BQ2660-7P [BEL]

DC-DC Regulated Power Supply Module, 2 Output, 132W, Hybrid, METAL, CASE Q01, MODULE;
BQ2660-7P
型号: BQ2660-7P
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

DC-DC Regulated Power Supply Module, 2 Output, 132W, Hybrid, METAL, CASE Q01, MODULE

文件: 总26页 (文件大小:2759K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Features  
• RoHS lead-free-solder and lead-solder-exempted  
products are available  
• Wide input voltage ranges up to 150 VDC  
• 1 or 2 isolated outputs from 3.3 to 48 V  
• Class I equipment  
• Extremely high efficiency of up to 90%  
• Flexible output power  
Excellent surge and transient protection  
Outputs open and short-circuit proof  
Redundant operation, current sharing  
Extremely low inrush current, hot-swappable  
Externally adjustable output voltage and inhibit  
Electric strength test 2.1 kVDC  
Extremly slim case (4 TE, 20 mm), fully enclosed  
Railway standards EN 50155, 50121-3-2 observed  
Telecoms-compatible input voltage range of 48Q  
models according to ETS 300132-2 (38.4 to 75 VDC)  
111  
4.4"  
3 U  
Safety-approved to IEC/EN 60950-1 and UL/CSA  
60950-1 2nd Ed.  
164  
6.5"  
20  
0.8"  
4 TE  
Description  
panel allow for a check of the main output voltage.  
Full system flexibility and n+1 redundant operating mode are  
possible due to virtually unrestricted series or parallel  
connection capabilities of all outputs. In parallel connection of  
several converters, automatic current sharing is provided by a  
single-wire interconnection.  
These extremely compact DC-DC converters incorporate all  
necessary input and output filters, signaling and protection  
features, which are required in the majority of applications.  
The converters provide important advantages such as flexible  
output power through primary current limitation, high  
efficiency, excellent reliability, very low ripple and RFI noise  
levels, full input to output isolation, negligible inrush current,  
overtemperature protection, and input over-/undervoltage  
lockout. The converter inputs are protected against surges  
and transients occurring on the source lines.  
As a modular power supply or as part of a distributed power  
supply system, the extremely low profile design significantly  
reduces the necessary power supply volume without  
sacrificing high reliability. A temperature sensor disables the  
outputs, if the case temperature exceeds the limit. The outputs  
are automatically re-enabled, when the temperature drops  
below the limit.  
The converters are particularly suitable for rugged  
environments, such as railway applications. They have been  
designed in accordance with the European railway standards  
EN 50155 and EN 50121-3-2. All printed circuit boards are  
coated with a protective lacquer.  
The fully enclosed, black-coated aluminum case acts as a heat  
sink and an RFI shield. The converters are designed for 19"  
DIN-rack systems occupying 3 U/4 TE only, but can also be  
chassis-mounted by means of four screws. Fitting an  
additional heat or ordering options with fitted heat sink is  
possible as well.  
The outputs are continuously open- and short-circuit proof. An  
isolated output Power Good signal and LEDs at the front panel  
indicate the status of the converter. Test sockets at the front  
Table of Contents  
Page  
Page  
Electromagnetic Compatibility (EMC) ............................... 19  
Immunity to Environmental Conditions ............................. 21  
Mechanical Data ............................................................... 22  
Safety and Installation Instructions ................................... 23  
Description of Options ...................................................... 24  
Accessories....................................................................... 26  
Description .......................................................................... 1  
Model Selection .................................................................. 2  
Functional Description ........................................................ 5  
Electrical Input Data ............................................................ 6  
Electrical Output Data ......................................................... 8  
Auxiliary Functions ............................................................ 16  
BCD20011-G Rev AG, 12-Mar-2012  
Page 1 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Model Selection  
Table 1a: Model types BQ, GQ  
1
Output 1  
Output 2  
Ionom Io max TA = 71 °C TA = 50 °C Vi min Vi max ηmin ηtyp Vi min Vi max ηmin ηtyp  
[A] [VDC] [A] [A] Po nom [W] Po max [W] 14.4 – 36 VDC [%] [%] 21.6 – 54 VDC [%] [%]  
Output power  
Operating inputvoltagerange, efficiency  
Options  
2
2
Vonom Ionom Io max  
[VDC] [A]  
V
onom  
3.3  
5.1  
12 3  
15 3  
24 3  
20*  
16  
8
6.6  
4.4  
25*  
20  
10  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
66*  
82  
96  
99  
106  
82*  
102  
120  
120  
132  
BQ1101-9  
BQ1001-9R  
BQ2320-9R 87.5** 87.5 GQ2320-9R  
BQ2540-9R  
BQ2660-9R  
81*  
85  
GQ1101-9  
-7, B1, G  
86  
GQ1001-9R 85.5 86 -7, P, B1, G  
86 87 -7, P, B1, G  
GQ2540-9R 86.5 88.5 -7, P, B1, G  
89* 90.5* GQ2660-9R 89* 90* -7, P, B1, G  
85 86 GQ2001-9R 85.5 86  
87  
88  
5.5  
5.1 4  
12 4  
15 4  
24 4  
7.5  
4
3.3  
2.2  
15  
9.2  
7.4  
5.1  
5.1 4  
12 4  
15 4  
24 4  
7.5  
4
3.3  
2.2  
15  
9.2  
7.4  
5.1  
77  
96  
99  
97  
BQ2001-9R  
BQ2320-9R 87.5** 87.5 GQ2320-9R  
BQ2540-9R  
BQ2660-9R  
-7, B1, G  
87 -7, P, B1, G  
120  
120  
132  
86  
87  
88  
GQ2540-9R 86.5 88.5 -7, P, B1, G  
89* 90* -7, P, B1, G  
106  
89* 90.5* GQ2660-9R  
Table 1b: Model types CQ, 48Q  
Output 1  
Output 2  
Ionom Io max TA = 71°C TA = 50 °C Vi min Vi max ηmin ηtyp Vi min Vi max ηmin ηtyp  
[A] [VDC] [A] [A] Po nom [W] Po max [W] 33.6* – 75 VDC [%] [%] 38.4 – 75 VDC [%] [%]  
Output power 1  
Operating inputvoltage range, efficiency  
Options  
2
2
Vonom Ionom Io max  
[VDC] [A]  
V
onom  
3.3  
5.1  
5.1  
12 3  
12 3  
15 3  
15 3  
24 3  
24 3  
20*  
16  
16  
8
25*  
20  
16  
10  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
66*  
82  
82  
96  
96  
99  
99  
106  
106  
82*  
102  
82  
120  
96  
120  
99  
132  
106  
CQ1101-9  
CQ1001-9R  
82*  
85  
-7, B1, G  
-7, P, B1, G  
B1, G  
-7, P, B1, G  
B1, G  
-7, P, B1, G  
B1, G  
-7, P, B1, G  
B1, G  
87  
88  
48Q1001-2R  
48Q2320-2R  
48Q2540-2R  
48Q2660-2R  
83  
85  
85  
87  
CQ2320-9R  
CQ2540-9R  
CQ2660-9R  
87  
8
6.6  
6.6  
4.4  
4.4  
8
87 88.5  
6.6  
5.5  
4.4  
89*  
91  
5.1 4  
12 4  
12 4  
15 4  
15 4  
24 4  
24 4  
7.5  
4
4
3.3  
3.3  
2.2  
2.2  
15  
9.2  
7.2  
7.4  
6
5.1 4  
12 4  
12 4  
15 4  
15 4  
24 4  
24 4  
7.5  
4
4
3.3  
3.3  
2.2  
2.2  
15  
9.2  
7.2  
7.4  
6
77  
96  
96  
99  
99  
97  
120  
96  
120  
99  
CQ2001-9R  
CQ2320-9R  
85  
87  
87  
88  
-7, B1, G  
-7, P, B1, G  
B1, G  
-7, P, B1, G  
B1, G  
48Q2320-2R  
48Q2540-2R  
48Q2660-2R  
85  
85  
87  
CQ2540-9R  
CQ2660-9R  
87 88.5  
89* 91  
5.1  
4
5.1  
4
106  
106  
132  
106  
-7, P, B1, G  
B1, G  
Table 1c: Model types DQ, EQ  
1
Output 1  
Output 2  
Output power  
Operating input voltage range, efficiency  
Options  
2
2
Vonom Ionom Io max  
V
Ionom  
Io max TA = 71 °C TA = 50 °C Vi min Vi max ηmin ηtyp Vi min Vi max ηmin ηtyp  
[A] Po nom [W] Po max [W] 43 – 108 VDC [%] [%] 65 1505 VDC [%] [%]  
onom  
[VDC] [A]  
[A] [VDC] [A]  
3.3  
5.1  
12 3  
15 3  
24 3  
20*  
16  
8
6.6  
4.4  
25*  
20  
10  
8
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
66*  
82  
96  
99  
106  
82*  
102  
120  
120  
132  
DQ1101-9  
DQ1001-9R  
DQ2320-9R  
DQ2540-9R  
DQ2660-9R  
82*  
EQ1101-9  
-7, B1, G  
85.5 86.5 EQ1001-9R 84.5 86 -7, P, B1, G  
88 90 EQ2320-9R 87 88.5 -7, P, B1, G  
89* 90.5 EQ2540-9R 87.5 89 -7, P, B1, G  
89* 90.5 EQ2660-9R 87.5* 89.5 -7, P, B1, G  
5.5  
5.1 4  
12 4  
15 4  
24 4  
7.5  
4
3.3  
2.2  
15  
9.2  
7.4  
5.1  
5.1 4  
12 4  
15 4  
24 4  
7.5  
4
3.3  
2.2  
15  
9.2  
7.4  
5.1  
77  
96  
99  
97  
DQ2001-9R  
DQ2320-9R  
DQ2540-9R  
DQ2660-9R  
85 86.5 EQ2001-9R  
88 90 EQ2320-9R  
89* 90.5 EQ2540-9R 87.5 89 -7, P, B1, G  
89* 90.5 EQ2660-9R 87.5* 89.5 -7, P, B1, G  
84  
86 -7, P, B1, G  
120  
120  
132  
87 88.5 -7, P, B1, G  
106  
* Converters with version V104 or higher. ** Converters with version V105 or higher.  
1
The cumulated power of both outputs can not exceed the total power for the specified ambient temperature. See also Output Power at  
Reduced Temperature.  
2
3
4
5
Minimum efficiency at Vi nom, Io nom and TA = 25 °C  
Double-output models with both outputs connected in parallel  
Double-output models. Output 2 is a tracking output isolated from the output 1.  
168 V for 2 s  
NFND: Not for new designs.  
Preferred for new designs  
BCD20011-G Rev AG, 12-Mar-2012  
Page 2 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Part Number Description  
C Q 2 5 40 -9 R B1 G  
Input voltage range Vi:  
14.4 – 36 V ....................................................... B  
21.6 – 54 V ....................................................... G  
33.6 – 75 V ........................................................ C  
38.4 – 75 V ..................................................... 48  
43 – 108 V ......................................................... D  
65 – 150 V ......................................................... E  
Series ................................................................................... Q  
Number of outputs:  
Single-output models .........................................1  
Double-output models ........................................2  
Single-output models (long case)2 ...................6  
Double-output models (long case) 2 .................7  
Single-output models:  
Nominal output voltage (main output):  
3.3 V ...................................................................1  
5.1 V ...................................................................0  
12 V ....................................................................3  
15 V ....................................................................5  
24 V ................................................................6, 7  
Other voltages ............................................ 7, 8, 9  
Other specifications or additional  
features for single-output models 3 .... 01 – 99  
Double-output models:  
Nominal voltage of 2nd output Vo2 nom  
5.1 V ........................................................ 01 – 09  
12 V ......................................................... 20 – 39  
15 V ......................................................... 40 – 59  
24 V ......................................................... 60 – 79  
Other voltages or additional  
features 3 .................................................................. 01 – 99  
Operational ambient temperature range TA:  
–10 to 50 °C...................................................... -2  
–25 to 71°C (option, NFND) ............................ -7  
–40 to 71 °C...................................................... -9  
other ....................................................... -0, -5, -6  
Output voltage control input (auxiliary function) 1 ................. R  
Potentiometer (option, NFND) 1 ........................................... P  
Additional heatsinks ..................................................... B, B1  
RoHS compliant for all six substances ............................ G3  
1
Option P excludes feature R and vice versa.  
Models with 220 mm case length. Just add 5000 to the standard model number.  
Customer-specific models.  
2
3
Note: The sequence of options must follow the order above.  
