.  
Units  
PIPES  
Pipeline Delay  
PD to Analog Out  
PD to DCVBS  
64  
66  
PXCK  
Periods  
t
t
t
t
Output Delay, CS to low-Z  
Output Delay, CS to Data Valid  
Output Hold Time, CS to hi-Z  
Output Delay  
4
15  
15  
ns  
ns  
ns  
ns  
DOZ  
DOM  
HOM  
DO  
10  
PXCK to HSOUT, VSOUT,  
PDC, LINE, FLD  
15  
t
t
t
D/A Output Current Risetime  
D/A Output Current Falltime  
Analog Output Delay  
10% to 90% of full-scale  
90% to 10% of full-scale  
2
2
ns  
ns  
ns  
R
F
10  
DOV  
Notes:  
1. Timing reference points are at the 50% level.  
2. Analog C <10 pF, D load <40 pF.  
LOAD 7-0  
3. Pipeline delay, with respect to PXCK, is a function of the phase relationship between the internally generated PCK (PXCK/2)  
and PXCK, as established by the hardware RESET.  
64  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
System Performance Characteristics  
Parameter  
RES D/A Converter Resolution  
Conditions  
Min.  
Typ.  
Max.  
10  
Units  
Bits  
%
10  
10  
E
E
Integral Linearity Error  
0.25  
0.10  
LI  
Differential Linearity Error  
(monotonic)  
%
LD  
E
Gain Error  
7.5  
%FS  
degree  
%
G
dp  
Differential Phase  
Differential Gain  
PXCK = 27.00 MHz,40 IRE Ramp  
PXCK = 27.00 MHz,40 IRE Ramp  
0.5  
0.9  
0
dg  
SKEW  
CHROMA to LUMA Output  
Skew  
1
ns  
PSRR  
Power Supply Rejection  
Ratio  
f=1kHz  
0.5  
%/%V  
DD  
Notes:  
1. TTL input levels are 0.0 and 3.0 Volts, 10%-90% rise and fall times <3 ns.  
2. Analog CLOAD <10 pF, D7-0 load <40 pF.  
The circuit in Figure 31 shows the connection of power sup-  
ply voltages, output reconstruction filters and the external  
Applications Discussion  
The suggested output reconstruction filter is shown in Figure  
29. The phase and frequency response for the encoder and  
the reconstruction filter is shown in Figure 30.  
voltage reference. All V  
same power source.  
pins should be connected to the  
DD  
The full-scale output voltage level for each D/A:  
= I x R = K x I x R  
C6  
27pF  
V
OUTx  
OUTx Lx REFx  
Lx  
D1  
DIODE  
SCHOTTKY  
= K x (V /R ) x R  
REF REFx Lx  
L5 1.8µH  
A_IN  
A_OUT  
where:  
C7  
C7  
D2  
R8  
75Ω  
330pF  
330pF  
DIODE  
SCHOTTKY  
• I  
is the full-scale output current sourced by the D/A  
converter.  
OUTx  
C8  
100pF  
L6  
1.0µH  
R9  
75Ω  
• R is the resistive load on the D/A output pin.  
Lx  
65-6294-31  
• K is a constant for the TMC2193 D/A converters (approx-  
imately equal to 34).  
Figure 29. Typical Analog Reconstruction Filter  
• I  
REFx  
is the reference current flowing out of the R  
REFx  
pin to ground.  
• V  
is the voltage measured on the V pin.  
REF  
REF  
0
-10  
-20  
-30  
-40  
0
• R  
R
is the total resistance connected between the  
pin and ground.  
REFx  
REFx  
90  
The reference voltage in Figure 31 is from an LM185 1.2  
Volt band-gap reference. The suggested trim is designed to  
give 10% of trim around 5K Ohms. This R  
"gain" for that D/A converter. Varying R  
REFx  
cause the full-scale output voltage on the D/A to vary by  
10%.  
180  
270  
360  
sets the  
REFx  
10% will  
0
5
10  
15  
20  
25  
Frequency (MHz)  
An alternative output reconstruction filter is the SMA-163E,  
which contains 4 independent reconstruction filter. The  
phase and frequency response of this filter is shown in the  
Output Low-Pass Filters Section of this data sheet.  
65-6294-32  
Figure 30. Overall Response  
REV. 1.0 3/26/03  
65  
TMC2193  
PRODUCT SPECIFICATION  
Decoupling capacitors should be applied liberally to  
pins. For best results, use 0.1µF capacitors. Lead lengths  
should be minimized. Ceramic chip capacitors are the  
best choice.  
Layout Considerations  
Designing with high-performance mixed-signal circuits  
demands printed circuits with ground planes. Wire-wrap is  
not an option. Overall system performance is strongly influ-  
enced by the board layout. Capacitive coupling from digital  
to analog circuits may result in poor picture quality. Con-  
sider the following suggestions when doing the layout:  
If there is dedicated digital power plane, it should not  
overlap the TMC2193 footprint, the voltage reference,  
or the analog outputs. Capacitive coupling of digital  
power supply noise from this layer to the TMC2193 and  
its related analog circuitry can have an adverse effect on  
performance.  
Keep analog traces (C , DACx) as  
, V  
, R  
BYPx REF REF  
short and far from all digital signals as possible. The  
TMC2193 should be located near the board edge, close  
to the analog output connectors.  
The PXCK should be handled carefully. Jitter and noise  
on this clock or its ground reference will translate to  
noise on the video outputs. Terminate the clock line  
carefully to eliminate overshoot and ringing.  
The power plane for the TMC2193 should be separate  
from that which supplies other digital circuitry. A single  
power plane should be used for all of the V  
DD  
pins. If  
the power supply for the TMC2193 is the same for the  
system's digital circuitry, power to the TMC2193 should  
be filtered with ferrite beads and 0.1µF capacitors to  
reduce noise.  
Connect all unused inputs to the TMC2193 to either  
ground or V . Do not leave them unconnected.  
DD  
The ground plane should be solid, not cross-hatched.  
Connections to the ground plane should be very short.  
66  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
A G N D  
1 0 0  
A G N D  
1 4  
A G N D  
9
A G N D  
4
D G N D  
9 7  
D G N D  
7 1  
D G N D  
5 3  
V D D  
9 6  
D G N D  
4 0  
V D D  
7 2  
D G N D  
2 6  
V D D  
5 4  
V D D  
3 9  
Figure 31. Typical Layout  
REV. 1.0 3/26/03  
67  
TMC2193  
PRODUCT SPECIFICATION  
Figure 32. ST-163E Layout  
68  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
mode, pin 6 must be well isolated from ground planes. When  
operating in the +6dB gain mode, pin 6 must have a low  
resistance path to ground.  
Output Low-Pass Filters  
The response at 5.0MHz typically varies < 0.25dB with  
supplies of 5V to 8V. When operating in the 0dB gain  
Figure 34. Stop Band  
Figure 33. Pass Band  
Figure 35. 2T Pulse  
Figure 36. Group Delay  
REV. 1.0 3/26/03  
69  
TMC2193  
PRODUCT SPECIFICATION  
Notes:  
70  
REV. 1.0 3/26/03  
PRODUCT SPECIFICATION  
TMC2193  
Mechanical Dimensions  
100-Lead MQFP  
Notes:  
Inches  
Millimeters  
Min. Max.  
Symbol  
Notes  
1. All dimensions and tolerances conform to ANSI Y14.5M-1982.  
2. Controlling dimension is millimeters.  
Min.  
Max.  
A
.134  
3.40  
3. Dimension "B" does not include dambar protrusion. Allowable  
dambar protrusion shall be .08mm (.003in.) maximum in excess of  
the "B" dimension. Dambar cannot be located on the lower radius  
or the foot.  
A1  
A2  
B
.010  
.100  
.008  
.005  
.904  
.783  
.667  
.547  
.25  
.120  
.015  
.009  
.923  
.791  
.687  
.555  
2.55  
.22  
3.05  
.38  
3, 5  
5
4. "L" is the length of terminal for soldering to a substrate.  
5. "B" & "C" includes lead finish thickness.  
C
.13  
.23  
D
22.95  
19.90  
16.95  
13.90  
23.45  
20.10  
17.45  
14.10  
D1  
E
E1  
e
.0256 BSC  
.65 BSC  
4
L
.028  
.040  
.73  
1.03  
N
100  
30  
100  
30  
ND  
NE  
20  
20  
α
0°  
7°  
0°  
7°  
ccc  
.004  
.12  
D
.20 (.008) Min.  
D1  
0° Min.  
.13 (.30)  
Datum Plane  
R
.005 (.012)  
C
B
e
E1  
α
.13 (.005) R Min.  
Pin 1 Indentifier  
E
L
0.076" (1.95mm) Ref  
Lead Detail  
See Lead Detail  
Base Plane  
A
A2  
-C-  
Lead Coplanarity  
ccc  
B
Seating Plane  
A1  
C
REV. 1.0 3/26/03  
71  
TMC2193  
PRODUCT SPECIFICATION  
Ordering Information  
Product Number  
Temperature Range  
T = 0°C to 70°C  
Screening  
Package  
Package Marking  
TMC2193KJC  
Commercial  
100-pin MQFP  
TMC2193  
A
Life Support Policy  
3/26/03 0.0m 003  
Stock#DS30002193  