Preferred for new designs.  
not shown in the type designation: input and output filter, inhibit,  
sense lines, current sharing, Out OK signal, LED indicators, and  
test sockets (not 48Q models).  
Example: CQ2540-9B1G: DC-DC converter, input voltage  
range 33.6 to 75 V, double-output model, each  
output providing 15 V/3.3 A, equipped with a heat  
sink, operating ambient temperature TA = 40 to  
71 °C, RoHS-compliant for all six substances.  
Note: 48Q models are designed according to Telecom standards  
ETS 300132-2 and EN 41003. Vi min is 38.4 V such limiting the  
input current Ii to 150% of Ii nom  
.
Note: All models have the following auxiliary functions, which are  
BCD20011-G Rev AG, 12-Mar-2012  
Page 3 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Product Marking  
01003a  
Double-output  
model  
Type designation, applicable safety approval and recognition  
marks, CE mark, warnings, pin allocation, Power-One  
patents, and company logo.  
Vo2+  
Vo2–  
Vo1+  
S+  
6
10  
4
Identification of LEDs, test sockets and potentiometer.  
28  
i
Input voltage range and input current, nominal output voltages  
and currents, degree of protection, batch no., serial no., and  
data code including production site, version (modification  
status) and date of production.  
12  
30 Vi+  
Load  
Vi–  
S– 14  
32  
Vo1–  
8
Output Configuration  
The Q Series design allows different output configurations to  
cover almost every individual requirement, by simply wiring  
the outputs in parallel, series, or symmetrical configuration  
as per the following figures. For further information and for  
parallel and series operation of several converters see  
Electrical Output Data.  
Fig. 3  
Series-output configuration  
01004a  
Double-output  
model  
Vo1+  
Vo+  
4
12  
14  
8
S+  
01001a  
Load 1  
S–  
28 i  
Single-output  
model  
Vi+  
Vo1–  
Vo2+  
Vo2–  
30  
GND  
Load 2  
Vo–  
4
Vo+  
32 Vi–  
6
Vo+  
S+  
6
12  
14  
8
10  
28  
30  
i
Load  
Vi+  
S–  
Fig. 4  
32 Vi–  
Vo–  
Symmetrical-output configuration (with common ground)  
Vo– 10  
Fig. 1  
Single-output configuration  
01005a  
Double-output  
model  
Vo1+  
4
01002a  
12  
S+  
Load 1  
Double-output  
model  
28  
30  
S– 14  
i
6
Vo2+  
Vo1+  
S+  
Vo1–  
8
6
Vi+  
4
12  
14  
8
32 Vi–  
Vo2+  
Vo2–  
Load 2  
28  
30  
i
10  
Load  
Vi+  
S–  
32 Vi–  
Vo1–  
Fig. 5  
Independent-output configuration  
Vo2– 10  
Fig. 2  
Parallel-output configuration  
BCD20011-G Rev AG, 12-Mar-2012  
Page 4 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
The current limitation is located at the primary side, thus  
limiting the total output current in overload conditions. This  
allows flexible loading of each output for unsymmetrical loads  
in the range 10 to 90% of the total output power. In applications  
with large dynamic load changes, we recommend connecting  
such a load to output 1. If output 2 is not used, it should be  
connected parallel to output 1. Both outputs can either be  
series- or parallel-connected (see Electrical Output Data).  
Functional Description  
The converters are designed as forward converters using  
primary and secondary control circuits in SMD technology. The  
switching frequency is approximately 200 kHz under nominal  
operating conditions. The built-in high-efficient input filter  
together with a small input capacitance generate very low  
inrush currents of short duration. After transformer isolation  
and rectification, the output filter reduces ripple and noise to a  
minimum without compromising the dynamic ability. The  
output voltage is fed to the secondary control circuit via  
separate sense lines. The resultant error signal is sent to the  
primary control circuit via a signal transformer.  
In normal operation, the internal control circuits are powered  
by a third winding of the main choke (except 48Q models).  
Start-up is ensured from the input voltage by a linear regulator.  
Note: When the output voltage is much lower then the nominal  
value, this linear regulator is activated, generating considerable  
power losses.  
Double-output models have the voltage regulation of output 2  
relying on the close magnetic coupling of the transformer and  
the output inductor together with the circuits' symmetry.  
03111a  
2
22  
24  
18  
Out OK+  
Out OK–  
T
Output  
control  
Primary  
control circuit  
28  
i
Output  
monitor  
16 R3  
S+1  
12  
4
6
Vi+ 30  
Vo+  
Vo+  
Input  
filter  
Output  
filter  
Vi–  
8
32  
26  
Vo–  
Vo–  
S–1  
Fuse  
10  
1
Cy  
Cy  
14  
Isolation  
20  
4
1 Leading pins  
2 Potentiometer for option P 3 Do not connect for models xQ1101 or with option P 4 Do not connect  
Fig. 6  
Block diagram of a single-output converter  
03112a  
2
22  
Out OK+  
Out OK–  
T
24  
18  
16  
Output  
control  
Primary  
control circuit  
28  
i
Output  
monitor Vo2  
R3  
6
Vo2+  
Output  
filter  
Vi+ 30  
10 Vo2–  
Input  
filter  
S+1  
12  
Vo1+  
4
Vi–  
32  
26  
Fuse  
Output  
filter  
Cy  
1
8
Vo1–  
S–1  
14  
Cy  
Isolation  
20  
4
1 Leading pins  
2 Potentiometer for option P 3 Do not connect for models with option P 4 Do not connect  
Fig. 7  
Block diagram of a double-output converter  
BCD20011-G Rev AG, 12-Mar-2012  
Page 5 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Electrical Input Data  
General Conditions:  
TA = 25 °C, unless TC is specified.  
– Sense lines connected directly at the connector, inhibit (28) connected to Vi(32).  
– R input not connected; with option P, Vo set to Vo nom at Vi nom  
.
Table 2a: Input data  
Input  
BQ  
typ  
GQ  
typ  
CQ  
typ  
Unit  
Characteristics  
Conditions  
min  
max min  
max min  
max  
Vi  
Operating input voltage Io = 0 – Io max  
C min TC max  
14.4  
36  
21.6  
54  
33.6  
75  
V
T
Vi 100 ms for 100 ms  
without shutdown  
14.4  
0
21.6  
33.6  
Vi nom  
Vi abs  
Ii  
Nominal input voltage  
24  
36  
48  
Input voltage limits  
Typical input current 1  
No-load input power  
Idle input power 4  
Peak inrush current2  
Rise time inrush  
2s without damage  
50  
0
63  
0
100  
Vi nom, Io nom  
4.5  
3.0  
2.2  
A
Pi 0  
Vi min Vi max  
Io = 0  
2.5  
1.0  
3.0  
1.5  
2.5  
1.5  
W
Pi inh  
Iinr p  
tinr r  
Vi nom, Io nom  
55  
50  
130  
5
40  
40  
110  
5
35  
35  
80  
8
A
µs  
tinr h  
td on  
Time to half value  
Start-up time3  
0 Vi min, Io nom  
ms  
Table 2b: Input data  
Input  
48Q2  
typ max min  
DQ  
EQ  
Unit  
Characteristics  
Conditions  
min  
typ  
max min  
typ max  
150  
168  
176  
110  
200  
1.0  
Vi  
Operating input voltage Io = 0 – Io max  
C min TC max  
38.4  
75  
43  
36  
0
108  
115  
125  
65  
55  
0
V
T
for 2 s  
Vi 100 ms for 100 ms  
n.a.  
n.a.  
48  
n.a.  
72  
without shutdown  
Vi nom  
Vi abs  
Ii  
Nominal input voltage  
Input voltage limits  
Typical input current 1  
No-load input power  
Idle input power 4  
Peak inrush current 2  
Rise time inrush  
2s without damage  
0
100  
Vi nom, Io nom  
2.2  
1.5  
A
Pi 0  
Vi min Vi max  
Io = 0  
2.5  
1.5  
5.5  
3.5  
5.0  
W
Pi inh  
Iinr p  
tinr r  
3.5  
Vi nom, Io nom  
35  
35  
80  
8
20  
50  
45  
A
15  
µs  
tinr h  
td on  
Time to half value  
Start-up time3  
90  
25  
0 Vi min, Io nom  
20*  
20*  
ms  
* Models with version V104 or higher  
1
Typical input current depends on model type  
According to ETS 300132-2  
See fig. 19  
Converter inhibited  
2
3
4
BCD20011-G Rev AG, 12-Mar-2012  
Page 6 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Input Fuse  
Input Stability with Long Supply Lines  
An incorporated fuse in series to the negative input line  
protects against severe defects. The fuse is not externally  
accessible. Reverse polarity at the input will cause the fuse to  
blow.  
If a Q Series converter is connected to the power source with  
long input lines which exhibit a considerable inductance, an  
additional external capacitor connected in parallel to the input  
improves stability and avoids oscillations.  
Note: Customer-specific models with no internal fuse are  
available on request; the customer must prevew an external fuse  
according to table 3.  
Actually, a Q Series converter with nominal load acts like a  
negative resistor, as the input current rises when the input  
voltage decreases. It tends to oscillate with a resonant  
frequency determined by the line inductance Lext and the input  
Table 3: Fuse specifications  
capacitance Ci + Cext and damped by the resistors Ri + Rext  
.
The whole system is not linear at all and eludes a simple  
calculation. One basic condition is given by the formula:  
Model  
BQ  
Fuse type  
Reference and rating  
very fast acting  
very fast acting  
very fast acting  
very fast acting  
very fast acting  
very fast acting  
2× Littelfuse 251, 10 A, 125 V  
2× Littelfuse 251, 7 A, 125 V  
Littelfuse 251, 10 A, 125 V  
Littelfuse 251, 10 A, 125 V  
Littelfuse 251, 7 A, 125 V  
Littelfuse 263, 5 A, 250 V  
Vin²  
Rext << η  
Po  
GQ  
CQ  
Rext is the series resistor of the source voltage including input  
lines. If this condition is not fulfilled, the converter cannot reach  
stable operating conditions. Worst case conditions are low  
input voltage Vi and high output power Po.  
48Q  
DQ  
EQ  
Low inductance Lext of the input lines and a parallel connected  
input capacitor Cext are helpful. Recommended values for Cext  
are given in table 4, which should allow stable operation up to  
an input inductance of 2 mH.  
Input Transient Protection  
A metal oxide VDR (Voltage Dependent Resistor) together with  
the input fuse and a symmetrical input filter form an effective  
protection against high input transient voltages, which typically  
occur in most installations, especially in battery-driven mobile  
applications.  
JM001  
Converter  
Lext  
Rext  
Vi+  
Vi–  
Vo+  
Vo–  
Nominal battery voltages in use are: 24, 36, 48, 60, 72, 96, and  
110 V. In most cases each nominal value is specified in a  
tolerance band of –30% to +25%, with short excursions to  
±40% or even more.  
+
Ci  
Ri  
Cext  
In some applications, surges according to RIA 12 are specified  
in addition to those defined in IEC 60571-1 or EN 50155. The  
power supply must not switch off during these surges and  
since their energy can practically not be absorbed, an  
extremely wide input voltage range is required. The Q Series  
input range has been designed and tested to meet most of  
these requirements. See also Electromagnetic Immunity.  
Fig. 8  
Input configuration  
Table 4: Ci and recommended values for Cext  
Input Under-/Overvoltage Lockout  
Model  
BQ  
Ci  
Recomm. Cext  
680 µF  
470 µF  
470 µF  
470 µF  
150 µF  
Voltage  
If the input voltage falls outside the limits of Vi 100 ms, an  
internally generated inhibit signal disables the output(s).  
220 µF  
110 µF  
50 µF  
50 µF  
22 µF  
11 µF  
40 V  
63 V  
GQ  
Inrush Current  
CQ  
100 V  
100 V  
125 V  
200 V  
The inherent inrush current value is lower than specified in the  
standard ETS 300132-2. The converters operate with  
relatively small input capacitance, resulting in low inrush  
current of short duration. As a result, in a power-bus system  
the converters can be hot-swapped, causing negligible  
disturbance.  
48Q  
DQ  
EQ  
68 µF  
BCD20011-G Rev AG, 12-Mar-2012  
Page 7 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Electrical Output Data  
General Conditions:  
TA = 25 °C, unless TC is specified.  
– Sense lines connected directly at the connector, inhibit (28) connected to Vi(32).  
– R input not connected; with option P, Vo set to Vo nom at Vi nom  
.
Table 5a: Output data for single-output models and double-output models with both outputs in parallel configuration  
Output  
BQ GQ1101  
48Q /BQ GQ1001  
48Q / BQ GQ2320  
Unit  
3.3 V  
5.1 V  
12 V  
Characteristics  
Conditions  
Vi nom, Io nom  
Vi min Vi max  
min  
typ  
max  
min  
5.07  
5.02  
5.9  
typ  
max  
5.13  
5.18  
6.4  
min  
11.94  
11.82  
13.5  
typ  
max  
12.06  
12.18  
15.0  
Vo1  
Vow  
Vo P  
Setting voltage of 1st output  
3.28  
3.24  
4.5  
3.32  
3.35  
4.9  
V
Worstcase output voltage  
TC min TC max  
Overvoltage limitation  
by 2nd control loop  
Io = 0 – Io max  
Io  
Output current 2  
Vi min Vi max  
0.05  
26*  
25*  
0
16/203  
0
8.0/103  
A
TC min TC max  
Io nom Nominal output current  
20*  
15  
16  
10  
8.0  
IoL  
vo  
Output current limit 2  
32.5* 16.8/213  
20.8/263 8.4/10.53  
10.4/12.53  
4
Output  
Switch. frequ.  
Vi nom, Io nom  
BW = 20 MHz  
25  
50  
20  
50  
10  
20  
96/1203  
20  
40  
mVpp  
voltage noise  
Total incl.spikes  
25  
82  
20  
82/1023  
Po max Output power 1  
Vi min Vi max  
W
T
C min TC max  
Vi nom  
o nom / Io nom  
4
vo d  
Dynamic  
load  
regulation Recovery time  
Voltage deviation  
±300  
800  
±250  
800  
±200  
1500  
mV  
1
I
2
4 5  
td  
µs  
V
Vo os  
Dynamic line regulation  
(output overshoot)  
0 Vi max  
0 – Io max  
0.5  
0.5  
0.8  
Vo tr  
Output  
voltage  
via R-input 1  
1.1Vi min Vi max  
0.1Io nom Io nom  
TC min TC max  
n.a.  
4.0  
4.6  
5.6  
5.6  
7.2  
13.2  
13.2  
trim range using opt. P1  
n.a  
10.8  
αVo  
Temp. coefficient of Vo  
Io nom,TC min TC ma  
±0.02  
±0.02  
±0.02  
% /K  
x
* Converters with version V104 or higher.  
1
If the output voltage is increased above Vo nom through R-input control, option P setting, or remote sensing, the output power should be  
reduced accordingly, so that Po max and TC max are not exceeded.  
See Output Power at Reduced Temperature.  
2
3
4
5
First value for 48Q, 2nd value for BQ – GQ  
According to IEC/EN 61204  
Recovery time see Dynamic load regulation.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 8 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Table 5b: Output data for double-output models with both outputs in parallel configuration. General conditions as per table 5a  
Output  
48Q /BQ GQ2540  
48Q /BQ GQ2660  
Unit  
15 V  
24 V  
Characteristics  
Conditions  
min  
14.93  
14.78  
17  
typ  
max  
min  
15.08 23.88  
15.23 23.64  
typ  
max  
24.12  
24.36  
30  
Vo1  
Vow  
Vo P  
Setting voltage of 1st output  
Vi nom, Io nom  
V
Worstcase output voltage  
Vi min Vi max  
TC min TC max  
Io = 0 – Io max  
Overvoltage limitation  
of second control loop  
19  
27.5  
Io  
Output current 2  
Vi min Vi max  
0
6.6/8.03  
0
4.4/5.53  
A
TC min TC max  
Io nom Nominal output current  
6.6  
4.4  
IoL  
vo  
Output current limit 2  
6.9/8.43  
8.6/10.43 4.6/5.753  
6.2/8.03  
25  
4
Output  
Switch. frequ.  
Vi nom, Io nom  
BW = 20 MHz  
10  
20  
20  
40  
10  
20  
mVpp  
voltage noise  
Total incl. spikes  
40  
Po max Output power 1  
Vi min Vi max  
99/120 3  
106/1323  
W
TC min TC max  
4
vo d  
Dynamic  
load  
regulation Recovery time  
Voltage deviation  
Vi nom  
I
±200  
1500  
±600  
800  
mV  
o nom 1/  
Io nom  
2
4 5  
td  
µs  
V
Vo os  
Dynamic line regulation  
(output overshoot)  
0 Vi max  
0 – Io max  
0.8  
1.2  
Vo tr  
Output  
voltage  
via R-input  
1.1Vi min Vi max  
0.1Io nom Io nom  
TC min TC max  
9.0  
16.5  
16.5  
14.46  
21.6  
26.4  
26.4  
trim range using opt. P 1  
13.5  
αVo  
Temp. coefficient of Vo  
Ionom,TC min TC max  
±0.02  
±0.02  
% /K  
1
If the output voltages are increased above Vo nom through R-input control, option P setting or remote sensing, the output power should be  
reduced accordingly so that Po max and TC max are not exceeded.  
See Output Power at Reduced Temperature.  
2
3
4
5
6
First value for 48Q, 2nd value for BQ – GQ  
According to IEC/EN 61204  
Recovery time until Vo remains within ±1% of Vo, see Dynamic load regulation.  
For DQ2660 and EQ2660: 16.8 V  
BCD20011-G Rev AG, 12-Mar-2012  
Page 9 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Table 6a: Output data for double-output models with output 1 and output 2 in symmetrical or independent configuration.  
General conditions as per table 5a.  
Output  
48Q /BQ GQ2320  
48Q /BQ GQ2540  
Unit  
12 V /12 V  
15 V /15 V  
Characteristics  
Conditions  
Output 1  
Output 2  
Output 1  
Output 2  
min typ max min typ max min typ max min typ max  
Vo  
Output setting voltage1 Vi nom, Io nom  
11.94  
11.82  
12.06 11.88  
12.12 14.93  
15.08 14.85  
15.15  
V
Vow  
Worstcase output  
voltage  
Vi min Vi max  
TC min TC max  
Io = 0 – Io max  
12.18  
see Output  
14.78  
15.23 see Output  
Voltage Regulation  
Voltage Regulation  
Vo P  
Overvoltage limitation  
of second control loop  
n.a.  
4.0  
13.5  
15  
n.a.  
3.3  
17  
19  
Io  
Output current 2  
Vi min Vi max  
0.8  
7.2/9.23 0.8  
7.2/9.23 0.6  
6.0/7.43 0.6  
6.0/7.43  
A
TC min TC max  
Io nom Nominal output current  
Io L  
Output current limit 2  
Output Switch. frequ. Vi nom, Io nom  
4.0  
3.3  
8.4/10.53 10.4/133 8.4/10.53 10.4/133 6.9/8.43 8.6/10.43 6.9/8.43 8.6/10.43  
4
vo  
8
16  
8
16  
8
16  
8
16  
mVpp  
voltage  
BW = 20 MHz  
noise Total incl.spikes  
16  
40  
16 40  
16  
40  
16  
40  
Po max Output power total1  
Vi min Vi max  
96/1203  
99/1203  
W
mV  
µs  
V
T
C min TC max  
Vi nom  
o nom 1/  
Io2 = 1/  
Io nom  
4
vo d  
Dynamic Voltage  
±200  
1500  
±300  
±200  
1500  
±300  
load  
deviation  
I
2
Io nom  
regulation  
2
4 5  
td  
Recovery  
time  
Vo tr  
Output  
voltage  
via R-input 1.1Vi min Vi max 7.2  
0.1Io nom Io nom  
13.2  
see Output  
9.0  
16.5  
16.5  
see Output  
Voltage Regulation  
Voltage Regulation  
trim range using opt. P TC min TC max  
10.8  
13.2  
13.5  
αVo  
Temp. coefficient of Vo Ionom  
TC min TC max  
±0.02  
±0.02  
±0.02  
±0.02  
% /K  
1
If the output voltages are increased above Vo nom through R-input control, option P setting, or remote sensing, the output power should  
be reduced accordingly so that Po max and TC max are not exceeded.  
See Output Power at Reduced Temperature.  
2
3
4
5
6
First value for 48Q, 2nd value for BQ – GQ  
According to IEC/EN 61204  
Recovery time until Vo remains within ±1% of Vo, see Dynamic load regulation.  
Io nom = Io1 + Io2  
BCD20011-G Rev AG, 12-Mar-2012  
Page 10 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Table 6b: Output data for double-output models with output 1 and output 2 in symmetrical or independent configuration.  
General conditions as per table 5a  
Output  
48Q2660  
24 V /24 V  
BQ GQ2660  
24 V /24 V  
Unit  
Characteristics  
Conditions  
Output 1  
Output 2  
Output 1  
Output 2  
min typ max min typ max min typ max  
min typ max  
Vo  
Output setting voltage1 Vi nom, Io nom  
23.88  
23.64  
24.12 23.76  
24.24 23.88  
23.64  
24.12 23.76  
24.24  
see Output  
Voltage Regulation  
V
Vow  
Worstcase output  
voltage  
Vi min Vi max  
TC min TC max  
Io = 0 – Io max  
24.36  
see Output  
24.36  
Voltage Regulation  
Vo P  
Io  
Overvoltage limitation  
of second control loop  
n.a.  
2.2  
27.5  
30  
n.a.  
2.2  
27.5  
30  
Output current 2  
Vi min Vi max  
TC min TC max  
0.4  
4.6  
4.0  
0.4  
4.0  
0.4  
5.8  
5.1  
0.4  
5.1  
A
Io nom Nominal output current  
2.2  
2.2  
Io L  
Output current limit 2  
6.2  
25  
4.6  
6.2  
25  
8.0  
25  
5.8  
8.0  
4
vo  
Output Switch. frequ.  
voltage  
Vi nom, Io nom  
BW = 20 MHz  
10  
20  
10  
20  
10  
20  
10  
20  
25 mVpp  
noise Total incl.spikes  
40  
40  
40  
40  
Po max Output power total 1  
Vi min Vi max  
106  
132  
W
mV  
µs  
V
T
C min TC max  
Vi nom  
o nom 1/  
Io2 = 1/  
Io nom  
4
vo d  
Dynamic Voltage  
±400  
400  
±500  
±400  
400  
±500  
load  
deviation  
I
2
Io nom  
regulation  
2
4 5  
td  
Recovery  
time  
Vo tr  
Output  
voltage  
via R-input 1.1Vi min-Vi max 14.4  
0.1Io nom Io nom  
26.4  
see Output  
14.4 3  
21.6  
26.4  
26.4  
see Output  
Voltage Regulation  
Voltage Regulation  
trim range using opt. P TC min TC max  
n.a.  
αVo  
Temp. coefficient of Vo Ionom  
TC min TC max  
±0.02  
±0.02  
±0.02  
±0.02  
% /K  
1
If the output voltages are increased above Vo nom through R-input control, option P setting or remote sensing, the output power should be  
reduced accordingly so that Po max and TC max are not exceeded.  
See: Output Power at Reduced Temperature  
For DQ2660 and EQ2660: 16.8 V  
According to IEC/EN 61204  
2
3
4
5
Recovery time until Vo remains within ±1% of Vo, see Dynamic load regulation  
BCD20011-G Rev AG, 12-Mar-2012  
Page 11 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Parallel and Series Connection  
+
05092a  
Single- or double-output models with equal output voltage can  
be connected in parallel without any precaution, by inter-  
connecting the T-pins for equal current sharing; see fig. 9a.  
Rp  
Out OK+ Vo2+  
Vo2–  
Vo1+  
Out OK –  
Double-output models with their outputs connected in parallel  
behave exactly like single-output models and are fully  
regulated. There is no inconvenience or restriction using the R-  
input with sense lines.  
i
Vi+  
Vi–  
S+  
S–  
Single-output and/or double-output models can be connected  
in series. For double-output models with both outputs  
connected in series, consider that the effect via sense lines, R-  
input or option P is doubled. See fig. 9b.  
Vo1–  
Parallel configuration of double-output models with both  
outputs connected in series is shown in fig. 9c. It is essential  
that the Vo1– pins of all paralleled converters are connected  
together, as the auxiliary signals are referenced to Vo1– or to  
S–. The effect via sense lines, R-input or option P is doubled.  
Out OK+ Vo2+  
Vo2–  
Vo1+  
Out OK –  
i
S+  
S–  
Vi+  
Vi–  
Notes:  
If the second output of double-output models is not used,  
connect it in parallel to the main output to maintain good  
regulation.  
Vo1–  
i
+
Parallel connection of several double-output models should  
always include main and second outputs to produce good  
regulation.  
Fig. 9b  
Series connection of double-output models.  
Series connection of second outputs without involving their main  
outputs should be avoided as regulation may be poor.  
06114a  
+
The maximum output current is limited by the output with the  
T
Vo2+  
Vo2–  
Vo1+  
lowest current limit, if several outputs are connected in series.  
Double  
output  
Rp  
Rated output voltages above 48 V (SELV = Safety Extra Low  
Voltage) need additional measures in order to comply with  
international safety requirements.  
Out OK+  
Out OK –  
+
05091b  
S+  
S–  
i
T
DR  
Rp  
Vi+  
Vi–  
Vo+/Vo1+  
Vo1–  
R
Out OK+  
Out OK–  
S+  
S–  
i
Vo–/Vo1–  
Vo+/Vo2+  
Vo–/Vo2–  
Double  
output  
T
Vo2+  
Vo2–  
Vo1+  
Vi+  
Vi–  
Out OK+  
Out OK –  
T
DR  
S+  
S–  
i
Vo+/Vo1+  
Vi+  
Vi–  
S+  
S–  
Out OK+  
Out OK–  
Vo1–  
R
i
+
Vo–/Vo1–  
Vo+/Vo2+  
Vo–/Vo2–  
i
Vi+  
Vi–  
Fig. 9c  
Parallel connection of double-output models with series-  
connected outputs.  
+
i
Fig. 9a  
Parallel connection of single- and double-output models.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 12 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
produce reasonable current sharing between the parallel-  
connected converters.  
Redundant Configuration  
Fig. 10a shows a circuit with ORing diodes DR in the positive  
output lines, forming a redundant configuration. For accurate  
output voltage regulation, the sense lines are connected after  
the ORing diodes. The T pins should be connected together to  
If one of the converters fails, the remaining converters can  
deliver the whole output power.  