相关型号:

TMC2202-WA

POWER DRIVER FOR STEPPER MOTORS
TRINAMIC

TMC22050

Color Signal Decoder,
RAYTHEON

TMC22051

Color Signal Decoder,
RAYTHEON

TMC22051AKHC

Multistandard Digital Video Decoder Three-Line Adaptive Comb Decoder Family, 8 & 10 bit
FAIRCHILD

TMC22051AKHC

Multistandard Digital Video Decoder Three-Line Adaptive Comb Decoder Family, 8 & 10 bit
CADEKA

TMC22052AKHC

Multistandard Digital Video Decoder Three-Line Adaptive Comb Decoder Family, 8 & 10 bit
FAIRCHILD

TMC22052AKHC

Multistandard Digital Video Decoder Three-Line Adaptive Comb Decoder Family, 8 & 10 bit
CADEKA

TMC22052KHC

Color Signal Decoder, CMOS, PQFP100, MQFP-100
RAYTHEON

TMC22053AKHC

Multistandard Digital Video Decoder Three-Line Adaptive Comb Decoder Family, 8 & 10 bit
FAIRCHILD

TMC22053AKHC

Multistandard Digital Video Decoder Three-Line Adaptive Comb Decoder Family, 8 & 10 bit
CADEKA

TMC22053KHC

Color Signal Decoder, CMOS, PQFP100, MQFP-100
RAYTHEON

TMC22070R1C

Consumer Circuit, CMOS, PQCC68,
RAYTHEON