Note: The current-share logic can only increase the output voltage  
marginally and remains functional even in the case of a failing  
converter.  
+
05091b  
T
DR  
Fig. 10b shows a quite similar circuit with ORing diodes DR, but  
with different output loads. To compensate for the voltage drop  
of the ORing diodes (if necessary), an auxiliary circuit is added  
to each power supply consisting of a small diode DS and a  
small resistor RS. We recommend a current of approximately 10  
mA through DS and RS. Only Load 0 benefits from a secured  
supply voltage.  
Rp  
Vo+/Vo1+  
Out OK+  
Out OK–  
S+  
S–  
i
Vo–/Vo1–  
Vo+/Vo2+  
Vo–/Vo2–  
Vi+  
Vi–  
The current sharing may be improved by interconnecting the T  
pins of the converters. This circuit is a bit less accurate, but  
more flexible and less sensitive.  
Caution: Do not connect the sense lines after the ORing diodes,  
but directly with the respective outputs. If for some reason one of  
the converters switches off and the ORing diode is blocking, a  
reverse voltage can appear between the sense pin and the  
respective output pin and damage the converter.  
T
DR  
Vo+/Vo1+  
S+  
S–  
Out OK+  
Out OK–  
Output Voltage Regulation  
Vo–/Vo1–  
Vo+/Vo2+  
Vo–/Vo2–  
i
The dynamic load regulation is shown in the figure below.  
Vi+  
Vi–  
Vo  
+
i
Vod  
Vo 1%  
Vo 1%  
Fig. 10a  
Vod  
Simple redundant configuration of double-output models with  
parallel-connected outputs.  
td  
td  
t
+
06097b  
Io/Io nom  
T
1
DR  
Rp  
Vo+/Vo1+  
0.5  
DS  
RS  
10 µs  
10 µs  
Out OK+  
Out OK–  
S+  
S–  
0
t
05102c  
Fig. 11  
Deviation of Vo versus dynamic load change  
i
Vo–/Vo1–  
Vo+/Vo2+  
Vo–/Vo2–  
Vi+  
Vi–  
The static load regulation measured at the sense pins is  
negligible. Correct connection of the sense lines almost  
eliminates any load regulation; see Sense Lines.  
T
In a symmetrical configuration the output 1 with open R input is  
regulated to Vo1 nom, regardless of the output currents. If the  
load on output 2 is too small (<10% of Io nom), its voltage will  
rise and may activate the overvoltage protection, which will  
then reduce the voltage on both outputs.  
DR  
Vo+/Vo1+  
DS  
S+  
S–  
Out OK+  
Out OK–  
RS  
Vo2 depends upon the load distribution: If each output is loaded  
with at least 10% of Io nom, the deviation of Vo2 remains within  
±5% of Vo nom. The following figures explain the regulation with  
different load distributions up to the current limit. If Io1 = Io2 or  
the two outputs are connected in series, the deviation of Vo2  
remains within ±1% of the value of Vo nom, provided that the  
Vo–/Vo1–  
Vo+/Vo2+  
Vo–/Vo2–  
i
Vi+  
Vi–  
+
i
Fig. 10b  
load is at least Io min  
.
Redundant configuration of double-output models with  
parallel-connected outputs.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 13 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
(in double-output models, the 2nd output is monitored). This  
circuitry further protects the load in the unlikely event of a  
malfunction of the main control circuit.  
Note: If output 2 is not used, we recommend to connect it in  
parallel to Vo1. This results in improved efficiency and stability.  
Vo2 [V]  
Vo2 max = 14.2 V  
05111a  
There is no specific built-in protection against externally  
applied overvoltage.  
Note: If output 2 is not loaded, the 2nd control loop may reduce V01  
Io1 = 7.2 A  
Io1 = 5.6 A  
Io1 = 4.0 A  
Io1 = 2.4 A  
Io1 = 0.8 A  
Vo1 + 0.5 V  
under boundary conditions.  
Output Current Protection  
Vo1  
All outputs are fully protected against continuous open-circuit  
condition or continuous short-circuit by an electronic current  
limitation located on the primary side.  
Vo1 – 0.5 V  
Single-output models and series- or parallel-connected  
double-output models have a quasi rectangular constant  
current limitation characteristic.  
Io2 [A]  
0
2
4
6
8
10  
Fig. 12  
Double-output models with 12 V: Voltage deviation of Vo2  
versus Io2 for different currents on output 1  
In double-output models, only the total current is limited,  
allowing free choice of load distribution between the two  
outputs, up to Io1 + Io2 Io max. However, a small current should  
remain on both outputs to guarantee good voltage regulation.  
In case of overload (Io1 + Io2 > Io max) both output voltages are  
reduced simultaneously.  
Vo2 max = 18 V  
Vo2 [V]  
05112a  
Io1 = 6.0 A  
Io1 = 4.6 A  
Io1 = 3.3 A  
Io1 = 2.0 A  
Io1 = 0.66 A  
Vo1 + 0.5 V  
Current distribution in overload is dependent upon the type of  
overload. A short-circuit in one output will cause the full current  
flow into that output, whereas a resistive overload results in  
more even distribution and in a reduced output voltage.  
Vo1  
V /V  
o
o nom  
I
I
I
o max o L  
o nom  
Vo1 – 0.5 V  
05114c  
1.0  
0.95  
Io2 [A]  
0
2
4
6
8
Fig. 13  
Double-output models with 15 V: Voltage deviation of Vo2  
versus Io2 for different currents on output 1  
0.5  
Vo2 max = 28 V  
Vo2 [V]  
05113a  
Io1 = 4.0 A  
Io1 = 3.1 A  
Io1 = 2.2 A  
Io1 = 1.3 A  
Io1 = 0.44 A  
Vo1 + 1.0 V  
I
0
Fig. 15a  
o
BQ – GQ models: Current limitation of single- or double-output  
models with series-connected outputs (no opt. B or B1)  
Vo1  
Vo/Vo nom  
Io nom  
Io L  
Vo1 – 1.0 V  
05104b  
Io2 [A]  
0
1
2
3
4
5
6
1.0  
0.8  
0.6  
Fig. 14  
Double-output models with 24 V: Voltage deviation of Vo2  
versus Io2 for different currents on output 1  
Output Overvoltage Protection  
0.4  
0.2  
0
Output voltage overshoot may occur, if the converter is either  
hot plugged-in or disconnected, the input voltage is switched  
on or off, the converter is switched with an inhibit signal, or after  
a reset of a short circuit and power failure. Output overvoltage  
can also result due to incorrectly wired sense lines.  
Io/Io nom  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
Fig. 15b  
A fully independent output voltage monitor (second control  
loop) limits the voltage Vo or Vo2 to approximately 1.25 • Vo nom  
48Q models: Current limitation of single- or double-output  
models with series-connected outputs (no opt. B or B1)  
BCD20011-G Rev AG, 12-Mar-2012  
Page 14 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
influenced by input voltage, output current, airflow, and  
temperature of surrounding components and surfaces. TA max  
is therefore, contrary to TC max, an indicative value only.  
Efficiency  
η [%]  
JM082  
90  
Vi nom  
Caution: The installer must ensure that under all operating  
conditions TC remains within the limits stated in the table  
Temperature specifications.  
Vi min  
85  
80  
Note: Sufficient forced cooling or an additional heat sink improves  
the reliability or allows TA to be higher than TA max, as long as TC max  
is not exceeded. In rack systems without proper thermal  
management, the converters must not be packed too densely! In  
such cases the use of a 5 or 6 TE front panel is recommended.  
Vi max  
Io [A]  
A temperature sensor generates an internal inhibit signal,  
which disables the outputs, if the case temperature exceeds  
75  
1
2
3
5
4
Fig. 16a  
TC max. The outputs are automatically re-enabled when the  
Efficiency versus input voltage and current per output  
(BQ2320)  
temperature drops below this limit. This feature is not fitted to  
48Q models.  
η [%]  
JM083  
90  
Operating BQ – GQ models with output current beyond Io nom  
requires a reduction of the ambient temperature TA to 50 °C or  
forced cooling. When TC max is exceeded, the converter runs  
into its thermal protection and switches off; see fig. 17a.  
Vi nom  
Vi min  
85  
Vi max  
Note: According to the railway standard EN 50155, the con-  
verters BQ – GQ can be operated with Po nom continously at TA  
70 °C, and then for 10 min at TA = 85 °C without shutdown.  
=
80  
Po  
forced  
cooling  
05116b  
Io [A]  
Po max  
75  
1
2
3
5
4
Fig. 16b  
Po nom  
Efficiency versus input voltage and current per output  
(EQ2320)  
0.75 P  
o nom  
Hold-up Time  
convection  
cooling  
TC max  
The Q Series converters provide virtually no hold-up time. If  
hold-up time is required, use external output capacitors or  
decoupling diodes together with input capacitors of adequate  
size.  
Formula for additional external input capacitor:  
TA  
TA min 50  
60  
70  
80  
90 100 °C  
2 • Po th • 100  
Ci ext = –––––––––––––––  
Fig. 17a  
2
η • (Vti 2 Vi min  
)
Output power derating versus TA for BQ – GQ models  
where as:  
Ci ext = external input capacitance [mF]  
Fig. 17b shows the operation of 48Q models beyond TA  
=
Po  
η
= output power [W]  
= efficiency [%]  
50 °C with forced cooling.  
th  
= hold-up time [ms]  
Po  
Vi min = minimum input voltage [V]  
Vti = threshold level [V]  
05110b  
Ponom  
forced  
convection  
cooling  
Thermal Considerations and Protection  
cooling  
TC max  
If a converter is located upright in quasi-stationary air  
(convection cooling) at the indicated maximum ambient  
temperature TA max (see table Temperature specifications), and  
is operated at its nominal input voltage and output power, the  
temperature TC measured at the Measuring point of case  
temperature (see Mechanical Data) will approach TC max after  
the warm-up phase. However, the relationship between TA  
and TC depends heavily on the operating conditions and the  
integration into a system. The thermal conditions are  
0.4 Ponom  
TA  
–10  
30  
40  
50  
60  
70 80 °C  
Fig. 17b  
Output power derating versus TA for 48Q models  
BCD20011-G Rev AG, 12-Mar-2012  
Page 15 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Table 7: Inhibit characteristics  
Auxiliary Functions  
Characteristics  
Conditions  
min  
50  
2.4  
typ max Unit  
0.8 VDC  
50  
Inhibit for Remote On/Off  
Vinh Inhibit Vo = on Vi min Vi max  
voltage  
TC min TC max  
Vinh = 50 V  
Note: If this function is not used, the inhibit pin 28 must be  
connected with pin 32 to enable the output(s). A non-  
connected pin 28 will be interpreted by the internal logic as an  
active inhibit signal and the output(s) will remain disabled (fail  
safe function).  
Vo = off  
Iinh Inhibit current  
500  
40  
µA  
Vinh  
=
0 V  
Vinh = 50 V  
+500  
An inhibit input enables (logic low, pull down) or disables (logic  
high, pull up) the output, if a logic signal, e.g. TTL, CMOS is  
applied. In systems consisting of several converters, this  
feature may be used, for example, to control the activation  
sequence of the converters by means of logic signals, or to  
allow the power source for a proper start-up, before full load is  
applied.  
The output response, when enabling and disabling the output  
by the inhibit input, is shown in the following figure.  
Vo/Vo nom  
06159a  
tr  
tf  
1.01  
0.99  
06091a  
0.1  
0
Iinh  
t
t
t
12  
28  
30  
S+  
Vo+  
Vo+  
i
td on  
Io  
Vi  
Vi min  
0
Vinh  
4
6
Ii  
Vi+  
Vi–  
Vo  
Vinh [V]  
2.4  
Vi  
Vo–  
8
32  
26  
Vo– 10  
0.8  
14  
S–  
Fig. 19  
Output response as a function of Vi (on/off switching) or  
inhibit control  
Fig. 18  
Definition of input and output parameters  
Table 8: Inhibit response times (typ. values, outputs with ohmic load, R-input left open-circuit)  
Characteristics  
Conditions  
Output voltage rise time Vi nom, RL = Vo nom/Io nom  
(indicative values) i inh = 2.4 0.8 V  
Output voltage fall time Vi nom, RL = Vo nom/Io nom  
(indicative values) Vi inh = 0.8 2.4 V  
BQ  
48Q  
CQ  
GQ  
DQ*  
EQ*  
Unit  
tr  
1.5  
1.3  
1.3  
1.5  
1.5  
1.6  
ms  
V
tf  
Vi min  
3.3 V  
5 V  
12 / 15 V  
24 V  
0.5  
0.8  
1.3  
3
0.5  
0.6  
1.2  
3
0.5  
0.6  
1.3  
3
0.5  
0.8  
1.5  
3
0.5  
0.7  
1.1  
3
0.5  
0.7  
1.5  
3
* Models with version V104 or higher  
Note: T-function only increases the output voltage, until the  
currents are evenly shared. If in a redundant system, one  
converter fails, the remaining converters keep sharing their  
currents evenly.  
Current Sharing  
The current sharing facility should be used when several  
converters are operated in parallel or redundant connection.  
This feature avoids that some converters are driven into  
current limitation and thus produce excessive losses. As a  
result, the stress of the converters is reduced, and the system  
reliability is further improved.  
Since the T pins are referenced to the pins S, the S– pins of  
all converters must have the same electrical potential.  
Double-output converters with both outputs connected in  
series can also be paralleled with current sharing, if pins Vo1–  
of all converters are connected together, see fig. 8c.  
Simple interconnection of the T pins causes the converters to  
share the output current. The current tolerance of each  
converter is approx. ±20% of the sum of its nominal output  
If the output voltages are programmed to a voltage other than  
Vo nom by means of the R pin or option P, the outputs should be  
adjusted individually within a tolerance of ±1%.  
currents Io1 nom + Io2 nom  
.
In n+1 redundant systems, a failure of a single converter will  
not lead to a system failure, if the outputs are decoupled by  
diodes; see fig. 10.  
Important: For applications using the hot-swap capabilities,  
dynamic output voltage changes during plug-in/plug-out must be  
considered.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 16 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Note: R-inputs of n converters with paralleled outputs may be  
paralleled too, but if only one external resistor is used, its value  
should be R1/n or R2/n, respectively.  
Programmable Output Voltage (R-Function)  
This feature is not available on models with 3.3 V output or with  
option P.  
Vext  
06093b  
Note: Models with 3.3 V output or with option P: The R-input must  
be left open-circuit.  
+
Double-  
output  
model  
R
16  
4
Vo1+  
The converters offer a programmable output voltage. The  
adjust is performed either by an external control voltage Vext or  
an external resistor R1 or R2, connected to the R-input.  
Trimming is limited to the values given in the table below (see  
also Electrical Output Data). With open R-input, the output  
S+  
S–  
12  
14  
8
Load 1  
Load 2  
i
Vo1–  
Vo2+  
Vo2–  
Vi+  
Vi–  
voltage is set to Vo nom  
.
6
With double-output models, both outputs are affected by the  
R-input settings.  
10  
Fig. 20  
If output voltages are set higher than Vo nom, the output  
currents should be reduced accordingly, so that the maximum  
specified output power is not exceeded.  
Output adjust using an external control voltage Vext  
.
06094b  
R
Single-output  
model  
16  
Vo+ 4  
Vo+  
R2  
a) Adjustment by means of an external control voltage  
Vext between R (pin 16) and S– (pin 14); see fig. 20.  
R1  
6
Vo  
Vext  
–––––  
Vo nom  
–––––  
2.5 V  
Vext 2.5 V •  
Vo Vo nom •  
S+ 12  
S– 14  
i
Load  
Caution: To prevent damage, Vext should not exceed 20 V, nor be  
negative.  
Vi+  
Vi–  
Vo–  
8
b) Adjustment by means of an external resistor:  
Vo–  
10  
The resistor can either be connected:  
• between R (pin 16) and S(pin 14) to set Vo < Vo nom, or  
Fig. 21  
Output adjust using a resistor R1 (to lower Vo) or R2 (to  
increase Vo).  
• between R (pin 16) and S+ (pin 12) to set Vo > Vo nom  
.
Table 9a: R1 for Vo < Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); R2 = not fitted  
Vo nom = 5.1 V  
Vo nom = 12 V  
Vo [V] 1  
Vo nom = 15 V  
Vo [V] 1  
Vo nom = 24 V  
Vo [V] 1  
Vo [V]  
R1 [k]  
R1 [k]  
R1 [k]  
R1 [k]  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5
14.7  
16.5  
18.2  
21.5  
25.5  
30.1  
37.4  
47.5  
64.9  
97.6  
200  
15 2  
16 2  
17 2  
18 2  
19  
20  
20.5  
21  
21.5  
22  
22.5  
23  
30.0 2  
32.0 2  
34.0 2  
36.0 2  
38.0  
40.0  
41.0  
42.0  
43.0  
44.0  
45.0  
46.0  
47.0  
6.65 2  
8.06 2  
9.76 2  
12.1  
15.4  
20  
23.7  
28.0  
34.8  
44.2  
60.4  
90.9  
190  
9
9.5  
10  
10.5  
11  
11.5  
12  
12.5  
13  
13.5  
14  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
6.04  
6.98  
8.06  
9.31  
11  
13.3  
16.2  
20  
26.1  
36.5  
56.2  
115  
7
7.5  
8
8.5  
9
9.5  
10  
10.5  
11  
14  
15  
16  
17  
18  
19  
20  
11  
22  
23  
5.62  
6.65  
8.06  
9.76  
12.1  
15.4  
20  
28  
44.2  
93.1  
11.5  
14.5  
23.5  
Table 9b: R2 for Vo > Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); R1 = not fitted  
Vo nom = 5.1 V  
Vo nom = 12 V  
Vo [V] 1  
Vo nom = 15 V  
Vo [V] 1  
Vo nom = 24 V  
Vo [V]  
R2 [k]  
R2 [k]  
R2 [k]  
Vo [V] 1  
R2 [k]  
5.2  
5.3  
5.4  
5.5  
5.6  
215  
110  
75  
57.6  
46.4  
12.2  
12.4  
12.6  
12.8  
13  
24.4  
24.8  
25.2  
25.6  
26.0  
26.4  
931  
475  
316  
243  
196  
169  
15.3  
15.5  
15.7  
16  
16.2  
16.5  
30.6  
31  
31.4  
32  
32.4  
33  
1020  
619  
453  
316  
267  
221  
24.5  
25  
25.5  
26  
49  
50  
51  
52  
52.8  
1690  
866  
590  
442  
374  
26.4  
13.2  
1
2
First column: single or double output models with separated/paralleled outputs, second column: outputs in series connection.  
Not possible for DQ2660 and EQ2660.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 17 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Applying generously dimensioned cross-section load leads  
help avoiding troublesome voltage drops. To minimize noise  
pick-up, wire the sense lines parallel or twisted. For  
unsymmetrical loads, we recommend connecting the sense  
lines directly at the female connector.  
Output Good Signal (Out-OK)  
The isolated Out-OK output gives a status indication of the  
converter and the output voltage. It can be used for control  
functions such as data protection, central system monitoring or  
as a part of a self-testing system. It can be connected to get a  
centralized fault detection or may be used for other system-  
specific applications at the primary or the secondary side of  
the converter.  
To ensure correct operation, both sense lines must be  
connected to their respective power output. With double-  
output models, the sense lines must be connected to output 1  
only. Caution should be exercised, if outputs are series-  
connected, as the compensated voltage is effectively doubled.  
Because the effective output voltage and output power are  
increased by the sense lines, the minimum input voltage rises  
proportionally to the compensated output voltage.  
Connecting the Out-OK as per fig. 22, VOK <1.0 V indicates that  
the Vo or Vo1 of the converter is within the range Vt1 low Vt1 high  
Vt1 low corresponds to 0.95 - 0.98 Vo1 nom, Vt1 high to 1.02 – 1.05  
Vo1 nom  
.
.
Note: Using the R-input or the option P, the monitor level is  
tracking the programmed output voltage.  
Caution: Sense lines should always be connected. Incorrectly  
connected sense lines may cause an overvoltage at the ouput,  
which could damage the output load and activate the second  
control loop. The sense lines can handle only small currents.  
In an error condition, if the output voltage is out of range due to  
overload or an external overvoltage, VOK will approach Vp.  
The output is formed by an NPN transistor. The emitter (Out  
OK–) can be connected to primary Vi– or secondary Vo1– to  
get an open-collector output. In a configuration of several Q  
Series converters, the Out OK pins can be series-connected in  
order to get a system level signal (as shown in fig. 9). If one of  
the converters fails, the series-connected output rises to high  
impedance.  
Table 11: Voltage compensation by sense lines  
Nominal output  
voltage  
VS+  
VS–  
Sum of  
VS+ + VS–  
Unit  
3.3 V, 5.1 V  
12 V, 15 V  
24 V  
0.5  
1.0  
1.0  
0.25  
0.5  
1.0  
0.5  
1.0  
2.0  
V
+
Vp  
06096a  
Rp  
IOK  
1 k  
Note: Sense line connection in a redundant configuration is  
shown in fig. 10.  
22  
24  
Out OK+  
Out OK–  
Output  
control  
circuit  
20 V  
VOK  
Test Jacks and LEDs  
Test jacks (for pin diameter 2 mm) are located at the front of  
the converter and allow monitoring the main output voltage at  
the sense line terminals. The test sockets are protected by  
internal series resistors. Double-output models show the  
sense line voltage of output 1 at the test jacks. 48Q models  
have no test jacks.  
Fig. 22  
Out OK function  
Vp  
Dimensioning of resistor value Rp ––––––  
0.5 mA  
48Q models exhibit a green LED In-OK to monitor the input  
voltage. BQ – GQ models have an additional LED Out-OK,  
which is activated simultaneously to the Out-OK signal.  
Caution: Out-OK is protected by an internal series  
resistor and a Zener diode. To prevent damage, the  
applied current IOK should be limited to ±10 mA.  
Table 12: Display status of LEDs  
Table 10: Out-OK data  
LED In OK  
green  
LED Out OK  
Operating condition  
normal operation  
Characteristics  
Conditions  
min typ max Unit  
0.8 1.0  
25 µA  
green  
x
VOK Out-OK voltage Output okay, IOK<0.5mA  
IOK Out-OK current Output fail, VOK 15 V  
V
green  
incorrect sense line connection  
green  
off  
overtemperature  
overload  
output overvoltage  
output undervoltage  
Sense Lines  
This feature allows for compensation of voltage drops at the  
main output across connector contacts and load lines. If the  
sense lines are connected at the load rather than directly at the  
connector, the user must ensure that the differential voltages  
(measured on the connector) VS+ (between Vo+ and S+) and  
VS(between Vo– and S–) do not exceed the values in the  
table below.  
off  
off  
green  
off  
not possible  
no input voltage  
input voltage too low  
input voltage too high  
inhibit input open/high  
x = dependent on actual operating condition  
BCD20011-G Rev AG, 12-Mar-2012  
Page 18 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
input transient voltages, which typically occur in most  
installations, especially in battery-driven mobile applications.  
The Q Series has been successfully tested to the following  
specifications:  
Electromagnetic Compatibility (EMC)  
A metal oxide VDR together with an input fuse and a sym-  
metrical input filter form an effective protection against high  
Electromagnetic Immunity  
Table 13: Immunity type tests  
Phenomenon  
Standard  
Level  
Coupling  
mode1  
Value  
applied  
Waveform  
Source  
imped.  
Test  
procedure  
In  
Perf.  
oper. crit. 2  
Supply related  
surge  
RIA 12  
B
+i/–i  
1.5 • Vbatt  
1.4 • Vbatt  
1800 Vp  
0.1/1/0.1 s  
0.2 Ω  
1 Ω  
1 positive  
surge  
yes  
yes  
A
A
EN 50155  
Direct transients  
RIA 12  
EN 50155:  
1995  
D4  
G5  
H
–i/c, +i/–i  
5/50 µs  
0.05/0.1 µs  
5/50 µs  
5 Ω  
5 pos. and 5 neg.  
impulses  
8400 Vp  
100 Ω  
Indirect coupled  
transients  
o/c, +o/–o, –o/–i  
1800 Vp  
L
8400 Vp  
0.05/0.1 µs  
1/50 ns  
Electrostatic  
discharge  
(to case)  
IEC/EN  
61000-4-2  
46  
contact discharge  
air discharge  
±8000 Vp  
±15000 Vp  
330 Ω  
10 positive and  
10 negative  
discharges  
yes  
A
Electromagnetic  
field  
IEC/EN  
61000-4-3  
x7  
antenna  
antenna  
20 V/m  
20 V/m  
10 V/m  
80% AM, 1 kHz  
80% AM, 1 kHz  
n.a.  
n.a.  
80 – 1000 MHz  
800 – 1000 MHz  
1400 – 2100 MHz  
2100 – 2500 MHz  
yes  
yes  
A
A
8
5 V/m  
9
Electrical fast  
transients/burst  
IEC/EN  
61000-4-4:  
2004  
39  
4
direct coupl. (fig. 9)9 ±2000 Vp bursts of 5/50 ns  
50 Ω  
60 s positive  
60 s negative  
transients per  
coupling mode  
yes  
yes  
A
B
+i/c,  
i/c,+i/i  
5 kHz over 15 ms  
burst period: 300  
ms  
±4000 Vp  
capacit. (fig.10)9, o/c ±2000 Vp  
3
yes  
yes  
B
B
3
Surges  
IEC/EN  
61000-4-5  
33  
23  
+i/c, –i/c  
+i/–i  
±2000 Vp  
±1000 Vp  
1.2/50 µs  
12 Ω  
2 Ω  
5 pos. and 5 neg.  
surges per  
coupling mode  
3
10  
FTZ 19 Pfl 1  
+i/–i  
150 Vp  
0.1/0.3 ms  
<100 A 3 pos. 5 repetitions yes  
A
A
Conducted  
disturbances  
IEC/EN  
61000-4-6  
311  
i, o, signal wires  
10 VAC  
(140 dBµV)  
AM 80%  
1 kHz  
150 Ω  
0.15 – 80 MHz  
yes  
12  
Powerfrequency  
magnetic field  
IEC/EN  
61000-4-8  
100 A/m  
60 s in all 3 axis  
yes  
A
1
i = input, o = output, c = case.  
2
3
4
5
6
7
8
A = Normal operation, no deviation from specs, B = Temporary deviation from specs possible.  
Measured with an external input capacitor specified in table 4. Exceeds EN 50121-3-2:2006 table 7.3 and EN 50121-4:2006 table 2.3.  
Corresponds to EN 50155:2001, waveform A, and EN 50121-3-2:2000 table 7.2.  
Corresponds to EN 50155:2001, waveform B.  
Exceeds EN 50121-3-2:2006 table 9.3 and EN 50121-4:2006 table 1.4.  
Corresponds to EN 50121-3-2:2006 table 9.1 and exceeds EN 50121-4:2006 table 1.1; valid for version V104 or higher.  
Corresponds to EN 50121-3-2:2006 table 9.2 and EN 50121-4:2006 table 1.2 (compliance with digital mobile phones). Valid for converters  
with version V104 or higher.  
Corresponds to EN 50121-3-2:2006 table 7.2 and EN 50121-4:2006 table 2.2; valid for converters with version V104 or higher.  
Valid for 48Q and CQ only.  
Corresponds to EN 50121-3-2:2006 table 7.1 and EN 50121-4:2006 table 3.1 (radio frequency common mode).  
Corresponds to EN 50121-4:2006 table 1.3; valid for converters with version V104 or higher.  
9
10  
11  
12  
BCD20011-G Rev AG, 12-Mar-2012  
Page 19 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
PMM 8000 PLUS: Peak, conducted Vi+, Clp 2007-06-05, 15:15  
h
dBµV  
80  
Electromagnetic Emissions  
EQ2660-7R V102,  
U
=110 V,  
U
=24  
V
I =  
4
A, decoupled load  
i
o
o
JM021  
Table 14: Emissions at Vi nom and Io nom  
EN 55011 B  
Model  
Class accord. to EN 55011 and EN 55022  
Conducted 0.15 – 30 MHz Radiated 30 – 1000 MHz  
60  
40  
20  
0
BQ  
B
B
A
A
B
A
A
A
A
A
48Q/CQ  
DQ  
EQ  
GQ  
Note: Outputs lines decoupled with ferrite cores allow compliance  
0.2  
0.5  
1
2
5
10  
20 MHz  
with class B for radiated emissions.  
Fig. 23c  
All conducted emissions (fig. 23) have been tested according  
to IEC/EN 55022 (similar to EN 55011, much better values  
than requested by EN 50121-3-2, table 3.1). The limits in fig.  
23 apply to quasipeak values, which are always lower then  
peak values.  
Conducted peak disturbances at the input: EQ2320-7R V102,  
Vi nom , Io nom, outputs parallel connected, decoupled load lines  
Radiated emissions have been tested according to IEC/EN  
55011 (similar to EN 55022), as requested in EN 50121-3-2,  
table 6.1. The test is executed with horizontal and vertical  
polarization. The worse result is shown in fig. 24.  
In addition, the values for average must keep a limit 10 dBµV  
below the limits in fig. 23 (not shown).  
PMM 8000 PLUS: Peak, conducted Vi+, Clp 2007-06-07, 14:46  
BQ1001-7R V104, =24 V, =5.1 V, 16 A, decoupled load  
h
dBµV  
80  
U
U
I =  
o
i
o
JM019  
TÜV-Divina, ESVS 30:R&S, BBA 9106/UHALP 9107:Schwarzb., QP, 2009-04-21  
dBµV/m  
Testdistance 10 m, BQ2660-7R V104,  
U =24 V, U =24 V I = 4.4 A  
i o o  
50  
EN 55011 A  
EN 55022 B  
60  
40  
20  
0
40  
< 30 dB(µV/m)  
30  
20  
10  
0
,
0.2  
0.5  
1
2
5
10  
20 MHz  
30  
50  
100  
200  
500  
1000 MHz  
Fig. 23a  
Fig. 24a  
Radiated disturbances in 10 m distance: BQ2660-7R V104,  
Conducted peak disturbances at the input: BQ1001-7R V104,  
Vi nom, Io nom, decoupled load lines  
Vi nom, Io nom  
PMM 8000 PLUS: Peak, conducted Vi+, Clp 2007-06-07, 15:38  
h
TÜV-Divina, ESVS 30:R&S, BBA 9106/UHALP 9107:Schwarzb., QP, 2009-04-17  
Testdistance 10 m, EQ2660-7R V104, =110 V, =24 4.4  
dBµV  
80  
dBµV/m  
50  
CQ2320-7R V104,  
U
=48 V,  
U
=12  
V
I =  
8
A, decoupled load  
U
U
V
I =  
o
A
i
o
o
i
o
JM020  
EN 55011 A  
40  
EN 55022 B  
60  
40  
20  
0
< 30 dB(µV/m)  
30  
20  
10  
0
30  
50  
100  
200  
500  
1000 MHz  
0.2  
0.5  
1
2
5
10  
20 MHz  
Fig. 24b  
Fig. 23b  
Radiated disturbances in 10 m distance: EQ2660-7R V104,  
Vi nom, Io nom  
Conducted peak disturbances at the input: CQ2320-7R V104,  
Vi nom, Io nom, outputs parallel connected, decoupled load lines  
BCD20011-G Rev AG, 12-Mar-2012  
Page 20 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Immunity to Environmental Conditions  
Table 15: Mechanical and climatic stress  
Test method  
Standard  
Test conditions  
Status  
Cab  
Damp heat  
steady state  
IEC/EN 60068-2-78  
MIL-STD-810D section 507.2  
Temperature:  
Relative humidity:  
Duration:  
40 ±2 °C  
Converter  
not  
operating  
93 +2/-3  
%
56 days  
Kb  
Salt mist, cyclic  
(sodium chloride  
NaCl solution)  
IEC/EN 60068-2-52  
Concentration:  
Storage:  
Duration:  
5% (30 °C) for 2 h  
40°C, 93% rel. humidity for  
3 cycles of 22 h  
Converter  
not  
operating  
Fc  
Vibration  
(sinusoidal)  
IEC/EN 60068-2-6  
MIL-STD-810D section 514.3  
Acceleration amplitude:  
0.35 mm (10 – 60 Hz)  
5 gn = 49 m/s2 (60 - 2000 Hz)  
10 – 2000 Hz  
Converter  
operating  
Frequency (1 Oct/min):  
Test duration:  
7.5 h (2.5 h in each axis)  
Fh  
Random vibration  
broad band  
(digital control) and  
guidance  
IEC/EN 60068-2-64  
Acceleration spectral density: 0.05 gn2/Hz  
Converter  
operating  
Frequency band:  
Acceleration magnitude:  
Test duration:  
8 – 500 Hz  
4.9 gn rms  
1.5 h (0.5 h in each axis)  
Eb  
Ea  
--  
Bump  
(half-sinusoidal)  
IEC/EN 60068-2-29  
MIL-STD-810D section 516.3  
Acceleration amplitude:  
Bump duration:  
Number of bumps:  
25 gn = 245 m/s2  
6 ms  
6000 (1000 in each direction)  
Converter  
operating  
Shock  
(half-sinusoidal)  
IEC/EN 60068-2-27  
MIL-STD-810D section 516.3  
Acceleration amplitude:  
Bump duration:  
Number of bumps:  
50 gn = 490 m/s2  
11 ms  
18 (3 in each direction)  
Converter  
operating  
Shock  
EN 50155:2007 sect. 12.2.11,  
EN 61373 sect. 10,  
class B, body mounted1  
Acceleration amplitude:  
Bump duration:  
Number of bumps:  
5.1 gn  
30 ms  
18 (3 in each direction)  
Converter  
operating  
--  
Simulated long life EN 50155:2007 sect. 12.2.11,  
Acceleration spectral density: 0.02 gn2/Hz  
Converter  
operating  
testing at  
EN 61373 sect. 8 and 9,  
class B, body mounted1  
Frequency band:  
Acceleration magnitude:  
Test duration:  
5 – 150 Hz  
0.8 gn rms  
15 h (5 h in each axis)  
increased random  
vibration levels  
1
Body mounted = chassis of a railway coach  
Temperatures  
Table 16: Temperature specifications, valid for an air pressure of 800 - 1200 hPa (800 - 1200 mbar)  
Temperature  
-2  
-7 (Option)  
typ max  
-9  
Unit  
Characteristics  
Conditions  
min  
–10  
–10  
–25  
typ  
max  
50  
min  
–25  
–25  
–40  
min  
–40  
–40  
–55  
typ  
max  
TA  
TC  
TS  
Ambient temperature  
Converter operating  
711  
951 2  
100  
711  
951 2  
100  
°C  
Case temperature  
80  
Storage temperature  
Non operational  
100  
1
2
See Thermal Considerations. Operation with Po max requires a reduction to TA max = 50 °C and TC max = 85 °C.  
Overtemperature lockout at TC >95 °C (PTC).  
Reliability  
Table 17: MTBF and device hours  
Ratings at specified  
Models  
Ground  
benign  
40 °C  
Ground fixed  
Ground  
mobile  
50 °C  
Naval,  
sheltered  
40 °C  
Device  
hours 1  
Unit  
Case Temperature  
40 °C  
70 °C  
MTBF according to  
MIL-HDBK-217F  
CQ1000  
588 000  
196 000  
96 000  
74 000  
6 400 000  
h
908 000  
853 000  
913 000  
243 000  
164 000  
237 000  
160 000  
65 100  
98 000  
57 700  
97 000  
192 000  
152 000  
188 000  
MTBF according to  
MIL-HDBK-217F, notice 2  
BQ1001-9R  
BQ2000  
EQ2660-9R  
155 000  
1
Statistical values, based on an average of 4300 working hours per year and in general field use over 5 years; upgrades and customer-  
induced errors are excluded.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 21 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Mechanical Data  
The converters are designed to be  
inserted into a 19" rack according to  
IEC 60297-3. Dimensions are in mm.  
European  
Projection  
pin 4  
H
G
F
E
D
KeyCode System  
A
B
C
Front plate  
Front plate  
104  
20  
09066g  
M3; 4 deep  
Measuring point of  
case temperature TC  
AIRFLOW  
Rear-  
face  
Main-  
face  
Rear-  
face  
60  
19.8  
38.8 *)  
Back plate  
111  
Fig. 25  
Case Q01,  
Standard  
Opt. B1  
*) 32.3 mm for opt. B  
104  
100  
weight approx.500 g;  
aluminum, fully  
enclosed,  
black finish, and self  
cooling  
**) 231.0 ...231.9 mm  
for long case  
(add 5000 to the  
95  
part number)  
= 4.2  
= 3.4  
= 3  
LED "In-OK" green1  
Potentiometer (option P)  
Test sockets1  
LED "Out-OK" green  
1 Not fitted to 48Q models  
Notes:  
Long case, elongated by 60 mm for 220 mm rack depth is available  
on request. Add 5000 to the standard part number.  
An additional heat sink (option B1) is available; it reduces the case  
temperature TC, and allows more output power at higher ambient  
temperature TA.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 22 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
The Vi– input (pin 32) is internally fused. This fuse is designed  
to protect in case of overcurrent and may not be able to satisfy  
all customer requirements. External fuses in the wiring to one  
or both input pins (no. 30 and/or no. 32) may therefore be  
necessary to ensure compliance with local requirements.  
Safety and Installation Instructions  
Connector Pin Allocation  
The connector pin allocation table defines the electrical  
potentials and the physical pin positions on the H15 connector.  
Pin no. 26, the protective earth pin, is a leading pin, ensuring  
that it makes contact with the female connector first.  
Important:  
• If the inhibit function is not used, pin 28 (i) must be connected  
with pin 32 (Vi–) to enable the output(s).  
Table 18: Pin allocation of the H15 connector  
• Do not open the converters, or warranty will be invalidated.  
Pin  
4
Electrical determination  
Output voltage (positive)  
Output voltage (positive)  
Output voltage (negative)  
Output voltage (negative)  
Sense line (positive) 2  
Q1000  
Vo+  
Vo+  
Vo–  
Vo–  
S+  
Q2000  
Vo1+  
Vo2+  
Vo1–  
Vo2–  
S+  
• Long input, output and auxiliary lines, or lines with inductors,  
filters or coupling/decoupling networks may cause instabilities.  
See Input Stability with Long Supply Lines.  
6
Due to high output currents, the Q1001/1101 models offer two  
internally parallel-connected contacts for both, the positive and  
the negative output path (pins 4/6 and pins 8/10). It is  
recommended to connect the load to both female connector  
pins of each path in order to keep the voltage drop across the  
connector pins to a minimum.  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
Sense line (negative) 2  
S–  
S–  
Output voltage control input 1  
Current sharing control input  
Do not connect (internal Gnd.)  
Output good signal (positive)  
Output good signal (negative)  
Protective earth PE 2  
R 1  
R 1  
Make sure that there is sufficient air flow available for  
convection cooling. This should be verified by measuring the  
case temperature when the converter is installed and operated  
in the end user application. The maximum specified case  
temperature TC max shall not be exceeded. See also Thermal  
Considerations.  
T
T
--  
--  
Out-OK+ Out-OK +  
Out-OKOut-OK–  
Ensure that a converter failure (e.g. by an internal short-circuit)  
does not result in a hazardous condition. See also Safety of  
Operator-Accessible Output Circuits.  
Inhibit control input 3  
i
i
Input voltage (positive)  
Vi+  
Vi–  
Vi+  
Vi–  
Input voltage (negative)  
Cleaning Agents  
1
2
3
In order to avoid possible damage, any penetration of cleaning  
fluids must be prevented, since the power supplies are not  
hermetically sealed.  
Do not connect pin 16 for models with 3.3 V output or opt. P !  
Leading pin (pre-connecting).  
If not actively used, connect with pin 32.  
30  
26 22  
18 14 10  
6
Protection Degree  
Condition: Female connector fitted to the converters.  
IP 30: All models, except those with option P (potentiometer).  
IP 20: All models fitted with option P.  
10025a  
32  
28 24  
20 16  
12  
8
4
Fig. 26  
Standards and Approvals  
View of male H15 connector  
The Q Series converters correspond to class I equipment.  
They are safety agency approved to UL/CSA 60950-1 and  
IEC/EN 60950-1 2nd Edition.  
Installation Instructions  
The  
Q
Series converters are components, intended  
The converters have been evaluated for:  
Class I equipment  
exclusively for inclusion within other equipment by an  
industrial assembly operation or by professional installers.  
Installation must strictly follow the national safety regulations  
in compliance to enclosure, mounting, creepage, clearance,  
casualty, markings and segregation requirements of the end-  
use application.  
Building in  
Basic insulation between input and case and double or  
reinforced insulation between input and output, based on  
their maximum rated input voltage  
Connection to the system shall be made via the female  
connector H15 (see Accessories). Other installation methods  
may not meet the safety requirements.  
Basic insulation between Out-OK and case, and double or  
reinforced insulation between Out-OK and input, and  
between Out-OK and output, based on their maximum rated  
input voltage  
The Q Series converters are provided with pin 26 ( ), which is  
reliably connected to the case. For safety reasons it is  
essential to connect this pin to protective earth; see Safety of  
Operator-Accessible Output Circuits.  
Functional insulation between outputs and output to case  
Use in a pollution degree 2 environment  
BCD20011-G Rev AG, 12-Mar-2012  
Page 23 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Table 19: Isolation  
Characteristic  
Input to  
case + output(s)  
Output(s) to  
case  
Output  
to output  
Out-OK to  
case + input to output(s)  
Out-OK  
Unit  
Electric  
strength  
tests  
Factory test 1 s  
2.1 1  
1.5 1  
2.1  
1.5  
0.5*  
2.1 1  
1.5 1  
2.1 1  
1.5 1  
kVDC  
kVAC  
AC test voltage equivalent  
to factory test  
0.35*  
Insulation resistance  
>300 2  
1.4 3  
>300 2  
1.4  
>100  
>300 2  
>300 2  
MΩ  
Minimum creepage distances  
mm  
* Models with version V104 or higher. Older converters have only been tested with 0.3 kVDC.  
1
In accordance with EN 50116 and IEC/EN 60950, subassemblies connecting input to output are pre-tested with 4.2 kVDC.  
Tested at 500 VDC.  
2.8 mm between input and output.  
2
3
Connecting the input to a circuit, which is subject to a  
maximum transient rating of 1500 V.  
(max. 0.1 ) and the electric strength test (table 19) are  
performed in the factory as routine tests in accordance with EN  
50116 and IEC/EN 60950-1, and should not be repeated in the  
field. Power-One will not honor any warranty claims resulting  
from electric strength field tests.  
CB Scheme is available.  
The converters are subject to manufacturing surveillance in  
accordance with the above mentioned standards and with ISO  
9001:2000.  
Safety of Operator-Accessible Output Circuits  
If the output circuit of a DC-DC converter is operator-  
accessible, it shall be an SELV circuit according to IEC 60950.  
Railway Applications  
The Q Series converters have been designed by observing the  
railway standards EN 50155, EN 50121-3-2, and EN 50121-4.  
All boards are coated with a protective lacquer.  
Table 21 shows some possible installation configurations,  
compliance with which causes the output circuit of the DC-DC  
converter to be SELV up to a configured output voltage (sum of  
nominal voltages, if in series configuration) of 35 V.  
The converters comply with class S1 of the fire protection  
standard E DIN 5510-2 (Oct. 2007).  
However, it is the sole responsibility of the installer to ensure  
the compliance with the relevant and applicable safety  
regulations.  
Isolation and Protective Earth  
The test of the resistance of the protective earthing circuit  
reduced accordingly, so that the maximum specified output  
power is not exceeded.  
Description of Options  
Option P: Output Voltage Adjustment  
Option -7: Temperature Range  
Option P provides a built-in multi-turn potentiometer, which  
allows an output voltage adjustment of ±10% of Vo nom. The  
potentiometer is accessible through a hole in the front cover.  
Option -7 designates converters with an operational ambient  
temperature range of 25 to 71 °C. Not for new designs.  
With double-output models, both outputs are affected by the  
potentiometer. If converters are parallel-connected, their in-  
dividual output voltage should be set within a tolerance of ±1%.  
Option B, B1: Additional Heat Sink  
Thickness: 12.5 mm (opt. B) or 20 mm (opt. B1)  
If Vo is set higher than Vo nom, the output currents should be  
Table 20:Thermal resistance case to ambient (approx.values)  
Case  
Thermal resistance Thickness of case  
10026  
Fuse  
+
~
Standard (160 mm long)  
Case 220mmlong1 2  
Option B2  
1.6 K/W  
1.4 K/W  
1.45 K/W  
1.4 K/W  
< 20 mm  
< 20 mm  
< 33 mm  
< 40 mm  
AC-DC  
front  
end  
Suppressor  
diode  
DC-DC  
con-  
verter  
+
Mains  
Battery  
SELV  
Fuse  
~
Option B1  
1
Earth Earth  
connection connection  
As well available with an additional heat sink  
Customer-specific models. Add 5000 to the part number!  
Earth  
connection  
2
Fig. 27  
Schematic safety concept  
Use fuse, suppressor diode and earth connections as per  
table 21. For fuse(s), required by the application; see  
Installation Instructions.  
Option G:  
RoHS compliant for all six substances.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 24 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Table 21: Safety concept leading to an SELV output circuit  
Conditions Front end  
DC-DC converter  
Result  
Nominal  
supply  
voltage  
Minimum required grade Maximum DC Minimum required Types  
Measures required to achieve Safety status  
the specified safety status of of the DC-DC  
of insolation, to be pro-  
vided by the AC-DC front  
end, including mains-  
supplied battery charger  
output voltage safety status of the  
from the front front end output  
the output circuit  
converter  
output  
end 1  
circuit  
circuit  
Mains  
Functional (i.e. there is  
150 V 2  
Primary circuit  
DQ  
EQ  
Double or reinforced insula-  
tion, based on 150 VAC and  
DC (provided by the con-  
verter) and earthed case 3  
SELV circuit  
150 VAC no need for electrical iso-  
lation between the mains  
supply circuit and the  
DC-DC converter input  
circuit)  
Basic  
60 V  
75 V  
ELV circuit  
BQ, GQ Supplementary insulation,  
48Q  
CQ  
based on 150 VAC (provided  
by the DC-DC converter)  
and earthed case 3  
Hazardous voltage 48Q  
secondary circuit  
Supplementary insulation,  
based on 150 VAC and  
double or reinforced insula-  
tion 4 (both provided by the  
DC-DC converter) and  
earthed case 3  
CQ  
Mains  
250 VAC  
60 V  
Earthed SELV  
circuit 3  
BQ, GQ Functional insulation (provided  
48Q,CQ by the converter)  
ELV circuit  
Input fuse 5, output suppressor  
Earthed  
diodes 6, earthed output  
SELV circuit  
75 V  
Unearthed  
hazardous voltage CQ  
secondary circuit  
48Q  
circuit 3 and earthed 3 or non  
user-accessible case  
150 V 2  
Earthed hazardous BQ, GQ Double or reinforced  
voltage secondary 48Q, CQ insulation 4 (provided by  
SELV circuit  
circuit 3 or earthed  
ELV circuit 3  
DQ  
EQ  
the converter)  
and earthed case 3  
Unearthed  
hazardous voltage EQ  
secondary circuit  
DQ  
Supplementary insulation, ba-  
sed on 250 VAC and double  
or reinforced insulation 4 (both  
provided by the converter)  
and earthed case 3  
Double or reinforced  
60 V  
SELV circuit  
TNV-2 circuit  
BQ, 48Q Functional insulation (provi-  
CQ, GQ ded by the converter)  
120 V  
48Q, CQ Basic insulation 4 (provided  
DQ  
EQ  
by the converter)  
150 V 2  
Double or re-infor-  
ced insulated un-  
earthed hazardous  
voltage secondary  
circuit 7  
1
The front end output voltage should match the specified input voltage range of the DC-DC converter.  
2
3
4
5
The maximum rated input voltage of EQ models acc. to IEC/EN 60950 is 150 V. Power-One specifies the tolerance as +12% (max. 168 V)  
The earth connection has to be provided by the installer according to IEC/EN 60950.  
Based on the maximum rated output voltage provided by the front end.  
The installer shall provide an approved fuse with the lowest rating suitable for the application in a non-earthed input conductor directly at  
the input of the DC-DC converter (see fig. Schematic safety concept). For UL’s purposes, the fuse needs to be UL-listed.  
Each suppressor diode should be dimensioned such that in the case of an insulation fault the diode is able to limit the output voltage to  
SELV (<60 V), until the input fuse blows (see fig. Schematic safety concept).  
Has to be insulated from earth according to IEC/EN 60950, by at least supplementary insulation, based on the maximum nominal output  
voltage from the front end.  
6
7
BCD20011-G Rev AG, 12-Mar-2012  
Page 25 of 26  
www.power-one.com  
Q Series Data Sheet  
66 132 Watt DC-DC Converters  
®
Accessories  
A wide variety of electrical and mechanical accessories are  
available:  
Various mating connectors including fast-on, screw, solder  
or press-fit terminals, code key system  
Connector retention brackets CRB-Q [HZZ01217]  
Cable connector housing (cable hood) KSG-H15/H15S4  
[HZZ00141], also available with fixation  
Various front panels wide 4, 5, or 6 TE for 19" racks with  
3U heigth. Front panels with 5 or 6 TE width provide some  
space between the converters for better cooling.  
System kit for 19" racks with 6U, width 5 TE, including a  
support bracket, Kit G05-6HE-Q01 [HZZ01217]  
Mounting plate MOUNTINGPLATE-Q [HZZ01215] for wall  
mounting, with optional connector retention clips  
RETENTIONCLIP(2X) [HZZ01209]  
Brackets for DIN-rail mounting UMB-LHMQ [HZZ00610]  
Additional external input and output filters  
Battery sensor [S-KSMH...] for using the converter as  
battery charger. Different cell characteristics can be  
selected.  
System kit for  
19" rack, 6U.  
For additional accessory product information, see the  
accessory data sheets listed with each product series or  
individual model at www.power-one.com.  
Mounting plate Q for  
wall mounting with  
fitted connector  
retention clip  
Connector  
Connector  
retention  
bracket  
retention clip (only  
in conjunction with  
mounting plate Q)  
H15 female connector,  
code key system  
CRB-Q  
Brackets for DIN-  
rail and chassis  
mounting  
Mounting plate Q with fitted metallic cable  
hood with fastening screws  
NUCLEARAND MEDICALAPPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components  
in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the  
respective divisional president of Power-One, Inc.  
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the  
date manufactured. Specifications are subject to change without notice.  
BCD20011-G Rev AG, 12-Mar-2012  
Page 26 of 26  
www.power-one.com  

相关型号:

BQ2660-7R

60...132 Watt DC-DC Converters
POWER-ONE

BQ2660-7R

DC-DC Regulated Power Supply Module,
BEL

BQ2660-9P

DC-DC Regulated Power Supply Module, 2 Output, 106W, Hybrid, METAL, CASE Q01, MODULE
BEL

BQ2660-9R

DC-DC Regulated Power Supply Module, 2 Output, 132W, Hybrid, METAL, CASE Q01, MODULE
BEL

BQ2660-9RF

DC-DC Regulated Power Supply Module, 2 Output, 132W, Hybrid, PACKAGE-32/15
BEL

BQ2660-9RFG

DC-DC Regulated Power Supply Module, 2 Output, 132W, Hybrid, PACKAGE-32/15
BEL

BQ2660-9RG

DC-DC Regulated Power Supply Module,
BEL

BQ27000

SINGLE CELL Li-Ion AND Li-Pol BATTERY GAS GAUGE IC FOR PORTABLE APPLICATIONS (bqJUNIOR)
TI

BQ27000DRKR

SINGLE CELL Li-Ion AND Li-Pol BATTERY GAS GAUGE IC FOR PORTABLE APPLICATIONS (bqJUNIOR)
TI

BQ27000DRKRG4

SINGLE CELL Li-Ion AND Li-Pol BATTERY GAS GAUGE IC FOR PORTABLE APPLICATIONS (bqJUNIOR)
TI

BQ27000EVM

bq27000 Single Cell Battery Fuel Gauge Evaluation Module
TI

BQ27000PW

SINGLE-CELL LHON AND LI-POL BATTERY GAS GAUGE IC FOR PORTABLE APPLICATIONS
TI